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Abstract
The design of a security scheme for beamforming prediction is critical for next-generation wireless networks (5G, 6G, and
beyond). However, there is no consensus about protecting beamforming prediction using deep learning algorithms in these
networks. This paper presents the security vulnerabilities in deep learning for beamforming prediction using deep neural
networks in 6G wireless networks, which treats the beamforming prediction as a multi-output regression problem. It is
indicated that the initial DNN model is vulnerable to adversarial attacks, such as Fast Gradient Sign Method , Basic Iterative
Method , Projected Gradient Descent , and Momentum Iterative Method , because the initial DNN model is sensitive to the
perturbations of the adversarial samples of the training data. This study offers two mitigation methods, such as adversarial
training and defensive distillation, for adversarial attacks against artificial intelligence-based models used in the millimeter-
wave (mmWave) beamforming prediction. Furthermore, the proposed scheme can be used in situations where the data are
corrupted due to the adversarial examples in the training data. Experimental results show that the proposed methods defend
the DNN models against adversarial attacks in next-generation wireless networks.

Keywords Security · Next-generation networking · 6G mobile communication · Adversarial machine learning

1 Introduction

The first 5G standard was announced and approved by 3GPP
in December 2017 [1]. The early standardization work on
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5G is expected to provide a solid and stable foundation for
the early adoption of 5G services. In addition, 5G will be
essential for Internet of Things (IoT) applications and future
mobile networks. There are many challenges in the design of
5G networks [2], including a security scheme for beamform-
ing prediction. It is an essential part of wireless networks,
studied in communication systems and signal processing.
Designing and implementing beamforming algorithms in
next-generation wireless networks is also crucial. In current
wireless networks, deep learning (DL)-based beamform-
ing prediction is vulnerable to adversarial machine learning
attacks [3]. Therefore, designing a security scheme for beam-
forming prediction in 6G networks is critical.

6G is the latest wireless communication technology
among cellular networks currently under development. In 6G
solutions, artificial intelligence (AI)-based algorithms, espe-
cially DL, would be one of the main components of wireless
communication systems [4] to improve the overall system
performance. The existing solutions in 5Gwould bemigrated
to the AI domain, specifically into the DL area. Therefore,
it is crucial to design secure DL solutions for the AI-based
models in 6G wireless networks. The new attack surface, in
addition to the existing 5G security problems, is DL security
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vulnerabilities. Researchers and companies should mitigate
their DLmodels’ security problems before deploying them to
production environments. They need to identify, document,
and perform risk assessments for new types of security threats
in the next-generation wireless communication systems.

5G networks were commercially launched in late 2018
[5]. After the first commercial launch of the 5G network,
the planning of the next-generation networks, such as 6G,
commenced providing communication services for future
demands. The most important key for this next generation
is the use of advanced communications and AI technologies
[6]. In the literature, many studies focus on next-generation
wireless networks (5G, 6G, and beyond) and the integration
of current emerging AI tools into these networks [7–11].
Next-generation wireless networks have been considered
as one of the most important drivers in the ability of cur-
rent and future information age applications (i.e., virtual
and augmented reality, remote surgery, holographic pro-
jection, metaverse, etc.) to meet the forecast requirements,
such as ultra-broadband, ultra-reliable, low latency commu-
nication, massive access, and real-time services with low
cost. The authors in [12] reviewed AI-based solutions in
6G networks to achieve these requirements and emphasized
several solutions for ultra-broadband transmission (tera-
hertz channel estimation and spectrum management), secure
communication (authentication, access control, and attack
detection), and ultra-reliability and low latency services
(intelligent resource allocation). The study [13] investi-
gated next-generationwireless networks in core services, key
performance indices (KPIs), enabling technologies, archi-
tecture, challenges and possible solutions, opportunities,
and future research trends. It also evaluated core services
for 5G and 6G networks. Further, it indicated that several
emerging technologies will play a key role in 6G networks,
i.e., AI for improving the system performance, blockchain
for managing the system security, and quantum comput-
ing for computing efficiency. The authors in [14] provided
a comprehensive review of DL-based solutions focusing
on emerging physical layer techniques, such as massive
multiple-input multiple-output (MIMO), multi-carrier (MC)
waveform, reconfigurable intelligent surface (RIS) commu-
nications, and security for 6G networks. It also indicated that
AI will significantly contribute to improving next-generation
networks’ performance. The study [15] addressed the key
role of next-generation networks for humans and systems
and discussed how ML-based solutions will improve these
networks in terms of performance, control, and security and
solve problems in various network layers, i.e., the physical,
mediumaccess, and application.Many researchers of 6Gnet-
works have explored AI by adopting it as the top solution in
many extremely complex scenarios. Yang et al. in [16] pre-

sented an AI-enabled intelligent 6G networks architecture,
which can support several services, such as discovery, auto-
matic network adjustment, smart service provisioning, and
intelligent resource management. It also discusses AI-based
methods and how to apply them to 6G networks by efficiently
optimizing network performance, including intelligent spec-
trum management, mobile edge computing, mobility, and
handover management.

Utilizing DL-based algorithms for the next-generation
wireless network is a great opportunity to improve the over-
all system performance. However, it may lead to potential
security problems, i.e., AI-model poisoning.While AI-based
algorithms offer significant advantages for 6G networks,
potential security issues related to AI-based models are
typically overlooked. As such, the wireless research com-
munity should give particular attention to the security and
privacy concerns regarding next-generation networks [17].
The authors in [18] provide an overview of 6G wireless
networks in terms of the security and privacy challenges,
promising security solutions and technologies, and 6G net-
work specifications. The authors in [19] investigate the role
of AI in IoT security for possible cyber attacks, emphasizing
the model poisoning attack, i.e., where a machine learning
model’s training data are poisoned. The study [20] provides a
comprehensive review of the opportunities and challenges in
AI-based security and private provision, as well as proposes
solutions for 6G and beyond networks.

In our recent works [3] and [21], we only investigated
FGSM attacks, which can be mitigated using the adversar-
ial training method. In this work, four different adversarial
attacks (FGSM, BIM, PGD, and MIM) are investigated to
build robust beamforming DL models using two mitigation
methods. The DL-based beamforming prediction solutions
provide satisfactory results; however, these solutions cannot
work under an attack, such as adversarial machine learning
attacks. This paper presents a DL security scheme for beam-
forming prediction using deep neural networks (DNNs) in
next-generation wireless networks, which treats the beam-
forming prediction as a multi-output regression problem.
The results showed that the proposed scheme is more secure
against adversarial attacks because it is robust to the pertur-
bations of the adversarial samples of the training data.

The rest of the paper is organized as follows: Section
2 describes two publicly available cyber-attack tools and
the proposed framework. Section 3 covers the background
information regarding adversarial machine learning and mit-
igation methods and system overview. Section 4 describes
the experiments for three scenarios, respectively. Section 5
discusses the proposed scheme along with observations, and
Sect. 6 concludes the paper.
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2 Cybersecurity frameworks

Cybersecurity frameworks help enterprises manage potential
cyber risks in a better way and decide future plans for any
cyber threat detection or investigation of a security incident in
the application and system development. Widely used cyber-
security frameworks are discussed along with the proposed
framework below.

2.1 Cybersecurity frameworks

ML Cyber Kill Chain: Lockheed Martin’s Cyber Kill Chain
is a methodology designed to help companies assess the risks
they face and the potential impact on their organization.1

The methodology breaks down the seven phases of a cyber-
attack and the critical activities performed during each step.
The seven phases are 1. Reconnaissance 2. Weaponization
3. Delivery 4. Exploitation 5. Installation 6. Command and
Control/Actuation, and 7. Actions on Objectives. By assess-
ing the activities during each phase of their organization’s
potential cyber-attack, users can understand the impact of a
successful cyber-attack on their organization.

MITRE ATT&CK : It is a framework designed to enable
analysts and defenders to identify the stages of an attack and
construct and execute a response plan.2 MITRE ATT&CK is
a comprehensive catalog of attack techniques used by both
state and non-state actors. It allows organizations to track a
potential adversary’s movement and understand their meth-
ods to gain access and move laterally across a network. It can
be used to identify malicious attackers’ activity and gener-
ate a more effective response strategy. This framework was
designed to be used as a common language and modular so
that organizations can determine which techniques they need
to focus on.

MITRE Atlas: MITRE developed another framework for
AI-based applications, namely MITRE Atlas (Adversarial
Threat Landscape for Artificial-Intelligence Systems).3 It is
a knowledge resource for AI systems that includes adversary
tactics, methodologies, and case studies based on real-world
demonstrations from security groups, the state-of-the-art
from academic research. It is similar to the MITRE Att&ck
framework.

2.2 Proposed framework

In this study, the Cyber Kill Chain and MITRE Atlas frame-
works are matched to detect and fix the vulnerabilities of
ML models, which will be the new component of potential

1 https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-
kill-chain.html
2 https://attack.mitre.org
3 https://atlas.mitre.org

AI-based 6G networks. In this way, we aim to show both
threats and protection methods. The DL-based beamform-
ing prediction models are used for MIMO systems as the
proof-of-concept study of new cyber threats for 6G networks.
Figure 1 shows the cyber kill chain for AI-based applications
with three (3) stages.

Stage-1 is the process of acquiring artifacts about the target
AI model for beamforming prediction (i.e., reconnaissance)
and building the adversarial machine learning generated
craftily designed noise, i.e., weaponization. The adversary
can collect the artifacts of AI models in 6G solutions (e.g.,
AI models in base stations), such as the weights and hyper-
parameters used in the training process and datasets from
publicly available resources. After this step, the adversary
can replicate the AI model in its environment to build mali-
cious inputs.

Stage-2 is the process of building the replicated model,
finding the vulnerabilities, and building the craftily generat-
ingmalicious pilot signals (i.e., inputs of the beam prediction
model) into the target AI model (i.e., delivery).

Lastly, Stage-3 is the process of executing the target AI
model with the malicious input signals (i.e., exploitation and
installation), which can cause the AI model to produce erro-
neous results. The adversary can then use the malicious input
signals to exploit the AImodel and install the backdoor in the
AImodel (i.e., command and control). The adversary can use
the backdoor to take control of the AI model and the target
system (actions on objective).

Detailed information on the hostile tactics andmethodolo-
gies parts of MITRE Atlas is given below, which will take
place in the Cyber kill chain stages.

– i) In the reconnaissance phase, the adversary gathers
information about the organization and its networks, sys-
tems, and employees. This information can be used to
build a profile of the organization, the employees work-
ing there, and the organization’s network and systems
and to make a social engineering attack.

– ii) In the weaponization phase, the adversary uses the
information gathered during the reconnaissance phase to
develop the tools they need to launch an attack against
the organization successfully.

The adversary can then focus on the delivery phase, using
the same tools to deliver information or files to the orga-
nization’s network. The adversary will use the information
gathered during the reconnaissance phase to determine the
best delivery mechanism to get the information, it wants to
deliver to the organization’s network. Once the adversary has
delivered the information, they need to exploit a vulnerabil-
ity in the organization’s network. In this phase, it can use
the information gathered during the reconnaissance phase to
identify the software operated by the organization, operating
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Fig. 1 Cyber kill chain for AI-based applications of 6G wireless communication networks

systems, and applications running on the organization’s sys-
tems. During the exploitation phase, the adversary uses some
of the information gathered in the reconnaissance phase to
identify the best way to exploit the organization’s network.
They can use the reconnaissance phase information to iden-
tify the best software, operating systems, and applications to
exploit the organization’s network. When the adversary has
exploited the organization’s network, they have the ability
to install malicious software on the organization’s systems.
This malicious software can then exploit the organization’s
network further or monitor the organization’s network. Dur-
ing the command and control phase, the adversary can use
themalicious software installed during the exploitation phase
to install additional malicious software on the organization’s
systems. This malicious software can then be used to control
the organization’s systems. During the actions on objectives
phase, the adversary can use the malicious software installed
during the exploitation phase to access the organization’s
systems and steal information or interfere with the organi-
zation’s network. After the adversary has completed all the
steps of the cyber kill chain, they have been able to launch
a successful cyberattack on the organization’s network. The
organization’s ability to continue to operate its network can
be affected by the adversary’s activities during each phase of
the cyber kill chain.

3 Background

In this section, a brief overview of the beamforming pre-
diction, the existing adversarial machine learning attacks,
such as Fast Gradient Sign Method (FGSM), Basic Itera-
tive Method (BIM), Projected Gradient Descent (PGD), and
Momentum Iterative Method (MIM), along with the existing

solutions, i.e., adversarial training and defensive distillation,
for the beamforming prediction in 6G wireless networks are
presented.Wealso introduce the proposed schemeusing deep
neural networks to protect the beamforming prediction in 6G
wireless networks.

3.1 Adversarial machine learning

In adversarial machine learning, the attacker tries to gener-
ate a perturbation to the adversarial examples, which would
affect the prediction phase of the machine learning model
[22]. The goal of the attacker is to manipulate the trained
model output so that the attacker can benefit from the user’s
perspective. Adversarial machine learning attacks work well
if the attacker has access to the training data. However, the
proposed scheme is robust to the perturbations of the adver-
sarial samples of the training data, which in turn makes
the proposed scheme robust to adversarial machine learning
attacks.

The DNNmodel’s input is the pilot signal received at BSs
with omni or quasi-omni beam patterns, and the output is the
beamforming vectors. However, the transmitted pilot signal
is distorted due to the various elements of the propagation,
i.e., reflection, diffraction, and scattering. This creates an RF
signature of the environment when the pilot signal is received
at BSs. The RF signature and the pilot signals are needed
to learn to predict the beamforming directions when these
pilot signals are received collectively at the many BSs. Tak-
ing DL-based beamforming prediction model, here, we use
h(x, ω) : Ck �→ R

m to denote that an uplink pilot signals,
x ∈ C

k , to beamforming vectors, y ∈ R
m where ω shows

the parameters of the prediction model, h. Given the budget
ε (i.e., the norm vector of the noise), the attacker tries to find
a noise vector σ ∈ C

k to maximize the loss function � output
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[23]. The attacker uses the lowest possible budget to cor-
rupt the inputs, aiming to increase the distance (i.e., MSE)
between the model’s prediction and the real beam vector.
Therefore σ is calculated as:

σ ∗ = argmax
|σ |p≤ε

�(ω, x + σ, y) (1)

where y ∈ R
m is the label (i.e., beamforming vectors), and

p is the norm value and it can be 0, 1, 2,∞.
Methods for constructing adversarial examples can be

categorized into groups: gradient-based and content-based
attacks, respectively [24]. In this study, gradient-based
attacks were chosen as adversarial attacks because of their
simplicity and variety. These attacks use the gradient of the
loss function to generate adversarial examples, i.e., incor-
rectly labeled. These adversarial attack types are given as
follows.

(i) Fast Gradient Sign Method (FGSM): FGSM is a simple,
fast, and single-step attack type that can quickly generate
adversarial examples. It was first introduced by Goodfel-
low et al. in 2014 [25]. The gradient sign is computed
using backpropagation and is quite fast. In this method,
the noise, i.e., different from random noise, is added to
data in the same direction (+/-) along with the loss func-
tion. The noise is adjusted by epsilon (ε), which is a small
number controlling the size of an adversarial attack. We
can summarize the FGSM using the following equation:

xadv = x + ε · sign(∇x�(ω, x, y)) (2)

(ii) Basic Iterative Method (BIM): BIM is an extension of
the FGSM single-step attack. In this method, adversarial
examples are updated by iterating many times. How-
ever, this increases the computing cost and complexity.
Unlike FGSM, BIM manipulates the selected input with
a smaller step size, and each value is calculated as in
(ε), the neighborhood of the original input [26]. It takes
an iterative approach by applying FGSM multiple times
to a small step size α instead of taking one large step,
i.e., ε/α. We can summarize the BIM using the following
equations:

xadv
0 = x,

xadv
N+1 = Clipx,ε{xadv

N + ε · sign(∇x�(ω, xadv
N , y))}

(3)

(iii) Projected Gradient Descent (PGD): The PGD attacks are
similar to FGSM and BIM attack types. However, it has
a different method to generate adversarial examples. It
initials the search for the adversarial example at random
points in a suitable region, then runs several iterations to

find an adversarial example with the greatest loss, but the
size of the perturbation is smaller than a specified amount
referred to as epsilon, ε [27]. PGD can generate stronger
attacks than FGSM and BIM.

(iv) Momentum IterativeMethod (MIM):MIM is a variant of
the BIM adversarial attack, introducing momentum and
integrating it into iterative attacks. It improves the con-
vergence of BIM to stabilize the direction of the gradient
at each step [28]. The step size of the ε also determines
the attack level of MIM as an attack parameter.

Figure 2 shows a typical adversarial machine learning-
based malicious input generation process.

3.2 Mitigationmethods

The DL-based beamforming prediction is vulnerable to
adversarial machine learning attacks in wireless networks.
Adversarial training and defensive distillation are two exist-
ing mitigation methods for adversarial machine learning
attacks that mitigate wireless communication networks.

3.2.1 Adversarial training

The first mitigation method is iterative adversarial training.
In this approach, the DNN model is trained with the regu-
lar training data, and then the DNN model is trained with
the adversarial examples using the correct labels. The DNN
model is trained multiple times with regular and adversar-
ial examples. The iterative adversarial training attempts to
minimize the adversarial samples’ effect on the training pro-
cess. However, iterative adversarial training is not efficient in
practice. To obtain a robust model, the victim model must be
trained with all attack types and different parameters. There-
fore, the training period of the model can be quite long.

Algorithm 1 shows the pseudo-code of adversarial train-
ing.

Algorithm 1 Iterative adversarial training-based mitigation
Input h: vulnerable model, Ω: attacks, Π : epsilon values, xtrain :

training data, ytrain training data output , xtest : test data, ytest : test data
output

Output ĥ: robust model
1: for ε ∈ Π do 	 For each epsilon budget
2: for attack ∈ Ω do 	 For each epsilon budget
3: xadv ← attack(xtrain, ε) 	 Generate malicious inputs with

attack and ε budget.
4: xadv_train ← x

⋃
xadv 	 Merge newly created malicious

inputs xadv and xtrain
5: h. f i t(xadv_train, ytrain) 	 Re-train the model h with new

training data
6: end for
7: end for
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Fig. 2 Typical adversarial machine learning-based malicious input generation

3.2.2 Defensive distillation

Knowledge distillation was previously introduced by Hin-
ton et al. in [29] to compress a large model into a smaller
one. Papernot et al. in [30] proposed this technique for
the adversarial machine learning defense against attacks.
The defensive distillation mitigation method includes larger
teacher and compressed student models. The first step is to
train the teacher model with a high-temperature (T ) param-
eter to soften the softmax probability outputs of the DNN
model. Equation (4) shows the modified softmax activation
function as follows:

pi = exp( ziT )
∑

j exp(
zi
T )

(4)

where pi is the probability of i th class, and zi are the logits.
The second step is to use the previously trained teachermodel
to obtain the soft labels of the training data. In this step, the
teachermodel predicts each of the samples in the training data
using the same temperature (T ) value, and the predictions are
the labels (i.e., soft labels) for the training data to train the
student model. The student model is trained with the soft
labels acquired from the teacher model, again with a high
T value in the softmax. After the student model’s training
phase, the T parameter is set to 1 during the prediction time
of the student model. Figure 3 shows the overall steps for this
technique.

In the figure, the training of the beamforming predic-
tion model (i.e., student model) is protected from adversarial
machine learning attacks. The teacher model is trained as the
first step, the student model is trained with the predictions
made by the teacher model, and the real labels with the stu-
dent model’s predictions are used as the loss function inputs
as the second step. In this way, the knowledge of the teacher
model is compressed and transferred to the student model.
The student model is deployed to the base stations in the last
stage.

This technique significantly reduces the effects of gradient-
based untargeted attacks. This is because defense distillation

has the effect of lowering the gradients down to zero, the
usage of the standard objective function is no longer practi-
cal.

3.3 Dataset description and scenarios

The generic DL dataset generation framework for massive
MIMO (DeepMIMO) and millimeter-wave channels is used
in experiments [31]. This framework consists of two parts:
(i) creating the DeepMIMO channels based on accurate
ray-tracing data obtained from the Wireless InSite simula-
tor, developed by Remcom [32] for mmWave and massive
MIMOmodels, and (ii) configuring a generic (parametrized)
system and channel parameters to generate DeepMIMO
dataset for the different applications. The ray-tracing simu-
lation is used to generate channels based on geometry-based
characteristics. They include primarily (1) the correlation
between the channels at different locations and (2) the depen-
dence on the environment geometry/materials. The generic
(parametrized) dataset allows researchers to tune several
parameters, such as the number ofBSs, users, antennas, chan-
nel paths, system bandwidth, and subcarriers.

In this study, theDeepMIMOdataset is described for three
ray-tracing scenarios, i.e., O1_60 (outdoor - 60GHz), I1_2p5
(indoor - 2.5 GHz), and I3_60 (indoor - 60 GHz). A short
description of each original scenario is given as follows:

(i) O1_60 is an outdoor scenario of two streets and one inter-
section, which includes 18 base stations supporting more
than a million users. Its operating frequency is 60 GHz
[33].

(ii) I1_2p5 is an indoor distributed massive MIMO scenario
of a 10x10x5 (m) roomwith two conference tables,which
includes 64 distributed antennas in the ceiling at 2.5 m
height. It can support more than 150 thousand users and,
its operating frequency is 2.5 GHz [34].

(iii) I3_60 is an indoor conference room scenario, i.e.,
10x11x3 (m) conference room with its hallways, which
includes two access points inside the conference room at
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Fig. 3 Defensive Distillation

Table 1 DeepMIMO dataset parameters for each scenario

O1_60 I1_2p5 I3_60

Number of active *BSs/APs 4 1 2

Number of active users 54300 12060 7260

Number of BS antennas 256 64 32

System bandwidth 0.5 GHz 0.02GHz 0.5 GHz

Number of subcarriers 1024 64 32

*BS: Base Station, AP: Access Point

2 m height. It can support more than 118 thousand users,
and its operating frequency is 60 GHz [35].

These scenarios are revised in terms of the number of
BSs/APs, and active users. The revised DeepMIMO dataset
parameters are given for each scenario in Table 1.

3.4 System overview

This section gives a high-level system overview of the pro-
posed security scheme for beamforming prediction in 6G
wireless networks. The proposed security scheme is a two-
phase approach: (1) adversarial training and (2) defensive
distillation. In the adversarial training phase, the proposed
scheme uses a modified version of the adversarial training
algorithm proposed in [3]. The adversarial training algorithm
is used to train the deep learning models to defend against

adversarial attacks. The complex number system is used in
digital wireless communication, especially in themodulation
and demodulation of wireless signals. However, adversarial
machine learning attacks try to penetrate the decision bound-
aries of the victim DL models using real numbers, and the
finalmalicious inputs are in the real number domain. To over-
come this problem, the complex numbers are broken into
their corresponding real and imaginary parts.

In the defensive distillation phase, the proposed scheme
uses a modified version of the defensive distillation algo-
rithm proposed in [4]. The defensive distillation algorithm is
used to improve the deep learning models against adversarial
attacks. The proposed security scheme is implemented in the
mmWave beamforming prediction in 6G wireless networks.
Figure 4 shows the system overview.

4 Experimental results

4.1 Research questions

– RQ1: Canwe generatemalicious inputs for beamforming
vector prediction models using FGSM [36], PGD, BIM,
and MIM attacks in the complex domain?

– RQ2: Is there any correlation between noise vector norm
value (i.e., epsilon) and prediction performance with the
MSE metric?
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Fig. 4 System overview of the proposed security scheme for beamforming prediction in 6G wireless networks

– RQ3: What are the adversarial training and defensive
distillation-based mitigation methods’ protection perfor-
mance metric results with different epsilon values?

4.2 RQ1 results

To answer this research question, first, we train a beamform-
ing vector prediction model on a large number of simulated
data to generate realistic malicious inputs. We then apply
the attack algorithms FGSM, PGD, BIM, and MIM to gen-
erate malicious inputs and demonstrate that it is possible to
generate malicious inputs for beamforming vector predic-
tion models using the proposed attacks. Furthermore, we
also examine the possibility of using the attacks to gen-
erate malicious inputs for other machine learning models.
The complete paper demonstrates the feasibility of using
the attacks for generating malicious inputs for beamforming
vector prediction models. However, the research question of
whether or not it is possible to generate malicious inputs for
other machine learning models using the attacks is still open.

Figure 5 shows the prediction performance of the beam-
forming vector prediction models when the malicious inputs
are generated using different attack algorithms in a simula-
tion study.

The figure shows that all the attack algorithms can gener-
ate malicious inputs for the beamforming vector prediction
model. As we can see from the figure, the BIM attack has the
highest prediction error rate (i.e., attack success ratio). The
PGD attack has the second-highest prediction error rate. The
prediction error rate of the MIM attack has the third-highest
prediction error rate. The FGSM attack has the lowest. The
figures show that the beamforming vector prediction mod-
els are more sensitive to the BIM attack, whereas the FGSM
attack is less sensitive to the predictions.

Concluding Remarks for RQ1: The attackers
can generate malicious inputs for the beamform-
ing vector prediction model. From the attacker’s
perspective, the most successful attack is BIM.

(a) O1 60

(b) I1 2p5

(c) I3 60

Fig. 5 Prediction performance of each model using the MSE metric.
The x-axis shows the ε budget, and the y-axis shows the MSE value of
the model

4.3 RQ2 results

We examined the correlation between noise vector norm
value (i.e., epsilon) and prediction performance with MSE
metric in a simulation study. The results show that the predic-
tion performance with the MSE metric is strongly correlated
with the noise vector norm value when noise is added to the
input features and the target feature.
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Table 2 Pearson correlation coefficients of the scenarios and attacks

FGSM PGD BIM MIM

O1_60 0.9910 0.9799 0.9718 0.9802

I1_2P5 0.9958 0.9917 0.9761 0.9920

I3_60 0.9925 0.9744 0.9539 0.9763

This simulation study examines the correlation between
noise vector norm value (i.e., epsilon) and prediction per-
formance with the MSE metric. The results show that the
prediction performance with the MSEmetric is strongly cor-
related with the noise vector norm value (i.e., epsilon) when
noise is added to the input and target features.

Table 2 shows the Pearson correlation coefficients of the
relation between epsilon budget and MSE value. Pearson
correlation is a statistical measure of the linear correlation
between two variables. It is a measure of the extent to which
two variables vary together. A correlation of 1.0 means that
the two variables vary completely; a correlation of 0 means
that the two variables vary independently. In the case of Table
2, the correlation coefficient of the relation between epsilon
budgets and MSE value is around 0.99. This means that the
prediction performance with the MSEmetric is strongly cor-
related with the noise vector norm value (i.e., epsilon) when
noise is added to the input and target features.

Figures 6-8 show the MSE distributions of each input
instance in the malicious inputs generated with different
attack algorithms. The figures represent the distribution of
the MSE obtained from the malicious inputs generated by
adding noise to the input features and the target feature. They
indicate that the MSE distribution of the malicious inputs
generated by adding noise to the input features is not uni-
form. In the case of the MIM attack, the results show that
the MSE distribution of the malicious inputs generated by
adding noise to the input features, and the target feature has
a minimal variance. The MIM attack adds noise to the input
and target features. The BIM attack adds noise to the input
features. Thus, the MSE distribution of the malicious inputs
generated by adding noise to the input features, and the target
feature has a more significant variance than the MIM attack.
The PGD attack adds Gaussian noise to the input features.
Thus, theMSE distribution of the malicious inputs generated
by adding noise to the input features has a more significant
variance than the FGSMattack. TheFGSMattack addsGaus-
sian noise to the input features. Thus, theMSE distribution of
the malicious inputs generated by adding noise to the input
features has a more significant variance than the PGD attack.

(a) FGSM

(b) PGD

(c) BIM

(d) MIM

Fig. 6 O1_60: MSE distributions of the malicious inputs with five dif-
ferent epsilon values (ε ∈ {0.01, 0.3, 0.5, 0.7, 0.9})
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(a) FGSM

(b) PGD

(c) BIM

(d) MIM

Fig. 7 I3_60: MSE distributions of the malicious inputs with five dif-
ferent epsilon values (ε ∈ {0.01, 0.3, 0.5, 0.7, 0.9})

(a) FGSM

(b) PGD

(c) BIM

(d) MIM

Fig. 8 I1_2p5: MSE distributions of the malicious inputs with five
different epsilon values (ε ∈ {0.01, 0.3, 0.5, 0.7, 0.9})
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Concluding Remarks for RQ2: There is a
strong negative correlation between ε and theDL
model’s prediction performance. The confidence
interval value of the correlations (i.e., p-value)
is 0. The p-value is the probability connected to
the likelihood of acquiring the correlation result.

4.4 RQ3 results

Figure 9 summarizes the experiment results for the adver-
sarial training and defensive distillation mitigation methods
for different epsilon values (ε : {0.01, 0.03, 0.05, 0.08, 0.10}.
Except for the I1_2p5 scenario, theMSE values of themodel,
which has beenmade robust by the defensive distillationmit-
igation method, are lower in the other two scenarios (i.e., the
prediction performance is higher). In the I1_2p5 scenario, the
adversarial training method is more successful in protecting
against attacks with low ε values (i.e., ε < 0.08). In contrast,
in cases where the epsilon value is 0.08 or higher, the defen-
sive distillation mitigation method creates a more successful
defense.

Table 3 shows the experiment results for each scenario,
attack, and mitigation method.

Concluding Remarks for RQ3: The defensive
distillation mitigation method is more resilient
against higher-order attacks, which are more dif-
ficult to detect.

5 Discussion

In this study, a comprehensive analysis of themmWavebeam-
forming prediction model’s vulnerabilities and mitigations
has been provided. The model’s vulnerabilities are inves-
tigated for various adversarial attacks, i.e., FGSM, BIM,
PGD, and MIM, while the mitigations for adversarial train-
ing and defensive distillation are explored. The results show
that mmWave beamforming prediction models provide a sat-
isfactory performance without any adversarial attacks. On
the other hand, the models are very sensitive to adversarial
attacks, especially BIM. For example, as shown in Figure 5,
the MSE value can rise to 0.5 (for O1_60 scenario) and 0.20
(for I1_2p5 and I3_60 scenarios) under a heavy adversarial
attack, i.e., ε = 0.9. According to Fig. 6–8, the MSE dis-
tribution of the model performance is not uniform under the
adversarial attack. Those attacks add noise to the input and/or
target features. Figure 9 demonstrates the adversarial training
and defensive distillation-basedmitigationmethods resulting
in mmWave beamforming prediction. The defensive distilla-
tionmitigationmethod provides a better performance against
higher-order attacks.

(a) O1 60

(b) I3 60

(c) I1 2p5

Fig. 9 Adversarial training and defensive distillation-based mitigation
methods results

Observations derived from the results of adversarial
attacks on mmWave beamforming prediction models and the
use of mitigation methods can be summarized as:

Observation 1: The mmWave beamforming prediction
models are vulnerable to adversarial attacks.

Observation 2: BIM is the most successful attack among
those selected.

Observation 3: There is a strong negative correlation
between attack power ε and the performance of DL-based
mmWave beamforming prediction models.

Observation4: Thedefensivedistillationmitigationmethod
is more resilient against higher-order attacks.

6 Conclusion and future work

This paper presents a DL security scheme for RF beamform-
ing prediction models’ vulnerabilities and their mitigation
techniques by satisfying the following research questions:
(1) Can we generate malicious inputs for beamforming vec-
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Table 3 Summary of the
experiment results for each
scenario, attack, and mitigation
method

Sc. Attack Epsilon Undefended Adversarial Training Defensive Distillation

O1_60 BIM 0.03 0.003160 0.003194 0.002033

0.05 0.005232 0.004333 0.002864

0.08 0.008918 0.006315 0.004427

0.10 0.011888 0.005867 0.005574

FGSM 0.03 0.002352 0.002440 0.001918

0.05 0.003137 0.002819 0.002457

0.08 0.003950 0.003431 0.003183

0.10 0.004380 0.002900 0.003591

MIM 0.03 0.003226 0.003303 0.002062

0.05 0.005363 0.004510 0.002963

0.08 0.009107 0.006778 0.004686

0.10 0.012092 0.006488 0.005984

PGD 0.03 0.003160 0.003194 0.002033

0.05 0.005232 0.004333 0.002864

0.08 0.008918 0.006315 0.004426

0.10 0.011887 0.005868 0.005576

I3_60 BIM 0.03 0.002282 0.002345 0.002491

0.05 0.003171 0.002995 0.002991

0.08 0.004285 0.004185 0.003489

0.10 0.005079 0.005460 0.003841

FGSM 0.03 0.002055 0.002149 0.002446

0.05 0.002551 0.002617 0.002898

0.08 0.003173 0.003318 0.003361

0.10 0.003508 0.003782 0.003578

MIM 0.03 0.002270 0.002347 0.002496

0.05 0.003161 0.003063 0.003006

0.08 0.004354 0.004522 0.003566

0.10 0.005245 0.005896 0.003998

PGD 0.03 0.002282 0.002345 0.002491

0.05 0.003171 0.002995 0.002991

0.08 0.004285 0.004184 0.003489

0.10 0.005079 0.005461 0.003841

I2_2p5 BIM 0.03 0.001113 0.000268 0.002583

0.05 0.002655 0.001029 0.002548

0.08 0.005145 0.002399 0.002586

0.10 0.006786 0.003317 0.002649

FGSM 0.03 0.000601 0.000138 0.002582

0.05 0.001314 0.000479 0.002541

0.08 0.002288 0.000989 0.002551

0.10 0.002818 0.001428 0.002583

MIM 0.03 0.001048 0.000252 0.002583

0.05 0.002540 0.001003 0.002549

0.08 0.005054 0.002457 0.002593

0.10 0.006742 0.003453 0.002663

123



Adversarial security mitigations of mmWave... 331

Table 3 continued Sc. Attack Epsilon Undefended Adversarial Training Defensive Distillation

PGD 0.03 0.001113 0.000268 0.002583

0.05 0.002655 0.001029 0.002548

0.08 0.005144 0.002399 0.002586

0.10 0.006785 0.003317 0.002649

tor prediction models using FGSM, PGD, BIM, and MIM
attacks in the complex domain?; (2) Is there any correlation
between noise vector norm value (i.e., epsilon) and pre-
diction performance with MSE metric?; and (3) What are
the adversarial training-basedmitigationmethods’ protection
performance metric results with different epsilon values? To
investigate these questions, the experiments were performed
with the selected DeepMIMO scenarios, i.e.,O1_60, I1_2p5,
and I3_60 ray-tracing. The results confirm that the original
DL-based beamforming model is significantly vulnerable to
FGSM, PGD, BIM, and MIM attacks, especially BIM. The
MSE value increases in all three scenarios under a heavy
BIM adversarial attack (ε= 0.9), i.e., 0.5 (for O1_60 sce-
nario) and 0.20 (for I1_2p5 and I3_60 scenarios). There is
a high negative correlation between attack power (ε) and
the performance of models, i.e., a high ε increases as the
model’s performance dramatically decreases. On the other
hand, the results show that the proposed mitigation methods,
i.e., the iterative adversarial training and defensive distilla-
tion approach, successfully increase the RF beamforming
prediction performance and createmore accurate predictions.
The results prove that the proposed framework can enhance
the performance of the DL-based beamforming model. In
future work, the research team plans to investigate other AI-
based solutions used in physical and media access layers
of next-generation networks, i.e., channel coding, synchro-
nization, positioning, channel estimations, symbol detection,
resource allocation, and scheduling, and their cybersecurity
risks.
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