
International Journal of Information Security (2023) 22:987–1004
https://doi.org/10.1007/s10207-023-00675-1

REGULAR CONTRIBUT ION

TENET: a new hybrid network architecture for adversarial defense

Omer Faruk Tuna1 · Ferhat Ozgur Catak2 ·M. Taner Eskil3

Published online: 17 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2023

Abstract
Deep neural network (DNN) models are widely renowned for their resistance to random perturbations. However, researchers
have found out that these models are indeed extremely vulnerable to deliberately crafted and seemingly imperceptible pertur-
bations of the input, referred to as adversarial examples. Adversarial attacks have the potential to substantially compromise
the security of DNN-powered systems and posing high risks especially in the areas where security is a top priority. Numerous
studies have been conducted in recent years to defend against these attacks and to develop more robust architectures resistant
to adversarial threats. In this study, we propose a new architecture and enhance a recently proposed technique by which we can
restore adversarial samples back to their original class manifold. We leverage the use of several uncertainty metrics obtained
from Monte Carlo dropout (MC Dropout) estimates of the model together with the model’s own loss function and combine
them with the use of defensive distillation technique to defend against these attacks. We have experimentally evaluated and
verified the efficacy of our approach on MNIST (Digit), MNIST (Fashion) and CIFAR10 datasets. In our experiments, we
showed that our proposed method reduces the attack’s success rate lower than 5% without compromising clean accuracy.

Keywords Adversarial machine learning · Model uncertainty · Robustness · Monte Carlo dropout sampling

1 Introduction

Deep learning algorithms have started to outperform humans
in the past few years. For example, in the “ImageNet Large
Scale Visual Recognition Challenge (ILSVRC)”, a deep
learning model called ResNet [1] beat human performance
in 2015, and the record was later broken by more advanced
architectures. Similarly, Goodfellow et al. [2] created a sys-
tem that outperforms human operators for the problem of
reading addresses from Google Street View imagery and
solving CAPTCHAS. In the field of gaming, AlphaGo, an
AI program, defeated the global Go champion in 2016.
Many advanced systems are now being developed using deep

B Omer Faruk Tuna
omer.tuna@ericsson.com

Ferhat Ozgur Catak
f.ozgur.catak@uis.no

M. Taner Eskil
taner.eskil@isikun.edu.tr

1 Ericsson Research, Istanbul, Turkey

2 Department of Electrical Engineering and Computer Science,
University of Stavanger, Stavanger, Rogaland, Norway

3 Isik University, Istanbul, Turkey

learning models, which have shown to be extremely suc-
cessful in a variety of domains, including medical diagnosis,
autonomous vehicles, game play, and machine translation.
However, the main emphasis of the researchers during the
rise of deep learning models was the creation of increasingly
precise models and the reliability and robustness of those
models were paid almost no attention. DNN’s do, in fact,
necessitate a more thorough examination because they have
some inherent vulnerabilities that can be easily exploited by
intruders.

Around the end of 2013, researchers discovered that exist-
ing DNN models are vulnerable to meticulously crafted
attacks. Szegedy et al. [3] were among the very first who
noticed the presence of adversarial instances in the domain
of image classification. The authors have demonstrated that
it is possible tomodify an image by a small amount to change
the prediction of the deep learning model. It is shown that a
very slight and nearly unnoticeable change in input is enough
to deceive even themost advanced classifiers and cause incor-
rect classification. Back then, a vast number of research
studies have been undertaken in this newfield named “Adver-
sarial Machine Learning” and these studies have not been
restricted just to image classification domain. For example,
Sato et al. [4] demonstrated in the NLP domain that altering

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00675-1&domain=pdf
http://orcid.org/0000-0002-6214-6262

988 O. F. Tuna et al.

merely one word from an input sentence can deceive a sen-
timent analyzer trained with textual data. A further example
is in the audio domain [5],where the authors built targeted
adversarial audio samples in autonomous speech recogni-
tion task by introducing very little disturbance to the original
waveform.The result of this study shows that the targetmodel
may simply be exploited to transcribe the input as any desired
phrase.

Adversarial evasion attacksmainlywork bymodifying the
input samples in a way that increases the likelihood of mak-
ing incorrect decisions, resulting in inaccurate predictions.
These attacks can cause the model’s prediction performance
to deteriorate since the algorithm is unable to correctly pre-
dict the real output for the input instances. Attacks that take
advantage ofDNN’sweakness can substantially compromise
the security of these machine learning (ML)-based systems,
often with disastrous results. In the context of medical appli-
cations, a malicious attack could result in an inaccurate
disease diagnosis.As a result, it has the potential to impact the
patient’s health as well as the healthcare industry [6]. Simi-
larly, self-driving cars employML to navigate traffic without
the need for human involvement. A mistaken decision for
the autonomous vehicle based on a adversarial attack could
result in a tragic accident [7,8]. Hence, defending against
malicious attacks and boosting the robustness of ML models
without sacrificing clean accuracy is critical. Presuming that
theseMLmodels are to be utilized in crucial areas, we should
pay utmost attention to both the performance of ML models
and the security problems of these architectures.

In this research work, we concentrate on adversarial
defense strategies based on moment-based uncertainty esti-
mates of a distilled model which are obtained from Monte
Carlo (MC) Dropout samples.We propose a hybrid approach
by using and significantly improving the effectiveness of
uncertainty-based reversal technique [9] and combining it
with defensive distillation technique to provide more robust
models.We name our proposed network architecture TENET
by inspiring from the famous sci-fi movie TENET (Directed
by Christopher Nolan, Warner Bros. Pictures and Syncopy
Inc., 2020) due to resemblance of main concepts (inversion).
We developed twomore effective variants of the reversal pro-
cess based on scibilic uncertainty. Reversal method involves
reverting the input sample back to its original data mani-
fold by decreasing its quantified uncertainty before feeding
it to the classifier. This technique would be impossible if
we used only one metric whose calculation is dependent on
a reference information like model loss. However, as the
quantification of model uncertainty is independent of any
reference information like real label of the input, we can
successfully restore the inputs back to their original dataman-

ifold byminimizing the quantified uncertainty. Our codes are
released on GitHub 1 for scientific use.

To summarize; our key contributions for this work are as
follows:

– We enhanced the performance of a recently proposed
technique which can successfully restore adversarial
samples back to their original class manifold and intro-
duced two more effective variants of it.

– To the best of our knowledge, we are the first in the
research community that consider scibilic uncertainty to
build robust models.

– We introduce a hybrid architecture which combines
defensive distillation technique and uncertainty-based
reversal method. We experimentally show that these two
approaches can handle complementary situations and
they together help to reduce the success rate of differ-
ent attacks like FGSM, BIM, PGD, DeepFool and CW
lower than 5%.

This study is structured as follows: Sect. 2 goes over some
of the most well-known attack types and defense techniques
in the literature. In Sect. 3, we introduce the concept of uncer-
tainty aswell asmain types and describe howwe can quantify
them. The details of our approach are presented in Sect. 4.
We provide our experimental findings in Sect. 5 and wrap up
our research in Sect. 6.

2 Literature survey

Since the uncovering of DNN’s vulnerability to adversar-
ial attacks [3], a lot of work has gone into inventing new
adversarial attack algorithms and defending against them by
utilizingmore robust architectures [10–13].We discuss some
of the noteworthy attack and defense studies separately.

2.1 Adversarial attacks

DNNmodels have some vulnerabilities that make them chal-
lenging to defend in adversarial settings. For example, they
are mostly sensitive to slight changes in the input data, lead-
ing to unexpected results in the model’s predictions. Figure1
depicts how an adversary could take advantage of such a
vulnerability and fool the model using properly crafted per-
turbation applied to the input.

In general, adversarial strategies can be classified based
on different criteria. Considering the final aim of the attacker,
attacks can be grouped into two as targeted and untargeted
attacks. In the former, the attacker tampers with the input
image, causing the model to predict a class other than the

1 https://github.com/omerfaruktuna/TENET-Adversarial-Defense.

123

https://github.com/omerfaruktuna/TENET-Adversarial-Defense

TENET: a new hybrid network architecture for adversarial defense 989

Fig. 1 The figure shows a simple example to adversarial attack. The
adversarial perturbation is applied upon the original image. The pre-
cisely crafted perturbation manipulates the model in such a way that a
“Cat” is wrongly classified as “Sports Car” with very high degree of
confidence

genuine class. Whereas in the latter, the attacker perturbs
the input image so that a particular target class is predicted
by the model. Attacks can also be grouped based the level
of knowledge that the attacker has. If the attacker has full
knowledge of the model like architecture, weights, hyper-
parameters, etc., we call this kind of setting as White-Box
Settings. However, if the attacker has no information of the
deployed model and defense strategy, we call this kind of
setting as Black-Box Settings [14]. In this study, we mainly
focus on untargeted attacks in a White-Box setting.

The majority of attack ideas rely on perturbing the input
sample in order to maximize the model’s loss. In recent
years,many different adversarial attack techniques have been
suggested in literature. The most widely known and used
adversarial attacks are Fast-Gradient Sign Method, Itera-
tive Gradient Sign Method, Projected Gradient Descent,
DeepFool and Carlini&Wagner. These five adversarial
attack algorithms are briefly explained in Sects. 2.1.1–2.1.4.

2.1.1 Fast-gradient sign method

This approach, sometimes known as FGSM [15], is among
the first and most famous adversarial attacks so far. In this
attack algorithm, the derivative of the model’s loss function
with respect to the input sample is used to identify which
direction the input image’s pixel values should be altered in
order to minimize the model’s loss function. Once extracted,
it alters all pixels in the opposite direction simultaneously
to maximize the loss. We may craft adversarial samples for
a model with a classification loss function represented as
J (θ, x, y) by utilizing the formula below, where θ denotes
the parameters of the model, x is the benign input, and ytrue
is the real label of our input.

xadv = x + ε · sign (∇x J (θ, x, ytrue)) (1)

Another important aspect of FGSMis that it is not intended
to be optimum, but rather fast. It is not designed to output
the minimum required amount of perturbation. Furthermore,
when compared to other attack types, the success ratio of
FGSM is relatively low when applied with small ε values

2.1.2 Iterative gradient sign method

Kurakin et al. [16] proposed a minor but significant enhance-
ment to the FGSM. Instead of taking one large step ε in the
direction of the gradient sign,we take numerous smaller steps
α and utilize the supplied value ε to clip the output in this
method. This method is also known as the Basic Iterative
Method (BIM), and it is simply FGSM applied to an input
sample iteratively. Equation2 describes how to generate per-
turbed images under the linf norm for a BIM attack.

x∗
t = x

x∗
t+1 = clipx,ε{xt + α · sign (∇x J (θ, x∗

t , ytrue)
)} (2)

wherex is the clean sample input to themodel,x∗ is the output
adversarial sample at i th iteration, J is the loss function of the
model, θ denotes model parameters, ytrue is the true label for
the input, ε is a configurable parameter that limits maximum
perturbation amount in given linf norm, and α is the step size.

The BIM attack has a better success rate than the FGSM
[17]. The attacker can manage how far an adversarial sam-
ple is pushed further away from the decision boundary by
configuring the ε parameter.

2.1.3 Projected gradient descent

This attack type, commonly known as PGD, has been pro-
posed by Madry et al. [18]. It perturbs an input image x for
a number of i iterations in the direction of the model’s loss
function gradient with a tiny step size. It projects the gen-
erated adversarial sample back onto the ε-ball of the input
after each perturbation step depending on the chosen distance
norm. In addition, rather than starting from the original point
(ε = 0, in all the dimensions), PGD employs random start,
which can be defined as:

x0 = x + P (−ε,+ε) (3)

where P (−ε,+ε) is the uniform distribution between
(−ε,+ε).

2.1.4 DeepFool attack

This attack method has been introduced by Moosavi-
Dezfooli et al. [19] and it is one of the strongest untargeted
attack algorithms in literature. It is made to workwith several
distance norm metrics, including linf and l2 norms.

123

990 O. F. Tuna et al.

Fig. 2 Illustration of DeepFool attack algorithm

The DeepFool attack is formulated on the idea that neural
network models act like linear classifiers with classes sep-
arated by a hyperplane. Starting with the initial input point
xt, the algorithm determines the closest hyperplane and the
smallest perturbation amount, which is the orthogonal pro-
jection to the hyperplane, at each iteration. The algorithm
then computes xt+1 by adding the smallest perturbation to
the xt and checks formisclassification. The illustration of this
attack algorithm is provided in Fig. 2. This attack can break
defensive distillation method and achieves higher success
rates than previously mentioned iterative attack approaches.
But the downside of this attack algorithm is that the pro-
duced adversarial sample generally lies close to the decision
boundary of the model.

2.1.5 Carlini andWagner attack

The attack proposed by Carlini andWagner [20] is one of the
strongest attack algorithms so far. As a result, it is commonly
used as a benchmark for the adversarial defense research
groups, which tries to develop more robust DNN architec-
tures that can withstand adversarial attacks. It is shown that,
for themostwell-known datasets, theCWattack has a greater
success rate than the other attack types on normally trained
models. Like DeepFool, it can also deceive defensively dis-
tilled models, which other attack types struggle to create
adversarial examples for.

In order to generate more effective and strong adversar-
ial samples under multiple l p norms, the authors reformulate
the attack as an optimization problem which may be solved
using gradient descent. A con f idence parameter in the algo-
rithm can used to change the level of prediction score for the
created adversarial sample. For a normally trained model,
application of CW attack with default setting (confidence set
to 0) would generally yield to adversarial samples close to

Fig. 3 Anexample image fromCIFAR10dataset and someof the adver-
sarial samples crafted by using previously mentioned attack types

decision boundary. And high-confidence adversaries gener-
ally located further away from decision boundary.

Adversarial machine learning is a burgeoning field of
research, and we see a lot of new adversarial attack algo-
rithms being proposed. Some of the recent remarkable ones
are as follows: (i) Square Attack [21] which is a query
efficient black-box attack that is not based on model’s gra-
dient and can break defenses that utilize gradient masking,
(ii) HopSkipJumpAttack [22] which is a decision-based
attack algorithm based on an estimation of model’s gradi-
ent direction and binary-search procedure for approaching
the decision boundary, (iii) Prior Convictions [23] which
utilizes two kinds of gradient estimation (time and data
dependent priors) and propose a bandit optimization-based
framework for adversarial sample generation under loss-only
access black-box setting and (iv) Uncertainty-Based Attack
[24] which utilizes both themodel’s loss function and quanti-
fied epistemic uncertainty to generate more powerful attacks.
Figure3 shows adversarial samples generated by attack algo-
rithms discussed earlier.

2.2 Adversarial defense

In this section, we review some of the most notable adver-
sarial defense methods proposed over the last few years.

2.2.1 Defensive distillation

Although the idea of knowledge distillation was previously
introduced by Hinton et al. [25] to compress a large model
into a smaller one, the utilization of this technique for adver-
sarial defense purposes was first suggested by Papernot et al.
[26]. The algorithm starts with training a teacher model on
training data by employing a high temperature (T) value in
the softmax function as in Eq.4, where pi is the probability
of ith class and zi ’s are the logits.

pi = exp(ziT)
∑

j exp(
zi
T)

(4)

123

TENET: a new hybrid network architecture for adversarial defense 991

Fig. 4 Defensive distillation

Then, using the previously trained teacher model, each of
the samples in the training data is labeled with soft labels
calculated with temperature (T) in prediction time. The
distilled model is then trained with the soft labels acquired
from the teacher model, again with a high temperature (T)
value in the softmax. When the training of the student model
is over, we use temperature value as 1 during prediction time.
Figure4 shows the overall steps for this technique.

This technique was found to significantly reduce the abil-
ity of traditional gradient-based untargeted attacks to build
adversarial samples. Because defense distillation has an
effect of diminishing the gradients down to zero and the usage
of standard objective function is not effective anymore. To
illustrate this fact, we made a simple experiment using a
test sample from MNIST (Digit) dataset and draw the loss
surface of the normal and distilled models against two differ-
ent directions (one for loss gradient direction and one for a
random direction). As depicted in Fig. 5, the gradient of the
distilledmodel diminishes to zero and thus loss-based attacks
have difficulty in crafting adversarial samples for defensively
distilled models. However, it was later demonstrated that
more successful attack types, such as the CW and DeepFool
attacks, could defeat the defensive distillation strategy. The
reason why we opt to employ this technique in our approach
is that, one can easily craft high confident examples near the
decision boundary of a defensively distilledmodel. And also,
due to gradient vanishing property, it is effective in defending
against loss gradient-based untargeted attack types.

2.2.2 Adversarial training

Adversarial training is considered as an intuitive way of
defensive strategy in which the robustness of the deep learner
is strengthened by training it with adversarial samples. This

strategy can be represented mathematically as a Minimax
game, as shown in Eq.5:

min
θ

max|δ‖≤ε
J (hθ (x + δ), y) (5)

where h denotes the model, J denotes the model’s loss
function, θ represents model’s weights and y is the actual
label. δ is the amount of perturbation amount added to input
x and it is constrained by given ε value. The inner objective is
maximized by employing the most powerful attack possible,
which is often approximated by various adversarial attack
types. In order to reduce the loss resulting from the innermax-
imization step, the outside minimization objective is used to
train the model. This whole process produces a model that is
expected to be resistant to adversarial attacks used during the
training of themodel. For adversarial training, Goodfellow et
al. [15] used adversarial samples crafted by the FGSMattack.
And Madry et al. used the PGD attack to build more robust
models, but at the expense of consumingmore computational
resources. Despite the fact that adversarial training is often
regarded as one of the most effective defenses against adver-
sarial attacks, adversarially trained models are nevertheless
vulnerable to attacks like CW.

Adversarial ML is a very active field of research, and
new adversarial defense approaches are constantly being
presented. Among the most notable are as follows: (i) High-
Level Representation Guided Denoiser (HGD) [27] which
avoids the error amplification effect of a traditional denoiser
by utilizing the error in the upper layers of a DNN model
as loss function and manages the training of a more efficient
image denoiser, (ii) APE-GAN [28] which uses a Gener-
ative Adversarial Network (GAN) trained with adversarial
samples to eliminate any adversarial perturbation of an input
image, (iii) Certified Defense [29] which proposes a new

123

992 O. F. Tuna et al.

Fig. 5 Loss surfaces of “normally trained” and “distilled” models

differentiable upper bound yielding amodel certificate ensur-
ing that no attack can cause the error to exceed a specific
value and (iv) [30] which uses several uncertainty metrics
for detecting adversarial samples.

3 Preliminaries

Predictive models have traditionally been required to make
decisions even in ambiguous cases where themodel is unsure
about its prediction. And this fact often leads to low-quality
predictions. Assuming that the prediction of the model is
always correct without considering the model’s uncertainty
can have disastrous consequences. This led the researcher

Fig. 6 Different types of epistemic uncertainty

study developing different methods for uncertainty quantifi-
cation in an attempt to improve model reliability.

We begin this part by discussing the main types of uncer-
tainty in ML. Then, we go over how different uncertainty
metrics can be quantified.

3.1 Uncertainty in machine learning

In ML, there are two main kinds of uncertainty: aleatoric
and epistemic uncertainty [31–33]. And recently, apart from
these main types, a new uncertainty metric named scibilic
uncertainty has been introduced.

3.1.1 Epistemic uncertainty

Uncertainty due to an inadequate knowledge and limited data
required for a perfect predictor is referred to as Epistemic
uncertainty [34]. As shown in Fig. 6, it can be classified as:
approximation uncertainty and model uncertainty.
Approximation Uncertainty

In a traditional ML task, the learner is provided with data
points from a dataset that is independent and identically dis-
tributed. Then, the learner attempts to induce a hypothesis ĥ
fromhypothesis spaceH by selecting an appropriate learning
method with its associated hyper-parameters and minimiz-
ing the expected loss (risk) with a chosen loss function, �.
Nevertheless, what the learner actually does is to try to keep
empirical risk Remp as lowas possible,which is an estimation
of real risk R(h). The induced ĥ represents approximation to
the h∗ which is the the real risk minimizer and best possible
hypothesis within H. This leads to an approximation uncer-
tainty. As a result, the quality of the induced hypothesis is
not ideal, and the trained model will be prone to errors.
Model Uncertainty

Assume that the perfect predictor is not included in the
hypothesis spaceH. In that situation, the learner has no possi-
bility of developing a hypothesis function that can effectively
map all potential inputs to outputs. This results in a dis-
crepancy between the ground truth f ∗ and the best possible
function h∗ within H, which is referred to as model uncer-
tainty.

The Universal Approximation Theorem, on the other
hand, showed us that any target function f can be approxi-

123

TENET: a new hybrid network architecture for adversarial defense 993

Fig. 7 Illustration of the Epistemic and Aleatoric uncertainty

mated by a neural network [35,36]. For deep neural networks,
the hypothesis space H can be extremely large. Hence, it is
reasonable to presume that h∗ = f ∗. The model uncertainty
can be neglected in deep neural networks, leaving only the
approximation uncertainty to be considered. As a result, the
actual source of epistemic uncertainty in deep learning tasks
is related with approximation uncertainty. Epistemic uncer-
tainty is referred to the confidence a model has about its
prediction [37]. The fundamental cause is the uncertainty
regarding the model’s parameters. This form of uncertainty
is visible in areas where we have inadequate training data
and the model weights are not properly tuned.

3.1.2 Aleatoric uncertainty

Aleatoric uncertainty relates to the variation in an exper-
iment’s outcome caused by inherent random effects [38].
Despite having adequate training examples, this form of
uncertainty cannot be reduced [39]. The noise observed in
a sensor’s measurement data is an excellent example of this
phenomena.

A simple nonlinear function (logit(0.085 × x) in the inter-
val x ∈ [0, 12]) is presented in Fig. 7. Noisy samples are
illustrated in the region at right where 9 < x < 12, and those
samples lead to high aleatoric uncertainty. These points, for
example, could reflect an erroneous sensormeasurement; one
can deduce that the sensor generates errors around x = 10.5
for some unknown inherent reason. We can also argue that
the figure’s central regions represent areas of high epistemic
uncertainty. Because our model does not have enough train-
ing examples to accurately represent the data.

3.1.3 Scibilic uncertainty

Reinhold et al. [40] proposed a new sort of uncertainty named
scibilic uncertainty by combining epistemic and aleatoric
uncertainty. This new uncertainty metric was employed in an
image segmentation challenge to identify areas in an input
image that the model could resolve how to predict if it was
given enough data to train with. After quantifying epistemic
and aleatoric uncertainty, we can compute scibilic uncer-

tainty by dividing the former by the latter. The intuition
behind scilibilic uncertainty is as follows: For a suspicious
input, a DNNmodel trained on naturally occurring data may
result in high epistemic uncertainty. Nevertheless, due to
some intrinsic property of the data, the model can lead to
significant aleatoric uncertainty for that same input, making
it difficult to make a reliable prediction. The division pro-
cedure allows us to keep epistemic uncertainty that is not
caused by the model’s difficulty for that particular input.

3.2 Quantifying uncertainty in deep neural
networks

Numerous research studies have been conducted in recent
years to quantify uncertainty in DNN models. The major-
ity of these studies relied on Bayesian NNs, which quantify
predictive uncertainty by learning the posterior distribution
over theweights. However, BayesianNNs have an extra com-
puting overhead and an inference problem. As a result, a
number of approximations toBayesian approaches have been
proposed which employ variational inference [41–44]. Lak-
shminarayanan et al. [45], on the other hand, adopted deep
ensemble approach for uncertainty quantification as an alter-
native to Bayesian Neural Networks. However, this method
involves training of many models, which may be impracti-
cal in practice. Gal et al. [46] proposed a more elegant and
efficient technique and demonstrated that an NN model with
inference time dropout corresponds to a Bayesian approx-
imation of the Gaussian process. Their approach functions
as an ensemble model in training mode (during prediction
time) of the model and dropout is therefore enabled. In
each individual ensemble model, the system drops out part
of the neurons in each layer of the network based on the
dropout ratio. The variance of the MC dropout sampling out-
put throughout prediction time is used to approximate the
overall epistemic uncertainty. Later, Kendall and Gal [47]
presented a technique in which both epistemic and aleatoric
uncertainties are captured in a single model. They employed
a CNN Model f (Bayesian NN) with weights represented
by ω̂ that maps an input x to ŷ and σ 2. In their approach,
the model output is divided into two parts as predictive mean
(ŷ) and predicted variance σ̂ 2 terms. Consequently, the two
types of uncertainty are quantified as follows:

1

T

T∑

t=1

diag(σ̂ 2)

︸ ︷︷ ︸
aleatoric

+ 1

T

T∑

t=1

(ŷ − ȳ)⊗2

︸ ︷︷ ︸
epistemic

(6)

the number of MC Dropout samples in prediction time when
the model is in training mode, ȳ = ∑T

t=1 ŷt/T and y⊗2 =
yyT

123

994 O. F. Tuna et al.

The method described above is delicate and has been
demonstrated to be effective in computer vision applications
such as image segmentation. Unfortunately, since the output
of the model is divided into two parts for predicting mean
and variance terms, it was inconvenient to employ in adver-
sarial machine learning trials for us. We had to look for other
options, since the attack algorithms are developed to function
withmodel architectureswith only prediction output term (no
variance).

The method we employed in this study is proposed by
Kwon et al. [48] as an alternate approach for quantifying both
epistemic and aleatoric uncertainty in classification mod-
els. In the author’s method, the variance of the prediction
is comprised of two parts that represent aleatoric and epis-
temic uncertainty. Let ω̂ be the trained weights used in the
neural network, K denotes the number of output classes and
p(y∗|x∗, ω̂) denotes the prediction y∗ of a model for any test
sample x∗ given the weights of the model where y∗ ∈ R

k ,
then the following is the formula for their method:

Varp(y∗|x∗,ω)(y
∗) = Ep(y∗|x∗,ω)(y

∗⊗2
) − Ep(y∗|x∗,ω)(y

∗)⊗2

(7)

= 1

T

T∑

t=1

[diag{p(y∗|x∗, ω̂t)} − p(y∗|x∗, ω̂t)
⊗2]

︸ ︷︷ ︸
aleatoric

(8)

+ 1

T

T∑

t=1

{p(y∗|x∗, ω̂t)} − p̂(y∗|x∗, ω̂t)
⊗2

︸ ︷︷ ︸
epistemic

(9)

where p̂(y∗|x∗, ω̂t) = ∑T
t=1{p(y∗|x∗, ω̂t)}

Both Eqs. (8, 9) produce a k × k matrix with diagonal
elements representing the variance of each output class.

After we calculate epistemic and aleatoric uncertainty, we
may simply compute scibilic uncertainty as follows:

Scibilic = Epistemic

Aleatoric
(10)

Eventually, for a given input x∗, we have three different
column vectors of shape K × 1 as EP ∈ R

k , AL ∈ R
k ,

SC ∈ R
k , whose elements represent epistemic, aleatoric and

scibilic uncertainty for each class respectively.

4 Approach

In regions with a low number of training samples, model
uncertainty is larger. We cannot obtain a model that per-
fectly predict all testing data. This can be explained due to the

Fig. 8 Uncertainty values obtained from a regression model

absence of ground truth in these areas. Figure8 displays the
prediction outputs of a regression model trained on a small
amount of data that are bound by some interval. For this
toy example, we trained a neural network with single hidden
layer and ten neurons to learn a linear function y = 2×x+3.
As can be observed in the figure, the model’s uncertainty val-
ues (epistemic) derived fromMC dropout estimates are high
in places where we do not have training data, indicating that
the quality of the prediction is low and the model is having
difficulty deciding the accurate output values. Consistently,
high loss values are observed in those regions. As a result,
we can argue that the regions with high epistemic uncer-
tainty corresponds to the regions of low prediction accuracy.
Therefore, testing the model in severe settings with input
that it has never encountered before will lead to model pre-
diction failure [24]. Similarly, restoring the input samples to
the regions where the model was trained on (low uncertainty
regions) would yield more accurate predictions. In this study,
we employed this idea. However, we paid attention to one key
point, that is, while trying to minimize the quantified uncer-
tainty for any input sample, we made sure that the restoration
operation has minimal effect to model loss.

4.1 Uncertainty-based reversal operation

We begin this section by presenting the pseudo-code for
uncertainty-based reversal procedure, as described in Algo-
rithm 1. This reversal method is designed under L∞ norm.

We compute ∇x�(h(xt , ypred)) and ∇xU (xt , h, p, T) for
each iteration of our uncertainty-based reversal procedure.
Then, we restore the input sample by minimizing its quanti-
fied uncertainty and utilize the sub-directions of uncertainty’s
gradient that are not shared by the loss’ gradient with respect
to predicted class. A better understanding of this idea can be
obtained by glancing at Fig. 9.

In our proposedmethod,we used both loss and uncertainty
information and exclusively use the sub-directions from the
uncertainty’s gradient that are not shared by the gradient of
the loss. The intuition behind this approach is as follows:
In a conventional production setting where an ML model is

123

TENET: a new hybrid network architecture for adversarial defense 995

Algorithm 1: x is the input image, ypred is the predicted label

for x, h is the learnt hypothesis function, p is the dropout ratio of

the model used in dropout layers, T is the number of MC dropout

samples at prediction time inmodel trainingmode, N is the number

of iterations, ε is the maximum perturbation amount allowed, α is

step size,

Input: x ∈ R
m , h, p, T , N , ε, α

Output: xt+1
1 x0 ← x
2 condition ← False
3 while n < N do
4 Compute ∇x�(h(xt , ypred)) while h in evaluation mode
5 Compute ∇xU (xt , h, p, T) while h in training mode
6 if arg max(h(xt+1))
= ypred then
7 condition = True
8 break

9 if condition = False then
10 Update all elements of ∇xU (xt , h, p, T) to 0 where

∇xU (xt , h, p, T) == ∇x�(h(xt , ypred))
/* update X by using below formula */

11 x(t+1) = clipx,ε(xt − α · sign(∇xU (xt , h, p, T))

12 return xt+1

Fig. 9 Sub-directions used in reversal procedure

employed for a classification problem, the input is supplied
to the model, and the final prediction is observed after the
input sample is processed and mapped to an output, as illus-
trated in upper part of Fig. 10. For any input, the gradient
of the loss against predicted label gives us an idea about the
possible direction where we canminimize the loss. However,
if the prediction of theMLmodel is wrong, the model will be
more confident in its wrong prediction and final prediction
will be much more inaccurate when we perturb the image in
loss gradient direction. Therefore, when trying to minimize
the quantified uncertainty of the input sample, we needed to
get rid of the common sub-directions shared by loss gradi-
ent. After rejecting part of the sub-directions, the remaining

Fig. 10 Options for ML model deployment

sub-directions in the uncertainty’s gradient can be utilized to
safely return the input to its original data manifold.

In this study,we have used both the standard versionwhich
is based on epistemic uncertainty and developed 2 additional
variants of aboveprocedurewhich are different in termsof the
type of the uncertainty metric employed and the way of using
the output uncertainty vector. We started our experiments by
using epistemic uncertainty obtained fromEq.9.We used the
expected value(mean) of the epistemic uncertainty (EP) for
the uncertainty quantification as in the case of [9]. Then, we
tried scibilic uncertainty (SC) via Eq.10 and usedmean of the
SC . Lastly, instead of using the average scibilic uncertainty
measure of all classes, we used the uncertainty value of the
predicted class only. In this way, we used the following three
equations for uncertainty quantification.

U (xt , h, p, T) = 1

K

K∑

k=1

EP[k] (11)

U (xt , h, p, T) = 1

K

K∑

k=1

SC[k] (12)

U (xt , h, p, T) = SC[pred] (13)

Fig. 11 Restoring perturbed image back to its original class data man-
ifold

123

996 O. F. Tuna et al.

4.2 Analysis of the uncertainty-based reversal
method

This technique can be applied as a reverse-perturbation oper-
ation before feeding any input into a classification model.
As seen in the bottom section of Fig. 10, an input X that is
intended to be presented to the ML model is first processed
by uncertainty-based reversal procedure. The goal of this
reverse-perturbation operation is to judiciously perturb the
input image in a way that reduces its quantified uncertainty.
This “slightly reversed” image X̂ will then be fed into the
ML model. Figure11 illustrates the uncertainty-based rever-
sal process. The crucial thing is that the location of the input
sample should not be too far away (on the incorrect side)
from the decision boundary of the model to ensure a suc-
cessful reversal operation. And, this is the major drawback of
the standard uncertainty-based reversal operation. For Deep-
Fool attack and CW attack with confidence parameter set to
0, the perturbed samples generally resides close to the deci-
sion boundary. However, if one applies CW attack by setting
the confidence parameter to a high value, the attack algo-
rithm will generally craft high confident adversarial samples
far away from decision boundary. That is why, for a “nor-
mally trained” model, the success rate of standard reversal
operation will be lower.

However, defense distillation technique can help us to
overcome this problem. Because, during the training of a dis-
tilled network, what we actually do is to force the model to
learn making high-confident predictions. And therefore, dur-
ing prediction time, we see that the distilled models mostly
make high-confident predictions in favor of the predicted
class no matter where the input resides in its own data man-
ifold [20]. And this is valid even if the test sample lies near
the vicinity of model’s decision boundary (whether it is in

the correct or wrong side). This way, even if the attacker sets
a high value for the confidence parameter for CW attack, the
algorithm can easily craft adversarial sample near decision
boundaries. Thanks to this, reversal procedure can success-
fully restore the input back to its original data manifold. To
demonstrate this phenomenon, we made an experiment by
using two different models as normal and defensively dis-
tilled (student) model. For each of these models: we used
the same random sample from CIFAR10 dataset and applied
DeepFool attack on it for generating adversarial samples.
Then, we applied uncertainty-based reversal procedure on
these perturbed samples and get the restored images. For each
of the input, perturbed and restored samples, we have also
shown the softmax output scores of the normal and student
models used as illustrated in Fig. 12. The attack algorithm
and our reversal procedure variants are successful on both
of the normal and distilled models. When we check the soft-
max output scores of the normal model for perturbed sample
in the first scenario, we see that there is not much differ-
ence between the prediction scores of the correct and wrong
class. However, we observe that the distilled model makes
its prediction in favor of the predicted class with a very high
confidence. We know that DeepFool attack results in adver-
sarial samples close to decision boundaries, this experiment
verifies our intuition of using a defensively distilled model
together with uncertainty-based reversal procedure to force
most of the successful adversarial samples to reside near the
decision boundary.

Of course, for any kind of procedure that is planned to
be applied on the input samples of a deployed model, a
significant issue to consider is that this process should not
have highly negative impact on the model’s performance
on clean data. Any modification to the model’s functioning
that reduces prediction accuracy below an acceptable level

Fig. 12 The effect of uncertainty-based reversal procedure on the predictions of normally trained and distilled models

123

TENET: a new hybrid network architecture for adversarial defense 997

can not be permitted, regardless of how much robustness
it delivers. We conducted comprehensive testing to deter-
mine the impact of uncertainty-based reversal procedure on
the model’s clean data performance and confirmed that the
accuracy rate did not decline more than a tolerable level,
as shown in the experiments section. The results show that
this technique can be used to strengthen the robustness of the
deployedMLmodels against malicious attacks, especially in
risky environments where security is an important concern.

4.3 Adversarial assumptions

In this work, we assume that the main objective of the adver-
sary is to obtain the desired behavior for an ML model and
the criteria for success for the attacker are tied directly with
“any” labeling mistake. This type of attack strategy is clas-
sified in the literature as untargeted-attack, in which the
attacker is considered successful if, for instance, the rifle
image is predicted to be anything other than a rifle. Our
assumptionwas that the attacker was fully aware of the archi-
tecture and parameters of the target model as in the case of
whitebox setting. Another crucial assumption concerns the
constraints of the attacker. Clearly, the attacker should be
limited to applying a perturbation with l p norm up to cer-
tain ε value for an attack to be unrecognizable to the human
eye. To ensure this modification to be imperceptible, the
attacker must find an approximate solution to a difficult con-
straint optimization problem and identify which areas of the
input should be modified. The adversary tries to decrease the
classification performance of the target network as much as
possible by employing any of the known attack algorithms
like [15,16,18,49]. For this study, we used l∞ and l2 norm
metrics to restrict the maximum perturbation amount that an
adversary can apply on the input sample. Finally, the error
rate of our proposed defense technique is assessed over the
percentage of resulting successful attack samples which is
proposed by Goodfellow et al. [15] and recommended by
Carlini et al. [50].

5 Results

5.1 Experimental setup

For our experiments, we used two sets of models as normal
and distilled(student) by using same architectures and trained
our CNN models using MNIST (Digit) [51], MNIST (Fash-
ion) [52] and CIFAR-10 [53] datasets. In the first group, our
normally trained models attained accuracy rates of 99.11%,
92.61%, and 79.38%, whereas, in the second group, our dis-
tilled models attained accuracy rates of 99.41%, 92.62%, and
80.47%. The architectures of our CNNmodels and the hyper-
parameters used in model training are listed in Table 1 and

Table 1 CNN architectures for normal and distilled models

Dataset Layer type Layer information

M.—Digit Convolution (padding:1) + ReLU 3 × 3 × 32

Convolution (padding:1) + ReLU 3 × 3 × 32

Max Pooling 2 × 2

Convolution (padding:1) + ReLU 3 × 3 × 64

Convolution (padding:1) + ReLU 3 × 3 × 64

Max Pooling 2 × 2

Fully Connected + ReLU 3136 × 200

Dropout p: 0.5

Fully Connected + ReLU 200 × 200

Dropout p: 0.5

Fully Connected + ReLU 200 × 10

M.—Fashion Convolution (Padding = 1) + ReLU 3 × 3 × 32

Max Pooling 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 32

Max Pooling 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Dropout p: 0.25

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Dropout p: 0.25

Fully Connected + ReLU 3136 × 600

Dropout p: 0.25

Fully Connected + ReLU 600 × 120

Fully Connected + ReLU 120 × 10

CIFAR10 Convolution (Padding = 1) + ReLU 3 × 3 × 32

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Max Pooling (Stride 2) 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 128

Convolution (Padding = 1) + ReLU 3 × 3 × 128

Max Pooling (Stride 2) 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 256

Convolution (Padding = 1) + ReLU 3 × 3 × 256

Dropout p: 0.5

Max Pooling (Stride 2) 2 × 2

Fully Connected + ReLU 4096 × 1024

Dropout p: 0.5

Fully Connected + ReLU 1024 × 256

Dropout p: 0.5

Fully Connected + ReLU 256 × 10

2. Lastly, for quantifying uncertainty metrics, we set T = 50
as the number of MC dropout samples.

5.2 Experimental results

Throughout our experiments, we applied attack on the test
samples only if they were previously classified correctly by
our models. Because, an attacker would obviously have no

123

998 O. F. Tuna et al.

Table 2 CNN model
parameters

Parameters MNIST (Digit) MNIST (Fashion) CIFAR-10

Normal Distilled Normal Distilled Normal Distilled

Optimizer Adam Adam Adam Adam Adam Adam

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001

Batch size 128 128 128 128 128 128

Dropout ratio 0.5 0.5 0.25 0.25 0.5 0.5

of Epochs 10 30 30 50 30 50

Temperature 1 20 1 100 1 100

Table 3 Parameters that are used in our uncertainty-based reversal pro-
cess: α denotes the step size and i denotes # of reversal steps for a
perturbation budget ε

Dataset Parameters

MNIST Digit ε = 0.02, α = ε · 0.2, i = 10

MNIST Fashion ε = 0.006, α = ε · 0.2, i = 20

CIFAR10 ε = 0.2/255, α = ε · 0.2, i = 10

motivation to perturbed samples that have already been mis-
classified. We utilized an open source Python library called
Foolbox [54] to implement the attacks used in this study .2.

2 We use Torch 1.13.0 to implement the attacks and the proposed
defense method in a computer with processor Intel Core i5-1145G7
2.6 GHz and Windows 10 OS.

We started our experiments by first evaluating contribu-
tions of different uncertainty metrics on uncertainty-based
reversal procedure performance. To do this, we used nor-
mal CNN models which are trained on MNIST (Digit) and
CIFAR10 Datasets, and we applied several different attack
types on each sample to craft their adversarial counterparts.
We then tried to restore those adversarial samples back to
their original class manifolds by using each of the three vari-
ants of reversal procedure. Table 3 summarizes the values of
the parameters that are used in the reversal procedure.

The results of the defense method variants are provided
in Table 4 and 5. As can be seen from the final attack suc-
cess rates, best robustness performance is achieved when we
used the Scibilic uncertainty value of the predicted class only.
When we check Table 4, we also observe a considerable dif-

Table 4 Attack success rates of normally trained model on MNIST (Digit) dataset with and without uncertainty-based reversal procedure

Epistemic (mean) Scibilic (mean) Scibilic (pred)

w/o rev (%) w rev (%) w/o rev (%) w rev (%) w/o rev (%) w rev (%)

FGSM (l∞, ε: 0.1) 13.25 9.04 13.25 6.41 13.25 5.82

BIM (l∞, ε: 0.1) 38.94 31.47 38.94 20.48 38.94 18.16

PGD (l∞, ε: 0.1) 35.32 27.34 35.32 18.64 35.32 16.68

DeepFool (l∞, ε: 0.1) 21.60 0.07 21.60 0.01 21.60 0.01

DeepFool (l2, ε: 0.1) 26.78 1.07 26.78 0.20 26.78 0.11

CW (l2, ε: 1.35 c : 0) 67.71 0.00 67.69 0.02 67.63 0.01

CW (l2, ε: 1.35 c : 40) 21.15 16.87 21.21 7.44 21.33 7.16

Table 5 Attack success rates of normally trained model on CIFAR10 dataset with and without uncertainty-based reversal procedure

Epistemic (mean) Scibilic (mean) Scibilic (pred)

w/o rev (%) w rev (%) w/o rev (%) w rev (%) w/o rev (%) w rev (%)

FGSM (l∞, ε = 4/255) 62.91 60.23 62.91 59.58 62.91 59.29

BIM (l∞, ε = 4/255) 77.92 77.67 77.92 77.64 77.92 77.61

PGD (l∞, ε = 4/255) 76.36 75.98 76.36 75.92 76.36 75.89

DeepFool (l∞, ε = 4/255) 76.23 1.21 76.23 0.65 76.23 0.28

DeepFool (l2, ε = 0.42) 73.73 0.59 73.73 0.31 73.73 0.12

CW (l2, ε = 0.42 c : 0) 78.26 5.50 78.26 4.57 78.26 4.15

CW (l2, ε = 0.42 c : 10) 74.39 73.44 74.39 72.98 74.39 72.50

123

TENET: a new hybrid network architecture for adversarial defense 999

Table 6 Effect of reversal
procedure on clean performance
of normally trained
model—MNIST (Digit) Dataset

Without reversal (%) With reversal (%)

Epistemic Unc. (mean) Based Reversal 99.11 99.00

Scibilic Unc. (mean) Based Reversal 99.11 98.95

Scibilic Unc. (pred class) Based Reversal 99.11 98.92

Table 7 Attack success rates of
distilled model on MNIST
(Digit) dataset with and without
uncertainty-based reversal
procedure

Scibilic Unc. Based Rev. (pred)

Without reversal (%) With reversal (%)

FGSM (l∞, ε: 0.1) 1.01 0.91

BIM (l∞, ε: 0.1) 1.04 1.03

PGD (l∞, ε: 0.1) 1.10 1.09

DeepFool (l∞, ε: 0.1) 15.95 0.00

DeepFool (l2, ε: 0.1) 26.12 0.12

CW (l2, ε: 1.35 conf: 0) 75.57 0.01

CW (l2, ε: 1.35 conf: 40) 75.43 0.76

Table 8 Effect of reversal
procedure on clean performance
of distilled model—MNIST
(Digit) dataset

Without reversal (%) With reversal (%)

Scibilic Unc. Based Reversal (pred class) 99.41 99.10

Table 9 Attack success rates on
MNIST (Fashion) dataset with
and without uncertainty-based
reversal procedure

Attack success

w/o rev (%) with rev (%)

Normal model FGSM (ε = 0.03) 42.77 31.16

BIM (l∞, ε = 0.03) 71.79 61.29

PGD (l∞, ε = 0.03) 68.15 58.04

DeepFool (l∞, ε = 0.03) 59.96 0.02

DeepFool (l2, ε = 0.403) 57.72 0.00

CW (l2, ε = 0.403, conf. = 0) 75.36 0.01

CW (l2, ε = 0.403, conf. = 10) 66.65 49.08

Distilled model FGSM (ε = 0.03) 2.48 2.35

BIM (l∞, ε = 0.03) 2.57 2.57

PGD (l∞, ε = 0.03) 3.44 3.44

DeepFool (l∞, ε = 0.03) 72.45 0.02

DeepFool (l2, ε = 0.403) 69.47 0.06

CW (l2, ε = 0.403, conf. = 0) 83.61 0.00

CW (l2, ε = 0.403, conf. = 10) 83.41 0.13

ference between the reversal performances of Scibilic and
Epistemic Uncertainty (standard uncertainty metric used in

Table 10 Effect of reversal procedure on clean performance—MNIST
(Fashion) dataset

Without reversal (%) With reversal (%)

Normal model 92.61 90.18

Distilled model 92.62 90.25

the initial proposal of reversal procedure). For instance: in the
case of BIM attack, attack success rates drop from 31.47 to
20.48% if we switch from Epistemic Uncertainty (Eq. 11) to
Scibilic Uncertainty (Eq.12). And instead of using the mean
of Scibilic Uncertainty vector, if we use the uncertainty value
of the predicted class only (Eq.13), we can even lower the
final attack success rate to 18.16%. We also observe that
the difference between the reversal performances of each
uncertainty metric is less clear as the complexity and the
dimensions of the used dataset increases.

123

1000 O. F. Tuna et al.

Table 11 Attack success rates
on CIFAR-10 dataset with and
without uncertainty-based
reversal procedure

Attack success

w/o rev (%) with rev (%)

Normal model FGSM (ε = 4/255) 62.91 59.29

BIM (l∞, ε = 4/255) 77.92 77.61

PGD (l∞, ε = 4/255) 76.36 75.89

DeepFool (l∞, ε = 4/255) 76.23 0.28

DeepFool (l2, ε = 0.42) 73.73 0.12

CW (l2, ε = 0.42, conf. = 0) 78.26 4.15

CW (l2, ε = 0.42, conf. = 10) 74.39 72.50

Distilled model FGSM (ε = 4/255) 4.21 4.16

BIM (l∞, ε = 4/255) 4.24 4.24

PGD (l∞, ε = 4/255) 4.58 4.58

DeepFool (l∞, ε = 4/255) 77.94 0.64

DeepFool (l2, ε = 0.42) 74.95 0.23

CW (l2, ε = 0.42, conf. = 0) 79.71 0.16

CW (l2, ε = 0.42, conf. = 10) 79.73 1.87

We then checked the effect of reversal procedure on clean
data performance. For this purpose, we applied reversal strat-
egy (the standard one with epistemic uncertainty and our
2 variants separately) directly to each of the test samples
of MNIST (Digit) dataset. And we compared the resulting
model accuracy valueswith the oneswe obtainedwithout any
reversal operation. As shown in Table 6, reversal strategy has
only a minimal and tolerable impact on model classification
performance. Considering the level of robustness it provides,
we can thus infer that the use of uncertainty-based reversal
strategy has no detrimental impact on overall. We also do
not observe a noticeable difference between the impact of
our variants on clean data classification performance. There-
fore, we choose the usage of our second variant (ScibilicUnc.
with pred. class) as our base metric in our reversal strategy
and the rest of the experiments are conducted using this.

Although the reversal procedure is performing very well
on certain attack types like DeepFool or CW attack (when
confidence parameter set to a low value), for other loss-based
attacks like FGSM, BIM or PGD, we still face some prob-
lems. The same is valid if we opt to use CW attack by setting
confidence parameter to a high value during attack imple-
mentation. The reason is that, for those cases, the resulting
adversarial samples generally lie far from the decision bound-
ary of the model. To mitigate this problem, we employed
another method known as defensive distillation. Distillation
technique has an effect of diminishing the gradients of the
model down to almost zero and also force the model to make
its predictions much more confidently. The former effect of
distillation prohibits loss-based untargeted attacks to use gra-
dients efficiently and results in considerably lower attack
success rates. And the latter effect of distillation results in
high confidence adversarial samples located close to decision

Table 12 Effect of reversal procedure on clean performance—
CIFAR10 dataset

Without reversal (%) With reversal (%)

Normal Model 79.38 77.84

Distilled Model 80.47 79.45

Table 13 BPDA attack success rates

Normal model (%) TENET architecture (%)

PGD l∞, ε = 0.1 37.06 1.82

BIM l∞, ε = 0.1 35.34 1.02

FGSM l∞, ε = 0.1 13.17 0.89

boundary. Therefore, when we combined reversal procedure
with defensive distillation, we achieved much better results.
The results in Table 7 show that our proposed architecture
(TENET) provides perfect robustness to all kinds of used
attacks and reduces the attack success rates down to 1%
regardless of the attack algorithmwith only a negligible effect
on clean data classification performance (Table 8).

To evaluate and validate the effectiveness of our proposed
architecture, we have conducted additional experiments on
different datasets. Table 9 shows the performance of reversal
procedure on MNIST (Fashion) dataset for both normal and
distilled models.

AndTable 10 shows the effect of our proposed architecture
on clean data classification performance.

Finally, we have performed the same set of experiments
on CIFAR-10 dataset. The results are available in Table 11
and Table 12. The results of our detailed experiments on all
the datasets reveal that our reversal procedure and defensive

123

TENET: a new hybrid network architecture for adversarial defense 1001

Table 14 Attack success rates on a normally trained Fashion MNIST model—Algorithm comparison

w/o rev (%) with rev. via Algorithm 1 (primitive) (%) with rev. via Algorithm 1 (%)

DeepFool (l∞) 59.96 9.98 0.03

DeepFool (l2) 57.72 12.90 0.01

CW (l2, conf.=0) 75.36 8.19 0.01

Table 15 Comparison of attack success rates with TENET and Adversarial Training

MNIST DIGIT MNIST FASHION CIFAR10

Adv. Training (%) TENET (%) Adv. Training (%) TENET (%) Adv. Training (%) TENET (%)

FGSM (l∞) 1.19 0.91 4.76 2.35 16.02 4.16

BIM (l∞) 1.28 1.03 5.68 2.57 18.83 4.24

PGD (l∞) 1.09 1.09 5.02 3.54 16.82 4.58

DeepFool (l∞) 1.23 0.00 5.19 0.02 19.74 0.64

DeepFool (l2) 3.78 0.12 7.03 0.06 13.93 0.23

CW (c=0, l2) 10.23 0.01 9,30 0,00 26,59 0.16

CW (c=10, l2) 6.06 0.76 3.49 0.13 11.47 1.87

Table 16 Attack success rates
on normally trained VGG19
model and VGG19 with TENET
architecture

VGG19 Normal Model (%) VGG19 TENET (%)

FGSM (l∞) 65.56 7.04

BIM (l∞) 79.62 8.94

PGD (l∞) 79.26 8.93

DeepFool (l∞) 89.68 1.34

DeepFool (l2) 84.77 0.88

CW (c=0, l2) 97.32 0.11

CW (c=10, l2) 94.98 0.62

distillation technique can handle complimentary situations
and together they provide very high degree of robustness
against various kinds of untargeted attacks.

In the last part of our experiments, we wanted to test
our defense method against an adaptive attack idea. For this
purpose, we tried to compare the robustness of a normal
model and our proposed architecture which both have non-
differentiable components that are obscuring the gradients
from the attacker. In this scenario, for attacking the target
models, we used Backward Pass Differentiable Approxi-
mation (BPDA) approach via Advertorch Toolbox [55] and
replaced the non-differentiable components (bits squeezing,
median filter) with identity function in the backward pass as
suggested byAthalye et al. [56]. The results that are available
in Table 13 show that adaptive attack ideas like BPDAmight
be successful against a defense approach which obscures the
gradients from the attacker. However, if the same gradient
masking-based defense approach was applied to our TENET
architecture, BPDA attack idea would not be successful. The
main reason behind the robustness of our proposed architec-
ture against BPDA is that our method involves a defensive

distillation step which forces gradients of the model to zero
for any gradient-based untargeted attack [57]. Hence, even
if the attacker tries to circumvent the defense by using an
approximate function in the backward pass, the computed
gradients will still be useless for crafting successful adver-
sarial perturbation as it is a defensively distilled model.

5.3 Discussions and further results

We begin this part by showing the positive effect of getting
rid of the common directions which are shared by loss and
uncertainty’s gradient from uncertainty’s gradient. Results
available in Table 14 show the attack success rates of Deep-
Fool and CW attacks against normal prediction and our
proposed defense method (with and without eliminating the
common directions). For this experiment, we call the version
of Algorithm-1 which does not discard the common direc-
tions as “primitive” (omitting line 10 in Algorithm-1). As
can be seen from the results, we can substantially increase
the defensive performance once we discard the common
directions. Because, for the perturbed input samples that are

123

1002 O. F. Tuna et al.

pushed away from their decision boundaries and thus, which
are already classified wrongly, the gradient of the loss with
respect to the predicted label will point to the wrong class
data manifold. Therefore, these sub-directions have a nega-
tive impact on reverting the input sample back to its own data
manifold.

We then wanted to compare the performance of our pro-
posed defense method with one of the most effective defense
approaches in literature, which is adversarial training. The
results available in Table 15 show that our proposed TENET
architecture outperforms adversarial training in terms of
robustness in all the experiments we conductedwith different
datasets.

Once we have evaluated the effectiveness of our proposed
defense method on our comparably small models, we tried
to test its performances on a considerably larger model. To
do this, we first trained VGG-19 [58] models (with custom
dropout layers) on CIFAR-10 dataset and achieved accu-
racy rates of 90.46% and 89.47% for normally trained and
distilledmodels. Then, we have applied different attack algo-
rithms and compared the attack success rates of TENET
architecture with a standalone normal model. The results
available in Table 16 reveal once again the efficacy of our
proposed defense approach. To effectively use our technique
in transfer learning settings, the transferred model should
have already been trained using dropout layers (the layers
which are located before the part of the model that is frozen).

As a last experiment, we have measured the time spent by
our defense method for a batch of input of size 64 from the
MNIST Dataset. In our local machine, it took 1,51 s to make
a prediction with our proposed defense method, compared to
4.12milliseconds ofmaking a prediction directlywithout any
previous operation. As expected, the execution time of our
defensemethod is longer thanmaking a single prediction due
to additional uncertainty quantification steps and backward
derivative operation.

6 Conclusion

In this study, we proposed a new defense architecture by
significantly enhancing uncertainty-based reversal method
and combining it with the utilization of defensive distillation
technique. We evaluated and validated the effectiveness of
our approach on three different datasets that are widely uti-
lized in adversarial research field. The results of our extensive
experiments suggest that our proposed architecture general-
izes effectively across datasets and offers a very high degree
of adversarial robustness without jeopardizing clean data
classification performance.

In this research, we focused solely on the image domain
and used only CNN models. However, we wonder if
uncertainty-based reversal procedure is adaptable to other

domains, such as audio or text, where different networkmod-
els are used. Therefore, we plan to apply and evaluate the
efficacy of our approach on other DNN architectures utilized
in various domains. And finally, as a future work, we would
like to test our method in transfer learning scenarios and
work on potential improvements for tackling additional time
and computational complexity introduced via our proposed
defense method.

Acknowledgements This work was supported by The Scientific and
Technological Research Council of Turkey (TUBITAK) through the
1515 Frontier Research and Development Laboratories Support Pro-
gram under Project 5169902, and has been partly funded by the
European Union’s Horizon Europe research and innovation programme
and Smart Networks and Services Joint Undertaking (SNS JU) under
Grant Agreement No: 101096034 (VERGE Project).

Data availability Datasets used in the manuscript can be found at:
http://yann.lecun.com/exdb/mnist/, https://github.com/zalandoresearch/
fashion-mnist, https://www.cs.toronto.edu/kriz/cifar.html.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.
All co-authors have seen and agreedwith the contents of themanuscript.
We certify that the submission is original work and is not under review
at any other publication.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition (2015). arXiv:1512.03385

2. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-
digit number recognition from street view imagery using deep
convolutional neural networks (2014). arXiv:1312.6082

3. Szegedy,C., Zaremba,W., Sutskever, I., Bruna, J., Erhan,D.,Good-
fellow, I., Fergus, R.: Intriguing properties of neural networks
(2014). arXiv:1312.6199

4. Sato, M., Suzuki, J., Shindo, H., Matsumoto, Y.: Interpretable
adversarial perturbation in input embedding space for text (2018).
arXiv:1805.02917

5. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted
attacks on speech-to-text (2018). arXiv:1801.01944

6. Finlayson, S.G., Chung, H.W., Kohane, I.S., Beam, A.L.: Adver-
sarial attacks against medical deep learning systems (2019).
arXiv:1804.05296

7. Sitawarin, C., Bhagoji, A.N., Mosenia, A., Chiang, M., Mittal,
P.: Darts: Deceiving autonomous cars with toxic signs (2018).
arXiv:1802.06430

8. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling
a real car with adversarial traffic signs (2019). arXiv:1907.00374

9. Tuna, O.F., Catak, F.O., Eskil, M.T.: Uncertainty as a swiss army
knife: new adversarial attack and defense ideas based on epistemic
uncertainty. Complex Intell. Syst. https://doi.org/10.1007/s40747-
022-00701-0

10. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E.,
Wu,M., Yi, X.: A survey of safety and trustworthiness of deep neu-

123

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/kriz/cifar.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1312.6082
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1805.02917
http://arxiv.org/abs/1801.01944
http://arxiv.org/abs/1804.05296
http://arxiv.org/abs/1802.06430
http://arxiv.org/abs/1907.00374
https://doi.org/10.1007/s40747-022-00701-0
https://doi.org/10.1007/s40747-022-00701-0

TENET: a new hybrid network architecture for adversarial defense 1003

ral networks: verification, testing, adversarial attack and defence,
and interpretability. Comput. Sci. Rev. 37, 100270 (2020). https://
doi.org/10.1016/j.cosrev.2020.100270

11. Catak, F.O., Sivaslioglu, S., Sahinbas,K.:Agenerativemodel based
adversarial security of deep learning and linear classifier models
(2020). arXiv:2010.08546

12. Qayyum, A., Usama, M., Qadir, J., Al-Fuqaha, A.: Securing
connected autonomous vehicles: challenges posed by adversar-
ial machine learning and the way forward. IEEE Commun. Surv.
Tutor. 22(2), 998–1026 (2020). https://doi.org/10.1109/COMST.
2020.2975048

13. Sadeghi, K., Banerjee, A., Gupta, S.K.S.: A system-driven taxon-
omy of attacks and defenses in adversarial machine learning. IEEE
Trans. Emerg. Top. Comput. Intell. 4(4), 450–467 (2020). https://
doi.org/10.1109/TETCI.2020.2968933

14. Zheng, Z., Hong, P.: Robust detection of adversarial attacks
by modeling the intrinsic properties of deep neural net-
works. In: Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems, vol. 31, Curran Asso-
ciates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/
e7a425c6ece20cbc9056f98699b53c6f-Paper.pdf

15. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples (2015). arXiv:1412.6572

16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in
the physical world (2017). arXiv:1607.02533

17. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine
learning at scale. CoRR arXiv:1611.01236

18. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.:
Towards deep learning models resistant to adversarial attacks
(2019). arXiv:1706.06083

19. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a sim-
ple and accurate method to fool deep neural networks (2016).
arXiv:1511.04599

20. Carlini, N., Wagner, D.: Towards evaluating the robustness of neu-
ral networks (2017). arXiv:1608.04644

21. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square
attack: a query-efficient black-box adversarial attack via random
search (2020). arXiv:1912.00049

22. Chen, J., Jordan, M.I., Wainwright, M.J.: Hopskipjumpattack: A
query-efficient decision-based attack. In: IEEE Symposium on
Security and Privacy (SP) 2020, pp. 1277–1294 (2020). https://
doi.org/10.1109/SP40000.2020.00045

23. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: Black-
box adversarial attacks with bandits and priors (2019).
arXiv:1807.07978

24. Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncer-
tainty of the deep learning models to generate adversarial samples.
Multimedia Tools Appl. 81(8), 11479–11500 (2022). https://doi.
org/10.1007/s11042-022-12132-7

25. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a
neural network (2015). arXiv:1503.02531

26. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distilla-
tion as a defense to adversarial perturbations against deep neural
networks (2016). arXiv:1511.04508

27. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense
against adversarial attacks using high-level representation guided
denoiser (2018). arXiv:1712.02976

28. Shen, S., Jin, G., Gao, K., Zhang, Y.: Ape-gan: Adversarial pertur-
bation elimination with gan (2017). arXiv:1707.05474

29. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses
against adversarial examples (2020). arXiv:1801.09344

30. Tuna, O.F., Catak, F.O., Eskil, M.T.: Closeness and uncertainty
aware adversarial examples detection in adversarial machine learn-
ing (2020). arXiv:2012.06390

31. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and
methods (2020). arXiv:1910.09457

32. An,D., Liu, J., Zhang,M.,Chen,X.,Chen,M., Sun,H.:Uncertainty
modeling and runtime verification for autonomous vehicles driving
control: a machine learning-based approach. J. Syst. Softw. 167,
110617 (2020)

33. Zheng, R., Zhang, S., Liu, L., Luo, Y., Sun, M.: Uncertainty in
bayesian deep label distribution learning. Appl. Soft Comput. 101,
107046 (2021). https://doi.org/10.1016/j.asoc.2020.107046

34. Antonelli, F., Cortellessa, V., Gribaudo, M., Pinciroli, R., Trivedi,
K.S., Trubiani, C.: Analytical modeling of performance indices
under epistemic uncertainty applied to cloud computing systems.
Future Gen. Comput. Syst. 102, 746–761 (2020). https://doi.org/
10.1016/j.future.2019.09.006

35. Zhou, D.-X.: Universality of deep convolutional neural networks
(2018). arXiv:1805.10769

36. Cybenko, G.: Approximation by superpositions of a sigmoidal
function. Math. Control Signals Syst. (MCSS) 2(4), 303–314
(1989). https://doi.org/10.1007/BF02551274

37. Loquercio, A., Segu, M., Scaramuzza, D.: general framework
for uncertainty estimation in deep learning. IEEE Robot. Autom.
Lett. 5(2), 3153–3160 (2020). https://doi.org/10.1109/LRA.2020.
2974682

38. Gurevich, P., Stuke, H.: Pairing an arbitrary regressor with an artifi-
cial neural network estimating aleatoric uncertainty. Neurocomput-
ing 350, 291–306 (2019). https://doi.org/10.1016/j.neucom.2019.
03.031

39. Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch,
O., Donner-Banzhoff, N., Hüllermeier, E.: Reliable classification:
learning classifiers that distinguish aleatoric and epistemic uncer-
tainty. Inf. Sci. 255, 16–29 (2014). https://doi.org/10.1016/j.ins.
2013.07.030

40. Reinhold, J.C., He, Y., Han, S., Chen, Y., Gao, D., Lee, J.,
Prince, J.L., Carass, A.: Finding novelty with uncertainty (2020).
arXiv:2002.04626

41. Graves, A.: Practical variational inference for neural networks. In:
Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems,
vol. 24, pp. 2348–2356. Curran Associates Inc, London (2011)

42. Paisley, J., Blei, D., Jordan,M.: Variational bayesian inferencewith
stochastic search (2012). arXiv:1206.6430

43. Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic varia-
tional inference (2013). arXiv:1206.7051

44. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight
uncertainty in neural networks (2015). arXiv:1505.05424

45. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and
scalable predictive uncertainty estimation using deep ensembles
(2017). arXiv:1612.01474

46. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning (2016).
arXiv:1506.02142

47. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian
deep learning for computer vision? (2017). arXiv:1703.04977

48. Kwon, Y., Won, J.-H., Kim, B.J., Paik, M.C.: Uncertainty quantifi-
cation usingBayesian neural networks in classification: application
to biomedical image segmentation. Comput. Stat. Data Anal. 142,
106816 (2020). https://doi.org/10.1016/j.csda.2019.106816

49. Aladag,M., Catak, F.O., Gul, E.: Preventing data poisoning attacks
by using generative models. In: 2019 1st International Informatics
and Software Engineering Conference (UBMYK), pp. 1–5 (2019).
https://doi.org/10.1109/UBMYK48245.2019.8965459

50. Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber,
J., Tsipras, D., Goodfellow, I., Madry, A., Kurakin, A.: On evalu-
ating adversarial robustness (2019). arXiv:1902.06705

123

https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1016/j.cosrev.2020.100270
http://arxiv.org/abs/2010.08546
https://doi.org/10.1109/COMST.2020.2975048
https://doi.org/10.1109/COMST.2020.2975048
https://doi.org/10.1109/TETCI.2020.2968933
https://doi.org/10.1109/TETCI.2020.2968933
https://proceedings.neurips.cc/paper/2018/file/e7a425c6ece20cbc9056f98699b53c6f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e7a425c6ece20cbc9056f98699b53c6f-Paper.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1912.00049
https://doi.org/10.1109/SP40000.2020.00045
https://doi.org/10.1109/SP40000.2020.00045
http://arxiv.org/abs/1807.07978
https://doi.org/10.1007/s11042-022-12132-7
https://doi.org/10.1007/s11042-022-12132-7
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1712.02976
http://arxiv.org/abs/1707.05474
http://arxiv.org/abs/1801.09344
http://arxiv.org/abs/2012.06390
http://arxiv.org/abs/1910.09457
https://doi.org/10.1016/j.asoc.2020.107046
https://doi.org/10.1016/j.future.2019.09.006
https://doi.org/10.1016/j.future.2019.09.006
http://arxiv.org/abs/1805.10769
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/LRA.2020.2974682
https://doi.org/10.1109/LRA.2020.2974682
https://doi.org/10.1016/j.neucom.2019.03.031
https://doi.org/10.1016/j.neucom.2019.03.031
https://doi.org/10.1016/j.ins.2013.07.030
https://doi.org/10.1016/j.ins.2013.07.030
http://arxiv.org/abs/2002.04626
http://arxiv.org/abs/1206.6430
http://arxiv.org/abs/1206.7051
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1703.04977
https://doi.org/10.1016/j.csda.2019.106816
https://doi.org/10.1109/UBMYK48245.2019.8965459
http://arxiv.org/abs/1902.06705

1004 O. F. Tuna et al.

51. LeCun, Y., Cortes, C.: MNIST handwritten digit database. http://
yann.lecun.com/exdb/mnist/

52. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms (2017).
arXiv:1708.07747

53. Krizhevsky,A.,Nair,V.,Hinton,G.:Cifar-10 (canadian institute for
advanced research). http://www.cs.toronto.edu/~kriz/cifar.html

54. Rauber, J., Brendel, W., Bethge, M.: Foolbox: A python toolbox
to benchmark the robustness of machine learning models (2018).
arXiv:1707.04131

55. Ding, G. W., Wang, L., Jin, X.: advertorch v0.1: An adversarial
robustness toolbox based on pytorch (2019). arXiv:1902.07623

56. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial
examples (2018). arXiv:1802.00420

57. Katzir, Z., Elovici, Y.: Why blocking targeted adversarial pertur-
bations impairs the ability to learn (2019). arXiv:1907.05718

58. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition (2015). arXiv:1409.1556

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1902.07623
http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1907.05718
http://arxiv.org/abs/1409.1556

	TENET: a new hybrid network architecture for adversarial defense
	Abstract
	1 Introduction
	2 Literature survey
	2.1 Adversarial attacks
	2.1.1 Fast-gradient sign method
	2.1.2 Iterative gradient sign method
	2.1.3 Projected gradient descent
	2.1.4 DeepFool attack
	2.1.5 Carlini and Wagner attack

	2.2 Adversarial defense
	2.2.1 Defensive distillation
	2.2.2 Adversarial training

	3 Preliminaries
	3.1 Uncertainty in machine learning
	3.1.1 Epistemic uncertainty
	3.1.2 Aleatoric uncertainty
	3.1.3 Scibilic uncertainty

	3.2 Quantifying uncertainty in deep neural networks

	4 Approach
	4.1 Uncertainty-based reversal operation
	4.2 Analysis of the uncertainty-based reversal method
	4.3 Adversarial assumptions

	5 Results
	5.1 Experimental setup
	5.2 Experimental results
	5.3 Discussions and further results

	6 Conclusion
	Acknowledgements
	References

