International Journal of Information Security (2022) 21:1027-1050
https://doi.org/10.1007/s10207-022-00596-5

REGULAR CONTRIBUTION l‘)

Check for
updates

Algorithm substitution attacks against receivers

1

Marcel Armour’® - Bertram Poettering?

Published online: 21 June 2022
© The Author(s) 2022

Abstract

This work describes a class of Algorithm Substitution Attack (ASA) generically targeting the receiver of a communication
between two parties. Our work provides a unified framework that applies to any scheme where a secret key is held by the
receiver; in particular, message authentication schemes (MACs), authenticated encryption (AEAD) and public key encryption
(PKE). Our unified framework brings together prior work targeting MAC schemes (FSE’19) and AEAD schemes (IMACC’19);
we extend prior work by showing that public key encryption may also be targeted. ASAs were initially introduced by Bellare,
Paterson and Rogaway in light of revelations concerning mass surveillance, as a novel attack class against the confidentiality of
encryption schemes. Such an attack replaces one or more of the regular scheme algorithms with a subverted version that aims
to reveal information to an adversary (engaged in mass surveillance), while remaining undetected by users. Previous work
looking at ASAs against encryption schemes can be divided into two groups. ASAs against PKE schemes target key generation
by creating subverted public keys that allow an adversary to recover the secret key. ASAs against symmetric encryption target
the encryption algorithm and leak information through a subliminal channel in the ciphertexts. We present a new class of attack
that targets the decryption algorithm of an encryption scheme for symmetric encryption and public key encryption, or the
verification algorithm for an authentication scheme. We present a generic framework for subverting a cryptographic scheme
between a sender and receiver, and show how a decryption oracle allows a subverter to create a subliminal channel which
can be used to leak secret keys. We then show that the generic framework can be applied to authenticated encryption with
associated data, message authentication schemes, public key encryption and KEM/DEM constructions. We consider practical
considerations and specific conditions that apply for particular schemes, strengthening the generic approach. Furthermore,
we show how the hybrid subversion of key generation and decryption algorithms can be used to amplify the effectiveness of
our decryption attack. We argue that this attack represents an attractive opportunity for a mass surveillance adversary. Our
work serves to refine the ASA model and contributes to a series of papers that raises awareness and understanding about what
is possible with ASAs.

Keywords Algorithm substitution attacks - Privacy - Mass surveillance - Cryptography

1 Introduction

Consider two parties communicating over an untrusted
channel (in the presence of an adversary). Desired secu-
rity properties for this scenario include confidentiality and
integrity. Confidentiality means that the adversary is unable
to learn anything about the messages sent between the parties.

B Marcel Armour
marcel.armour.2017 @rhul.ac.uk

Bertram Poettering

poe@zurich.ibm.com

Royal Holloway University of London, Egham, UK

IBM Research Europe — Zurich, Riischlikon, Switzerland

Integrity means that the parties can be sure that the messages
have not been tampered with in transit. Both confidentiality
and integrity are well-studied problems, and there are many
reliable and provably secure cryptographic solutions. These
solutions rely on the assumption that the software or hard-
ware in which they are implemented behaves as expected.
However, we know that in the real world, this assumption
does not necessarily hold. Powerful adversaries have the
means to insert unreliability into cryptography via external
(“real-world”) infrastructure: whether by influencing stan-
dards bodies to adopt “backdoored” parameters, inserting
exploitable errors into software implementations, or com-
promising supply chains to interfere with hardware. The
Snowden revelations showed that this is indeed the case,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00596-5&domain=pdf
http://orcid.org/0000-0002-1231-6120
http://orcid.org/0000-0001-6525-5141

1028

M. Armour, B. Poettering

and that large and powerful adversaries (interested in mass
surveillance) have sought to circumvent cryptography. The
reader is referred to the survey by Schneier et al. [57], which
provides a broad overview of subversion of cryptography,
with some useful case studies detailing known subversion
attempts.

The idea that an adversary may embed a backdoor or oth-
erwise tamper with the implementation or specification of
a cryptographic scheme or primitive predates the Snowden
revelations, and was initiated in a line of work by Young
and Yung that they named kleptography [60,61]. This area
of study can be traced back to Simmons’ work on sublimi-
nal channels, e.g. [58], undertaken in the context of nuclear
non-proliferation during the Cold War. In the original concep-
tion [60], kleptography considered a saboteur who designs a
cryptographic algorithm whose outputs are computationally
indistinguishable from the outputs of an unmodified trusted
algorithm. The saboteur’s algorithm should leak private key
data through the output of the system, which was achieved
using the same principles as Simmons’ earlier subliminal
channels. Post-Snowden, work in this area was reignited by
Bellare, Paterson and Rogaway (BPR) [14], who formalised
the study of so-called algorithm substitution attacks (ASAs)
through the example of symmetric encryption schemes. In
abstract terms, the adversary’s goal in an ASA is to create
a subverted implementation of a scheme that breaks some
aspect of security (such as IND-CPA in the case of encryp-
tion) while remaining undetected by the user(s).

1.1 Contributions

We provide formal definitions for subversion attacks against
generic cryptographic primitives whose syntax allows for
both the sending and receiving party to be subverted. Pre-
vious work in this area considered only subversion of the
sender; our main contribution is to show that this assumption
misses an important class of attack that targets the receiver. In
this work, we describe how such an ASA against the receiver
can be used to exfiltrate the (receiver’s) key, which repre-
sents the most devastating attack from the point of view of
an attacker. We show that this class of ASA can be applied
to symmetric settings (authenticated encryption, message
authentication codes, and data encapsulation mechanisms),
as well as asymmetric settings (public key encryption and key
encapsulation mechanisms). Our work brings together pre-
vious work targeting AEAD schemes [5] and MAC schemes
[4] in a common framework, expanded to incorporate public
key encryption.

Concretely, we alter the behaviour of the receiver’s algo-
rithm to leak information through (artificially induced)
decryption error events—the subverted algorithm either
rejects (particular, “trigger”) valid ciphertexts or accepts (par-
ticular, “trigger”’) bogus ciphertexts. An adversary observing

@ Springer

the receiver who is able to determine whether a ciphertext has
been accepted or rejected learns some information; this sub-
liminal channel can be used to exfiltrate the user’s key. The
assumption that a surveillance adversary is able to observe
whether a receiver’s algorithm implementation accepts or
rejects a ciphertext is a mild one in many practical scenarios;
for example, a decryption error may result in a network packet
being dropped and automatically retransmitted.! A subverted
algorithm could, furthermore, go beyond this by e.g. influ-
encing timing information in future messages sent to the
network. We conclude that this attack represents an attractive
and easy to implement opportunity for a mass surveillance
adversary.

1.1.1 AEAD

We first examine authenticated encryption with associated
data (AEAD), a symmetric cryptographic primitive that
offers the combined properties of confidentiality and mes-
sage integrity. We show that our class of ASA applies to
the decryption component of AEAD schemes, leaking the
symmetric key. Our results stand in opposition to previous
work [11,14,28] which proposed subversion resilience of a
large class of AEAD schemes to which many if not all real-
world constructions such as GCM, CCM and OCB belong,
as long as their nonces are generated deterministically via a
shared state maintained by both encryptor and decryptor. The
crucial observation to resolve this apparent contradiction is
that previous work has assumed, besides explicitly spelled
out requirements like uniqueness of ciphertexts and perfect
decryptability, implicit notions such as integrity of cipher-
texts. In the ASA setting for AEAD where undermining the
confidentiality of a scheme is the primary goal of an adver-
sary, it seems just as natural to assume that the adversary is
also willing to compromise the integrity guarantees as well.

1.1.2 MACs

We next show that our results apply equally in the setting
of message authentication schemes (MACs). MACs provide
a message authentication code or fag for a given message;
conversely, given a message and a tag, the MAC provides ver-
ification that the tag was generated from the message (that is,
that the tag is genuine). The security of a MAC is determined
by the difficulty of forging tags. If no adversary can forge a
tag, then a message with a correct tag must have been gener-
ated by the sender. An ASA against a MAC replaces either

! Recent work on so-called partitioning oracles [2,3,46] relies on the
ability to observe whether or not decryption succeeds and demonstrates
that this is a realistic assumption in practice; for example, in the context
of proxy servers, a “logical side-channel” is observable as a port is
opened when a ciphertext is accepted (and otherwise not).

Algorithm substitution attacks against receivers

1029

the tagging function (the generation of message authentica-
tion codes) or the verification function (checking that tags
have been honestly generated) in such a way as to leak infor-
mation to an adversary. Applying our attack to a MAC leaks
the secret key to an adversary, allowing them to forge any
tag. This is an attractive goal for an adversary in real-world
settings, as once integrity has been compromised, this can
often be leveraged to perform any number of other attacks,
for example: enabling attacks against (“encrypt-then-MAC”)
confidentiality; getting users to accept compromised (authen-
ticated) software updates; injecting malicious packets into
(secured) communication streams to de-anonymise users.

1.1.3 PKE

Lastly, we show that public key encryption (PKE) is also
vulnerable to our class of ASA. A public key (or asymmetric)
encryption scheme allows secure communication between
parties that have not shared a secret key with one another.
PKE works by having two keys: the public key is used to
encrypt messages, and the private key is used to decrypt. The
security of a PKE scheme is determined by the difficulty of
determining any information about underlying messages for
a given ciphertext.

Our ASA attacks on PKE require a fairly large number
of ciphertexts to be sent and observed to reject erroneously
in order for the private key to be exfiltrated. In practice, this
condition will be met: consider a server that hosts traffic for a
large number of clients. The server will have a private/public
key pair which is held static over long periods of time.
Observing the server receive ciphertexts from many clients
will allow an adversary to witness a large enough amount
of traffic to recover the server’s private key, rendering all
communications between clients and server compromised.

Due to the high overheads associated with PKE, symmet-
ric encryption is better suited to bulk communication. In most
practical settings, PKE is used to establish a shared secret
between the sender and receiver, so that the shared secret may
be used as a key for communicating via symmetric encryp-
tion. This notion of sending keys for symmetric encryption
via public key methods is formalised as a key encapsulation
mechanism (KEM). We show how our notions of subver-
sion apply also to KEMs in Appendix 1. KEMs are typically
used together with a data encapsulation mechanism (DEM)
in a so-called hybrid encryption scheme to PKE-encrypt mes-
sages. We give the definition of a DEM in Appendix 1 for
completeness.

1.2 Structure of this document
We first describe related work in Sect. 2, focussing on ASAs

that target symmetric encryption, PKE and MACs. Sec-
tion 3 describes the notation used in this article. We give

an abstract description of an ASA targeting generic cryp-
tographic schemes consisting of a sender and receiver in
Sect. 4, together with notions of undetectability (Sect. 4.1)
and key recovery (Sect. 4.2). We also discuss hybrid sub-
version (Sect. 4.3), the idea that multiple algorithms (e.g.
key generation and encryption) is subverted in tandem. In
Sect. 5, we discuss authenticated encryption with associ-
ated data, giving syntax and security definitions: privacy in
Sect. 5.1 and integrity in Sect. 5.2. We show that our notion
of ASAs apply to AEAD schemes in Sect. 5.3. Section 6 dis-
cusses MACs, including the definition of integrity; Sect. 6.1
shows that our notion of ASAs apply to MAC schemes. Sec-
tion 7 discusses PKE, giving syntax and security definitions;
Sect. 7.1 shows that our notion of ASAs applies to PKE
schemes. We describe our concrete subversion attack, tar-
geting the receiver algorithm, in Sect. 8, together with an
analysis of the undetectability and key recovery properties of
our attack. We give two versions, a passive attack in Sect. 8.2
and an active attack in Sect. 8.3.

2 Related work
2.1 Symmetric encryption

BPR [14] demonstrate an attack against certain randomised
encryption schemes that relies on influencing the randomness
consumed in the course of encryption. Their attack, which
they call the “biased-ciphertext attack”, is a generic method
that relies on rejection sampling. Randomness is resampled
until ciphertexts satisfy a particular format (for example,
implanting information in the least significant bits), resulting
in a subliminal channel.

There is a tension for “Big Brother” between mounting
a successful attack and being detected; clearly an attack
that simply replaces the encryption algorithm with one that
outputs the messages in plaintext would be devastating yet
trivially detectable. BPR stipulate that ciphertexts generated
with a subverted encryption algorithm should at the very least
decrypt correctly with the unmodified decryption routine,
in order to have some measure of resistance to detection.
Furthermore, BPR define the success probability of a mass
surveillance adversary in carrying out a successful attack, as
well as the advantage of a user in detecting that a surveillance
attack is taking place. The attack of BPR was later generalised
by Bellare, Jaeger and Kane (BJK) [11] whose attack applies
to all randomised schemes. Furthermore, whereas the attack
of BPR is stateful and so vulnerable to detection through
state reset, the BJK attack is stateless. BJK [11] later for-
malised the goal of key recovery as the desired outcome of
an ASA from the point of view of a mass surveillance adver-
sary. Lastly, BPR also establish a positive result that shows
that under certain assumptions, it is possible for authenticated

@ Springer

1030

M. Armour, B. Poettering

encryption schemes to provide resistance against subversion
attacks.

Degabriele, Farshim and Poettering (DFP) [28] critiqued
the definitions and underlying assumptions of BPR. Their
main insight is that the perfect decryptability—a condition
mandated by BPR— is a very strong requirement and arti-
ficially limits the adversary’s set of available strategies. In
practice, a subversion with negligible detection probabil-
ity, say 27128, should be considered undetectable.> As DFP
note, decryption failures may happen for reasons other than
a subverted encryption algorithm, and if they occur sporadi-
cally may easily go unnoticed. Thus, a subverted encryption
scheme that exhibits decryption failure with a very low prob-
ability is a good candidate for a practical ASA that is hard
to detect. DFP demonstrate how this can be achieved with
an input-triggered subversion, where the trigger is some
message input that is difficult to guess, making detection
practically impossible. Our work complements the trigger
message approach of DFP by limiting ciphertext integrity
and establishing a covert channel through decryption error
events.

2.2 PKE

Yung and Young (YY) in [60] examine subverting asymmet-
ric protocols in so-called “SETUP” attacks. Their core idea is
to encode some information within the public key that allows
the private key to be reconstructed. As a simple example, let
the public key encode the encryption of the user’s private key
under the adversary’s key. Subverted keys should be indis-
tinguishable from real keys and only the adversary should be
able to recover a user’s private key from the subverted public
key. As well as showing how to subvert RSA keys, YY also
give examples of attacks against ElGamal, DSA and Ker-
beros. Later, Crépeau and Slakmon [27] gave an improved
subversion attack against RSA which works by hiding half
of the bits of p in the representation of the RSA modulus
N = pgq. Using Coppersmith’s partial information attack
[24], it is then possible to recover p and g.

For the prior work on symmetric encryption discussed
above, the techniques can be translated naturally into a PKE
setting. Attacks against the encryption algorithm of a PKE
scheme however do not present an attractive attack to a mass
surveillance adversary, as there is limited scope to undermine
confidentiality. The covert channel usually has a bandwidth
of a small number of bits per (subverted) ciphertext: not
enough to leak the underlying messages. Leaking the private
key would allow confidentiality to be broken completely, but
the encryption algorithm does not have access to the private

2 This is analogous to the fundamental notion in cryptography that a
symmetric encryption scheme be considered secure even in the presence
of adversaries with negligible advantage.

@ Springer

key. Chen, Huang and Yung [23] overcome these limita-
tions by considering hybrid PKE constructions consisting
of a KEM to send encapsulated session keys which are used
for symmetric encryption with a DEM. Their non-generic
attack applies to a particular class of practical KEM construc-
tions and leaks session keys, that in turn break the security of
the DEM. In contrast, for a PKE primitive not consisting of
a hybrid KEM/DEM construction, targeting the decryption
algorithm remains the only way to subvert the encryption/
decryption facility of a PKE scheme.

2.3 MAGs

The only prior work on MAC subversion that we are aware
of is by Al Mansoori, Baek, and Salah [1] who explore how a
MAC component in the EAP-PSK wireless protocol could be
subverted. After firstarguing [1, §I1.D] that randomised MAC
schemes offer better protection against a kind of birthday
attack, they restrict attention to precisely one corresponding
construction (two-key CBC-MAC with a random translation
of the second key, a scheme that already turned out to be
broken in [44]) and show that the rejection-sampling-based
key-extraction techniques from [14] are applicable in this set-
ting as well. We emphasise that our results reach far beyond
this: our subversion attacks are generic (rather than being
focused on one specific MAC) and we do not require exotic
technical conditions like randomised tag generation.’

2.4 Further work

Cryptographic reverse firewalls [21,33,47,48,59] represent
an architecture to counter ASAs against asymmetric cryp-
tography via trusted code in network perimeter filters. At
a high level, the approach is for a trusted third party to
re-randomise ciphertexts before transmission over a public
network to destroy any subliminal messages. Fischlin and
Mazaheri show how to construct ASA-resistant (asymmet-
ric) encryption and signature algorithms given initial access
to a trusted base scheme [37]. Their approach uses trusted
samples to essentially perform re-randomisation of cipher-
texts.

In a series of work, Russell, Tang, Yung and Zhou [53-56]
study ASAs on one-way functions, trapdoor one-way func-
tions and key generation as well as defending randomised
algorithms against ASAs using so-called watchdogs. The
watchdog model allows a trusted party to test the implemen-
tation of a primitive for subversion, in a variety of different
assumptions (e.g. on- or offline, black- or white-box access).
Combiners are often used to provide subversion resilience,
particularly in the watchdog model. A combiner [38,50]
essentially combines the output from different algorithms

3 We are not aware of any randomised MAC of practical relevance.

Algorithm substitution attacks against receivers

1031

(or runs of the same algorithm) in such a way as to produce
secure (in this case, unsubverted) combined output as long as
any one of the underlying outputs is secure. Aviram et al. [7]
consider combining (potentially maliciously chosen) keys
for Post-Quantum protocols such as TLS. Bemman, Chen
and Jager [16] show how to construct a subversion-resilient
KEM, using a variant of a combiner and a subversion resilient
randomness generator. Their construction considers Russell
et al.’s watchdog from a practical perspective, meaning an
offline watchdog that runs in linear time. Another line of
work, [9,31,36], examined backdoored hash functions, show-
ing how to immunise hash functions against subversion.

Bellare, Kane and Rogaway [12] explore how large keys
can prevent key exfiltration in the symmetric encryption set-
ting. Bellare and Hoang [10] give PKE schemes that defend
against the subversion of random number generators. The
use of state reset to detect ASAs is studied by Hodges and
Stebila [41]. Berndt and Liskiewicz [17] reunite the fields of
cryptography and steganography. Goh, Boneh, Pinkas and
Golle [39] show how to add key recovery to the SSH and
SSL/TLS protocols. Ateniese, Magri and Venturi [6] study
ASAs on signature schemes. Berndt et al. consider ASAs
against protocols such as TLS, WireGuard and Signal [18].
Dodis, Ganesh, Golovnev, Juels and Ristenpart [32] provide
a formal treatment of backdooring PRGs, another form of
subversion. This work was extended by Degabriele, Pater-
son, Schuldt and Woodage [29] to look at robust PRNGs
with input. Camenisch, Drijvers and Lehmann [22] consider
Direct Anonymous Attestation in the presence of a subverted
Trusted Platform Module.

2.5 Cryptographic versus non-cryptographic
subversion

In the literature on cryptography, the notion of an ASA
assumes the malicious replacement of one or more algorithms
of ascheme by a backdoored version, with the goal to leak key
material, or at least to weaken some crucial security property.
Different types of substitution attack appear in other areas of
computing and communication. We discuss some examples
in the following.

Program code in the domain of computer malware rou-
tinely modifies system functions to achieve its goals, where
the latter comprises delivering some damaging payload,
ensuring non-detection and thus survival of the malware on
the host system, and in some cases even self-reproduction.
Numerous techniques towards suitably modifying a host
system have been developed and reported on by academic
researchers and hackers. Standard examples include redirect-
ing interrupt handlers, changing the program entry point of
an executable file, and interfering with the OS kernel by over-
writing its data structures [40].

Malicious modifications of implemented functionality are
also a recognised threat in the hardware world. It is widely
understood that circuit designers who do not possess the
technical means to produce their own chips but instead out-
source the production process to external foundries, risk that
the chips produced might actually implement a maliciously
modified version of what is expected. A vast number of inde-
pendent options are known for when (within the production
cycle) and how (functionally) subversions could be con-
ducted. For instance, the survey provided in [19] reports that
circuit design software (CAD) could be maliciously altered,
that foundries could modify circuits before production, and
that after production commercial suppliers could replace
legitimate chips by modified ones. Further, [19] suggests that
appealing types of functionality modification include devi-
ating from specification when particular input trigger events
are recognised, and/or to leak values of vital internal reg-
isters via explicitly implemented side channels. Any such
technique (or combination thereof) has an individual pro-
file regarding the associated costs and attack detectability.
Which of the many options is most preferable depends on
the specific attack scenario and target.

We refer to the software- and hardware-based subver-
sion techniques discussed above as “technology driven”.
This is in contrast to the techniques considered in this
paper which we refer to as “semantics driven”. We con-
sider the two approaches orthogonal: Our (semantics driven)
proposed subversion can be implemented using techniques
from e.g. [19,40] (but likewise also through standard meth-
ods), and technology-driven subversion proposals can be
applied against cryptographic implementations (but likewise
also against any other interesting target functionality). Our
semantics-driven approach in fact aims to maximise tech-
nology independence. As a consequence, the line of attacks
proposed in this paper can be implemented easily in software
(e.g. in libraries or drop-in code), in hardware (e.g. in ASICs
and FPGAs), and in mixed forms (e.g. firmware-programmed
microcontrollers). The strategy to achieve this indepen-
dence is to base the attacks and corresponding notions of
(in)security on nothing but the abstract functionalities of the
attacked scheme as they are determined by their definitions
of syntax and correctness.

As the technology-driven and semantics-driven appro-
aches are independent, they can in particular be com-
bined. This promises particularly powerful subversions. For
instance, consider that virtually all laptops and desktop PCs
produced in the past decade are required to have an embedded
trusted platform module (TPM) chip that supports software
components (typically boot loaders and operating systems)
with trusted cryptographic services. In detail, software can
interact with a TPM chip through standardised API function
calls and have cryptographic operations applied to pro-
vided inputs, with all key material being generated and held

@ Springer

1032

M. Armour, B. Poettering

exclusively in the TPM. As TPMs are manufactured in hard-
ware, it seems that the (technology driven) subversion options
proposed in [19] would be particularly suitable. However, as
most of the attacks from [19] require physical presence of
the adversary (e.g. to provide input triggers via specific sup-
ply voltage jitters or for extracting side channel information
by operating physical probes in proximity of the attacked
chip), only those options seem feasible where all attack con-
ditions and events can be controlled and measured via the
software interface provided by the API. This is precisely what
our semantics driven attacks provide. We thus conclude by
observing that dedicated cryptographic hardware like TPMs
can only be trusted if extreme care is taken during design and
production. While our article lays open the most general and
clean line of attack, other attacks might exist as well.

2.5.1 Discussion

As the discussion of cryptographic (“‘semantics driven’) vs.
non-cryptographic (“technology driven”) subversion shows,
achieving security against adversaries mounting ASAs is
difficult, and essentially reduces to assuming trust in partic-
ular components or architectures. The three main theoretical
approaches to preventing or mitigating against ASAs in
the literature, discussed in Sect. 2.4, are reverse firewalls,
self-guarding protocols and watchdogs. We note that these
approaches apply in the main to asymmetric primitives,
and so (appropriately adapted to target receiver algorithms)
would be suitable to defend against our attack against asym-
metric schemes in Sect. 7.

Defending against our attacks on AEAD and MACs is
more difficult. We note that the watchdog model applies in
theory, while reverse firewalls and self-guarding approaches
are ineffective against symmetric primitives. The watch-
dog model considers splitting a primitive into constituent
algorithms that are run as subroutines by a trusted “amal-
gamation” layer. This allows the constituent algorithms to
be individually checked and sanitised. Considering the ver-
ification algorithm of a MAC scheme as an example, the
canonical approach of recalculating and checking the tag is
modelled by letting the verification algorithm be a trusted
amalgamation of the tagging algorithm with an identity test.
The tagging algorithm typically runs a hash function as a sub-
routine, and so applying results from [9,31,36] would allow
for the claim that the verification algorithm can be made
subversion-resilient in the watchdog model. The assumption
of a trusted amalgamation is precisely what makes our attack
infeasible, but this assumption is questionable in real-world
settings. In particular, as we discussed above, the presence of
non-cryptographic vectors makes this assumption unlikely to
hold in practice.

@ Springer

Lastly, we note that none of the theoretical approaches
are fully satisfying, requiring strong or impractical assump-
tions. Indeed, it is telling that there are no implementations
of subversion-resilient primitives to date, although some
recent work seems promising in this regard [16,21]. The best
defence seems to be the unglamorous task of minimising risk
by implementing a variety of control mechanisms across the
whole infrastructure, in a process of security management. In
particular: software implementations could be protected by
measures including regular integrity tests and secure boot,
hardware implementations could be protected by technical
controls such as threshold implementations or testing ampli-
fication [35], and both cases can be strengthened by relying
on open source implementations and verified supply chains.
While such measures can go some way towards minimising
risk, we emphasise that there are no security guarantees.

3 Notation

We refer to an element x € {0, 1}* as a string, and denote its
length by |x|. The set of strings of length / is denoted {0, 1}/.
By ¢, we denote the empty string. For x € {0, 1}*, we let x[i]
denote the i-th bit of x, with the convention that we count
from 0, i.e. we have x = x[0]...x[|x| — 1]. We use Iverson
brackets [-] to derive bit values from Boolean conditions: For
a condition C, we have [C] = 1 if C holds; otherwise, we
have [C] = 0.

We use code-based notation for probability and security
experiments. We write < for the assignment operator (that
assigns a right-hand-side value to a left-hand-side variable).
If S, S are sets, we write S <~ S’ shorthand for § < SU S’.
If S is a finite set, then s <—g S denotes choosing s uni-
formly at random from S. For a randomised algorithm A, we
write y <—s A(x1, x2,...) to denote the operation of run-
ning A with inputs xp, x2, ... and assigning the output to
variable y. We denote a y-biased Bernoulli trial by B(y),
i.e. a random experiment with possible outcomes O or 1
such that Pr[b <« B(y) : b = 1] = y. The assign-
ments b <5 {0, 1} and b <« B(1/2) are thus equivalent.
We use superscript notation to indicate when an algorithm
(typically an adversary) is given access to specific oracles.
An experiment terminates with a “stop with x” instruction,
where value x is understood as the outcome of the experi-
ment. We write “win” (“lose”) as shorthand for “stop with 1”
(“stop with 0”). We write “require C”, for a Boolean condi-
tion C, shorthand for “if not C: lose”. (We use require clauses
typically to abort a game when the adversary performs
some disallowed action, e.g. one that would lead to a triv-
ial win.) The “:=" operator creates a symbolic definition; for
instance, the code line “A:=FE” does not assign the value of

Algorithm substitution attacks against receivers

1033

expression E to variable A but instead introduces symbol A
as a new (in most cases abbreviating) name for E.

4 Notions of subversion attacks

We consider subversions of the algorithms of cryptographic
schemes. Abstractly, we consider a cryptographic scheme
IT = (IT.gen, I1.S, T1.R) consisting of three components:
a key generation algorithm together with an algorithm on
the sender side and an algorithm on the receiver side, where
the cryptographic scheme is an encryption scheme, I1.S rep-
resents encryption and IT.R decryption; when we consider
message authentication schemes, the corresponding compo-
nents represent tagging and verification.

We give a generic syntax to the scheme IT as follows:
key generation IT.gen outputs a key pair (ks, kr) € Ks X
Kr; the sender algorithm has associated input and output
spaces /X', Y and takes as input a key ks € Ks and x € X,
outputting y € Y;the receiver algorithm has associated input
and output spaces), X’ (respectively). We note that X C
X’; in particular, L € X’ \ X. The receiver algorithm takes
as input a key kg € Kg and y €), outputting x € X’;
the special symbol L is used to indicate failure. A shortcut
notation for this syntax is

IM.gen - Ks x K, Ksx X = TI1.S—),
and Kgx) — II.R— A'.

A scheme IT is said to be §-correct if for all (ks, kg) <
IM.gen and x € X and y <« TI1.S(ks,x) and x’ <«
IT.R(kgr, ¥) we have

Pr[x/;éx]fc?,

where the probability is over all random coins involved. In the
case that § = 0, the scheme is said to be perfectly correct. We
note that this generic syntax applies to symmetric encryption
(Sect. 5) and message authentication (Sect. 6), as well as to
public key encryption (Sect. 7), where for the symmetric case
we require ks = kg.

In the following, we give formal definitions for sub-
version of key generation, sender and receiver algorithms,
together with the notion of undetectability (UD). In a nut-
shell, a subversion is undetectable if distinguishers with
black-box access to either the original scheme or to its sub-
verted variant cannot tell the two apart. A subversion should
exhibit a dedicated functionality for the subverting party, but
simultaneously be undetectable for all others. This appar-
ent contradiction is resolved by parameterising the subverted
algorithm with a secret subversion key, knowledge of which
enables the extra functionality. (The same technique is used
in most prior work, starting with [14].) In what follows,

we denote the corresponding subversion key spaces with
Zgen, Is and Zg.

In this section, we also specify, by introducing notions of
key recoverability, how we measure the quality of a subver-
sion from the point of view of the subverting adversary (who
is assumed to know the subversion keys).

4.1 Undetectable subversion

We first define undetectability notions for subverted key gen-
eration, sender and receiver algorithms separately. We then
offer a joint definition.

SUBVERTED KEY GENERATION A subversion of the key
generation algorithm IT.gen of a cryptographic scheme con-
sists of a finite index space Zgen and a family of algorithms
Gen = {IT.gen;}iez,,, with

IT.gen; = Ks x Kr.

That is, for all i € Zgen the algorithm IT.gen; can syntacti-
cally replace the algorithm IT.gen.

As a security property, we require that also the observable
behaviour of IT.gen and IT.gen; be effectively identical (for
uniformly choseni € Zgen). This is formalised via the games
UDG', UDG! in Fig. 1(left). For any adversary A, we define
the advantage

AdViE (A):=[Pr[UDG' (A)] — Pr[UDG? (A)]|

and say that family Gen undetectably subverts algorithm IT.
gen if Advlf-?g (A) is negligibly small for all realistic A.
SUBVERTED SENDER A subversion of the sender algorithm
I1.S of a cryptographic scheme consists of a finite index space
Zs and a family S = {S;}; ¢z of algorithms

’CsXX—)H.S,’—))j.

That is, for all i € Zg the algorithm I1.S; can syntactically
replace the algorithm IT.S.

As a security property, we also require that the observ-
able behaviour of I1.S and I1.S; be effectively identical (for
uniformly chosen i € Zs). This is formalised via the games
UDS?, UDS! in Fig. 1 (centre). Note that in contrast to prior
work like [14,28], our distinguishers are given free choice
over the keys to be used.* For any adversary A, we define
the advantage

Adv{" (A):=[Pr[UDS' (4)] — Pr[UDS ()]

4 In [14,28], undetectability is defined with respect to uniform keys.
As code auditors and other security researchers looking for subversion
attacks can specify keys during black-box testing according to their pre-
ferred distribution, we consider uniform-key constraints a rather severe
limitation of undetectability notions.

@ Springer

1034

M. Armour, B. Poettering

Fig.1 Games UDG, UDS and
UDR modelling undetectability
for the subversion of
(respectively) key generation,
sender and receiver algorithms
for a cryptographic scheme IT.
See Sect. 3 for the meaning

of “:=". Note that in each game,

the two unsubverted oracles are
actually redundant

Game UDG”(A)
i <5 Lgen
gen’ :=Tl.gen,
gen! :=Tl.gen
b — AGen,Send,Recv

stop with '
Oracle Gen

(ks,kr) <5 gen”
return (ks,kR)

Game UDS”(A)
i %;g IS
SO = HS,
S':=T1ILS
b — AGen,Send,Recv

stop with 2’
Oracle Gen

(ks,kr) < IL.gen
return (ks,kR)

Game UDR”(A)
i+s7ZRr
RO = HRl
R!:=TLR
b — AGemSend.,Recv

stop with &’
Oracle Gen

(ks,kr) < Il.gen
return (ks,kR)

Oracle Send(ks, x)
y < IL.S(ks,x)
return y

Oracle Recv(kg,y)
x + IL.R(kR,y)
return x

Oracle Send(ks, x)
y < I1.S(ks,x)
return y

Oracle Send(ks,x)
y < SP(ks,x)
return y

Oracle Recv(kg,y)
X < Rh (kR7y)
return x

Oracle Recv(kg,y)
x < ILR(kR,y)
return x

and say that family S undetectably subverts algorithm I1.S
if Advpi (A) is negligibly small for all realistic A.
SUBVERTED RECEIVER A subversion of the receiver algo-
rithm IT.R of a cryptographic scheme consists of a finite index
space Ig and a family R = {I1.R;};cz; of algorithms

Krx)Y — IR — X

That is, for all i € Zg, the algorithm I1.R; can syntactically
replace the algorithm IT.R.

As a security property, we also require that the observable
behaviour of IT.R and IT.R; be effectively identical (for uni-
formly chosen i € Zg). This is formalised via the games
UDR?, UDR! in Fig. 1 (right). For any adversary A, we
define the advantage

Advi{" (A):=[Pr[UDR' (4)] - Pr{UDR° (A)]|

and say that family R undetectably subverts algorithm IT.R
if Adv};ﬂrE (A) is negligibly small for all realistic .A.

The above undetectability notions demand that subver-
sions do not change the observable behaviour of the key
generation, sender and receiver algorithms. A consequence
of this is that none of the correctness or security properties
of the scheme are noticeably harmed by subversion.

4.1.1 Hybrid subversion of key generation, sender and
receiver algorithms

We give a joint definition of undetectability, in the case
where the key generation, sender and receiver algorithms are
subverted. This is the most general definition; in particular
contexts, it may not be appropriate to consider subversion

@ Springer

of a particular algorithm—we discuss this in Sects. 4.3, 5.3,
6.1.1 and 7.1.1.

Game UD” in Fig. 2(left) combines games UDG?, UDS?
and UDR? into one. We define

Advi (4):=[Pr[UD' (4)] - Pr[UD’(A)]]

By ahybrid argument, for all adversaries A, there exist adver-
saries A, A”, A" such that

AdVE (A) < AdvypE(A) + AdVEES(A”) + AdviET(A”).

4.2 Subversion leading to key recovery

We observed above that if any of the components IT.gen,
IT.S, T1.R of a cryptographic scheme IT is undetectably sub-
verted, with uniformly chosen indices igen, is, ir that remain
unknown to the participants, then all security guarantees are
preserved from the original scheme. This may be different
if (any of) igen, is, ir are known to an attacking party, and
indeed, we assume that mass-surveillance attackers leverage
such knowledge to conduct attacks. For any cryptographic
scheme, the most devastating attack goal for an attacker is
key recovery (KR): Users generate keys using their key gen-
eration algorithm (ks, kg) < l'I.genigen.5 Generated secret
keys are kept hidden, and the adversary aims at recovering
these keys through the subversion. Note that in the symmetric
case, ks = kg, whereas in the asymmetric case the receiver’s
key kg represents the private key. In either case, the value kg
is the target of a KR adversary.

5 To preserve generality, our syntax suggests that key generation
is subverted, however this need not be the case. Simply set H.genigen

:=I1.gen for all igen € Zgen. This applies similarly to I1.S and IT.R.

Algorithm substitution attacks against receivers

1035

Game UD?(A)
igen s Igen;is s Is;iR s Ir
(gen?,S% R?) := (TL.gen,,, . T1.S;, TLR;e)
(gen!,S',R!) := (TLgen, IL.S,TL.R)
b AGen,Send,Recv

stop with b’
Oracle Gen

(ks,kr) < gen”
return (ks, kR)

Oracle Recv(kg,y)
X Rb (kRay)
return x

Game KRP(A)
C+0
igen; S, IR 5 Igen x Ts x IR
(ks,kRr) <5 IT.gen;
kK ASendRecv (igeny is, iR)
stop with [k = kg]

Oracle Send()
(0,x,) <~ MS(c,)
y = ILS (ks,x)

Oracle Send(ks, x) Ce ()
S return (3,) return (3,)
y = S7(ks,x)
return y Oracle Recv(y) Oracle Recv(y)

require y € C reguire €
x ILR; (kr,y)
return x

Game KRA(A)

igemiSviR s Igen x I x IR
(ks,kr) s H.genigen; [
k, — -Asend’Recv(igemiSviR)
stop with [k = kg]

[

gen’

Oracle Send ()
(0,x,B) « MS(0, @)
y +ILS (ks,x)

x ILR (kr,Y)
return x

Fig. 2 Left: Game UD modelling hybrid subversion undetectability
for a cryptographic scheme IT1. Note that not all of the algorithms need
necessarily be subverted, although the syntax allows for this. See the
discussion at Sects. 5.3, 6.1.1 and 7.1.1. Centre, Right: Games KRP

We formalise this attack goal in two versions. The KRP
game in Fig. 2(centre) assumes a passive attack in which the
adversary cannot manipulate inputs or outputs (typically rep-
resenting messages or ciphertexts) to the sender or receiver,
and the KRA game in Fig. 2(right) assumes an active attack
in which the adversary can inject and test arbitrary receiver
inputs (which potentially correspond to sender outputs). In
both cases, with the aim of closely modelling real-world
settings, we restrict the adversary’s influence on the sender
inputs x by assuming a stateful “message sampler” algorithm
MS (reflecting the fact that, in the contexts we consider inputs
to I1.S typically represent messages) that produces the inputs
to I1.S used throughout the game. The syntax of this message
sampler is

YXA—>MS—> XxXxB,
(0,a) > MS(0,a) = (¢', x, B),

where 0,0’ € X are old and updated state, input o« € A
models the influence that the adversary may have on message
generation, and output 8 € B models side-channel outputs.
In Fig. 2, we write ¢ for the initial state. Note that while we
formalise the inputs « and the outputs S for generality (so
that our models cover most real-world applications), our sub-
version attacks are independent of them.® For any message
sampler MS and adversary .4, we define the advantages

AdViTF 1 (A):= Pr[KRP(A)]
and Advit’ ;g (A):= Pr{KRA(A)].

6 .. meaning that the reader may safely choose to ignore them.

and KRA modelling key recoverability for passive and active attackers,
respectively. Note that the adversary’s aim is to recover the receiver’s
key kg, as in both symmetric and asymmetric settings this value is secret

We say that subversion family Gen, S, R is key recovering for
passive attackers if for all practical MS there exists a realistic

adversary A such that Advlg?; (A)

(e.g. 0.1).7 The key recovery notion for active attackers is
analogous.

reaches a considerable value

4.2.1 Discussion

We note that the adversary need not necessarily exfiltrate
each individual bt of the user’s key,? in order to successfully
recover it—this is implicit in our definitions of key recovery.
To formalise this, we let the “leakage key” k¢ € {0, 1}* be a
string such that knowledge of k; is sufficient for an adversary
to break the security of the primitive. At worst, from the
perspective of the adversary, the leakage key may simply
be the bit representation of the user’s key. We note that in
practice a leakage key consisting of most of the user’s key is
sufficient for an adversary to recover the full key using brute
force; the exact number of bits to be brute forced would
depend on the context and would involve a trade-off for the
adversary. Nevertheless, the notion is intuitively clear.
Furthermore, in some contexts, there may be some redun-
dancy or structure that allows for a shorter leakage key. As an
example, one may consider DES keys as being 64-bit strings
with 8 bits of redundancy, so that an effective leakage key

7 Our informal notions (“realistic” and “practical”) are easily reformu-
lated in terms of probabilistic polynomial-time (PPT) algorithms for
readers who prefer a treatment in the asymptotic framework. Given that
asymptotic notions don’t reflect practice particularly well, we prefer to
use the informal terms.

8 Or abit representation thereof, if it is not a bit string

@ Springer

1036

M. Armour, B. Poettering

would be of size 56 bits. As another example, the private key
in RSA encryption is knowledge of the factorisation of the
public modulus N = pq. Supposing that the modulus N can
be represented using n = [log N]-bits, one may consider
RSA private keys as being n/2 = |log p]-bit strings. How-
ever, knowledge of around half the bits of p is sufficient to
be able to factorise N using Coppersmith’s partial informa-
tion attack [24], so that an effective leakage key might have
length A = [log p|/2.°

A different approach might be to leak, for example, the
seed of a pseudo-random number generator. We discuss
breaking security without extracting the full key further in
Sect. 4.4.

4.3 Hybrid subversion

Previous work on subversion has looked at either subverted
key generation!? or subverted encryption/ decryption, but not
considered the case where these are subverted in tandem. For
key generation, this has meant that the subverted algorithm
needs to leak the whole key in a single operation. This setting
was studied by Young and Yung [60] under the name “klep-
tography”, and they showed how it is possible to subvert key
generation such that the adversary is able to recover the pri-
vate key sk from the public key pk (together with any public
parameters and knowledge of secret trapdoor information).
They show how such attacks against key generation could
look in the case of RSA and ElGamal cryptosystems. Such
subversion imposes a large cost on the subverter: requiring
that all key bits are leakable in one operation means that the
subverted keys are given some structure (e.g. the public key
is the encryption of the secret key under the attacker’s key).
This imposes significant overhead, and would likely lead to
detection in a real world setting (using either timing informa-
tion, code review or hardware inspection). Considering the
subversion of key generation and sender/receiver algorithms
in tandem, it is possible to reduce this overhead.
Generically, this tandem subversion can be achieved by
subverting key generation to produce weaker keys and com-
bining this with a subverted sender and/or receiver that
provides a subliminal channel. Consider a subverted key gen-
eration algorithm IT.gen; that outputs (receiver keys) in some
reduced key set IER C KRg. The smaller this subverted key set
IER, the less information needs to be leaked via the sublimi-
nal channel. One method to implement such a subverted key
generation algorithm is to use the rejection sampling method

9 We note that in practice the security for an RSA modulus of size n
is far less than n/2 bits; for example, an RSA modulus of size 1024
is believed to have security at most 80 bits [8], corresponding to the
computational effort required to factorise an RSA modulus.

10" And potentially, the associated public parameters if those form part
of the formalisation used.

@ Springer

described in Sect. 2.1, so that IT.gen; runs the unsubverted
algorithm IT.gen as a subroutine and resamples until keys
are in IER. There are certainly more targeted attacks that take
into account the specific structure of keys being generated—
and that may leverage more specific attacks than the generic
weakening of keys.

4.4 Breaking security without extracting the full key

The KRA and KRP notions introduced in Sect. 4.2 assume
that key recovery is the ultimate goal in subversion. This
suggests that longer keys make a scheme more resilient, an
approach explored in big key cryptography [12]. In practice,
it may be more efficient to exploit non-generic features of a
particular scheme to minimise the information to be leaked.
In this section, we will consider AEAD schemes as an illus-
trative example.

As we detail, many current AEAD schemes have inner
building blocks that maintain their own secret values, and
scaling up key sizes does not automatically also increase the
sizes of these internal values. We note that proposed ASAs
against AEAD schemes (including our attacks presented in
Sect. 8) can easily be adapted to leak this internal information
instead of the key. As the recovery of such values might not
always directly lead to full message recovery, the assessment
of whether the resulting overall attack is more or less effective
than our generic attacks has to be made on a per scheme
basis. We exemplify this on the basis of two of the currently
best-performing AES-based AEAD schemes: GCM [34] and
OCB3 [45]. In both cases, the size of the crucial internal value
and the block size of the cipher have to coincide and the latter
value is fixed to 128 bits for AES (independently of key size).
AES- GCM We consider the following abstraction of GCM.
The AEAD key k is used directly to create an instance E of
the AES blockcipher. To encrypt a message m with respect
to associated data d and nonce n, E is operated in counter
mode, givingapad E(n+1) || E(n+2) | ..., where a spe-
cific nonce encoding ensures there are no collisions between
counter values of different encryption operations. The first
part c; of the ciphertext ¢ = cjc; is obtained by XORing the
pad into the message, and finally the authentication tag c;
is derived by computing ¢ < E(n) + Hj(d, c1). Here, Hy,
is an instance of a universal hash function H indexed (that
is, keyed) with the 128-bit value & = E(0'?%). Concretely,
Hy(d,c)) = ZL] vih! =it where coefficients v1, ..., v
are such that a prefix vy ... v; is a length-padded copy of the
associated data d, the middle part vjq...v—1 is a length-
padded copy of ciphertext component c1, and the last item v;
is an encoding of the lengths of d and c;. The addition and
multiplication operations deployed in this computation are
those of a specific representation of the Galois field GF(2!28).

In executing a practical ASA against AES-GCM, it might
suffice to leak the value /4 (which has length 128-bits

Algorithm substitution attacks against receivers

1037

independently of the AES key length, and furthermore stays
invariant across encryption operations). The insight is that
if the key of a universal hash function is known, then it
becomes trivial to compute collisions. Concretely, assume
the adversary is provided with the AES-GCM encryption
¢ = cic; = enc(k,n,d, m) for unknown k, m but chosen
d,n. Then by the above, we have ¢; = R + Y /_, v;h!=i*!
where the coefficients vy ...v; are an encoding of d and
R is some residue. If, having been successfully leaked by
the ASA, the internal value /4 is known, by solving a linear
equation, it is easy to find an associated data string d’ # d,
|d’| = |d|, such that for its encoding v} v; we have

lj:] vl = Z{:] v;h!=1*1. Overall this means that
we have found d’ # d such that enc(k,n,d’,m) = ¢ =
enc(k,n,d, m). In a CCA attack, the adversary can thus
query for the decryption of ¢ with associated data d’ and
nonce n, and thus fully recover the target message m. We
finally note that this attack can be directly generalised to one
where also the ¢ and ¢, components are modified, resulting
in the decryption of a message m’ # m for which the XOR
difference between m and m’ is controlled by the adversary.
OCB3 Multiple quite different versions of the OCB encryp-
tion scheme exist [42], but a common property is that the
associated data input is incorporated via “ciphertext trans-
lation” [52]. To encrypt a message m under key k with
associated data d and nonce n, in a first step, the message m
is encrypted with a pure AE scheme!!) to an intermedi-
ate ciphertext ¢* < enc*(k, n, m). Then to obtain the final
ciphertext ¢, a pseudo-random function value Fj(d) of the
associated data string is XORed into the trailing bits of c¢*.
Concretely, in OCB3, we have Fi(d) = Zi:l E(; + Cy)
where all addition operations are XOR combinations of
128 bit values, E(-) stands for AES enciphering with key &,
values vy, ..., v represent a length-padded copy of associ-
ated data d, and coefficients Cq, ..., C; are (secret) constants
deterministically derived from the value L = E (0128),

In the context of an ASA, we argue that it is sufficient to
leak the 128 bit value L. The attack procedure is, roughly,
as in the AES-GCM case. Assume the adversary is provided
with the OCB3 encryption ¢ = enc(k, n, d, m) for unknown
k, m but chosen d, n, and assume the adversary knows L and
thus Cq, ..., C;. Nowlet 1 < s <t < be any two indices,
let A = Cy+C;andletd #d,|d'| = |d|, be the associated
data string with encoding v}, . .., v; such that we have v; =
vi+Aandv; = v;4+Aand v, = v; foralli # s, . Then, we
have E (vi+Cs) = E(v;+A+Cs) = E(v,+C;) and E (v, +
C;) = E(vs+A+C;) = E(vg+Cy), whichleads to Fy (d) =
Fr(d") and ultimately enc(k, n, d’, m) = enc(k, n, d, m).In
a CCA attack environment, this can immediately be leveraged

1 Assuming the above notation for AEAD schemes, we give a similar
syntax to AE schemes: an AE scheme encrypts a message m under key k
with nonce n to produce a ciphertext denoted enc* (k, n, m).

to the full recovery of m. As in the AES-GCM case, we note
that many variants of our attack exist (against all versions
of OCB), including some that manipulate message bits in a
controlled way.

5 AEAD schemes

We recall standard notions of (deterministic) nonce-based
AEAD, as per [52], and study how to adapt them to the
ASA setting. Formally, a scheme AEAD providing authenti-
cated encryption with associated data consists of algorithms
AEAD.gen, AEAD.enc, AEAD.dec. The scheme has associ-
ated spaces K, N, D, M, C. The key generation algorithm
AEAD.gen outputs a key k € K. The encryption algorithm
AEAD.enc takes key k € K, nonce n € N, associated data
d € D and message m € M, to produce ciphertext ¢ € C.
The decryption algorithm AEAD.dec takes key k, nonce n €
N, associated data d € D and ciphertext ¢ € C to output
either a message m € M or the special symbol L ¢ M to
indicate rejection. A shortcut notation for this syntax is

AEAD.gen — K, K x N x D x M — AEAD.enc — C
and K x N x D xC — AEAD.dec - MU {L}.

Scheme AEAD is said to be §-correct if for k <—; AEAD.gen
and ¢ <« AEAD.enc(k,n,d, m) for some (n,d,m) and
m’ <« AEAD.dec(k, n, d, c) the probability that m’ # m is
upper-bounded by §, where the probability is over all coins
involved.

5.1 IND-CCA

We formalise indistinguishability under chosen/ciphertext
attack for an AEAD scheme via the game IND — CCA in
Fig. 3 (left). For any adversary .4, we define the advantage

AdVRSE (A):= [Pr[IND — CCA’(4)]

—Pr [IND _ CCAI(A)”

and say that scheme AEAD is indistinguishable against

chosen-ciphertext attacks if Ade‘SAB“a(A) is negligibly

small for all realistic A.

5.2 Authenticity
We formalise the authenticity of an AEAD scheme via the
game AUTH in Fig. 4(left). For any adversary A, we define

the advantage

Advasth (A):=Pr[AUTH(A)]

@ Springer

1038

M. Armour, B. Poettering

Game IND-CCA?(A)
C+—0O,N+0
k <5 AEAD.gen
b AEnc‘Dec
stop with b’

Game subIND-CCA?(A)
igen-, is, IR <5 Igen X IS X IR
C+—0O,N<+0
k< AEAD.gen;
b AEnc,Dcc
stop with b’

Oracle Enc(n,d,m°,m")
require n ¢ N
N & {n}
c AEAD.enc,-S(k,n,d,mb)
C < {(n,d,c)}
return ¢

Oracle Enc(n,d,m®,m")
require n ¢ N
N & {n}
¢ + AEAD.enc(k,n,d,m")
C <« {(n,d,c)}

return ¢

Oracle Dec(n,d, c)
require (n,d,c) ¢ C
m < AEAD.dec(k,n,d,c)
return m

Oracle Dec(n,d,)
require (n,d,c) ¢ C
m < AEAD.dec;, (k,n,d,c)
return m

Fig. 3 Games modelling indistinguishability under chosen-ciphertext
attacks (IND — CCA), and subverted indistinguishability under chosen-
ciphertext attacks (subIND — CCA) for an authenticated encryption
scheme with associated data AEAD

Game AUTH(A) Game subAUTH(A)
k s AEAD.gen igemis7 iR s den X Ig X Ir
C+—0,N+0 k<5 AEAD.gen;
AEne.Dec C+—0O,N+0
lose AEnctDec
lose

Oracle Enc(n,d,m)
require n ¢ N
N < {n}
¢ < AEAD.encj (k,n,d,m)
C <& {(n,d,c)}
return ¢

Oracle Enc(n,d,m)
require n ¢ N
N < {n}
¢ + AEAD.enc(k,n,d,m)
C < {(n,d,c)}
return ¢

Oracle Dec(n,d, c) Oracle Dec(n,d, c)

m < AEAD.dec(k,n,d,c) m < AEAD .dec;, (k,n,d,c)

ifm# L A(nd,c)¢C: ifm# L A(nd,c)¢C:
win win

return m return m

Fig.4 Games modelling authenticity (AUTH) and subverted authentic-
ity (SUbAUTH) of an authenticated encryption scheme with associated
data AEAD

and say that AEAD provides authenticity if Advast (A) is
negligibly small for all realistic .A.

5.3 Subverting AEAD

We note that AEAD satisfies the generic syntax introduced
above in Sect. 4, with key generation algorithm IT.gen =
AEAD.gen, sender algorithm I'1.S = AEAD.enc and receiver
algorithm TT.R = AEAD.dec. We may thus apply the
generic notions of subversion and undetectability introduced
in Sect. 4.1. In Fig. 3(right) and Fig. 4(right), we specify the
games SUbIND — CCA and subAUTH (respectively), mod-
elling the adversary’s ability to compromise the expected

@ Springer

security properties of a scheme IT when that scheme has
been subverted.

We note that for symmetric primitives, key generation is
unlikely to be subverted in practice as symmetric keys are
typically generated by some external means not connected
with or influenced by the scheme itself—e.g. through key
agreement protocols, or by a trusted platform module. Nev-
ertheless, we retain a syntax that allows for the more general
case.

6 Message authentication schemes

Cryptographic message authentication is typically realised
with a message authentication code (MAC). Given a key k
and a message m, a tag ¢ is deterministically derived as per
t < tag(k, m). The (textbook) method to verify the authen-
ticity of m given ¢ is to recompute ¢’ < tag(k, m) and to
consider m authentic iff ' = ¢. If this final tag comparison
is implemented carelessly, a security issue might emerge: A
natural yet naive way to perform the comparison is to check
the tag bytes individually in left-to-right order until either
a mismatch is spotted or the right-most bytes have success-
fully been found to match. Note that, if tags are not matching,
such an implementation might easily give away, as timing
side-channel information, the length of the matching prefix,
allowing for practical forgery attacks via step-wise guessing.

This issue is understood by the authors of major cryp-
tographic libraries, which thus contain carefully designed
constant-time string comparison code. A consequence is that
services for tag generation and verification are routinely split
into two separate functions tag and vfy.'?> Our notion of
a message authentication scheme follows this approach. It
comprises MAC-based authentication as a special case, but
it also comprises the more exotic randomised MACs as con-
sidered in [1].

Formally, a scheme MAC providing message authenti-
cation consists of algorithms MAC.gen, MAC.tag, MAC.vfy
and associated spaces I, M, 7. The key generation algo-
rithm MAC.gen outputs a key k € K. The tagging algorithm
MAC.tag takes a key k € K and a message m € M, and
returns a message, tag pair (m, 1) € M x 7. The verifi-
cation algorithm MAC.vfy takes a key k € K, a message
m € M, and a tag r € 7, and returns either the message m
(indicating that the tag is accepted) or the special symbol L
to indicate rejection.!3 A shortcut notation for this syntax is

12 See https://nacl.cr.yp.to/auth.html for an example.

13 It is more common to consider the output of a MAC verification
algorithm to be a bit representing acceptance or rejection; this can be
obtained from our syntax by evaluating [MAC.vfy(k, m, t) = m].

https://nacl.cr.yp.to/auth.html

Algorithm substitution attacks against receivers

1039

Game IND-CCA®(A)
C<+0
(pk,sk) < PKE.gen
b — AEnc.Dec (pk)
stop with &’

Oracle Enc(m°,m")
¢ + PKE.enc(pk,m?)
C < {c}
return ¢

Oracle Dec(c)
require ¢ ¢ C
m <— PKE.dec(sk,¢)
return m

Game subIND-CCA?(A)
igeny is, iR < Igen X IS X IR
C+0
(pk,sk) < PKE.gen,
b AEnc,Dec(pk)
stop with &’

Oracle Enc(m°,m")

¢ + PKE.enc;, (pk,m")
C < {c}
return ¢

Oracle Dec(c)
require ¢ ¢ C
m < PKE.dec; (sk,¢)
return m

Game UF(A) Game subUF(.A)
k +—s MAC.gen igen, 15, iR s Lgen X Is X IR
C+0 k <5 MAC.gen;
ATaeVly C+0 =
lose ATag:Vy
lose
Oracle Tag(m) Oracle Tag(m)
t < MAC.tag(k,m) t <~ MAC.tag;; (k,m)
C < {(m,n)} C = {(m,n)}
return (m,t) return (m,r)
Oracle Vfy(m,1) Oracle Vfy(m,t)
m < MAC.vfy(k,m,t) m < MAC.vfy;, (k,m,t)
if [LA [(m,0) € C: | 00 if [# L] A(mr) & C:
win win
return m return m

Fig. 5 Left: Games modelling the unforgeability (UF) and sub-
verted unforgeability (subUF) of a message authentication scheme.
Right: Games modelling indistinguishability under chosen-ciphertext

MAC.gen - K and K x M — MACtag > M x T
and K x M x 7 — MAC.vfy > MU{Ll}.

We formalise the (strong) unforgeability of a message
authentication scheme via the game UF in Fig. 5(left, first
column). For any adversary A we define the advantage
Adv‘,\‘,fAC(A):z Pr[UF(A)] and say that the scheme MAC is
(strongly) unforgeable if Adv‘,\‘,fAC(A) is negligibly small for
all realistic A.

6.1 Subverting MACs

We note that MACs satisfy the generic syntax introduced
above in Sect. 4, with key generation algorithm IT.gen =
MAC.gen, sender algorithm I1.S = MAC.tag, receiver algo-
rithm IT.R = MAC.vfy. We may thus apply the generic
notions of subversion introduced in Sect. 4.1. We obtain the
notion of subverted unforgeability subUF, as in Fig. 5(left,
second column).

6.1.1 Discussion

We note that for symmetric primitives, key generation is
unlikely to be subverted (see the discussion at Sect. 5.3),
leaving us with the possibility that either the tagging or the
verification algorithm (or both) could be subverted. How-
ever, as tagging and verification are typically performed by
distinct, remote parties, successfully conducting such attacks
would require replacing implementations of two participants,
which we think is considerably less feasible than replacing
only one implementation.

attacks (IND — CCA), and subverted indistinguishability under chosen-
ciphertext attacks (subIND — CCA) for a public key encryption scheme
PKE

7 Public key encryption schemes

In this section, we consider ASAs against PKE schemes. A
treatment of key encapsulation mechanisms (KEMs) is given
in Appendix 1.

A PKE scheme PKE = (PKE.gen, PKE.enc, PKE.dec)
consists of a triple of algorithms together with key spaces
Ks, Kr, a message space M and a ciphertext space C. The
key-generation algorithm PKE.gen returns a pair (pk, sk) €
Ks x Kg consisting of a public key and a private key. The
encryption algorithm PKE.enc takes a public key pk and a
message m € M to produce a ciphertext ¢ € C. Finally, the
decryption algorithm PKE.dec takes a private key sk and a
ciphertext ¢ € C, and outputs either a message m € M or
the special symbol L ¢ M to indicate rejection. The correct-
ness requirement is that for (pk, sk) <—s gen and m € M
and ¢ < PKE.enc(pk,m) and m’ <« PKE.dec(sk, ¢), the
probability that m’ # m is upper-bounded by §, where the
probability is over all coins involved.

We formalise the indistinguishability under chosen/
ciphertext attack of a PKE scheme via the game IND — CCA
in Fig. 5(right, first column). For any adversary 4, we define
the advantage

Advit < (A):= [Pr[IND — CCA’ ()]

_ Pr{IND — CCAl(A)]‘

and say that scheme PKE is indistinguishable against chosen-
ciphertext attacks if Adv;,"}f'gCca (A) is negligibly small for all

realistic A.

@ Springer

1040

M. Armour, B. Poettering

7.1 Subverting PKE schemes

We note that PKE schemes satisfy the generic syntax intro-
duced above in Sect. 4, with the key generation algorithm
IT.gen = PKE.gen, sender algorithm I1.S = PKE.enc, and
receiver algorithm IT.R = PKE.dec. We may thus apply the
generic notions of subversion introduced in Sect. 4.1. See
Fig. 5(right, second column) for the game subIND — CCA,
modelling the adversary’s ability to compromise IND — CCA
when interacting with a subverted scheme.

7.1.1 Discussion

For PKE schemes, subverting the encryption algorithmis less
interesting, as the sender has no secret information to leak. It
would be possible to consider the subversion of encryption
with the view of compromising confidentiality of cipher-
texts, but we are targeting the stronger notion of key recovery
(which will lead to a full compromise of the confidentiality
of all ciphertexts). For PKE schemes, in contrast to symmet-
ric encryption, subverting the key generation algorithm is a
meaningful option, and we explain in Sect. 4.3 how subver-
sion attacks can be amplified when applied together with a
subverted key generation algorithm.

8 Concrete subversion attacks via
acceptance versus rejection

We assume that the objective of a subverted receiver algo-
rithm is to leak a bit string k, € {0, 1}* representing either
some leakage that will enable recovery of the secret (private)
key kg, following the discussion at Sects. 4.2.1 and 4.3, or
else a string that is sufficient to break security in the sense of
Sect. 4.4. We refer to k; as the leakage key in what follows.
At worst, from the subverter’s perspective, the leakage key
will simply be a bit string representation of kg.

We propose two key-recovering subversion attacks against
a scheme I1 = (Il.gen, I1.S, I1.R) satisfying the syntax
given in Sect. 4. While both attacks subvert the receiver algo-
rithm only, they differ in that our first attack is passive (can be
mounted by a mass surveillance adversary who eavesdrops),
and our second attack is active (requires intercepting and
modifying sender outputs in transmission—i.e. ciphertexts,
in the case of AEAD or PKE, or message-tag pairs in the
MAC case). The driving principles behind the two attacks
are closely related: In both cases, the receiver algorithm of
the attacked scheme is manipulated such that it marginally
deviates from the regular accept/reject behaviour; by making
these deviations depend on the leakage key, the bits of the
latter are leaked one by one.

Our passive attack rejects a sparse subset of the receiver
inputs that the unmodified algorithm would accept. Our

@ Springer

active attack does the opposite by accepting certain receiver
inputs that the unmodified algorithm would reject. A prop-
erty of the former (passive) attack is that the scheme’s
probability of incorrect decryption is increased by a small
amount (rendering it detectable with the same probability);
we believe however that in settings where rejected messages
are automatically retransmitted by the sender (for exam-
ple, in low-level network encryption like IPSec), this attack
is still practical and impactful. Our active attack does not
influence correctness. However, as key bits are leaked only
when the receiver algorithm is exposed to bogus inputs, suc-
cessful adversaries are necessarily active. The active attack
furthermore has the following attractive property: The under-
lying receiver outputs (i.e. messages) corresponding to the
injected inauthentic receiver inputs are not arbitrary (and thus
unexpected to the processing application), but identical with
sender inputs previously sent by the sender algorithm. This
allows attacks to be kept “under the radar”: the receiver will
not realise that an attack has been mounted, as all accepted
messages it receives will be those sent by the sender.

We note that both of our subversions are stateless, which
not only allows for much easier backdoor implementation
from a technical perspective but also should decrease the like-
lihood that an implemented attack is detected through code
review or observing memory usage. That said, our passive
attack also has a stateful variant with an interesting addi-
tional practicality feature. We discuss this further below. We
note that our subversion approach, for leaking at most one bit
per operation, remains on the conservative side. Depending
on the circumstances, in practice, more aggressive methods
that leak more than one bit per operation, are expected to be
easily derived from our subversion proposals.

8.1 Combinatorics: coupon collection

The passive and active attacks both exfiltrate secret key mate-
rial one bit at a time. The following lemma recalls a standard
coupon collector statement that will help analysing the effi-
ciency of this approach, in particular how long it takes until
all bits are extracted. For a proof of the lemma, see e.g. [43,
§8.4].

Lemma 1 Fix a finite set S (of “coupons”) and a probability
0 < n < 1. Experiment CC(S, n) inFig. 6 measures the num-
ber of iterations it takes to visit all elements of S (“collect
all coupons”) when picked uniformly at random and consid-
ered with probability 1. The expected number of iterations is
given by O(nlogn), where n = |S|. More precisely, we have

EICC(S)]—@(1+1+ +L)—o<1)
> 1 _TI 1 T S| = 0O(nlogn).

Note that parameter 1 is fully absorbed by the O (-) notation.

Algorithm substitution attacks against receivers

Fig.6 Coupon collector
experiment (see Lemma 1). EXP CC (S) 77)
Recall that B(n) denotes a S 0,10
Bemou.11.i trial with success while &' - S:
probability n (see Sect. 3) 5 g S
if B(n):
S < {s}
[—1+1
stop with /

8.2 Passive attack

We first give an intuition of our passive attack. Our attack sub-
verts the receiver algorithm so that an adversary who observes
decryption error events in a “normal” run of communication
between sender and receiver is able to learn bits of the leakage
key. The subverted receiver monitors incoming ciphertexts.
It applies a hash function to each of them to obtain a pointer
to a bit of the leakage key. It then, with a configurable proba-
bility, artificially rejects the ciphertext if the indicated bit of
the leakage key does not match some hard-coded reference
value. The adversary is able to apply the same hash func-
tion to the ciphertext and thus learns whether the bit position
deviates from the reference value. By bit-wise learning the
difference between the leakage key and the reference value,
eventually the adversary can put the complete leakage key
together.

In the remaining part of this section, we describe the spec-
ification of our subversion and KRP adversary in detail, and
analyse their effectiveness.

8.2.1 Description of our passive attack

We define our passive subversion of the receiver algorithm
I1.R of a scheme IT in Fig. 7(left). It is parameterised by
a probability 0 < y < 1, a large index space 7R, a
PRF (F;)icz;, and a family (G;);cz, of random constants.
For the PRF we require that it be a family of functions
Fi: Y — [0..A — 1] (that is: a pseudo-random mapping
from the ciphertext space to the set of bit positions of a leak-
age key k), and for the constants we require that G; € {0, 1}
(that is: a random element of the set of leakage keys {0, 1}*).
(That we use the same index space Zg for two separate prim-
itives is purely for notational convenience; our analyses will
actually assume that (F;) and (G;) are independent.14)

We provide details on our attack. The idea is that k|
(line 00), which is shared by the subverted algorithm and
the key recovering adversary through knowledge of G;, rep-

14" At the expense of introducing more symbols we could also have
formally separated the index spaces of (F) and (G). We believe that
our concise notation adds significantly to readability.

1041
Proc I1.R;(kr,y) Proc A(i)
kg/ — G kg, — G
x + ILR(kR,y) while k;’ incorrect:
if x = L: return x pickany o € A
if B(y): (¥, B) < Send(ax)
1+ F(y) X'+ Recv(y)
if k' [1] % ko[1]: i = 1
x+ L 1+ E(y)
J k1] < Y Gi[1] ki'[1] < ' Gi[1]
return x return k,’

Fig. 7 Passive subversion of receiver algorithm IT.R of a scheme II.
As in Fig. 6, B(-) denotes a Bernoulli trial. We let ! b := 1 — b denote
the inversion of a bit value b € {0, 1}. Left: Decryption subversion as
in Sect. 4.1. Line 07 is redundant if the attack is stateless; in a stateful
attack this line is meaningful—see the discussion below. Right: Key
recovering adversary for game KRP as in Sect. 4.2

resents an initial reference key'”; the key recovery adversary,
throughout the attack, learns the bits that differ between k¢
and kj,. This means that the subversion only needs to leak (on
average) half as many bits compared to leaking the whole of
k¢. The Bernoulli trial (line 03) controls the rate with which
such differing bits are exfiltrated, and the PRF (line 04) con-
trols which bit position ¢ is affected in each iteration. By PRF
security, these bit positions can be assumed uniformly dis-
tributed (though knowledge of the subversion index i allows
tracing which ciphertext is mapped to which position). Any
bit difference is communicated to the adversary by artificially
rejecting (line 06) the ciphertext, although it is actually valid.

We specify a corresponding KRP adversary in Fig. 7
(right). It starts with the same random string G; as the sub-
version and traces the bit updates of I1.R; until eventually
the full key k¢ is reconstructed. We assume that A can tell
whether the full leakage key k, has been recovered (line 10),
e.g. by recovering the secret key kg from k; and verifying
one or more recorded authentic outputs with it.

Note that our adversary .4 does not need to know the
sender inputs (equivalently, receiver outputs) x € X', which
typically represent plaintext messages in the settings we con-
sider, emerging throughout the experiment: The core of the
attack, in lines 13 to 16, is independent of the value of x. This
considerably adds to the practicality of our attack: While
messages are not always secret information, in practice
they might be hard to obtain. Conducting mass-surveillance
attacks is certainly easier if the attacks depend exclusively
on the knowledge of ciphertexts (like in our case, line 15).

While we present our subversion as stateless (i.e. the ref-
erence key is kept static between invocations), it also works

15 For generality, we consider G a keyed family of constants. The sim-
plest case would have all constants fixed to the same hardcoded string
(say, the string of all zeroes), which would aid in reducing the size of
the implementation code.

@ Springer

1042

M. Armour, B. Poettering

if the I1.R; algorithm maintains state between any two invo-
cations and remembers which differing bit positions have
already been communicated. Activate line 07, and execute
line 00 only during the first invocation, to obtain the state-
ful attack. With respect to the detectability and key recovery
notions from Sect. 4, the attack’s performance is the same
whether the subversion is stateful or not. The stateful version
offers better correctness after a subversion is detected, in the
sense that the algorithm will only behave unexpectedly at
most |k¢| = A occasions; once the leakage key k; has been
exfiltrated, the subverted scheme I1.R; behaves identically to
the honest scheme IT.R. (This case is practically less relevant
and not covered by our formal models.)

We establish the following statements about the key recov-
erability and undetectability of our passive subversion attack.

Theorem 1 For a 8-correct scheme T1, let T1.R; be defined as
in Fig. 7(left) and A as defined in Fig. 7(right). If F; behaves
like a random function and constants G; are uniformly dis-
tributed, then for any message sampler MS, the key recovery
advantage Adv];,lrg (A) is expected to reach value 1 once the
receive algorithm was invoked on O (). 1og A) different inputs.

Proof We model algorithm A(i) by experiment CC(S, 1)
fromFig. 6, withS =[0.. A — 1Jandn =1—-(6—1)(y/2—
1). The (pseudo-)randomness of F; ensures that elements of
s € §, here representing the possible values of the index ¢
(line 04), are picked uniformly at random. The probability
n=1—0@B—-1)(y/2—1) =8+ (1 —-15)(y/2) arises through
success of the CC experiment being equivalent to the IT.R;
outputting x = _L. This occurs either:

e Through an early exit with 1 = IT1.R(kg, y) at line 02,
which has probability §.

e Else, continuing to line 03 with L # II.R(kg, y) and
triggering both line 03 (with probability y) and line 05
(with probability 1/2, as Pr [ké [] # ke [L]] fort < F;(¢)
is 1/2).

Applying Lemma 1 gives the expected number of messages
to be sent as O (AlogA). O

Theorem 2 Let A be an adversary playing the UDR game
(as in Fig. 1 right), such that A makes at most q queries to
the receiver oracle Recv. The undetectability advantage of
the subversion I1.R;, as defined in Fig. 1(left), is bounded by

AdvEPR(A) < 1— (1 — p)7.

Proof Any adversary playing the UDR game against the sub-
verted I1.R; must, in order to win, trigger x = | with a
valid sender output (receiver input) y. More precisely, the
adversary A must find y such that IT.R(kg, y) # L but
IT.R;(kr, y) = L. Figure 8(left) shows the (obviously)

@ Springer

Proc A Proc A
(ks,kr) <5 IT.gen (ks,kr) < I1.gen
repeat ¢ times: S+ {y}
pick any x € X ct=0
y < IL.S(ks,x) while ct < ¢:
x < Recv(ks,y) pick any x € X
ifx=_1: y < I1.S(ks,x)
return 0 Y s V\S
return 1 if ILR(Y') = L:
ct+ct+1
x < Recv(ks,y')
S}
ifx=# L:
return 0
return 1

Fig.8 Detection adversaries for Game UDR as in Fig. 1. Left: For the
passive attack from Fig. 7. Right: For the active attack from Fig. 9

best adversarial strategy. Even if the adversary can sub-
mit y such that ¢ < F;(y) would be assigned in line 04
(Fig. 7), this is contingent on B(y) succeeding in line 03;
thus Pr[x = 1] < y in line 05 (Fig. 8). Clearly, detection
adversary A (Fig. 8left) always returns 1 when interacting
with the unsubverted receiver algorithm, as always x # L.
Thus,

AdvEPR(A) = [Pr[UDR!(A)] — Pr[lUDR?(A)]
<1-0-py

8.3 Active attack

In this section, we describe our second subversion attack.
In contrast to the previous attack, key recovery requires an
active adversary, i.e. one who injects crafted ciphertexts into
the regular transmission stream. Our ASA has the desirable
property (from the point of view of the subverter) that cor-
rectness is maintained.

We give an overview of our attack for the case of AEAD.
(The generalisation to MAC and PKE is immediate; for the
generic version following our abstract syntax see Fig. 9.) A
prerequisite of the attack is a keyed random permutation P; of
the AEAD ciphertext space. The key is known exclusively to
the subversion adversary. The AEAD encryption algorithm S
remains unmodified. For honestly generated ciphertexts, the
(subverted) algorithm R; implements the unmodified AEAD
decryption routine R. This ensures correctness.

To start a key recovery attack, the subversion adversary
waits for an honest ciphertext ¢ and replaces it with P;(c).
That is, the adversary suppresses the delivery of ¢ and instead
injects a “randomised same-length version” of the cipher-
text. By the authenticity property of the AEAD scheme, the

Algorithm substitution attacks against receivers

1043

Proc IL.R;(kr,y) Proc A(i)

kg/ — G kg, — G;

x + ILR(kgr,y) while k, incorrect:

ifx# L: pick any o
return x (v, B) < Send(a)

Y Py) Y B(y)

X +TILR(kr,y") if y/ =y, jump to line 14

ifx' = 1: x < Recv(y)
return | ifx#£ 1L:

L F(Y) L F(Y)

if ke[1] # k' [1]: ki'[1] < 1 Gil1]
return x’ return

return L

Fig.9 Active subversion of the receiver algorithm IT.R of a ciphertext
e-sparse scheme IT (see the discussion at Sect. 8.3). Left: Decryp-
tion subversion as in Sect. 4.1. Right: Key recovering adversary for
game KRA as in Sect. 4.2. The adversary needs to have no influence
over messages (modelled by «; see the discussion at Sect. 4.2). As
before, we let ! denote the inversion of a bit value

unmodified R algorithm would reject this ciphertext. This is
where the (subverted) R; deviates from R: If any incoming
ciphertext is deemed invalid upon decryption with R, with the
expectation that this could be the case due to a KRA attack
being in operation, R; applies Pf] to ¢ and tries to decrypt
the result (with R). If R rejects, R; rejects also (interpreta-
tion: ¢ was simply a random ciphertext, not injected by the
KRA adversary). If however R accepts, then R; concludes
that a KRA attack is in operation, and that it (R;) is supposed
to leak key material.'® Observing that R; just recovered the
originally encrypted message m, we let R; either deliver that
message, or we letitreturn L, i.e. indicate decryption failure.
That way, if a message is delivered by R;, it is always cor-
rect. As in Sect. 8.2, we modulate key bits into the decision
of delivering vs rejecting.

The above should make clear how the attack works.
Details, and the generic version, are in Sect. 8.3.2. We note
that a technical prerequisite of the attack is that for valid
ciphertexts ¢, P;(c) should not also be a valid ciphertext. As
P is arandom permutation, the standard AUTH and UF prop-
erties of AEAD and MAC ensure this. However, the situation
is different for PKE where it is easy to define schemes that
accept every ciphertext input, e.g. by outputting a valid but
dummy message. We resolve this technicality by requiring
the mild assumption of ciphertext sparseness: We say that
a PKE scheme has a sparse ciphertext space if the decryp-
tion algorithm makes an internal decision about the validity
of an incoming ciphertext, with the property that uniformly

16 Multiple options for this exist, for instance could the full kg be
embedded into the returned m; this would be powerful, but also has
practical disadvantages that would hinder effectiveness. We hence pur-
sue a different, milder approach.

picked ciphertexts are deemed invalid with overwhelmin
probability.

We studied a range of practically relevant PKE schemes
and observe that all of them satisfy the ciphertext sparseness
demand. For reference, we provide corresponding details for
OAEP and Cramer—Shoup encryption in Appendix 1. We
further observe that the general classes of plaintext-aware
schemes [13] (see also Appendix 1) and of schemes with
publicly verifiable ciphertexts [49] have this property as well.
We confirm also for all four of the NIST post-quantum cryp-
tography round 3 finalists!”, that are specifically designed to
mask decryption failures by accepting every ciphertext and
outputting a random value rather than the rejection symbol,
that they provide ciphertext sparseness: The mechanics of
the decryption/decapsulation algorithms are such that first
an internal yet explicit ciphertext validity decision is made
and then either the correct or an independent, randomised
value is output. Our subversions can easily adapt to such
specifications and be directly based on the outcome of the
validity check.

Lastly, we note that for the active attack there is no advan-
tage to the subverted receiver keeping state. This is because
the subverted receiver reveals key bits only when explicitly
queried by the adversary—thus, the adversary is able to main-
tain all necessary state. Note this is in contrast to our passive
attack where the adversary observes the receiver but does not
interact with it, and ultimately thus the attack could benefit
mildly from the subversion R; keeping state.

In the remaining part of this section, we define ciphertext
sparseness, describe the specification of our subversion and
KRA adversary, and analyse their effectiveness.

8.3.1 Ciphertext sparseness

We define ciphertext sparseness for a scheme IT as follows:
We say that IT = (IT.gen, I1.S, I1.R) is ciphertext e-sparse if
Pr[R(y) # L] < efory <—5 V. If € is negligibly small, we
refer to the scheme as being ciphertext sparse. For AEAD
and MAC schemes, ciphertext sparseness is a corollary of
the unforgeability (authenticity) properties. In particular, an
AEAD scheme that has AdelétAhD(A) < ¢ is ciphertext e-
sparse, as if Pr[R(y) # L] > & for y <5), then an
adversary who simply chooses an element of) uniformly at
random would win the AUTH game with probability greater
than . Similarly, a MAC scheme with AdVjiac(A) < & is
ciphertext ¢-sparse. As discussed above, ciphertext sparse-
ness is a reasonable assumption also for many practical PKE
schemes.

17 Classic McEliece, CRYSTALS-KYBER, NTRU and SABER.
Detailed information on the submissions, in particular their specifi-
cations, are available at the NIST PQC website https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

@ Springer

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

1044

M. Armour, B. Poettering

8.3.2 Description of our active attack

We define our active subversion of the receiver algorithm of
ciphertext-sparse scheme IT in Fig. 9(left). It is parameterised
by a large index space Zg, a PRF (F});cz;, @ PRP (P;);cz;,
and a family (G,);¢7;, of random constants. (As in Sect. 8.2,
our analyses will assume that (F;) and (P;) and (G;) are
independent.) For the PRF, we require that it be a family of
functions F;: Y — [0..A — 1] (that is: a pseudo-random
mapping from the output space to the set of bit positions of a
leakage key k; € {0, 1}*), for the PRP, we require that it be a
family of length-preserving permutations P;:) —) (that
is: a pseudo-random bijection on the sender output space),
and for the constants, we require that G; € {0, 1}* (that is: a
random element of the set of leakage keys).

The idea of our attack is as follows. Lines 01-03 of IT.R;
ensure that authentic receiver inputs are always accepted
(no limitation on correctness). If however a receiver input
(sender output) y is identified as not valid, i.e. is unauthen-
tic, then a secret further check is performed: The original
value y is mapped to an unrelated value y’ using the ran-
dom permutation (line 04), and the result y’ is checked for
validity (line 05). For standard (invalid) sender outputs y
this second validity check should also fail, and in this case,
algorithm IT.R; rejects as expected (lines 06 and 07). The
normally not attainable case that the second validity check
succeeds is used to leak key bits. The mechanism for this
(lines 08—11)is asin our passive attack from Sect. 8.2, namely
by communicating via accept/reject decisions the positions
where the bits of a hard-coded random reference value k,/é and
the to-be-leaked key k, differ.

The corresponding key recovery adversary crafts these
required bogus receiver inputs by obtaining a valid sender
output18 y (line 15) and modifies it in line 16. The informa-
tion thus leaked by the validity checking routine is used to
reconstruct target leakage key k, in the obvious way (lines 19
to 21). We establish the following statements about the key
recoverability and undetectability of our active subversion
attack.

Theorem 3 Foran e-sparse scheme T, let T1.R; be defined as
in Fig. 9(left) and A as in Fig. 9(right). If F; and P; behave
like random functions, and constants G; are uniformly dis-

tributed, then for any message sampler MS, the key recovery

advantage Advllf/rfé (A) is expected to reach value 1 once the

receive algorithm was invoked on O (A 1og A) different inputs.

18 Note that in the symmetric case, such authentic outputs are obtained
by intercepting valid communications between the sender and receiver;
in the public key case, an adversary can easily craft their own authen-
tic outputs using the public key. We consider adversaries that have no
influence on message choices for the most powerful attack (hence the
arbitrary value of « in line 14); adversaries who are able to utilise «
(and B) may be even more effective.

@ Springer

Proof By the ciphertext e-sparseness of the scheme I, each
invocation of algorithm IT1.R; in an execution of attack A(i)
has x # _L in line 02 (Fig. 9) with probability ¢ and thus
line 04 is reached with probability 1 — ¢. We model algo-
rithm A(7) by the experiment CC(S, 1) from Fig. 6, with § =
[0..Ax—1] and n = (1 — €)/2. The (pseudo-)randomness
of F; ensures that elements of s € S, here representing the
possible values of the index ¢ (line 20), are picked uniformly
at random. The probability 1/2 arises through success of the
CC experiment being equivalent to the condition x # L in
line 19. This occurs precisely when IT.R; returns x” # L in
line 10, which is conditional on IT.R; reaching past line 07.
The probability that x # L in line 19 is 1/2 as this is the
probability that for any sender output y’ and ¢ < F;(y'),
kelt] # Gi[t] (line 09). We now apply Lemma 1, which
gives us that the expected number of messages to be sent is
O(\logh). O

Theorem 4 Let A be an adversary playing the UDR game
(as in Fig. lright), such that A makes at most q queries to
the verification oracle Recv. If P; behaves like a random
function, and the scheme Il is ciphertext e-sparse, then the
undetectability advantage of the subversion I1.R;, as defined
in Fig. 9(left), is given by AdviT(A) <1 — (1 —).

Proof Any detection adversary A playing the UDR game
against the subverted I1.R; must, in order to win, triggers
IT.R; (y) # L with abogus y. That is, a sender output y with
IT.R(kr, y) = LbutI1.R;(kg, y) # L. Thiswill occurify =
P; ("), where T1.R(kg, y’) # L. As i is chosen uniformly
randomly from Zg and P is a (pseudo-)random function, the
optimal strategy is to sample values of y’ and test whether
Recv(kgr, y') # L. Algorithm A in Fig. 8(right) shows this
strategy. When A interacts with the unsubverted receiver
algorithm, we have that Pr[UDR' (A)] = 1 by construction.
When interacting with the subverted receiver algorithm, .4
returns x # _L by either triggering line 02 or line 10 of IT.R;.
By the ciphertext sparseness of the scheme, line 02 is trig-
gered with probability 1 —¢. Triggering line 10 happens with
probability < ¢. Thus, we have

AdvEPR(A) = [Pr[UDR!(A)] — Pr[UDR?(A)]

<1—(1—g). O

9 Conclusion

Our work examines subversion attacks against the receiv-
ing party, a class of ASA that was missed by previous work.
We give an abstract framework and show that ASAs targeting
receivers apply equally to any primitive meeting the syntax—
namely AEAD, MAC and PKE schemes. The internal details
of our attacks (described in Sects. 8.3.2 and 8.2.1) are such

Algorithm substitution attacks against receivers

1045

that we require a PRF (F;); 7, to uniformly hash ciphertexts
to bit positions. In the AEAD setting, this requirement can
be dropped where the AEAD scheme meets the widespread
design goal of IND$ security [52], i.e. ciphertexts indistin-
guishable from random bits. Combined with the fact that
symmetric keys are typically 256 bits, the first 8 bits of the
(uniformly distributed) ciphertexts are sufficient to point to
the bit position. This allows for a reduced footprint (and thus
significantly adds to the practicability of the attack for an
adversary).

Acknowledgements The research of Armour was supported by the
EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

Declarations

Conflict of interest There are no conflicts of interest for this research.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A key and data encapsulation mechanisms
A.1 Key encapsulation mechanisms

For completeness, we give the corresponding definitions of
subversion attacks against key encapsulation mechanisms,
together with notions of undetectability and key recovery.

A.1.1 KEM definition

A KEM scheme KEM = (KEM.gen, KEM.enc, KEM.dec) for
a finite session key space K is a triple of algorithms together
with akey space /Cs x g and ciphertext space C. The key gen-
eration algorithm KEM.gen returns a pair (pk, sk) € Ks x Kg
consisting of a public key and a secret key. The encapsula-
tion algorithm KEM.enc takes a public key pk to produce
a session key k € K and a ciphertext ¢ € C. Finally, the
decapsulation algorithm KEM.dec takes a secret key sk and a
ciphertext ¢ € C, and outputs either a session key K € K or
the special symbol L ¢ K to indicate rejection. The correct-

Game IND-CCA®(A)
C+0
(pk,sk) + KEM.gen
b — AEncap,Decap (pk)
stop with &’

Game subIND-CCA?(A)
C+0
igen,is,IR <—s Lgen X Ls X IR
(pk,sk) < KEM.gen,
b — AEncapDecap (pk)
stop with b’

Oracle Encap
(k°,¢) + KEM.enc(pk)

Oracle Encap
(k°,c) + KEM.enc; (pk)

kl s K kl s K
C < {c} C < {c}
return (k,¢) return (k?,c)
Oracle Decap(c) Oracle Decap(c)
require ¢ ¢ C require ¢ ¢ C
k < KEM.dec(sk,c) k < KEM.dec;, (sk,c)
return k return k

Fig. 10 Games modelling indistinguishability under chosen-ciphertext
attacks (IND — CCA), and subverted indistinguishability under chosen-
ciphertext attacks (SubIND — CCA) for a key encapsulation mechanism
KEM

ness requirement is that for all (pk, sk) € Ks x Kg, we have
Pr [KEM.dec(sk,) # k]| < & for (k, c) < KEM.enc(pk).

A.1.2IND-CCA

For a key encapsulation mechanism, we formalise the
indistinguishability under chosen-ciphertext attack via the
game IND — CCA in Fig. 10(left). For any adversary A, we
define the advantage

Adviggh < (A):=|Pr [IND — CCA’(4) |

_pr [IND - CCAI(A)]‘

and say that scheme KEM is indistinguishable against chosen-
ciphertext attacks if Adv;?éi,\; “@(A) is negligibly small for all
realistic A.

A.1.3. Subverting KEM

We note that KEM schemes satisfy the generic syntax intro-
duced above in Sect. 4, with key generation algorithm
IT.gen = KEM.gen, sender algorithm I1.S = KEM.enc,
receiver algorithm IT.R = KEM.dec. We may thus apply the
generic notions of subversion introduced in Sect. 4.1, and
observe that the passive attack in Sect. 8.2 applies. If the
KEM scheme is in addition ciphertext sparse, according to
the notion in Sect. 8.3.1, then the attacks in Sect. 8.3 will also
apply. Figure 10(right) shows the game modelling subverted
indistinguishability under chosen-ciphertext attacks.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1046

M. Armour, B. Poettering

Game IND-CCA”(A)
C+0
k +s DEM.gen
b — AEnc,Dec
stop with &’

Oracle Enc(m®,m")
require C =0
¢ + DEM.enc(k,m")
C < {c}
return ¢

Oracle Dec(c)
require C # 0

require ¢ ¢ C
m + DEM.dec(k,¢)
return m

Game subIND-CCA”(A)
C+0

igemiS’ iR A Igen X IS X IR

k <+ DEM.genigen
b — AEHC,DCC
stop with '

Oracle Enc(m®,m!)

require C =0

¢ < DEM.enc;, (k,m")
C & {c}

return ¢

Oracle Dec(c)
require C # 0
require ¢ ¢ C
m < DEM.dec;, (k,¢)
return m

Fig. 11 Games modelling indistinguishability under one-time chosen-
ciphertext attacks (IND — CCA), and subverted indistinguishability
under one-time chosen-ciphertext attacks (subIND — CCA) for a data
encapsulation mechanism DEM

A.1.4. Data encapsulation

A DEM scheme DEM = (DEM.gen, DEM.enc, DEM.dec) is
a triple of algorithms together with associated key space /C,
message space M and ciphertext space C. The key generation
algorithm DEM.gen returns key k € K. The encapsulation
algorithm DEM.enc takes key k € K and a message m € M,
and outputs a ciphertext ¢ € C. The decapsulation algo-
rithm DEM.dec takes a key k € K and a ciphertext ¢ €
C, and outputs either a message m € M or the special
symbol L ¢ M to indicate rejection. The correctness
requirement is that for all keys k € K,m € M it holds
that Pr [DEM.dec(k, ¢) # m] < § for ¢ < DEM.enc(k, m).

A.1.5.IND-CCA

We formalise the indistinguishability under one-time chosen-
ciphertext attack of a data encapsulation mechanism via the
game IND — CCA in Fig. 11(left). Note how lines 04 and 08
ensure that the adversary’s first query is an encryption query,
and that all further queries are decryption queries. (This
precisely matches the typical situation as it emerges in a
KEM/DEM hybrid.) For any adversary .4, we define the
advantage

AdvSS 2 (A):= [Pr [IND — cCA%(4)] — Pr [IND — ccal ()|

and say that scheme DEM is indistinguishable against chosen-
ciphertext attacks if Adv'J’L“d*cca is negligibly small for all
realistic A.

@ Springer

A.1.6. Subversion of DEM

We note that Data Encapsulation Mechanism schemes sat-
isfy the generic syntax introduced above in Sect. 4, with
key generation algorithm I1.gen = DEM.gen, sender algo-
rithm I1.S = DEM.enc, receiver algorithm I1.R = DEM.dec.
We may thus apply the generic notions of subversion intro-
duced in Sect. 4.1, and observe that the passive attack in
Sect. 8.2 applies. If the DEM scheme is in addition cipher-
text sparse, according to the notion in Sect. 8.3.1, then the
attacks in Sect. 8.3 will also apply. Figure 11(right) shows the
game modelling subverted indistinguishability under chosen-
ciphertext attacks.

DiscussION Typically, a DEM is used together with a KEM
in a so-called hybrid encryption scheme that uses the KEM
to share (symmetric) session keys with which plaintext mes-
sages are encrypted under the DEM. In such a setting,
subverting the KEM is sufficient to undermine the security of
messages sent via the hybrid scheme. Following the discus-
sion at Sect. 4.3, it is conceivable to subvert a KEM and DEM
in tandem so that the KEM’s secret key is leaked by the both
together. This could allow the subversion to effectively be
distributed between the two primitives, aiding undetectabil-
ity in practice.

B. Example ciphertext sparse PKE schemes

We describe two widespread PKE schemes that satisfy the
notion of ciphertext sparseness described in Sect. 8.3.1.
OAEP Optimal Asymmetric Encryption Padding (OAEP)
was introduced by Bellare and Rogaway [15] and is a widely
deployed and standardised PKE scheme. The encryption
algorithm of OAEP works on message space M = {0, 1}¢
with fixed message length £. Let ko and k; be integers, and
G: {0, 1} — {0, 1}tk and H: {0, 1}tk — {0, 1}ko
be two hash functions. Messages are padded before being
encrypted using the trapdoor permutation (typically RSA):
To pad a message m € M, set m’ < m || 0¥ and choose
r < {0, 1}"0. Thensets < m' ® G(r),t < r @ H(s) and
m < s || t. To decrypt a ciphertext, first decrypt (i.e. apply
the trapdoor inverse) before unpadding the resulting padded
message /: Parse i as s || ¢ with s € {0, 1}¥**1 and 1 €
{0, 1}¥0. Now compute r < 1 @ H(s) and m’ < s ® G(r).
If m" # m || 08 for some m then reject, otherwise return m.

For a randomly chosen element ¢ in the ciphertext space
C, the redundancy introduced by padding will ensure that
decrypting c results in a valid message with probability 271
This is because choosing ¢ <—g C is equivalent to choos-
ing a random m’ < {0, 1}¥**1 assuming that the trapdoor
permutation and hash functions all behave like random func-
tions. Equivalently, the scheme is ciphertext 2% -sparse,
according to the definition in Sect. 8.3.1.

Algorithm substitution attacks against receivers

Proc CS.gen(G, g, 8, hk)

X1,%2,Y1,Y2,21,22 <5 Zg
agnge b gl g2, d g g?

Proc CS.dec(sk,c)
parse c as (a,d,e,v)
p < Hhk(a,ﬁ,e)

pk «+ (a,b,d) if v s g TP grataep
sk < (x1,X2,¥1,2,21,22) return L
output (Sk,]?k) else:

mé—c-(aa2)"!

return m

Proc CS.enc(pk,m)
U~y Lg,w < g", W+ g"
e+d"-m
p < Hpk(a,d,e)
V< a'b"P
output ¢ = (a,d, e,v)

Fig.12 Cramer—Shoup PKE scheme CS = (CS.gen, CS.enc, CS.dec)

CRAMER- - SHOUP The Cramer—Shoup PKE scheme was
introduced in [26]. The encryption scheme CS = (CS.gen,
CS.enc, CS.dec) is defined in relation to a set of public
parameters consisting of finite group G with |G| = ¢ and
a pair of generators g, g for G, together with a hash key hk
for a family of keyed collision resistant universal hash func-
tions Hpy : G* — Zg. The family of keyed hash functions is
such that given a randomly chosen tuple of group elements
and randomly chosen hash function key, it is computation-
ally infeasible to find a different tuple of group elements that
hashes to the same value using the given hash key. We give
details of Cramer—Shoup in Fig. 12.

For a randomly chosen element ¢ = (a, a, e, v) in the
ciphertext space G*, the redundancy introduced by the hash
function will ensure that decrypting ¢ results in a valid mes-
sage with probability q_l. To see this, consider fixed a, a, e:
this gives a fixed value of @*1™1# . g¥2t2/ ¢ G and thus
Pr [v = gX1tne .&Xeryzp] - q’l.

C. Plaintext awareness

We here give the definition of plaintext awareness, a prop-
erty of PKE schemes that implies ciphertext sparseness (see
Sect. 8.3.1). Plaintext awareness essentially means that an
adversary is unable to create ciphertexts without knowing the
underlying plaintext message. This means that ciphertexts
which have not been generated from underlying plaintext
messages should be rejected, implying that ciphertexts cho-
sen uniformly at random from the ciphertext space are
unlikely to be valid. Both the Cramer—Shoup cryptosystem
[25,30] and RSA+OAEP [15,51], outlined in Sect. 8.3.1, sat-
isfy plaintext awareness.

The formal definitions of plaintext awareness in the stan-
dard model were proposed by Bellare and Palacio [13], and
were slightly extended by Dent and Birkett [20,30]. A scheme
is plaintext aware if for all ciphertext creators (attackers) A,
there exists a plaintext extractor K which takes as input the
random coins of A and can answer the decryption queries of

1047
Game PAbK‘MS, 4(D) Oracle Enc()

C+0 (6,m,B) +sMS(c,)
oo ¢ < PKE.enc(pk,m); C <= ¢
(pk,sk) < PKE.gen return ¢
AEnc,Dec k
b D (k) Oracle Dec(c)
; h b/ require ¢ ¢ C
sop if b= 0:

return PKE.dec(sk, c)

else:
return K(pk, c,R[A],C)

Fig. 13 Game modelling plaintext awareness (PA), for a public key
encryption scheme PKE. Note that we retain 8 (modelling side-channel
information) in the syntax of message sampler MS for consistency with
previous sections, but here the adversary is not given output j

A in a manner that A cannot distinguish from a real decryp-
tion oracle. In order to model the attacker’s ability to obtain
ciphertexts for which it does not know the underlying plain-
text, the ciphertext creator is equipped with an oracle that
will return the encryption of a randomly chosen message
m <—s MS, where MS is an arbitrary (stateful) message sam-
pling algorithm that takes as input « allowing an adversary
(ciphertext creator) to specify a distribution on messages. In
Fig. 13, we write ¢ for the initial state of MS. After interacting
with either the real decryption algorithm or the knowledge
extractor simulating decryption, the ciphertext creator out-
puts a ciphertext c¢. A distinguisher D is now tasked with
guessing which case we are in. Note that the knowledge
extractor K does not have access to the distinguisher’s ran-
domness.

We formalise plaintext awareness of a public key encryp-
tion scheme via the game PA in Fig. 13. For any distin-
guisher D, we define the advantage

AV 4(D)i= ‘Pr [PA%MS’ A(D)]

—Pr [PA, yis, 4P|

We say that a scheme is plaintext aware if for all realistic
ciphertext creators A, there exists a knowledge extractor K
such that for all message samplers MS and distinguishers D,
the advantage AdvE?MS’ (D) is negligibly small.

We note that a PKE scheme that satisfies plaintext
awareness and indistinguishability against chosen-ciphertext
attacks (Sect. 7) is necessarily ciphertext sparse. To see
this, suppose that the PKE scheme is not ciphertext sparse.
For a randomly chosen-ciphertext ¢ <—s C, the real game
PA% ms. A (D) will output a valid message m. However, in the
random game PA|1<,Ms, (D) the knowledge extractor will not
be able to output m without contradicting the plaintext aware-
ness and CCA security of the scheme. We thus conclude that
the scheme is ciphertext sparse.

@ Springer

1048

M. Armour, B. Poettering

References

10.

11.

12.

13.

Al Mansoori, F., Baek, J., Salah, K.: Subverting MAC: how
authentication in mobile environment can be undermined. In 2016
IEEE conference on computer communications workshops (INFO-
COM WKSHPS), pp 870-874, (2016). https://doi.org/10.1109/
INFCOMW.2016.7562200

Armour, M., Cid, C.: Partition oracles from weak key forgeries.
Cryptology ePrint Archive, Report 2021/1296, (2021). https:/
eprint.iacr.org/2021/1296

Armour, M., Cid, C.: Partition oracles from weak key forgeries. In:
Conti, M., Stevens, M., Krenn, S. (eds.) Cryptology and Network
Security, pp. 42-62. Springer, Cham (2021)

Armour, M., Poettering, B.: Substitution attacks against message
authentication. IACR Trans. Symm. Cryptol. 2019(3), 152-168
(2019). https://doi.org/10.13154/tosc.v2019.i3.152-168

Armour, M., Poettering, B.: Subverting decryption in AEAD. In
Martin Albrecht, (ed.), 17th IMA international conference on cryp-
tography and coding, volume 11929 of Lecture Notes in Computer
Science, pages 22—-41. Springer, Heidelberg, (2019). https://doi.
org/10.1007/978-3-030-35199-1_2

Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature
schemes. In: Indrajit Ray, Ninghui Li, and Christopher Kruegel,
(eds.), ACM CCS 2015: 22nd conference on computer and com-
munications security, pp 364-375. ACM Press, (2015). https://doi.
org/10.1145/2810103.2813635

Aviram, N., Dowling, B., Komargodski, I., Paterson, K. G.., Ronen,
E., Yogev, E.: Practical (post-quantum) key combiners from one-
wayness and applications to TLS. Cryptology ePrint Archive,
Report 2022/065, (2022). https://eprint.iacr.org/2022/065

Barker, E.: Nist special publication 800-57 part 1, revision 5.
Recomm. Key Manag. (2020). https://doi.org/10.6028/NIST.SP.
800-57pt1r5

Bauer, B., Farshim, P., Mazaheri, S.: Combiners for backdoored
random oracles. In Hovav Shacham and Alexandra Boldyreva,
(eds.), Advances in cryptology: CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pp 272-302.
Springer, Heidelberg, (2018). https://doi.org/10.1007/978-3-319-
96881-0_10

Bellare, M., Hoang, V. T.: Resisting randomness subversion: fast
deterministic and hedged public-key encryption in the standard
model. In Elisabeth Oswald and Marc Fischlin, (eds.), Advances in
Cryptology: EUROCRYPT 2015, Part II, volume 9057 of Lecture
Notes in Computer Science, pp 627-656. Springer, Heidelberg,
(2015). https://doi.org/10.1007/978-3-662-46803-6_21

Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without
the state: strongly undetectable algorithm-substitution attacks. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, (eds.), ACM
CCS 2015: 22nd conference on computer and communications
security, pp 1431-1440. ACM Press, (2015). https://doi.org/10.
1145/2810103.2813681

Bellare, M., Kane, D., Rogaway,P.: Big-key symmetric encryp-
tion: resisting key exfiltration. In Matthew Robshaw and Jonathan
Katz, (eds.), Advances in cryptology: CRYPTO 2016, Part I, vol-
ume 9814 of Lecture Notes in Computer Science, pp 373—402.
Springer, Heidelberg, (2016). https://doi.org/10.1007/978-3-662-
53018-4_14

Bellare, M., Palacio, A.: Towards plaintext-aware public-key
encryption without random oracles. In Pil Joong Lee, (ed.),
Advances in cryptology: ASIACRYPT 2004, volume 3329 of Lec-
ture Notes in Computer Science, pp 48—62. Springer, Heidelberg,
(2004). https://doi.org/10.1007/978-3-540-30539-2_4

Bellare, M., Paterson, K. G., Rogaway, P.: Security of symmet-
ric encryption against mass surveillance. In Juan A. Garay and
Rosario Gennaro, (eds.), Advances in cryptology: CRYPTO 2014,

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Part I, volume 8616 of Lecture Notes in Computer Science, pp
1-19. Springer, Heidelberg, (2014). https://doi.org/10.1007/978-
3-662-44371-2_1

Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In
Alfredo De Santis, (ed.), Advances in cryptology: EURO-
CRYPT’94, volume 950 of Lecture Notes in Computer Science,
pp 92-111. Springer, Heidelberg, (1995). https://doi.org/10.1007/
BFb0053428

Bemmann, P., Chen, R., Jager, T.: Subversion-resilient public
key encryption with practical watchdogs. In Juan Garay, (ed.),
PKC 2021: 24th international conference on theory and practice
of public key cryptography, Part I, volume 12710 of Lecture Notes
in Computer Science, pp 627-658. Springer, Heidelberg, (2021).
https://doi.org/10.1007/978-3-030-75245-3_23

Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a
steganographic perspective. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, (ed.), ACM CCS 2017:
24th conference on computer and communications security, pp
1649-1660. ACM Press, (2017). https://doi.org/10.1145/3133956.
3133981

Berndt, S., Wichelmann, J., Pott, C., Traving, T.-H., Eisenbarth,
T.: ASAP: algorithm substitution attacks on cryptographic proto-
cols. Cryptology ePrint Archive, Report 2020/1452, (2020). https:/
eprint.iacr.org/2020/1452

Bhunia, S., Hsiao, M. S., Banga, M, Narasimhan, S.: Hardware
trojan attacks: threat analysis and countermeasures. In Proceedings
of the IEEE, 102(8):1229-1247, (2014)

Birkett, J., Dent, A. W.: Relations among notions of plaintext
awareness. In Ronald Cramer, (ed.), PKC 2008: 11th international
workshop on theory and practice in public key cryptography, vol-
ume 4939 of Lecture Notes in Computer Science, pages 47-64.
Springer, Heidelberg, (2008). https://doi.org/10.1007/978-3-540-
78440-1_4

Bossuat, A., Bultel, X., Fouque, P.-A., Onete, C., Merwe, T. van
der.: Designing reverse firewalls for the real world. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, (eds.),
ESORICS 2020: 25th European symposium on research in com-
puter security, Part I, volume 12308 of Lecture Notes in Computer
Science, pp 193-213. Springer, Heidelberg, (2020). https://doi.org/
10.1007/978-3-030-58951-6_10

Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attesta-
tion with subverted TPMs. In Jonathan Katz and Hovav Shacham,
(eds.), Advances in cryptology: CRYPTO 2017, Part III, vol-
ume 10403 of Lecture Notes in Computer Science, pp 427-461.
Springer, Heidelberg, (2017). https://doi.org/10.1007/978-3-319-
63697-9_15

Chen, R., Huang, X., Yung, M.: Subvert KEM to break DEM:
Practical algorithm-substitution attacks on public-key encryption.
In Shiho Moriai and Huaxiong Wang, (eds.), Advances in cryptol-
ogy: ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes
in Computer Science, pp 98-128. Springer, Heidelberg, (2020).
https://doi.org/10.1007/978-3-030-64834-3_4

Coppersmith, D.: Finding a small root of a bivariate integer equa-
tion; factoring with high bits known. In Ueli M. Maurer, (ed.),
Advances in cryptology: EUROCRYPT’96, volume 1070 of Lec-
ture Notes in Computer Science, pp 178—189. Springer, Heidelberg,
(1996). https://doi.org/10.1007/3-540-68339-9_16

Cramer, R., Shoup, V.: A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, (ed.), Advances in cryptology: CRYPTO’98, volume
1462 of Lecture Notes in Computer Science, pp 13-25. Springer,
Heidelberg, (1998). https://doi.org/10.1007/BFb0055717
Cramer, R., Shoup, V.: Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext
attack. SIAM J. Comput. 33(1), 167-226 (2003)

https://doi.org/10.1109/INFCOMW.2016.7562200
https://doi.org/10.1109/INFCOMW.2016.7562200
https://eprint.iacr.org/2021/1296
https://eprint.iacr.org/2021/1296
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1145/2810103.2813635
https://eprint.iacr.org/2022/065
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1145/3133956.3133981
https://eprint.iacr.org/2020/1452
https://eprint.iacr.org/2020/1452
https://doi.org/10.1007/978-3-540-78440-1_4
https://doi.org/10.1007/978-3-540-78440-1_4
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/BFb0055717

Algorithm substitution attacks against receivers

1049

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Crépeau, C., Slakmon, A.: Simple backdoors for RSA key gener-
ation. In Marc Joye, (ed.), Topics in cryptology: CT-RSA 2003,
volume 2612 of Lecture Notes in Computer Science, pp 403—
416. Springer, Heidelberg, (2003). https://doi.org/10.1007/3-540-
36563-X_28

Degabriele, J. P., Farshim, P., Poettering, B.: A more cautious
approach to security against mass surveillance. In Gregor Lean-
der, (ed.), Fast software encryption: FSE 2015, volume 9054 of
Lecture Notes in Computer Science, pp 579-598. Springer, Hei-
delberg, (2015). https://doi.org/10.1007/978-3-662-48116-5_28
Degabriele, J. P., Paterson, K. G., Schuldt, J. C. N., Woodage,
J.: Backdoors in pseudorandom number generators: possibility
and impossibility results. In Matthew Robshaw and Jonathan
Katz, (eds.), Advances in cryptology: CRYPTO 2016, Part I, vol-
ume 9814 of Lecture Notes in Computer Science, pp 403—432.
Springer, Heidelberg, (2016). https://doi.org/10.1007/978-3-662-
53018-4_15

Dent, A. W.: The cramer-shoup encryption scheme is plaintext
aware in the standard model. In Serge Vaudenay, (ed.), Advances
in cryptology: EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pp 289-307. Springer, Heidelberg, (2006).
https://doi.org/10.1007/11761679_18

Dodis, Y., Farshim, P., Mazaheri, S., Tessaro, S.: Towards defeat-
ing backdoored random oracles: indifferentiability with bounded
adaptivity. In Rafael Pass and Krzysztof Pietrzak, (eds.), TCC 2020:
18th theory of cryptography conference, Part I1I, volume 12552 of
Lecture Notes in Computer Science, pp 241-273. Springer, Hei-
delberg, (2020). https://doi.org/10.1007/978-3-030-64381-2_9
Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A
formal treatment of backdoored pseudorandom generators. In Elis-
abeth Oswald and Marc Fischlin, (eds.), advances in cryptology:
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Com-
puter Science, pp 101-126. Springer, Heidelberg, (2015). https://
doi.org/10.1007/978-3-662-46800-5_5

Dodis, Y., Mironov, 1., Stephens-Davidowitz, N.: Message trans-
mission with reverse firewalls: secure communication on cor-
rupted machines. In Matthew Robshaw and Jonathan Katz, (eds.),
Advances in cryptology: CRYPTO 2016, Part I, volume 9814 of
Lecture Notes in Computer Science, pp 341-372. Springer, Hei-
delberg, (2016). https://doi.org/10.1007/978-3-662-53018-4_13
Dworkin, M. J.: SP 800-38D: Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM) and GMAC. US
National Institute of Standards and Technology (2007). https://doi.
org/10.6028/NIST.SP.800-38D

Dziembowski, S., Faust, S., Standaert, F.-X.: Private circuits III:
hardware trojan-resilience via testing amplification. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, (eds.), ACM CCS 2016: 23rd confer-
ence on computer and communications security, pp 142-153. ACM
Press, (2016). https://doi.org/10.1145/2976749.2978419

Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions:
immunizing HMAC and HKDF. In Steve Chong and Stephanie
Delaune, (eds.), CSF 2018: IEEE 31st computer security founda-
tions symposium, pages 105-118. IEEE Computer Society Press,
(2018). https://doi.org/10.1109/CSE.2018.00015

Fischlin, M., Mazaheri, S.: Self-guarding cryptographic proto-
cols against algorithm substitution attacks. In Steve Chong and
Stephanie Delaune, (eds.), CSF 2018: IEEE 31st computer secu-
rity foundations symposium, pages 76-90. IEEE Computer Society
Press, (2018). https://doi.org/10.1109/CSF.2018.00013

Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In Michel
Abdalla and Ricardo Dahab, (eds.), PKC 2018: 21st international
conference on theory and practice of public key cryptography,
Part I, volume 10769 of Lecture Notes in Computer Science, pp
190-218. Springer, Heidelberg, (2018). https://doi.org/10.1007/
978-3-319-76578-5_7

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.e: The design and imple-
mentation of protocol-based hidden key recovery. In: Boyd, Colin,
Mao, Wenbo (eds.), ISC 2003: 6th international conference on
information security. Lecture Notes in Computer Science, 2851:
165-179. Springer, Heidelberg (2003)

Gollmann, D.: Computer Security (3. ed.). Wiley, 2011.
URL: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
1118801326.html

Hodges, P., Stebila, D.: Algorithm substitution attacks: state reset
detection and asymmetric modifications. IACR Trans. Symm.
Cryptol. 2021(2), 389422 (2021). https://doi.org/10.46586/tosc.
v2021.i2.389-422

Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis
of OCB2: attacks on authenticity and confidentiality. In Alexandra
Boldyreva and Daniele Micciancio, (eds.), Advances in cryptology:
CRYPTO 2019, PartI, volume 11692 of Lecture Notes in Computer
Science, pp 3-31. Springer, Heidelberg, (2019). https://doi.org/10.
1007/978-3-030-26948-7_1

Isaac, R.: The Pleasures of Probability. Springer, Berlin (2013)
Knudsen, L. R., Kohno, T.: Analysis of RMAC. In Thomas Johans-
son, (ed.), Fast Software encryption: FSE 2003, volume 2887 of
Lecture Notes in Computer Science, pages 182—191. Springer, Hei-
delberg, (2003). https://doi.org/10.1007/978-3-540-39887-5_14
Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algo-
rithm, (2014). https://tools.ietf.org/html/rfc7253

Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks.
In 30th USENIX security symposium (USENIX Security 21),
pages 195-212. USENIX Association, (2021). URL: https://www.
usenix.org/conference/usenixsecurity2 1/presentation/len

Ma, H., Zhang, R., Yang, G., Song, Z., Sun, S., Xiao, Y.: Conces-
sive online/offline attribute based encryption with cryptographic
reverse firewalls - secure and efficient fine-grained access control
on corrupted machines. In Javier Lépez, Jianying Zhou, and Miguel
Soriano, (eds.), ESORICS 2018: 23rd European Symposium on
Research in Computer Security, Part II, volume 11099 of Lecture
Notes in Computer Science, pages 507-526. Springer, Heidelberg,
(2018). https://doi.org/10.1007/978-3-319-98989-1_25

Mironov, 1., Stephens-Davidowitz, N.: Cryptographic reverse fire-
walls. In Elisabeth Oswald and Marc Fischlin, (eds.), Advances in
cryptology: EUROCRYPT 2015, Part II, volume 9057 of Lecture
Notes in Computer Science, pages 657-686. Springer, Heidelberg,
(2015). https://doi.org/10.1007/978-3-662-46803-6_22

Nieto, J.M.G., Manulis, M., Poettering, B., Rangasamy, J., Stebila,
D.: Publicly verifiable ciphertexts. J. Comput. Secur. 21(5), 749—
778 (2013). https://doi.org/10.3233/JCS-130473

Poettering, B., Rosler, P.: Combiners for AEAD. IACR Trans.
Symm. Cryptol. 2020(1), 121-143 (2020). https://doi.org/10.
13154/tosc.v2020.i1.121-143

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining
digital signatures and public-key cryptosystems. Commun. Assoc.
Comput. Mach. 21(2), 120-126 (1978)

Rogaway, P.: Authenticated-encryption with associated-data. In
Vijayalakshmi Atluri, (ed.), ACM CCS 2002: 9th conference on
computer and communications security, pp 98-107. ACM Press,
(2002). https://doi.org/10.1145/586110.586125

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clip-
ping the power of kleptographic attacks. In Jung Hee Cheon
and Tsuyoshi Takagi, (eds.), Advances in cryptology: ASI-
ACRYPT 2016, Part II, volume 10032 of Lecture Notes in
Computer Science, pp 34—64. Springer, Heidelberg, (2016). https:/
doi.org/10.1007/978-3-662-53890-6_2

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Destroying steganog-
raphy via amalgamation: Kleptographically CPA secure public key
encryption. Cryptology ePrint Archive, Report 2016/530, 2016.
https://eprint.iacr.org/2016/530

@ Springer

https://doi.org/10.1007/3-540-36563-X_28
https://doi.org/10.1007/3-540-36563-X_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/11761679_18
https://doi.org/10.1007/978-3-030-64381-2_9
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://doi.org/10.46586/tosc.v2021.i2.389-422
https://doi.org/10.46586/tosc.v2021.i2.389-422
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-540-39887-5_14
https://tools.ietf.org/html/rfc7253
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://doi.org/10.1007/978-3-319-98989-1_25
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.3233/JCS-130473
https://doi.org/10.13154/tosc.v2020.i1.121-143
https://doi.org/10.13154/tosc.v2020.i1.121-143
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://eprint.iacr.org/2016/530

1050

M. Armour, B. Poettering

55.

56.

57.

58.

59.

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic semantic
security against a kleptographic adversary. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, (eds.),
ACM CCS 2017: 24th Conference on Computer and Communica-
tions Security, pp 907-922. ACM Press, (2017). https://doi.org/10.
1145/3133956.3133993

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted
random oracles. In Hovav Shacham and Alexandra Boldyreva,
(eds.), Advances in cryptology: CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pp 241-271.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
96881-0_9

Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Sur-
reptitiously weakening cryptographic systems. Cryptology ePrint
Archive, Report 2015/097, (2015). https://eprint.iacr.org/2015/097
Simmons, G. J.:D The prisoners’ problem and the subliminal chan-
nel. In David Chaum, (ed.), Advances in cryptology: CRYPTO’83,
pp 51-67. Plenum Press, New York, USA, (1983)

Wang, Y., Chen, R., Huang, X., Wang, B.: Secure anonymous com-
munication on corrupted machines with reverse firewalls. IEEE
transactions on dependable and secure computing, pp 1-1, (2021).
https://doi.org/10.1109/TDSC.2021.3107463

@ Springer

60. Young, A., Yung, M.: The dark side of “black-box” cryptography,

61.

or: Should we trust capstone? In Neal Koblitz, (ed.), Advances in
cryptology: CRYPTO’96, volume 1109 of Lecture Notes in Com-
puter Science, pages 89—103. Springer, Heidelberg, (1996). https://
doi.org/10.1007/3-540-68697-5_8

Young, A., Yung, M.: Kleptography: Using cryptography against
cryptography. In Walter Fumy, (ed.), Advances in cryptology:
EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pp 62—74. Springer, Heidelberg, (1997). https://doi.org/
10.1007/3-540-69053-0_6

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://eprint.iacr.org/2015/097
https://doi.org/10.1109/TDSC.2021.3107463
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/3-540-69053-0_6

	Algorithm substitution attacks against receivers
	Abstract
	1 Introduction
	1.1 Contributions
	1.1.1 AEAD
	1.1.2 MACs
	1.1.3 PKE

	1.2 Structure of this document

	2 Related work
	2.1 Symmetric encryption
	2.2 PKE
	2.3 MACs
	2.4 Further work
	2.5 Cryptographic versus non-cryptographic subversion
	2.5.1 Discussion

	3 Notation
	4 Notions of subversion attacks
	4.1 Undetectable subversion
	4.1.1 Hybrid subversion of key generation, sender and receiver algorithms

	4.2 Subversion leading to key recovery
	4.2.1 Discussion

	4.3 Hybrid subversion
	4.4 Breaking security without extracting the full key

	5 AEAD schemes
	5.1 IND-CCA
	5.2 Authenticity
	5.3 Subverting AEAD

	6 Message authentication schemes
	6.1 Subverting MACs
	6.1.1 Discussion

	7 Public key encryption schemes
	7.1 Subverting PKE schemes
	7.1.1 Discussion

	8 Concrete subversion attacks via acceptance versus rejection
	8.1 Combinatorics: coupon collection
	8.2 Passive attack
	8.2.1 Description of our passive attack

	8.3 Active attack
	8.3.1 Ciphertext sparseness
	8.3.2 Description of our active attack

	9 Conclusion
	Acknowledgements
	A key and data encapsulation mechanisms
	A.1 Key encapsulation mechanisms
	A.1.1 KEM definition
	A.1.2 IND-CCA
	A.1.3. Subverting KEM

	A.1.4. Data encapsulation
	A.1.5. IND-CCA
	A.1.6. Subversion of DEM

	B. Example ciphertext sparse PKE schemes
	C. Plaintext awareness
	References

