International Journal of Information Security (2023) 22:713-721
https://doi.org/10.1007/s10207-022-00658-8

REGULAR CONTRIBUTION l‘)

Check for
updates

Multi-cloud applications: data and code fragmentation for improved
security

Rudolf Lovren¢i¢'® - Dejan Skvorc’

Published online: 3 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2023

Abstract

When deciding against outsourcing their data to the cloud, organizations often point to security as the primary reason. If cloud
is not used as a passive storage only, but rather both the data and the code required for their processing are being outsourced,
then the data privacy may get compromised in two ways: (i) in the storage if not being encrypted and (ii) during the processing
through various execution-level attacks. Encrypting the data before outsourcing enhances their security while in the storage,
but disables their processing in the cloud. On the other hand, if a cloud has the ability to decrypt the data before processing, then
they remain vulnerable during the execution. In this paper, we present a paradigm for outsourcing both the data and the code
to the cloud in a way that preserves data privacy, while still enabling their processing outside the organization. The paradigm
leverages constraint-based data and code fragmentation and deploys these fragments to multiple independent computer clouds.
We introduce several architectural patterns for secure computation in a multi-cloud environment, demonstrate the paradigm

use, and examine introduced performance penalty on a simple application.

Keywords Distributed applications - Distributed databases - Cloud computing - Security and privacy

1 Introduction

Cloud computing enables on-demand access to a shared pool
of computing resources over the network [1]. Acquisition
and release of those resources requires minimal manage-
ment effort from both the service provider and the user which
results in great flexibility at a low cost.

Some of the biggest challenges in cloud adoption are
related to trust since the users often feel like they are losing
control over their data [2]. Numerous data breaches and secu-
rity vulnerabilities [3,4] do not give users the confidence that
the cloud service provider (CSP) will keep their data secure.
High flexibility of a cloud service makes exhaustive and con-
tinuous security revisions expensive or intractable [5].

Recent trends show that the use of multiple cloud
providers simultaneously is increasing to achieve higher ser-
vice availability and reduce damage in the case of malicious

B Rudolf Lovrencic¢
rudolf.lovrencic @fer.hr

Dejan Skvorc

dejan.skvorc @fer.hr

University of Zagreb, Faculty of Electrical Engineering and
Computing, Zagreb, Croatia

insiders on a single CSP [6]. Such multi-cloud environments
mitigate reliance on a single cloud provider. Initial research
of multi-cloud techniques focused on achieving cloud inter-
operability and overcoming resource restrictions of a single
service provider [7,8]. AlZain et al. [6] conclude that the
combination of secure cloud architectures and cryptography
offers a huge potential going forward.

In this paper, we present a paradigm for the development
of secure multi-cloud applications that improves the data pri-
vacy both in the storage and during the computation. We
rely on fragmentation rather than encryption since it enables
higher security levels while preserving data availability—
the data remain available in plaintext, but are fragmented
and distributed among multiple CSPs. Figure 1 illustrates our
approach. Assuming that a and b stored together in a single
database reveal critical information (i.e., illness and the per-
son’s name), we fragment the database so that a and b may
be stored on different CSPs. As a consequence of the data
fragmentation, the application’s computational logic is frag-
mented as well in order to avoid a point where both a and
b are known together. In other words, the data fragmenta-
tion governs the fragmentation of the computational logic.
Data and code fragments are then distributed among multi-
ple CSPs. In its fragmented form, the result of the monolithic

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00658-8&domain=pdf
http://orcid.org/0000-0003-1497-2559

R. Lovrenti¢, D. Skvorc

714
@ww .ﬁ 0 Emb);
i
=
a,b a b
(a) Before (b) After

Fig. 1 An application and its database a before and b after the frag-
mentation. Both the database and the computational logic are partitioned
into fragments and distributed among different CSPs

application functionality f(a, b) must be preserved, but in a
way which ensures that each application component knows
only either a or b. In other words, application components
distributed among different CSPs jointly compute f(a, b)
with one component performing g(a) and the other i (b).

Along with providing the paradigm, we demonstrate the
way user-provided constraints, which describe how parts
of the data must be restricted to specific CSPs, influence
the structure of a multi-cloud application. We introduce
multi-cloud computation patterns which enable computation
without violating the provided constraints—plaintext inputs
and outputs are only available to the cloud providers that
are required to have access to them in order to maintain the
application functionality. We describe characteristics of those
patterns and explore their performance on a simple applica-
tion.

The rest of the paper is organized as follows. Sec-
tion 2 describes previous work related to the privacy of data
while outsourced to the cloud. Section3 introduces secure
multi-cloud computation patterns and presents a simple
application to exemplify their usage. In Sect.4, we demon-
strate how security requirements influence the architecture of
a multi-cloud application in order to get the most optimized
application for a given data fragmentation. Performance anal-
ysis of the previously introduced application is provided in
Sect. 5, while Sect. 6 concludes the paper.

2 Related work

Data fragmentation has received significant attention from
the research community as a means for increasing the data
privacy [9-11]. Using it in the cloud environment has also
been explored to lower the trust assumption toward the sys-
tem as a whole [12]. The data are fragmented and deployed
to the multi-cloud based on the user-provided constraints.
Our previous work [13] focused on minimizing the violation

@ Springer

of constraints when deploying the multi-cloud application.
Assuming that the importance of each data chunk and the
trust level for each CSP are provided, we are able to deter-
mine a Pareto-optimal set of deployment strategies for a given
multi-cloud application. Quantitative factors, such as avail-
ability and bandwidth, may be used to estimate the trust level
of a CSP [14].

Database fragmentation has been combined with secure
multi-party computation to enable the multi-cloud database
to execute queries without confidential data pairs having
to join at some trusted server [15-18]. Recent work [19]
expanded the supported operation set by leveraging homo-
morphic encryption. Proposed system supports all queries
from the TPC-H benchmark [20].

With the recent advances in the field of homomorphic
encryption, a few programming libraries have emerged [21—
24]. While these solutions offer a good research platform,
they have not seen significant adoption due to poor per-
formance and accessibility for anyone but experts in the
field [25]. Microsoft SEAL [23] is more approachable for
non-specialists, but it does not support branching on the
encrypted data which is crucial for all but the most simple
applications. Additionally, severe security pitfalls arise when
this technology is used in practical systems [26], especially
when utilized by non-experts. One research [27] argues that
even if homomorphic encryption was feasible today, cryptog-
raphy alone cannot enforce privacy in the cloud. Instead, the
user also needs to rely on tools such as distributed comput-
ing, complex trust systems, and tamperproof hardware (e.g.,
Intel SGX and AMD Memory Encryption Technology [28]).

While multi-cloud databases received decent contribu-
tions, to the authors’ knowledge, no work has explored frag-
mentation of both the computational logic and the database.
We expand on previous work by considering the combination
of a multi-cloud database and multi-cloud application code
to improve the data security without trusted servers.

3 Secure multi-cloud computation

A trivial application that calculates the payout of company’s
employees is considered. Payout is calculated by multiply-
ing the number of hours worked with the hourly wage of
the employee’s workplace. Additionally, if an employee has
worked more hours than the workplace requires, a workplace-
specific bonus is added to the employee’s payout.

The application database consists of two tables: employee
and workplace, as shown in Fig.2. The table employee con-
tains employee ID, workplace ID, and the number of hours
worked by the employee. Columns of the workplace table
define workplace ID, hourly wage, quota, and bonus of the
workplace. For simplicity’s sake, each employee is assigned

Multi-cloud applications: data and code fragmentation for improved security

715

Zagreb Frankfurt

employee ID || workplace ID

workplace ID|| hourly wage

quota

num_hours

bonus

Fig.2 Monolithic application

Pseudocode 1: Monolithic Cy functionality.

query =

SELECT num_hours, hourly_wage,
quota, bonus
FROM employee JOIN workplace
ON employee.workplace_ID =
workplace.workplace_ID
WHERE employee.employee_ID =
employee_ID_from client;
func on_receive_from_client(employee_id)
num_hours, hourly_wage, quota, bonus
= execute(query);
payout = num_hours * hourly_wage;
if num_hours > quota then
| payout += bonus;
send({client}, payout);

to only one workplace, but workplaces with no employees
are allowed to exist in the database.

In a regular single-cloud form, the entire database and
all of the necessary code are deployed together to the same
cloud, or alternatively, the database may be separated from
the code using two different clouds. In this case, the applica-
tion consists of a single component (Cy in Fig. 2) that receives
employee ID from the client and performs SELECT query
that fetches number of hours, hourly wage, quota, and bonus
for a given employee ID. Pseudocode 1 shows the component
procedure which is invoked when employee ID is received
from the client. Upon invocation, the query that obtains all the
data required for payout calculation is executed. The com-
ponent then calculates the payout and sends the result to the
client.

Multi-cloud variations of this application rely on data frag-
mentation to ensure confidentiality of sensitive data pairs [9].
Database columns are split apart according to the privacy-
related requirements for a given application and deployed to
different CSPs. Since no CSP has access to all the data parts
necessary to reveal the sensitive information, data in storage
are now considered more secure compared to a monolithic
database. However, sensitive information may still leak if the
data from separate chunks got retrieved for processing in a

single point in the system. Therefore, application’s compu-
tational logic has to be fragmented as well in a way that no
party in a multi-cloud environment ever learns all the data
that makes a sensitive combination. To enable computation
of multi-operand operations where different operands reside
in different clouds in such a secure way, we introduce secure
multi-cloud computation patterns, as shown in Table 1.

The addition pattern consists of three components of
which the first two obtain the two operands as inputs. The
addition is performed in three steps:

1. Component C A obtains input a and generates a random
number x. Input a is masked by adding x to it, and the
result is sent to C A. The random number x is sent to the
final component of the pattern C A;.

2. Component C A; obtains the second input b and receives
masked first input from C Ag. The masked first input and
second input are added together, and the result is sent to
CA;.

3. CAj deducts the received random number x from the
received masked result to obtain the addition result.

During this process, no component learns both operands.
Secure multiplication pattern is analogous to the addition
pattern, with the difference that multiplication and division
are used instead of addition and subtraction. Comparison
pattern differs slightly since initial component of the pattern
CCy sends the random number to CC;. CCy and CCy then
use the same random number to mask their inputs and send
those masked inputs to C C, for comparison. Since the same
random number is used to mask both inputs, masked inputs
may be compared to obtain the comparison result.

To present the basic idea in its simplest form, in this paper
we intentionally keep the structure of the multi-cloud com-
putation patterns as simple as possible. If for a particular
purpose some pattern does not satisfy the required security
level (e.g., the range of the data is small, or operand values
are deducible from the result of the operation), it may be
extended with additional protective elements (e.g., compari-
son pattern may use additive and multiplicative mask to hide
both the difference and the ratio between the two operands).
Additionally, in their current form, the patterns assume CSPs
are honest-but-curious [29]—they do not deviate from the
defined protocol but will attempt to learn all possible infor-
mation from the received messages.

If all operands of a given operation are available in the
same cloud, then the operation is computed as usual, using
a regular code pattern. However, if the operands are dis-
tributed across different clouds, then the operation has to be
performed using a secure multi-cloud computation pattern.
Since regular pattern is supposed to be far more efficient than
the multi-cloud one, we apply the multi-cloud patterns only
when this is required by the data fragmentation. This means

@ Springer

716

R. Lovrenti¢, D. Skvorc

Table 1 Regular and secure multi-cloud computation patterns for the arithmetic operations used in example application. Each component of a
secure multi-cloud computation pattern is hosted and executed on a separate CSP

REGULAR
OPERATION OPERANDS CODE SECURE MULTI-CLOUD COMPUTATION PATTERN
PATTERN
a X= rand() b
payout atx (a+x)+b (atx+b)-x
addition a+b —_— —_— —_—
X
a X= rand() b
num_hours a+X (a-x)+b (aox-b)/x
multiplication - a-b —_— B T — —_—
X
x = rand()
a
num_hours X b b+x (a+x)>(b+x)
comparison - a>b o—> T> g—>

quota

_/

a+x

that the architecture of a multi-cloud application is carefully
profiled toward the required data fragmentation in order to
optimize its execution.

4 Profiling the architecture of a multi-cloud
application

Development of a multi-cloud application starts with the
design of a data fragmentation model. The user, the appli-
cation architect, or the security analyst, defines the security
requirements of the application in the form of security con-
straints [13]—sets of columns where at least one column in
a set must be deployed to different cloud provider. In other
words, all columns in a set may not be available on a sin-
gle cloud provider. Although such security mechanism does
not protect individual columns, sensitive relations between
columns are still kept secret. Using this principle, the data
remain available for arbitrary computations in the cloud,
which would not be the case if encryption was used. For
example, if columns illness and name in some database table
are split and deployed to different clouds, neither CSP knows
which person suffers from which illness. Some information
still leaks (i.e., which illness is the most common), but such
leaks are outside the scope of this security mechanism.

A set of security constraints defines how the applica-
tion logic and the database are split into components and
fragments. In other words, the architecture of a multi-cloud
application depends on the security constraints provided by

@ Springer

the user. Two variations of the multi-cloud application exem-
plified in Sect. 3 are presented to illustrate this. The first is a
fine split variation (Sect.4.1) where the maximum fragmen-
tation of the database is required. The second variation is a
minor split variation (Sect.4.2) where only the workplace
bonus is required to be separate from the rest of the data.
Note that the real-world semantics of security constraints in
these examples are not essential for this paper—the idea is
to demonstrate how security constraints affect the structure
of a multi-cloud application.

4.1 Fine split variation

Fine split variation of the demo application considers
maximum possible fragmentation for a given database. Each
column, except identifier columns, is constrained with every
other column. Identifier columns are constrained with every
column, except the columns which they identify (in other
words, columns that were in the same table before database
fragmentation). This results in a set containing the following
10 security constraints:

{employee_ ID, hourly wage}

{employee ID, quota}

{employee_ ID, bonus}

{workplace ID, num_hours}

{num_hours, hourly wage}

{num_hours, quota}

{num_hours, bonus}

{hourly_wage, quota}

Multi-cloud applications: data and code fragmentation for improved security

717

Frankfurt

Amsterdam Paris
|

London
workplace ID
bonus

London
workplace_ID
hourly wage

London
workplace ID
quota

num_hours

Paris
employee ID

Frankfurt
employee_ID
workplace ID
1
1
1
1
1
1
1
1
i
1
1

Zagreb
client
AN
i
1
1
1
1
'

Fig. 3 Fine split variation of multi-cloud application (dashed lines
indicate communication that may or may not occur, depending on the
control flow). All three arithmetic operations (comparison, multiplica-
tion, and addition) are computed using the multi-cloud computation
patterns. Eight CSPs are required to run the application since vertically
aligned data fragments and application code components may reside in
the same cloud

{hourly_ wage, bonus}

{quota, bonus}

Furthermore, the result of multiplying the number of hours
worked by the employee should not be available on the same
cloud as the workplace bonus:

{bonus, multiplication_result}

In total, the set of security constraints for the fine split
variation contains 11 constraints.

Assuming that employee and workplace identifiers carry
no useful information, those columns may appear together on
the same CSP. Furthermore, identifier may appear together
with any column from its table. These assumptions are
required for preserving the information when fragmenting
the database so that the individual fragments may later be
joined on those identifiers. In cases where the identifier col-
umn carries useful information and occurs in the security
constraints, new identifier must be introduced such that it

Pseudocode 2: Fine Cy functionality.

query =
SELECT workplace_ID
FROM identifier table
WHERE employee.employee_ID =
employee_ID_from_client;
workplace_id = null;

func on_receive_from_client(employee_id)
workplace_id = execute(query);
send({CCyp, C My}, employee_id);
send({CCy, C M}, workplace_id);

func on_receive_from_C C;(comparison_result)
if comparison_result then
‘ send({C Ag }, workplace_id);

may appear alongside other columns in its table and identi-
fiers from other tables.

The database is fragmented into 5 data fragments, each
containing the identifier column and one column from the
original table (Fig.3). Since the application is maximally
constrained, all three operations (multiplication, comparison,
and addition) must be performed by leveraging secure multi-
cloud computation patterns, as described in Sect. 3.

The comparison result must be dispatched to all compo-
nents that are affected by the result of an i £ statement. In this
case, Cp must be aware of the comparison result to decide
whether or not to send the workplace identifier to C Agp. Addi-
tionally, C M> needs the comparison result to decide if the
multiplication result represents the total payout amount sent
to the client or if the workplace bonus must be added to the
result, in which case the result is sent into the secure addition
pattern.

Component Cy serves as a connector component between
the two original tables since it is the only component that has
access to the identifier table (table that contains both identi-
fiers). The component receives employee identifier from the
client and fetches the workplace identifier for that employee.
Identifiers are then distributed to components that require
them: Employee ID is sent to CC¢ and C My, while work-
place ID is sent to CC; and CM;. Cp then waits for the
result from CC, to decide whether or not to send the work-
place identifier to C Agy. Pseudocode 2 lists functionality of
component Cy in the fine split variation of the application.

Pseudocode 3 lists the functionality of the initial com-
parison component C Cy. When the component receives the
employee ID from component Cyp, the number of hours
worked by the employee is retrieved from the database. A
random mask is then generated and sent to CCy, while the
sum of the number of hours and the mask is sent to the final
comparison component C Cs.

Fine variation of the demo application requires 8 CSPs
and a client. In total, 10 application components are shown

@ Springer

718

R. Lovrenti¢, D. Skvorc

Pseudocode 3: Fine CCy functionality.

query =
SELECT num_hours
FROM num_hours_table
WHERE employee.employee_ID =
employee_ID_from_ Cp;
func on_receive_from_Cp(employee_id)
num_hours = execute(query);
mask = rand();
send({ CC }, mask);
send({CC, }, num_hours + mask);

in Fig. 3, but there are two pairs of components that reside
on the same cloud: {CCy, CMy} and {CM;, CA;}. Each
of these two pairs may be merged into a single executable
providing the same functionality as the original pair of
components. This reduces the communication cost of the
multi-cloud application since the data between those com-
ponents need not be communicated over the network—it is
available right there in memory. Resulting fine split applica-
tion variation consists of 8 executables which matches the
number of required CSPs for this variation.

4.2 Minor split variation

In the minor split example, workplace bonus is split from the
rest of the data. A set of security constraints that determines
this requirement contains the following constraints:

{bonus, hourly wage}

{bonus, quota}
{bonus, num hours}
{bonus, employee ID}

Additionally, same as in the fine split variation, the mul-
tiplication result is constrained with the workplace bonus:

{bonus, multiplication_result}

Since only the bonus is now split from the rest of the data,
multiplication and comparison are allowed to be computed
within the same application component. Therefore, these two
operations are calculated using more efficient regular code
patterns, instead of performance-costly multi-cloud patterns.
The addition operation still requires the use of a secure multi-
cloud pattern.

This set of constraints results in two database fragments
and four application components, as shown in Fig. 4. Compo-
nents and databases along the same vertical line (horizontal
line in the rotated image) may reside at the same CSP without
breaking any security constraints.

Pseudocode 4 outlines the implementation of the compo-
nent Cp in the minor split variation. Component Cy receives
the employee identifier from the client and executes the query
similar to monolithic application query, but without the bonus
in the SELECT clause since it is stored in a different database
fragment which Cp cannot access. When the query result is

@ Springer

London
1
1

1
a i
l—ll 1
O o 1
3] 1
g >
~ _@*@ H !
o 1 1
Q 1 1
2 : 1
I
: 1
[}
1
a [i
| L 1
[N I '
8l El= ! !
g Tl= ! 1
) e ! 1
HEIE | !
1|3 : |
MEE . :
- . '
& oY= @_"’ |
1
= H\HIE i :
0| Q|2 1 1
ol 8|8 1
>[5 = I '
SEE ! :
el ' |
g|o|= ! 1
o ']
1
2 V. i
5 o< E<-mmmmmmmm- :
3 G

Fig.4 Minor split variation of multi-cloud application. Comparison and
multiplication are computed using the regular code patterns within the
Co. Only the addition is computed using the multi-cloud computation
pattern. Three CSPs are enough to run the application since vertically
aligned data fragments and application code components may reside in
the same cloud

received, Co multiplies the number of hours with the hourly
wage of the employee’s workplace and decides whether or
not the bonus should be added to the result. If the number
of hours is less or equal to the workplace quota, the multi-
plication result is sent directly to the client as a final result.
Otherwise, the multi-cloud addition pattern must be used to
add the bonus to the multiplication result without breaking
any security constraints. In other words, no CSP should have
access to the bonus and either quota, hourly wage, number
of hours worked, or employee identifier.

Equivalently to the merging of components in Sect. 4.1,
components Cop and CAp may be combined into the same
executable to reduce communication costs since they reside
on the same cloud. The final structure of the minor split varia-
tion results in three executable components and two database
fragments. Three CSPs are required for multi-cloud deploy-
ment of this application variation.

5 Performance analysis

Monolithic and two variants of multi-cloud application
are implemented in C++ using the Boost Asio library
to facilitate asynchronous communication between applica-

Multi-cloud applications: data and code fragmentation for improved security

719

o] .‘/.—-0\./= ® o
\ Minor, sync —%—
8.01 k Fine, sync ——
(R Minor, async --X--
§ 7.0 ®- g 9. Fine, async --@ -
3) By R o----.
5 6.0
2
5.0
40 rsesex— K
3.0 R S SR Y SR
1 5 10 15 20

Number of requests

(a) Large data set (50k workplaces, 500k employees)

3.0

Minor, sync —>%—
Fine, sync —@—
Minor, async --X--
Fine, async --@ -

Slowdown
[\)
o

LTI TRt L A
SN)mmmmmmmmmmmmmm e m i m ==
M 5 10 15 20

Number of requests

(b) Small data set (50 workplaces, 500 employees)

Fig.5 Slowdown of minor and fine variations relative to the monolithic application for a large and b small data sets

Pseudocode 4: Minor Cy functionality.

query =
SELECT num_hours, hourly_ wage,
quota, workplace.workplace_ID
FROM employee JOIN workplace
ON employee.workplace_ID =
workplace.workplace_ID
WHERE employee.employee_ID =
employee_ID_from_client;
func on_receive_from_client(employee_id)
num_hours, hourly_wage, quota, workplace_id
= execute(query);
payout = num_hours * hourly_wage;
if num_hours > quota then
| send({client}, payout);
else
send({C Ap }, payout);
send({C A }, workplace_id);

tion components. Serverless database SQLite is used to
store the application data. Since the purpose of these tests is
solely to gauge the performance impact of the multi-cloud
paradigm on the demo application, for convenience, all vir-
tual machines (VMs) are hosted by a single cloud service
provider—Vultr. VMs offer a single core of a Cascade Lake
Intel Xeon CPU clocked at 3.0GHz and 1GB of memory. The
client code is running on Intel Core i7-8550U CPU clocked
at 4.0 GHz. The client and VMs communicate with bitrate of
550Mbit/s and response time of roughly 40 ms. To simulate a
realistic multi-cloud scenario, components that communicate
are always hosted in different geographical locations. This
results in response times between components of roughly
10 ms and the bitrate of approximately 3Gbit/s. Hosting
locations of the application components and the database
fragments are marked in the application variation figures
(Figs.2, 3, 4).

The client starts measuring time before sending the
first request and stops when the final response has been
received. Two types of client behavior are considered: (a) syn-
chronous—the client waits for response from the application
before sending another request, and (b) asynchronous—the
client sends the next request even if the response to the pre-
vious request has not yet been received. The former behavior
measures response times as perceived from the perspective
of a particular client. The latter simulates a scenario where
multiple clients send requests at the approximately the same
time which provides an insight in how the system throughput
is affected.

Synchronous client does not allow for inter-request par-
allelism—request computation may not start before the
response to the previous request has been received. For exam-
ple, after Cy in the fine split variation (Fig. 3) has determined
and sent the data to the comparison and multiplication com-
ponents, the component cannot start handling the next request
since the client has not yet sent the next request. The client
waits for the response from C M or C A, before sending the
nextrequest. On the other hand, asynchronous client sends its
requests one immediately after another, which means that the
next input for Cy is available as soon as it delivers the output
from the previous request to the next components in the work-
flow. The same holds for other components in the pipeline. In
the minor split variation, parallelization is somewhat reduced
due to a greater portion of logic contained within a single
component (Cq in Fig.4), but it still occurs in the multi-cloud
addition pattern. In the monolithic application, parallelism is
not present since computation is performed by a single com-
ponent resulting in approximately the same execution times
for both versions of the client.

Execution times have been measured on two data sets: one
with 50k workplace and 500k employee entries and the other

@ Springer

720

R. Lovrenti¢, D. Skvorc

with 50 and 500 entries, respectively. Figure 5 illustrates the
slowdown of minor and fine variations relative to the mono-
lithic application for up to 20 requests. Both client behaviors
are considered on both data sets. In the large set scenario, the
computation dominates the total execution time. On the other
hand, when dealing with the small data set, communication
between application components is the dominant factor.

When dealing with large amounts of data, minor and fine
variations experience significant slowdown relative to the
monolithic application, but they also benefit greatly from the
asynchronous client. Furthermore, the fine variation features
intra-request parallelism since the comparison and multipli-
cation patterns work in parallel on a single request. For a
single query, minor variation is up to 4 times slower than the
monolithic application. When using the asynchronous client
and as the number of requests increases, the slowdown drops
to below 3x due to inter-request parallelism. The fine split
application variation benefits more from the asynchronous
client since the computation pipeline is longer. Slowdown
drops from roughly 9.4 x for a single request to 6.17 x for 20
consecutive requests.

When the small data set is considered, the response of
a fine variation takes 2.3 times longer than the monolithic
application response, while minor variation response is only
1.66x slower. Since the communication costs now have a
greater share in the total execution time, the benefits of the
asynchronous client become more apparent with larger num-
bers of requests.

6 Conclusion

We introduced a novel paradigm for secure multi-cloud appli-
cation development and demonstrated its use on a simple
application. Furthermore, the performance analysis indicates
that the paradigm is suitable for small-scale applications or
critical parts of larger cloud systems. Although the retrieval
of data from multiple database fragments and usage of multi-
cloud computation patterns affect the performance of the
application to some degree, slight performance drop may
still be acceptable if the security of the outsourced sensitive
data is increased significantly. What is left outside of the dis-
cussion in this paper is how using multiple clouds to run a
single application affects the application’s operational costs.

The next step in our research is to develop a procedure and
atool for automatic generation of the multi-cloud application
components and database fragments based on the provided
monolithic application code, monolithic database, and data-
related security constraints. This makes the development of
the multi-cloud applications transparent to the programmers,
but also facilitates regeneration of the multi-cloud applica-
tion if the security constraints or available number of clouds
change over time. We aim to combine this procedure with

@ Springer

our previous work [13] to determine the optimal deploy-
ment of application components and database fragments to
the available CSPs. Another possible avenue of research
may explore the preservation of the database functionality
as much as possible after the fragmentation and deployment
to the multi-cloud environment (e.g., data integrity enforce-
ment). While there is still a lot of research and practical work
left to be done before our vision of the multi-cloud paradigm
becomes suitable for non-trivial applications, we believe that
the distributed trust systems, such as the proposed multi-
cloud application model, will eventually prevail.

Acknowledgements This research is co-sponsored by the European
Regional Development Fund through a research Grant KK.01.2.1.01.
0109. We acknowledge the support of the Ministry of Economy of the
Republic of Croatia as well as our research partners OROUNDO Mobile
GmbH Austria and OROUNDO Mobile GmbH Subsidiary Croatia.

Data availability The data sets generated and analyzed during the cur-
rent study as well as the source code used for the experiments are
available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Human and animal rights We did not use animals and/or human par-
ticipants in the study reported in this work.

References

1. Mell, PM., Grance, T.: The NIST Definition of Cloud Computing.
Tech. rep., National Institute of Standards and Technology (2011)

2. Jansen, W.: Cloud Hooks: security and privacy issues in cloud
computing. In: 44th Hawaii International Conference on System
Sciences, pp. 1-10. IEEE (2011)

3. Modi, C., et al.: A survey on security issues and solutions at dif-
ferent layers of cloud computing. J. Supercomput. 63(2), 561-592
(2013)

4. Hashizume, K., et al.: An analysis of security issues for cloud com-
puting. J. Internet Serv. Appl. 4(1), 1-13 (2013)

5. Kelbert, F., et al.: SecureCloud: secure big data processing in
untrusted clouds. In: Design, Automation & Test in Europe Con-
ference & Exhibition, pp. 282-285. IEEE (2017)

6. AlZain, M.A,, et al.: Cloud computing security: from single to
multi-clouds. In: 45th Hawaii International Conference on System
Sciences, pp. 5490-5499. IEEE (2012)

7. Bernstein, D., et al.: Blueprint for the intercloud—protocols and
formats for cloud computing interoperability. In: 4th International
Conference on Internet and Web Applications and Services, pp.
328-336. IEEE (2009)

8. Celesti, A., et al.: How to enhance cloud architectures to enable
cross-federation. In: International Conference, pp. 337-345 (2010)

9. Ciriani, V., et al.: Combining fragmentation and encryption to pro-
tect privacy in data storage. ACM Trans. Inf. Syst. Secur. 13(3),
1-33 (2010)

10. Raj, S., Arunkumar, B.: Enhanced encryption for light weight data
in a multi-cloud system. In: Distributed and Parallel Databases, pp.
1-10 (2021)

Multi-cloud applications: data and code fragmentation for improved security

721

11.

12.

13.

15.

17.

18.

19.

20.

21.

22.

23.

24.

Abed, H.N., Mahmood, G.S., Hassoon, N.H.: A secure and efficient
data distribution system in a multi-cloud environment. Malays. J.
Sci. Adv. Technol. 9(3), 109-117 (2021)

Hudic, A., et al.: Data confidentiality using fragmentation in cloud
computing. Int. J. Pervas. Comput. Commun. 9(1), 37-51 (2012)
Lovrencic, R., et al.: Security risk optimization for multi-cloud
applications. In: International Conference on the Applications of
Evolutionary Computation, pp. 659-669. Springer, Berlin (2020)
Alam, B., Fadlullah, Z., Choudhury, S.: A resource allocation
model based on trust evaluation in multi-cloud environments. IEEE
Access 9, 105577-105587 (2021)

Wu, S., et al.: ServeDB: secure, verifiable, and efficient range
queries on outsourced database. In: 35th International Conference
on Data Engineering, pp. 626-637. IEEE (2019)

Emekci, F., et al.: Dividing secrets to secure data outsourcing. Inf.
Sci. 263, 198-210 (2014)

Xue, K., et al.: Two-cloud secure database for numeric-related SQL
range queries with privacy preserving. IEEE Trans. Inf. Forensics
Secur. 12(7), 1596-1608 (2017)

Xiang, T., et al.: Processing secure, verifiable and efficient SQL
over outsourced database. Inf. Sci. 348, 163-178 (2016)

Wang, L., Yang, Z., Song, X.: SHAMC: a secure and highly
available database system in multi-cloud environment. Futur. Gen.
Comput. Syst. 105, 873-883 (2020)

Poess, M., Nambiar, R.: TPC Benchmark H Standard Specification,
tech. rep., Transaction Processing Performance Council (2010)
Halevi, S., Shoup, V.: Algorithms in HElib. Advances in Cryptol-
ogy, pp. 554-571. Springer, Berlin (2014)

Chillotti, I., et al.: Faster fully homomorphic encryption: bootstrap-
ping in less than 0.1 seconds. In: Advances in Cryptology, pp. 3-33.
Springer, Berlin (2016)

Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic
library—SEAL v2.1. In: International Conference on Financial
Cryptography and Data Security, pp. 3—18. Springer, Berlin (2017)
Cheon, J.H., et al.: Homomorphic encryption for arithmetic of
approximate numbers. In: Advances in Cryptology, pp. 409-437.
Springer, Berlin (2017)

25.

26.

217.

28.

29.

Crockett, E., Peikert, C., Sharp, C.: ALCHEMY: a language and
compiler for homomorphic encryption made easy. In: Conference
on Computer and Communications Security, pp. 1020-1037. ACM
(2018)

Peng, Z.: Danger of using fully homomorphic encryption: A look
at Microsoft SEAL. ArXiv (2019)

Van Dijk, M., Juels, A.: On the impossibility of cryptography alone
for privacy preserving cloud computing. In: 5th USENIX Confer-
ence on Hot Topics in Security, USENIX Association, pp. 1-8
(2010)

Mofrad, S., et al.: A comparison study of Intel SGX and AMD
memory encryption technology. In: 7th International Workshop
on Hardware and Architectural Support for Security and Privacy.
Association for Computing Machinery, pp. 1-8 (2018)

Paverd, A., Martin, A., Brown, I.: Modelling and automatically
analysing privacy properties for honest-but-curious adversaries.
Tech. rep., University of Oxford (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

	Multi-cloud applications: data and code fragmentation for improved security
	Abstract
	1 Introduction
	2 Related work
	3 Secure multi-cloud computation
	4 Profiling the architecture of a multi-cloud application
	4.1 Fine split variation
	4.2 Minor split variation

	5 Performance analysis
	6 Conclusion
	Acknowledgements
	References

