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Abstract
The intrusion detection system (IDS) plays an important role in extracting and analysing the network traffics to detect aberrant
activity. However, emerging technologies, like cloud computing, Internet of Things, etc., generate a large volume of traffics,
which may carry the irrelevant attributes that do not have any impact on classification or in detection of assaults. Hence,
it’s became an open challenge for the researchers to extract the meaningful data from huge amounts of traffic and also
to examine whether the selected features could increase IDS performance or not. To solve these issues, features selection
approaches (FSA) have been used in this research to remove non-relevant features and find the important ones. Later, the
various classifiers have been used to investigate the best classifier which could increase the performance of IDS’s detection-
engine on the NSL-KDD datasets. However, to validate, the investigated best-performing classifier with the suitable features
selection technique (FST) has also been implemented on a real-time dataset, i.e. combined CICIDS2017. The experiment
results in this research suggest that the acquired subset of relevant features under the proposed model’s (Decision Tree +
Recursive Feature Elimination) could increase the IDS performance with average accuracy of 99.21% and 99.94% on the
well-known NSL-KDD and CICIDS2017 datasets, respectively, and could also minimize the computation cost, in parallel.

Keywords CICIDS2017 · IDS · FSA · NSL-KDD · Classifiers

1 Introduction

In modern society, network-based services are gaining more
and more importance. As technology gets advances, such as
IoTs, big data, clouds computing, etc., the vast volumes of
the traffic are also increasing, rapidly. Therefore, as the net-
work data traffic is growing substantially, updating the attack
sign becomes more difficult, time-consuming, and tedious.
Hence, as a result of wide internet use and rapid traffic
growth, the network security became an emerging field of
research among scientists and researchers. In this field, the
researchers try to prevent the attackers or intruders who are
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always looking for finding the flaws in the network or in the
system to obtain illegal access (s).

Many solutions exist today to secure a network environ-
ment, such as antivirus, firewalls, IDS, etc. However, the IDS
is the most prominent mechanism among them to defend a
network or individual system.

The IDS also protects the sensitive data during traveling
over the networks from being intercepted by attackers or
intruders. However, the existing IDS are still not extremely
scalable or flexible enough. In the years 2014–2016, two data
breacheswere reported byYahoo, impacting 500million cus-
tomers’ accounts and resulting in a loss of 350million dollars
[1]. The outbreaks are being hammered with the intention of
snipping data with the help of intelligent and sophisticated
algorithms. Several IDS have been developed since last few
years, but determining whether a network is normal or aber-
rant is not an easy task. Therefore, the several algorithms
of machine learning (ML) have been introduced and imple-
mented to boost the intelligence of IDS in order to tackle the
challenges [2]. Till date, many types of research have been
undertaken which show that ML-based IDS performs bet-
ter in terms of execution and implementation [3]. However,
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Table 1 Nomenclature

Abbreviations Terms Abbreviations Terms

ANN Artificial neural networks IG Information gain

ANOVA Analysis of variance KNN K-nearest neighbours

CART Classification and regression trees LR Linear regression

CFS Correlation-based feature selection ML Machine learning

CNN Convolution neural network NB Naive Bayes

DR Detection rate NN Neural networks

DT Decision tree PERL Practical extraction and reporting language

DoS Denial of services PHF Portable hypertext format

DDoS Distributed denial of service PCA Principal component analysis

FN False negative PROBE Probing

FP False positive RF Random forest

FSA Features selection approaches R2L Remote-to-local

FST Features selection technique RT Random tree

FS Feature selection RFE Recursive feature elimination

FPR False positive rate SSH Secure shell

FTP File transfer protocol SVM Support vector machine

GB Gigabyte TN True negative

GHz Gigahertz TP True positive

IMAP Internet message access protocol TPR True positive rate

IDS Intrusion detection system U2R User-to-root

IoT Internet of Things XSS Cross-site scripting

only a fewmodels could combine low computation costswith
good detection rates, at the same time.

Therefore, since network data traffic grows at a rapid rate,
extracting significant and relevant information from this traf-
fic is a difficult task which must be addressed properly and
the computing cost also supposed to be considered, side by
side [4].

Moreover, whether the selected features will either
improve or not in the performance of IDS is also needed
to investigate.

Hence, to minimize the computational cost, one possible
solution is, identify and select only relevant features from the
dataset that contribute in attacks detection. Thus, a reduction
of dataset dimension leads to the requirement of less training
time. Simultaneously, it can enhance the performance of the
classifier in IDS [5]. Similarly, the other possible solution to
minimize the computational cost could be, utilize only the
cost-effective algorithms that takes low cost to learn the data
[6], for example, K-nearest neighbors (KNN). Therefore, to
minimize the computational cost and to increase the perfor-
mance of IDS, the features selection approaches (FSA) have
been used in this research to remove non-relevant features,
and various classifiers have also been used to investigate the
best-performing classifier for enhancing the performance of

IDS. Table 1 provides a list of all the abbreviations used in
this paper.

1.1 Contributions

The major contributions in this research are defined as fol-
lows:

• The FSA like principal component analysis (PCA) and
recursive feature elimination (RFE) have been used to dis-
cover and pick up the significant features on theNSL-KDD
and CICIDS2017 dataset.

• A smaller and more appropriate subset of features have
been identified, i.e. 13 and 8 key features from the NSL-
KDD and CICIDS 2017 datasets, respectively.

• A comparative analysis of different FSAwith various clas-
sifiers such as naive Bayes (NB), decision tree (DT), and
KNN on the NSL_KDD dataset has been described.

• Based on the selected decent classifier and features selec-
tion technique (FST) on the NSL-KDD dataset, the same
has implemented on a real-time dataset, i.e. combined
CICIDS2017 and evaluated its performance in terms of
F-measure,G-means, recall (sensitivity), precision, speci-
ficity, accuracy, testing time, and training time.
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1.2 Organization

The related literature review of this research is explained
in the next section. In Sect. 3, the proposed framework and
its approach are discussed. The experiments and results are
demonstrated in Sect. 4. Finally, the conclusion and future
work are deliberated in the last section of this article.

2 Literature survey

Many studies have used FSA to reduce the issue of data
dimension and improve the IDS detection rate (DR) through-
out the previous few decades. However, as networks traffic is
growing at a rapid rate, the possible types of threats are also
increasing side by side. However, the researchers are still
struggling with the issues of dimensionality reduction and
computational time [7]. As a result, various ML techniques
for IDS with FSA have been proposed, till date.

Mukkamala et al. [8] examined IDS utilizing support vec-
tor machine (SVM) and neural networks (NN). The outcome
of the experiment found that SVM is highly flexible and
suitable for usage with huge datasets where NN needs a lot
of learning time. In this context, in 2004, Fleuret et al. uti-
lized the mutual information approach to choose the relevant
features; this approach is more effective than SVM when
combined with the Bayes network. In general, it empha-
sizes overall processing time [9]. In 2005, Chebrolu et al.
investigated IDS using reverse classification tree and Bayes
networks as feature selection methods. Using the proposed
FST, they have extracted 12 essential features which are
capable of recognizing and detecting various attack types.
Unfortunately, the detection rate for User-to-root (U2R)
attacks was comparably low [10]. Therefore, in 2008, Chou
et al. utilize correlation-based feature selection (CFS) and
fast CFS as feature selection (FS) methods to handle high-
dimensional data issues such as uncertainty, ambiguity, and
redundancy into the collected data items. For obtaining the
relevant features, their proposed approach has integrated
C4.5 and NB, together. Based on their experiments, they
have demonstrated that the detection rate of the proposed
fuzzy KNN technique can be improved compared to previ-
ous classifiers [11].

In this context, Heba et al. use PCA as a reduction tech-
nique in combination with SVM to address the challenges
of features dimension reduction and processing costs min-
imization problem. The experiment demonstrated that the
IDS performance can be increased with less computational
time [12]. Zainal et al. used a DT classifier with filter-based
FSA, such as information gain (IG), Chi-square, and relief-
F, to examine the KDDcup99 dataset. Out of a total of 41
attributes, FS methods have been utilized to obtain 5, 10, 15,
and 20 relevant features, only. The results showed that “IG”

as the FST outperformed other approaches and improved the
performance of the model [13]. Revathi et al. has explored
the effectiveness of various ML algorithms, including ran-
dom forest (RF), KNN, and artificial neural networks (ANN).
They have identified 15 key features and built the model
using RF, KNN, and NN. The results demonstrated that RF
performs well in comparison with others, with an accuracy
of 98.88%, whereas RF with all features (without using the
FST) has an accuracy of 97.94%, only [14]. Using the NSL-
KDD dataset, Kim et al. [15] proposed a hybrid approach for
intrusion detection. The results of the experiment demon-
strate that their proposed approach was more effective in
terms of detection rate and time complexity. According to
claim [16], the suggested approach is insufficient for time
reduction, and as a result, future research will concentrate on
developing the decision tree approach. In 2015, Jo et al. sug-
gested a DT model that outperforms the NN model in terms
of performance. Finally, they have demonstrated that DT is
superior, with a detection rate of 91.37% [17]. In the same
year, an approach that combines FS with Fuzzy-genetic IDS
was proposed by Jebur et al. [18]. The article uses fuzzy logic
to produce rules and used 15 features to represent the rules
in order to reduce training time. The complex computing
approach generates less efficient rules than soft computing.
Over the UNSW-NB dataset, Mishra et al. has proposed pro-
gram semantic-aware intrusion detection Net-visor security
to identify attacks on virtual networks using ML methods
such as DT, ANN, linear regression (LR), RF, random tree
(RT), and others. However, based on their experiments RF
+ LR performed well compared to others in terms of accu-
racy, but has more false positive rate (FPR) than RT + LR
[19]. To identify relevant attributes from the KDDcup 99
dataset, Mousavi et al. presented an ant colony algorithm
and gradually feature removal method as FST. Then, a model
has been built utilizing specified features using an ensemble
of decision trees (Ada-Boost classifier). Here, the proposed
technique has enhanced accuracy significantly and yielded
a Matthew’s correlation coefficient value to 0.91 [20]. To
select important features from the NSL-KDD dataset, Sah
et al. used RFE as the FS method and RF as a classifier to
build a model. The proposed method enhanced the model’s
performance to some extent [21]. As a continuation, in 2021,
Ankit et al. investigated the impact of FS methods on overall
IDS performance. They have used the NSL-KDD dataset to
implementRFE, IG, and chi-square asFSTwithvariousClas-
sifiers such as NB, SVM, RF, KNN, Logistic regression, and
ANN. Finally, the results have been provided in the form of a
comparative study and demonstrated that RFE achieved high
performance compared to others FST. However, the entire
experiment has been performed and tested only on the NSL-
KDD dataset that may not contain modern normal activities
as per literature [22]. Hence, future research should focus on
developing and evaluate the IDSmodel using NSL-KDD and
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other modern datasets like CICIDS2017. Therefore, in 2021,
on the NSL-KDD, CICIDS2017, Kyoto 2006+, and UNSW-
NB15 dataset, Gu et al. [23] suggested a practical method
for IDS that classifies incursion and regular instances using
SVM and the NB classifiers. The proposed technique found
that embeddingNBwithSVMproduced themaximumdetec-
tion accuracy when system results have compared with just
one SVM algorithm. The main conclusions of SVM research
also showed that SVM requires higher training time.

After studying the related works, it has been observed that
the majority of researchers are interested to address the issue
of large data dimensions and finding relevant features for the
IDS. It’s crucial to note that when data dimensions increase,
ML approaches processing times grow as well [22]. Multiple
FST have been employed in recent years, but still, these FST
are not flexible enough to extract meaningful data from huge
amounts of traffic and examining whether the selected fea-
tures could increase IDS performance or not. To overcome
these problems, some effective FSA are required that could
reduce the features effectively and obtained a suitable set of
features. This helps not only in attacks detection but also
can enhance the performance of IDS and reduce the compu-
tational cost. Therefore, a decision engine approach with a
features reduction strategy should be established with main-
taining lightweight characteristics.

3 Proposed framework

The trade-off between a low computing cost and a high
detection rate, as well as due to high dimensionality of traf-
fic, makes difficult to develop the effective and efficient
IDS models. To reduce the computational cost and increase
the detection rate of IDS, this study provides a classifier
which is an adaptable and effective intrusion detection tech-
nique, based on FSA, The major objective of the purposed
framework is to provide a high detection rate at a minimal
computing cost. The proposed framework involves five main
steps, namely: dataset, data pre-processing, feature selection
approaches, model building and evaluation, finally, analysis
and selection phase, as shown in Fig. 1. The details descrip-
tions of all the individual steps are defined as follows:

3.1 Dataset

A standard dataset is an essential requirement for measuring
IDS performance correctly. Moreover, it also helps in evalu-
ating the contrast of several estimators or classifiers in IDS.
In the first step, standard datasets (CICIDS2017 and NSL-
KDD) have been described in the below subsection before
doing the pre-processing steps. These datasets are widely

used for IDS and contain a sufficient number of normal activ-
ities and attack samples. The following are some detailed
descriptions of the NSL-KDD and CICIDS2017 datasets.

3.1.1 NSL-KDD dataset

The NSL-KDD dataset was developed as a modified version
of the KDD_1999 dataset [24]. It addresses the drawbacks of
theKDD_1999 dataset for example redundant records, dupli-
cate records, etc. In the literature, these datasets are utilized
frequently for IDS evaluation. These datasets have already
been prepared in two subgroups, namely training set and test-
ing set. The NSL-KDD dataset has 41 attributes, which are
divided into four (4) subgroups: basic features, content fea-
tures, time-based traffic features, and host-based features. It
also has five classes in which one is for the normal class,
and the rests are attacks classes such as U2R, Remote-to-
local (R2L), denial of services (DoS), and probing (PROBE)
which are described in Table 2. The NSL_KDD dataset is
utilized in this study because of the following reason:

• Redundant records have been removed from the training
and testing sets that enable the classifier or estimator to
produce unbiased results.

• A sufficient number of objects are available in both the
training and testing sets of a dataset, allowing the exper-
iment to be executed on the entire dataset without the
requirement to select small parts or portions at random.

• It also offers numerous characteristics such as harmful sce-
narios, realistic network configuration, full packet capture,
labelled observations, etc.

The KDDTrain+ and KDDTest files, which contain
125,973 and 22,544 objects, respectively, have been used
in this research work, listed in Table 3, which illustrates the
different labels of attacks types in the training and testing
sets.

3.1.2 Combined CICIDS 2017 dataset

The Canadian Institute of Cyber-security [25] developed the
CICIDS-2017 dataset for IDS. According to aMcAfee report
[26], the CICIDS-2017 dataset contains a variety of attacks
that can be categorized as Web Attack, Infiltration, DoS,
Brute Force, Port Scan, Distributed DoS (DDoS), Botnet
attacks, etc. and is available in 8 files. The CICIDS-2017
dataset has 79 features which represents the different labels
or classes.

Researchers discovered a few flaws in the CICIDS2017
dataset, including the fact that it is easily visible, the size of
the dataset is huge, crossed over 8(eight) files that are cap-
tured in 5 days, and has many duplicate records which may
lead to irrelevant for the IDS training phase. However, many
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Fig. 1 Proposed framework

Table 2 Attacks and normal classes of NSL_KDD dataset with example

Sl. no. Classes Properties and examples

1 U2R In this class of assault, the attacker tries to log in as a normal user and then tries to acquire access as a super user.
Examples: Rootkit. Load-module, Xterm, etc.

2 R2L In this class, the attacker tries to gain remote access of the victims’ computers. Examples: internet message access
protocol (IMAP), Spy, Warezclient, etc.

3 PROBE Here, the attackers try to gain information about the victim’s workstation or the network architecture, by finding the
loopholes or vulnerabilities in the existing computer networks and systems. Examples: Portsweep, IPsweep,
Mscan, etc.

4 DoS These kinds of outbreaks are frequently carried out by attackers, where they try to block the legitimate users from
accessing network resources employing flooding technique, which makes network busy by delivering the
excessive number of packets. Examples Back, land, Neptune, etc.

5 Normal It contains the normal activities or operations in the networks

possible solutions have also been introduced in that context
[27]. It also contains an imbalance class in nature [28]. This
may result in misleading estimators and influence towards
the common class. Some of the shortcomings (limitations)
of the dataset are given as:

• Scattered presenceAs the dataset is driven into 8 different
files.Working on each individual file is amonotonous task.

• An enormous volume of data After integrating all eight
files, the resultant set becomes very large and working on

it is very tedious as it takes more time for loading and
processing of the data.

• Missing values The dataset has many missing values that
have to be removed before working on it.
The effective IDSmodel should be capable of the detection
of any type of attack. Therefore, in order to design a classic
IDS model, the data of all files of the CICIDS2017 dataset
are collected andmerged into a single dataset to be utilized
by IDS. As a result, 3,119,345 total objects are contained
in a single dataset, in which 288,602 objects that have

123



6 G. Sah et al.

Table 3 Number of the objects and label distribution of different types of attacks in training and testing set

Attack’s
classes

Label distributions in the training set Label distributions in the testing set Total no. of objects in (training set,
testing set) for each categoryAttacks types (number of objects) Attacks types (number of objects)

Normal Normal (67,343) Normal (9711) (67,343, 9711)

U2R Buffer_overflow (30), rootkit (10), Perl(3),
load-module (9)

Buffer-overflow (20), xterm (13), Perl
(2), sql-attacks (2), load-module
(2), PS (15), rootkit (13)

(52, 67)

R2L Warezclient (890), guess-pswd (53),
waremaster (20), imap(11), ftp-write (8),
multihop (7), phf (4), spy (2)

Guess-pswd (1231), waremaster
(944), ftp-write (3), multihop (18),
phf (2), named (17), xsnoop (4),
xlock (9), httptunnel (133),
snmpguess(331), sendmail(14),
snmpgetattacks(178), imap (1)

(995, 2885)

Probe Satan (3633), Ipsweep (3599), nmap
(1493), port-sweep (2931)

Satan (735), Ipsweep (144), nmap
(73), port-sweep (157), mscan
(996), saint (319)

(11,656, 2421)

DoS Back (956), land (18), Neptune (41,214),
pod (201), smurf (2646), teardrop (892),

Back (359), land (7), pod (41),
Neptune (4657), smurf (665),
teardrop (12), mailbomb(293),
apache2 (737), udpstrom (2),
processtable (685), worm (2)

(45,927,7460)

Total (125,973, 22,544)

Table 4 All possible types of
attacks and normal traffic with
new labels in the CICIDS2017
dataset

Sl. no. New labels Old labels No. of objects Total no. of objects

1 Normal Benign 525,290 525,290

2 Botnet Bot 457 457

3 DoS/ DDoS DDoS 29,751 87,939

DoS Golden Eyes 2402

DoS Hulk 53,159

DoS-Slowloris 1333

DoS-Slowhttptest 1290

Heartbleed 4

4 Infiltration Infiltration 8 8

5 Port Scan Port Scan 36,895 36,895

6 Brute Force FTP-Patator 1835 3211

SSH-Patator 1376

7 Web Attack Web Attack-Brute Force 381 521

Web Attack-XSS 138

Web Attack-SqlInjection 2

Total � 654,321

missing class labels are removed. Finally, the combined
dataset left with 2,830,743 objects.

• Dimension of combined CICIDS2017 dataset:
(2830743,79).

By merging all traffic files of CICIDS2017 into a single
dataset, the scattered presence problem has been solved. The
missing values have also been eliminated from the combined
CICIDS2017 dataset. The CICIDS2017 dataset becomes

enormously large after integrating all 8 files into a single
dataset; hence, in this research, a sample of 654,321 records
has been picked for experiment purposes. Table 4 provides an
illustration of the updated labelling for all attack traffic in the
CICIDS2017 dataset. Further, the dimensions of the training
and testing dataset are 523,456 and 130,865, respectively, as
shown in Table 5. Table 6 describes the dimension of attacks
classes from the dataset (sample of combined CICIDS2017)
that have been used for implementation.
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Table 5 Recordof different types ofAttack andnormal traffic in training
and testing set of sample of combined CICIDS2017 dataset

Training set Testing set

Attack types No. of
records

Attack types No. of
records

Benign 420,432 Benign 104,934

DoS hulk 42,833 DoS hulk 10,779

Port Scan 29,290 Port Scan 7406

DDoS 23,642 DDoS 5917

DoSGoldenEye 1917 DoSGoldenEye 490

FTP-Patator 1387 FTP-Patator 378

SSH-Patator 1134 SSH-Patator 260

DoSSlowhttptest 968 DoSSlowhttptest 265

DoSslowloris 1079 DoSslowloris 259

Bot 359 Bot 89

Web Attack_Brute
Force

283 Web Attack_Brute
Force

62

Web Attack_XSS 120 Web Attack_XSS 24

Infiltration 7 Infiltration 1

Heartbleed 1 Heartbleed -

Web Attack_Sql
Injection

4 Web Attack_Sql
Injection

1

Total 523,456 Total 130,865

Table 6 Dimension of each attacks class (including normal objects) in
the dataset used for the implementation

Sl.
no.

Attack
classes

Dimension in the
training set

Dimension in the
testing set

1 Botnet (420791, 79) (105023, 79)

2 DoS/ DDoS (490872, 79) (122644, 79)

3 Infiltration (420439, 79) (104935, 79)

4 Port Scan (449722, 79) (112340, 79)

5 Brute Force (422953, 79) (105572, 79)

6 Web Attack (420839, 79) (105021, 79)

3.2 Data pre-processing

The dataset must be pre-processed in order to verify the
models and methods. Several operations are performed in
this phase, including the replacement of noise-values such as
infinity or null symbols with mean or zeros, feature trans-
formation, normalization, and splitting. Pre-processes are
needed for both datasets to verify models and methods.

3.2.1 One-hot- encoding

Basically, one-hot-encoding is used for data transformation
from non-numerical to binary vector. As stated before, the
CICIDS2017 dataset has one additional column for defining
label or class and 78 regular attributes, in which Fwd Header
Length, flow packets and bytes are always carried the same
entries.As a result, the features likeflowpackets andbytes are
eliminated from the combined CICIDS2017 dataset. Hence,
76 attributes with one label column are left for analysis. As
all these 77 attributes represent a numerical type of data;
thus data transformation isn’t required. On the other hand,
the NSL-KDD dataset has both non-categorical (numeric
type) and categorical features (non-numeric), so data trans-
formation is required. These categorical features such as
flags, services, protocol types of the NSL-KDD dataset have
symbolic entities that are transformed into numerical values
using LabelEncoder, as an example considers the protocol-
types feature, which contains three categories (UDP, TCP,
and ICMP). These categories are mapping to numeric fea-
tures as 1, 2 and 3. Later, these obtained numerical values
are denoted in binary vector for training and testing purposes
using One-Hot-Encoding.

3.2.2 Splitting the datasets

The combined CICIDS2017 dataset has been split into six
(6) different parts based on every attacks category, whereas
the NSL-KDD dataset has split into four (4) different parts
based on attacks types, namely U2R, R2L, probe, and DoS,
to train the models for all types of attacks and test the models
correctly.

3.2.3 Feature normalization

Thenext operation after performing the pre-processing is fea-
ture normalization using the standardization formula given
in Eq. (1) [29], where Z represents as Z-score. Feature nor-
malization makes all attributes within the identical scale and
prevents the large numeric value of features, which gives
them more importance in classification algorithms. As a
result, the classifier allocates the same weight to every fea-
ture. Further linear transformation given in Eq. (2) is also
used that transforms the feature’s value set into a new spe-
cific set within the range (0–1)[30].

Z � (B − μ)/σ (1)

In Eq. (1), the mean value (μ) is subtracted from the fea-
ture value (represent by ‘B’). The result is divided by their
standard deviation (σ ). In Eq. (2), the min and max stands
for minimum and maximum, respectively.

123



8 G. Sah et al.

Bnormalization � (B − min(B))/(max(B) − min(B)) (2)

3.3 FSA

FSAare utilized to remove redundant, irrelevant, or unimpor-
tant data. The main purpose of these techniques is to obtain a
subset or optimal set of important features from underlying
features that can easily classify the given problem or data
in different classes or labels. FSA can help in handling the
high-dimensional dataset and compute the importance of the
feature that supports in data-interpretation.

As stated in Sect. 3.2.1, features (flow packets and
bytes) have been eliminated from the combinedCICIDS2017
dataset, in our experiment. As a result, there are 77 attributes
have remained to be analysed. On the other hand, 41 features
have remained of the NSL-KDD dataset. In this phase, the
PCA, univariate feature selection using analysis of variance
(ANOVA) F test, followed by RFE approaches have been
utilized as FSA to reduce the features and acquire the appro-
priate subset or optimal set of features from the original set.
The detailed descriptions of these approaches are mentioned
below.

3.3.1 PCA

The PCA [31] method is similar to clustering, which falls
under the category of unsupervised learning. PCA rational-
izes the complexity in high-dimensional data by maintaining
the tendency and patterns. PCA does this by modifying the
data to fewer dimensions, later which act as an outline of fea-
tures. It identifies the patterns from the datawithout reference
to precision about whether the samples of data come from
different treatment groups or have phenotypic differences.
PCA is primarily utilized to reduce the number of attributes
of the dataset by changing a large set of variables to a smaller
one, but it still contains information in the dataset.

3.3.2 Univariate feature selection

In univariate feature selection [32] usingANOVAF test [33],
each attribute or feature is independently analysed to iden-
tify the influence of correlation of an attribute with labels
or class. It picks the best attributes based on a univariate
statistical-test andworks (performed) on them.HereANOVA
is a procedure of comparing each attribute with the target
class to understand whether any statistically remarkable con-
nection between them occurs or not. During this procedure,
it suppresses other features to obtain the test score for every
feature. In the end, all features’ scores are compared in order
to obtain and select the topped score features.

3.3.3 Percentile method

The Sklearn library’s Percentile method or selectPercentile
[34] is used to select attributes based on the percentile of the
highest scores. Furthermore, the default function in select-
Percentile is ANOVA, which is solely applicable to the
classification task.

3.3.4 RFE

After the Percentile method, RFE [35] is utilized as FST
to identify and pick the important features for categorizing
(classifying) the network traffic. RFE selects and eliminates
the features on the basis of ranks. It starts the feature elim-
ination one attribute at a time that has the lowest rank. The
main purpose of RFE is to acquire the best subset of fea-
tures in terms of performance. RFE [36] method evaluates
the performance of an estimator or classifier using elimina-
tion properties in iterative manners given as follows:

• Taking a sub-optimal set of features building the model of
classification.

• To provide the rank of features, it computes the importance
of features.

• Eliminate the lowest rank features based on the relevance
of features.

3.4 Model building and evaluation

In this phase, DT, NB, and KNN classifiers have been used to
build the models using reduced features (by FSA) and all of
the training set’s features from the NSL-KDD dataset. Fur-
ther, on the testing set of the NSL-KDD dataset, the recall,
precision, accuracy, and F-measure matrices have been cal-
culated to determine the predictions rate of these models.
Here, during the procedure of samples considering, learn-
ing, and validation, the 10-fold cross-validations have been
performed and utilized to measures the performances of the
models to unwavering all objects impact.

Later, the best classifier has obtained based on the per-
formance of classifiers on the NSL-KDD dataset and used
the same identified classifier with reduced features (by best
FST) and all features of the training set into the CICIDS2017
dataset to train the model. Further, this model is evaluated
using the testing set of the CICIDS2017 dataset. The detailed
descriptions and the working principle of these classifiers are
mentioned below.

3.4.1 DT

DT classifier [37] is tree-structured and comprised of edges
and nodes. In these trees, every node denotes the problem
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category that needs to be classified, whereas every edge rep-
resents a decision that is taken based on the evaluated data.
These trees can be either regression trees or classification
trees. The classifier (DT) can be viewed as a predictivemodel
of ML that illustrates a mapping between dataset attributes
and their corresponding value. In DT, every part represents
possible values that are considered for a specified (given)
category. The tree nodes are recognized using the estimated
entropy of dataset properties. The property with the top
entropy value is referred to as a root node. The examples of
broadly adopted DT models are classification and regression
trees (CART), C4.5, and iterative dichotomiser 3.

DT classifier has several advantages: firstly, it is sim-
ple and easy to understand with a short-term explanation.
Secondly, implications can be consequent, on the basis of
different probability-estimation and costs. These Implica-
tions can be utilized to obtain detailed outputs. Finally, to
obtain correct results, it is flexible to combine with other
classification-model, but it also has a limitation while con-
sidering the data of similar type, in such cases its accuracy
is relatively lower. Moreover, it is not adaptive means minor
modifications in data fed to an estimator may lead to a highly
unstable decision tree organization.

3.4.2 NB

NB is a supervised learning method based on the Bayes the-
orem. The NB method is premised on the reality (statement)
that the existence of one feature/s is independent of other
features of a class. The Bayes theorem has been applied to
calculate the posterior_probability P(cl | y) from P(y | cl),
P(y), and P(cl). The formula will be given in equation (3)
[38]:

(cl|y) � (y | cl).P(cl)

P(y)
(3)

where the posterior_probability P(cl | y) of class (cl, target)
given predictor (y, features). The prior probability of pre-
dictor and class is denoted by P(y) and P(cl), respectively.
The likelihood, or probability of the predictor given class, is
represented by the expression P(y | cl).

The advantage of the NB algorithm is that it is extremely
scalable and speedy in classification. Also, it can utilize for
both multi-class and binary problems of classification. As
it depends on the theory that any feature is not dependent
on others, it cannot establish any relationship among class
features.Also, its implementation ismore complexwith large
datasets.

3.4.3 KNN

KNN algorithm is one of the most basic supervised ML clas-
sifiers. It supposes that new data and existing data are similar,
and new data are allocated to the category that most closely
resembles. It puts down all existing data and further catego-
rizes a new data point based on its similarity to the existing
data. This means whenever new data arise then they can be
effortlessly classified into a pertinent group by utilizing the
KNN. It can be utilized for regression as well as for classi-
fication, but most over the time it is used for classification
problems [39]. It is a nonparametric type of procedure that
means, and it does not make any presumption on elementary
data.

3.5 Analysis and selection phase

After developing the models, the last phase evaluates the
NSL-KDD dataset using FSA such as PCA and RFE with
several classifiers such as KNN, DT, and NB. These clas-
sifiers with all features have also been considered to build
the models for analysis purposes. The performance of these
models has been measured using metrics such as recall, pre-
cision, F-measure, and accuracy to find the best classifier
and suitable FST on the NSL_KDD dataset. After obtaining
the best classifier and best FST, the same has also been used
on CICIDS2017 datasets too, for building the models and
analysis purposes.

3.5.1 Evaluation metrics

Primarily evaluation metrics such as F-measure, recall, pre-
cision, accuracy, training time, testing time, specificity, and,
G-means: mainly appropriate for imbalanced datasets for
analysing or measuring the models’ performance. The basic
attributes for measuring the performance of the models are
defined as follows:

• True positive (TP) TP denotes the number of normal
objects which are successfully categorized by the model
as normal.

• False positive (FP) FP indicates a number of normal sam-
ples which are wrongly classified by the model as assaults.

• True negative (TN) TN specifies the number of attacks
trials that are correctly classified (predicted) by a model as
attacks.

• False negative (FN)FNdenotes the number of attacks sam-
ples that are mistakenly classified (predicted) by a model
as normal.

Accuracy (A) Accuracy [40] rate measures the IDS model’s
accuracy when predicting the traffic as normal or attacks. It
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Table 8 Performance evaluations
for ML classifiers with all
features using NSL-KDD dataset

Methods Attack types Accuracy Precision Recall F-measure

NB U2R 97.25 60.13 97.91 66.06

R2L 93.56 89.09 95.50 91.62

PROBE 97.89 97.32 96.05 96.65

DOS 86.73 98.82 70.30 82.14

KNN U2R 99.60 93.14 85.07 87.83

R2L 96.73 95.31 95.48 95.38

PROBE 99.07 98.60 98.50 98.55

DOS 99.71 99.67 99.66 99.67

DT U2R 99.66 86.48 91.67 88.62

R2L 97.45 96.68 96.08 96.38

PROBE 99.08 98.67 98.46 98.56

DOS 99.63 99.50 99.66 99.58

Table 9 Performance evaluations
for ML classifiers with selected
features using RFE on
NSL-KDD dataset

Methods Attack types Accuracy Precision Recall F-measure

NB U2R 98.97 67.85 74.76 70.12

R2L 81.78 74.81 66.76 69.02

PROBE 94.62 94.30 87.26 90.22

DOS 87.36 97.24 72.98 83.37

KNN U2R 99.55 91.36 74.00 79.10

R2L 94.59 92.09 92.56 92.31

PROBE 98.85 97.57 97.80 97.68

DOS 98.14 98.08 97.57 97.82

DT U2R 99.65 87.74 89.18 87.49

R2L 97.92 97.15 96.95 97.05

PROBE 99.57 99.39 99.26 99.32

DOS 99.73 99.69 99.70 99.69

is represented by the given formula

A � TN + TP

TN + TP + FP + FN

G-means (G_m) G_m [41] is derived from specificity and
sensitivity. It is mainly appropriate for imbalanced datasets.
It is computed as

G_m � √
(specificity × sensitivity)

Specificity (S) Specificity is another name for the true nega-
tive rate. It is represented by the given formula

S � TN

FP + TN

Recall (sensitivity) True positive rate (TPR) or detection rate
is other terms for recall. It’s calculated using the given for-
mula

Recall(R) � TP

FN + TP

Precision (P) Precision is the ratio of true positive (predicted
bymodel correctly) to the total number of positive cases [41].
It is calculated by the given formula

P � TP

FP + TP

F-measure (F_m) F_m is a weighted harmonic_average of
recall and precision. It is mainly suitable for imbalanced
datasets. It can be calculated by the given [42] formula

F_m � 2 ∗ (R ∗ P)/(R + P)
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Fig. 2 Different classifiers (NB, DT, and, KNN) F-measure using selected features and all features for each category

97.91

74.76 74.7

85.07

74
71.63

91.67
89.18

86.42

95.5

66.76

62.74

95.48
92.56

91.17

96.08
96.95

93.17

96.05

87.26

84.15

98.5 97.8
97.2

98.46 99.26 98.24

70.3

72.98
72.93

99.66

97.57
99.02

99.66 99.7 99.59

50

60

70

80

90

100

NB with all

features

NB with

selected

features by

RFE

NB with

selected

features by

PCA

KNN with all

features

KNN with

selected

features by

RFE

KNN with

selected

features by

PCA

DT with all

features

DT with

selected

features by

RFE

DT with

selected

features by

PCA

R
ec

al
l P

er
ce

nt
ag

e 

Methods with all and selected  features

Recall using all features and selected features for each category

U2R

R2L

PROBE

DOS
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Training time (T1) in seconds (s) T1 describes the amount
of time that a technique utilized for training and building the
model using an entire training set of a dataset. It is represented
by the given formula [43]

T1 � Endtraining_time − Starttraining_time.

Testing time (T2) in seconds (s) T2 describes the amount of
time that a technique utilizes to predict the whole testing set
of a dataset as either attack or normal. It is computed as [43]

T2 � Endtesting_time − Starttesting_time.

4 Experimental setup and results analysis

For the experimental purpose, the Kaggle platform has
been used in this research, which is a cloud-based online
resourcewhere Python programming can be used by utilizing
’Sklearn’ (ML library implemented in Python) [44]. Kaggle
has a maximum memory of 16 Gigabyte (GB) and a storage
capacity of 4.9 GB, allowing the users to upload and explore
data-analysis models. In this research, the entire experiment
has performed through Windows 10 with a quad-core 3.6
Gigahertz (GHz) processor.

4.1 Results and discussion

In this research, to investigate the effectiveness of the pro-
posedmodels, theCICIDS2017 andNSL-KDDdatasets have
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been used. Initially, to remove the non-relevant features and
find the important ones, the RFE and PCA-based FSA has
been employed on the dataset. Then, these FSA has been
implemented with several ML classifiers for example DT,
NB, and, KNN to enhance and measure the model’s per-
formance on the NSL-KDD datasets. The accuracy, recall,
precision, and F-measure metrics stated in Sect. 3.5 have
been used to analyse the experiment outcomes. However,
based on outcomes, other metrics such as specificity, G-
means, testing, and training timehave also been calculated for
identifying the best-performing classifier. Moreover, based
on the best-performing classifier with the selected FST, the
model has also been examined on a real-time dataset (i.e.
CICIDS2017).

4.1.1 Results analysis using NSL-KDD dataset

Since IDS enables early detection of intrusion, feature extrac-
tion and selection is always a crucial and difficult task in
network security. However, it has a considerable impact on
both model performance and computational complexity. The
main goal of feature selection approaches is to completely
depict a problem by picking a subset of important features
from the whole dataset. As a result, working with fewer
features may yield better outcomes. Therefore, in this exper-
iment, RFE and PCA have been applied to the NSL-KDD
dataset to provide the best set of features.
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Table 10 Performance
evaluations for ML classifiers
with selected features using PCA
on NSL-KDD dataset

Methods Attack type Accuracy Precision Recall F-measure

NB U2R 98.84 66.42 74.70 69.06

R2L 82.22 84.15 62.74 65.16

PROBE 92.74 92.43 84.15 87.46

DOS 86.79 95.65 72.93 82.74

KNN U2R 99.54 91.80 71.63 77.38

R2L 94.08 91.98 91.17 91.54

PROBE 97.63 95.65 97.20 96.39

DOS 98.75 98.13 99.02 98.57

DT U2R 99.57 85.67 86.42 85.00

R2L 96.11 95.67 93.17 94.33

PROBE 98.94 98.46 98.24 98.34

DOS 99.52 99.30 99.59 99.45

Table 11 Performance evaluations for DT classifier with all and selected features using RFE on NSL-KDD dataset

Methods Attack type Recall Specificity G-means Accuracy Training time (T1) (s) Testing time (T2) (s)

DT with all features U2R 91.67 46.67 65.41 99.66 0.364 0.273

R2L 98.08 83.98 89.83 97.45 0.511 0.334

PROBE 98.46 48.59 69.17 99.08 0.774 0.414

DOS 99.46 95.62 97.62 99.63 1.138 0.652

Average
(98.96)

Total T1
(2.787)

Total T2
(1.673)

DT with selected features U2R 89.18 75.00 81.78 99.65 0.114 0.103

R2L 96.95 98.73 97.84 97.92 0.212 0.115

PROBE 99.26 68.89 82.69 99.57 0.174 0.143

DOS 99.70 97.80 98.75 99.73 0.251 0.244

Average
(99.21)

Total T1
(0.751)

Total T2
(0.605)

In order to reduce the computation cost of proposed
models, the RFE and PCAhave identified the 13 and 8 impor-
tant features (rank wise), respectively, from the NSL-KDD
datasets for each classifier, which are shown in Table 7. These
approaches (PCA and RFE) have provided an appropriate set
of attributes or features that are passed over several classi-
fiers (DT, NB, and KNN) for training and testing in order
to construct an IDS model. These classifiers have employed
to build a model for evaluation and comparison purposes.
Tables 9 and 10 demonstrate the performance evaluations
of the classifiers with selected features by RFE and PCA,
respectively, on NSL-KDD dataset, whereas Table 8 demon-
strates the performance of classifiers with all features using
NSL-KDD dataset. Here, the performance of the classifiers
has been measured based on four matrices namely, recall,
precision, F-measure and accuracy.

Figures 2, 3, 4, and 5 illustrate the F-measure, recall, pre-
cision, and accuracy of different algorithms (DT, KNN, and

NB) using all features and using selected features (via RFE,
PCA), respectively. The graph’s Y -axis depicts the percent-
age of performance metrics (F-measure, recall, precision,
and accuracy) predicted by various approaches for each cat-
egory (Probe, DoS, U2R, R2L), while the X-axis depicts
various methods such as DT, NB, and KNN.

After analysing the results (Tables 8, 9, 10, Figs. 2, 3,
4, 5) on the NSL-KDD dataset with and without FSA (i.e.
using all features), it has been found that the RFE with DT
offered superior performance in terms of accuracy. Addition-
ally, the RFE with DT offered higher performance in terms
ofF-measure, recall, and precision for attack types including
DoS, Probe, and R2L. However, the KNN with all features
provided better performance in terms of F-measure and pre-
cision for U2R attack type. The NB with all features showed
better recall performance for U2R attack type.

Further study of the findings for the NSL-KDD (Tables 8,
9, 10, Figs. 2, 3, 4, 5) shows that the RFE performs better
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with DT than PCA with DT, PCA with NB, and PCA with
KNN in terms of F-measure, precision (with the exception
of U2R attack type for PCAwith KNN), recall, and accuracy
among the FSA.

However, the KNN classifier performs well in terms
of Precision under a few specific conditions, specifically
those involving U2R attack types. When recall is taken into
account, the NB classifier in one instance produces simi-
lar results, but only for U2R attack types. Hence, for the
majority of the attack types given in the NSL-KDD dataset,

the DT classifier using RFE offers higher results in terms
of accuracy, F-measure, precision, and recall. Therefore, for
further investigation, DT as a classifier and RFE as an FST
are taken into consideration in the proposed model. More-
over, the other metrics such as specificity, G-means, testing,
and training time are also calculated for classifier DT with
RFE. On the NSL-KDD dataset, Table 11 demonstrates the
performance evaluations for the DT classifier with all fea-
tures and the DT classifier with selected features (by RFE).
Figure 6 illustrates the evaluation matrices of DT Classifiers
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Table 12 Selected features fromCICIDS2017 combined dataset using RFE

Method Selected features for each category sorted by their ranks

Botnet DoS Infiltration Port Scan Brute Force Web_Attack

DT [(1,’Destination Port’),
(2,’Fwd Packet
Length Mean’),
(3,’Flow IAT Max’),
(4,’ Flow IAT Min’),
(5,’Fwd IAT Std’),
(6, ’Bwd IAT Std’),
(7,’Bwd Packets/s’),
(8,’Init_Win
bytes_forward’)]

[(1,’Destination Port’),
(2, ’ Total Backward
Packets’),
(3, ’ Bwd Packet
Length Std’),
(4, ’ Flow IAT
Mean’),
(5, ’FIN_Flag
Count’),
(6, ’ Fwd Header
Length.1’),
(7,’Init_Win
bytes_forward’),
(8,’Init_Win
bytes_backward’)]

[(1,’Destination Port’),
(2, ’Total Length of
Fwd Packets)’,
(3, ’ Bwd Packet
Length Mean’),
(4, ’ Fwd IAT
Max’),
(5, ’ Fwd IAT Min’),
(6, ’ Active Min’),
(7, ’Idle Mean’),
(8, ’ Idle Std’)]

[(1,’Destination Port’),
(2, ’ Flow
Duration’),
(3, ’Total Length of
Fwd Packets’),
(4, ’ Total Length of
Bwd Packets’),
(5, ’ Bwd Packet
Length Min’),
(6, ’ Fwd IAT Min’),
(7, ’ Bwd
Packets/s’),
(8, ’PSH Flag
Count’)]

[(1,’Destination Port’),
(2, ’Total Fwd
Packets’),
(3, ‘’Total Length of
Fwd Packets’),
(4, ’Flow IAT Min’),
(5, ’ Fwd IAT Min’),
(6, ’Bwd Packets/s’),
(7,”Init_Win
bytes_backward’),
(8,
’min_seg_size_forward’)]

[(1,’ Total Length of
Fwd Packets’),
(2, ’Bwd Packet
Length Std ’),
(3, ’ Flow IAT
Min’),
(4, ’ Fwd IAT Min’),
(5, ’ Bwd
Packets/s’),
(6, ’ Max Packet
Length’),
(7, ‘Init_Win
bytes_forward ’),
(8,’Init_Win
bytes_backward ’)]

Table 13 Performance evaluations for DT classifier with all features on CICIDS2017 combined dataset

Method Attack
type

Precision F-
measure

Specificity Recall G-
means

Accuracy Training time (T1)
(s)

Testing time (T2)
(s)

DT Botnet 79.57 76.16 97.61 75.55 85.87 99.95 8.199 0.361

DoS/DDos 99.84 99.85 96.53 99.87 98.19 99.93 26.583 0.808

Infiltration 79.99 79.99 50.00 79.99 63.24 99.90 3.916 0.621

Port Scan 99.64 99.65 82.89 99.67 90.89 99.91 7.965 0.619

Brute
Force

99.92 99.92 85.98 99.92 92.69 99.90 2.758 0.641

Web
attack

97.17 95.60 52.29 94.54 70.31 99.98 6.189 0.247

Average
(99.92)

Total T1
(55.61)

Total T2
(3.29)

employing selected features (by RFE) and all features for
each category. Figure 7 shows the testing and training time
for the DT classifier with all features and the DT classifier
with selected features (byRFE) for each category. In compar-
ison with DTwith all features, the DT classifier with selected
features (byRFE) requires low training time and testing time.
Further, the U2R category requires the lowest training and
testing time.

After analysing the results (Table 11, Figs. 6, 7) of DT
with selected features (by RFE) and DT with all features
on the NSL-KDD dataset, it is observed that the DT classi-
fier with selected features (by RFE) yields higher results in
terms of average accuracy, total training time, total testing
time, G-means, and specificity. Additionally, results anal-
ysis for the NSL-KDD shows that DT with RFE increased
model performance in terms of precision,G-means, accuracy
(approximately identical accuracy for U2R), and specificity
for each attack category while reducing computational costs
in terms of training time and testing time. In terms of recall,
and F-measure, the DT with RFE also offers higher results

for the attack categories Dos, R2L, and Probe. For the assault
U2R category, it generates F-measure and recall, which have
only slight value changes.

4.1.2 Results analysis using combined CICIDS2017 dataset

After analysing the results on theNSL-KDDdataset, the best-
performing classifier with the appropriate FST, that is DT +
RFE has been adopted and evaluated on a real-time dataset
(i.e. CICIDS2017) to examine the model’s sustainability on
some new real-time datasets for IDS. Table 12 shows “8”
important features selected from the CICIDS2017combined
dataset using RFE. Then these features have passed over the
DT classifier to build a model. Performance evaluations for
the DT method with all features and selected features using
RFE on the CICIDS-2017 combined dataset are shown in
Tables 13 and 14.

On the combined CICIDS2017 dataset, Fig. 8 shows that
the DT classifier with selected features (by RFE) and all
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Table 14 Performance evaluations for DT classifier with selected features (by RFE) on CICIDS2017 combined dataset

Method Attack
type

Precision F-
measure

Specificity Recall G-
means

Accuracy Training time (T1)
(s)

Testing time (T2)
(s)

DT Botnet 70.36 69.22 97.80 70.00 82.74 99.94 0.573 0.250

DoS/DDos 99.87 99.89 99.38 99.90 99.64 99.94 1.092 0.369

Infiltration 84.99 84.99 66.67 84.99 75.27 99.91 0.321 0.388

Port Scan 99.97 99.98 82.95 99.98 91.07 99.96 1.114 0.325

Brute
Force

99.69 99.69 98.23 99.69 98.96 99.91 0.383 0.369

Web
attack

96.42 95.45 74.80 95.04 84.31 99.98 0.941 0.176

Average
(99.94)

Total T1
(4.42)

Total T2
(1.88)

features for each category in terms of accuracy, precision, F-
measure, recall, specificity, and G-means. Moreover, Fig. 9
displays the training and testing time for the DT classifier
utilizing selected and all features for each category.

After analysing the results (Tables 13, 14, Figs. 8, 9) of
DT with selected features (by RFE) and DT with all features
on the combined CICIDS2017 dataset, it is observed that the
DT classifier with selected features (by RFE) yields higher
results in terms of average accuracy, total training time, total
testing time, accuracy (approximately identical accuracy for
Botnet), G-means (with the exception of botnet attack type
for DT with all features) and specificity. Additionally, the
RFE with DT offered higher performance in terms of F-
measure, recall, and precision for attack types including web
attack, Port Scan, DoS/DDoS, and infiltration.

4.1.3 Comparison

In this study, multiple ML techniques have been utilized
with various FSA to reduce the number of attributes in the
datasets, which could help for the development of IDSs at a
lower cost but with improved performances. The proposed
model and various ML classifiers that use FSA for IDS mod-
els to detect different sorts of attacks have been thoroughly
compared in Tables 15 and 16 using different datasets. More-
over, to compare the results of the proposed model with the
others (eg. [45, 47, 56, 59] and [61]; the average accuracy,
total training and testing time have been considered using
NSL-KDD and CICIDS 2017 which is given in Tables 15
and 16, respectively. In KNN classifier-based model [62],
only 4 classes (Brute Force, Cross-site scripting (XSS), SQL
injection, BENIGN) of CICIDS 2107 have been considered
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and presented the total training time 11.130 s. However, in
the proposed model, 6 classes which cover almost all types’
attacks present in CICIDS 2107 dataset have been considered
and the total training time of the proposed model is 4.42 s.

5 Conclusion and future work

This paper examines various classifiers with different FSA
in order to construct an effective IDS model. Based on the
analysis, it has been proved that the dimensional reduction
of data in IDS not only decreases processing costs but also
enhances the model performance. According to the results of
theNSL-KDDdataset, RFE as FSTwithDT as classifier pro-
duces better results in terms of recall, precision (except for
U2R attack category), accuracy, and F-measure than other
classifiers with FSA. Moreover, the proposed FST identi-
fied a smaller, more appropriate subset of features based on
information gain and ranking techniques for the classifier.
As a consequence, it identified 13 significant features in the
NSL-KDD dataset and 8 relevant features in the CICIDS
2017 dataset. It helps to increase the model performance
with lower computation cost than to model with all features.
The proposed model (RFE + DT) has been evaluated over
the combined CICIDS2017 dataset in terms of F-measure,
recall, specificity, precision,G-means, accuracy, testing time,
and training time. In order to demonstrate the proposed
model’s efficiency and effectiveness, it has been compared
to other well-known models that have been published in the
literature. It has been found that using DT as a classifica-
tion technique and RFE as a feature selection can reduce the
computational cost and improves performance.

Future studies may focus on the application of various
ML algorithms, such as unsupervised and supervised mod-
els, across various IDS-related datasets. The effectiveness of
feature selection in selecting features for attack detections
utilizing hybrid FST, which includes a number of statistical

approaches and meta-heuristics, will also be the subject of
future studies because it is a relatively unexplored area of
study.
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Appendix

Appendix A: the classifiers parameters setting

TheML classifiers utilized in the experiment are displayed in
Table 17 alongwith the parameter settings. In addition, based
on the experimental results, a decent classifier with FST that
perform well on the NSL-KDD dataset have been selected
i.e. DT + RFE and have been used to assess the combined
CICIDS 2017 dataset. Therefore, the DT classifier and asso-
ciated parameter settings are provided only for CICIDS2017
dataset in Table 17.
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Table 17 The ML classifiers and
their parameters setting ML

classifiers
Parameters setting Dataset

DT classifier DecisionTreeClassifier(class_weight � None, criterion � ’gini’,
max_depth � None, max_features � None, max_leaf_nodes �
None, min_impurity_decrease � 0.0, min_impurity_split �
None,min_samples_leaf � 1, min_samples_split �
2,min_weight_fraction_leaf � 0.0, presort � False,random_state �
0, splitter � ’best’)

NSL-KDD

KNN
classifier

KNeighborsClassifier(algorithm � ’auto’, leaf_size � 30, metric �
’minkowski’,metric_params � None, n_jobs � None, n_neighbors
� 5, p � 2,weights � ’uniform’)

NB classifier GaussianNB(priors � None, var_smoothing � 1e-09)

DT classifier DecisionTreeClassifier(ccp_alpha � 0.0, class_weight � None,
criterion � ’gini’, max_depth � None, max_features � None,
max_leaf_nodes � None, min_impurity_decrease � 0.0,
min_impurity_split � None, min_samples_leaf � 1,
min_samples_split � 2,min_weight_fraction_leaf � 0.0, presort �
’deprecated’, random_state � 0, splitter � ’best’)

CICIDS2017

Appendix B: the analysis of datasets generated
at each phase of the experiment

The datasets (NSL-KDD and CICIDS2017) generated by
each phase are shown in Table 18. Further, Table 18 shows
that the number of objects in the standard dataset and the

reduction dataset is equal because after applying FSA, the
number of attributes (column) in standard dataset is reduced.
Consequently, the number of rows will remain the same
(objects).

Table 18 The explanation of CICIDS2017 and NSL-KDD datasets generated at each phase

Dataset Number of objects in
(training_set,
testing_set)

Label-name (objects in training_set, testing_set) Dimensions Explanation

Original dataset
(NSL-KDD)

(125,973, 22,544) Normal(67,343, 9711)
Probe (11,656, 2421)
R2L (995, 2885)
U2R (52, 67)
DoS (45,927,7460)

41 Without
processes

Original dataset
(CICIDS2017)

(523,456, 130,865) Normal (420,432, 104,934)
Botnet (359, 89)
Brute Force (2521, 638)
Infiltration (7, 1)
Port-Scan (29,290, 7406)
WebAttack (407, 87)
DoS/ DDoS (70,440, 17,710)

79 Without
processes

Standard dataset
(NSL-KDD)

(328,002, 51,677) Including normal objects in every class
Probe:(78,999, 12,132)
DoS: (113,270, 17,171)
U2R: (67,395, 9778)
R2L: (68,338, 12,596)

122 Result of
pre-processing
steps

Standard dataset
(CICIDS2017)

(523,197, 130,806) Including normal objects in every class
Botnet (420,711, 105,007)
Brute Force (422,873, 105,556)
Infiltration (420,359, 104,919)
Port-Scan (449,642, 112,324)
Web Attack (420,352, 105,005)
DoS/ DDoS (490,613, 122,585)

77 Result of
pre-processing
steps
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Table 18 (continued)

Dataset Number of objects in
(training_set,
testing_set)

Label-name (objects in training_set, testing_set) Dimensions Explanation

Reduction dataset
(NSL-KDD)

(328,002, 51,677) Probe:(78,999, 12,132)
DoS: (113,270, 17,171)
U2R: (67,395, 9778)
R2L: (68,338, 12,596)

13 After
FSA(RFE)

8 After FSA
(PCA)

Reduction dataset
(CICIDS2017)

(523,197, 130,806) Botnet (420,711, 105,007)
Brute Force (422,873, 105,556)
Infiltration (420,359, 104,919)
Port-Scan (449,642, 112,324)
Web Attack (420,352, 105,005)
DoS/ DDoS (490,613, 122,585)

8 After FSA
(RFE)
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