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Abstract
In this paper, we focus on Gossamer, a well-known ultralightweight authentication protocol, introduced in 2008. Our contri-
butions are the following:

– we analyze the structure of the MixBits function, a key component of the protocol, and show that it does not realize a
pseudorandom function, not even in a weak form;

– we show, by employing artificial intelligence techniques, that tags are distinguishable;
– finally, we study the performance of Gossamer and show that it does not provide a substantial saving, compared to a
standard three-round mutual authentication protocol, implemented with lightweight primitives.

We close the paper with further comments and remarks.

Keywords Ultralightweight · Authentication protocols · Gossamer

1 Introduction

Ultralightweight authentication The process through which
a party can convince another party of its identity, called
authentication, is a fundamental process, in order to real-
ize secure and private applications. Authentication protocols,
by granting access to sensitive and valuable resources only
to legitimate parties, enable organizations to protect their
data and network infrastructures. They are built on some-
thing the party is, e.g, biometric authentication based on the
iris or the fingerprint, or on something the party knows, e.g.,
authentication based on a password, a pin, a secret key, or
on something the party holds, e.g., authentication based on a
token, a credential, a physical device. In the past years, sev-
eral techniques have been developed. However, what makes
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authentication still subject of investigations is the nature of
the computational environment surrounding us nowadays.
Heavily-constrained devices, like cheap sensors or tiny tags,
cannot afford the computational efforts required by proto-
cols designed for traditional communication networks and
devices.

Computationally-light and storage-efficient solutions are
needed.

To achieve the above goal, around 2006, some authentica-
tion protocols using very simple operations were presented.
Such protocols are M2AP [32], LMAP [31] and EMAP [30].
The hardware target they were addressing is represented by
circuits with a few hundred gates, for example, the ones
used in some applications of the RFID technology. How-
ever, all of them presented some weaknesses, which were
used to set up efficient attacks. SASI [13], introduced the
next year, designed for providing Strong Authentication and
Strong Integrity, received considerable attention both from
cryptanalysts and by designers. Chien, in [13], offered a sort
of categorization of protocols, according to the tools they
need. He used the term full-fledged to refer to the class of
protocols requiring support for conventional cryptographic
functions like symmetric encryption, hashing, or even public
key cryptography.He used the term simple to refer to the class
of protocols requiring random number generation and hash-
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ing, while he used the term lightweight to refer to the class
of protocols which require random number generation and
simple checksum functions. And, finally, he used the term
ultralightweight to refer to the class of protocols which only
involve simple bitwise operations, like and, or, xor, + mod n ,
and cyclic shift.

SASI, as its predecessors, was quickly broken in a few
months, e.g., [17,21,34,38], and more refined attacks fol-
lowed, e.g., [6,18]. In some papers, warnings were raised
against such ultralightweight solutions [5,8,18]. In [18], a
full analysis of SASI was provided and, in general, the limits
of such approaches, not based on sound security arguments,
were stressed. In [5], a full guide to the common pitfalls,
which are usually present in the design of ultralightweight
authentication protocols, was provided to designers and
practitioners. Unfortunately, adhoc protocols with informal
security analysis continue to be presented at a considerable
rate, and, not surprisingly, they are broken quickly after pub-
lication. We refer the interested reader to [16] for a look at
some further examples of the weaknesses of some proposals
of the last few years, and to [11,15] for an updated view of
the current state of knowledge and of future perspectives for
such a research area.

The only significant exception to the representation of the
ultralightweight area we have just provided is the Gossamer
protocol [33], whose security and privacy properties, more
or less, have not been subverted. Its design is more involved
compared to the designs of the other protocols. It uses a
round function, MixBits, for mixing the input values, and it
is closer in spirit to some designs of standard lightweight
cryptographic primitives. Due to such a state of affair, we
decided to give a further look at this protocol.
Research goals and methodology The security analysis is not
trivial at all. Indeed,Gossamer has been already scrutinized in
the past, by employing the cryptanalytic techniques applied
in the area, without finding relevant weaknesses. Therefore,
we decided to look first at its parts to evaluate, at the end,
the whole: in the Gossamer case, the MixBits function is the
most important part. Indeed, from a conceptual point of view,
Gossamer can be seen as a protocol which uses, at each
interaction, MixBits to produce new values from old ones,
needed to compute the authentication messages and update
the state information. Ideally, the MixBits function should
behave like a pseudorandom function. Thus, our first research
question was: does MixBits approximate well a pseudoran-
dom function? From a theoretical point of view, a family
of functions is pseudorandom if no efficient adversary, with
oracle access to a device which implements either a truly
random function or one of the functions from the family,
chosen uniformly at random, is able to decide which one is
the case. The adversary, in its attempt, can query the oracle
with input values of his choice, receiving as replies, the out-
put values of the function, evaluated on the provided input

values. In practice, functions which should behave pseudo-
randomly, are structured in rounds of computation, and are
designed to exhibit the avalanche effect. It basically means
that, by looking at the executions of the function evaluation
on two even slightly different input strings, say x and x ′, at
each round of the computation, the differences between the
round input strings increase and are spread over all the bits
of the round output strings. In such a way, the final output
strings, y = f (x) and y′ = f (x ′), are radically different. The
MixBits function follows such a design strategy. However, by
using simple statistical tests, we show that MixBits does not
perfectly approximate the avalanche effect. It follows, imme-
diately, that an efficient distinguisher can be implemented
to test whether a black-box implements MixBits or a truly
random function. Therefore, our second research question
was: does MixBits approximate well a weak pseudorandom
function? Indeed, weak pseudorandomness only requires the
non-existence of an efficient distinguisher, on inputs chosen
uniformly at random. In such a case, we decided to employ
machine learning techniques to see whether they are able to
learn relations which hold among the outputs of the MixBits
function. Our decision was motivated by two reasons: first, it
seemed to us a nice and general way to look at the existence
of relations. Then, we also thought that there are a few stud-
ies but not much literature on the use of machine learning
techniques to achieve cryptanalytic objectives. Hence, our
findings could have been of independent interest in the field,
adding some elements of novelty, useful in other protocol
analyses. The intuition was right since, with several tech-
niques and different efficacy degrees, we show that MixBits
does not approximate well a weak pseudorandom function,
too. Then, the following natural research question was: how
muchMixBitsweaknesses impact onGossamer?Surprisingly,
we notice that the other operations of the protocol compen-
sate MixBits weaknesses. In particular, the C value which is
used for authenticating the reader to the tag, at each iteration,
is subject to a good avalanche effect. Hence, our simple sta-
tistical test for distinguishing it from a random value fails.
This rules out basic attack strategies, usually applied against
such protocols, inwhich an adversary tries to impersonate the
reader by efficiently computing/guessing the authentication
value in a protocol session. Therefore, in order to get a better
understanding of the protocol design, we analyze a couple
of simplified versions of the Gossamer protocol, obtained
by removing some operations. In such a way, we notice and
point out some interesting properties of the protocol. Then,
our next research question was on the privacy side. Precisely,
we asked: does Gossamer guarantee basic privacy proper-
ties? By using a simple privacy model and employing again
machine learning techniques, we are able to show that tags
can be distinguished with a non-negligible advantage over
a truly random guessing. Finally, our last research question
was: how much efficient is Gossamer?We choose a platform
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and compare Gossamer computational performance against
the performances of a standard three-round mutual authenti-
cation protocol, implemented through lightweight primitives.
With all the limits that our software comparison has, we point
out that the computational effort required by Gossamer does
not provide a substantial saving, compared to the lightweight
implementations of the standard three-round mutual authen-
tication protocol.
Organization of the paper In Sect. 2, we briefly introduce
the system model we deal with, and describe the Gossamer
protocol, explaining its rationale and its working mecha-
nisms. Then, in Sect. 3 we provide some background on
machine learning and we describe the techniques we have
used, while, in Sect. 4, we start our analysis. We focus on the
MixBitsfunction and show some features it exhibits under
an adversarial action. More precisely, as anticipated before,
by using two different techniques, we show that it does not
implement either a pseudorandom function or a weak pseu-
dorandom function. Then, in Sect. 5, we introduce a simple
privacy model, based on the most common and used ones,
and show that tags can be distinguished. Finally, in Sect. 6,
we consider an implementation of Gossamer and provide a
performance evaluation, in a comparative setting. We close
the paper in Sect. 7, summarizing our findings and provid-
ing some further comments, hints and suggestions for future
researches.

2 System and protocol specification

In this section, we describe the system with its compo-
nents, and the Gossamer protocol, its implementation, and
the messages exchanged between the protocol parties. We
also discuss some known attacks.

2.1 Systemmodel

A Radio Frequency Identification (RFID, for short) system
consists of three components: RFID tags, RFID readers and
a back-end server. RFID readers and the back-end server are
connected through a secure channel and are usually consid-
ered in the literature as a single entity. An RFID tag is a small
resource-limited device, with restricted computational power
and communication capability. It is uniquely identified by an
authorized RFID reader via its identifier. However, without
authentication, since the tag and the reader communicate over
an insecure channel, e.g., radio waves, the tag’s data can be
easily tampered by an illegal third party. To protect the tag,
an authentication protocol is needed.
An RFIDmutual authentication protocol should satisfy three
main properties:

– Correctness the legitimate tags are authenticated by the
readers and vice versa

– Security an adversary cannot impersonate a legitimate
tag to a reader and a legitimate reader to a tag

– Privacy tags donot leak sensitive information to an adver-
sary.

Wewill specify a rigorous privacymodel in Sect. 5. For more
information about RFID technology we refer the reader to
textbooks on the topic. Plenty of them are now available.

2.2 The protocol

The Gossamer protocol is an ultralightweight authentica-
tion protocol in which, a tag and a reader, exchange four
messages to achieve mutual authentication. The protocol
has two phases, one called identification, and the other one
called authentication. In the first, the party provides infor-
mation to be recognized in the system, in the second the
party proves its claimed identity. The first two messages
belong to the identification phase, while the last two belong
to the authentication phase. An updating phase is needed
upon a successful completion of the authentication phase,
both on the tag and on the reader. Tags have a real name
(static identifier), denoted with ID, which is never exposed.
Instead, in the protocol, a pseudonym, denoted with IDS, is
used. Moreover, two secret keys, k1 and k2, are shared by
the tag and the reader. Both the tag and the reader need to
store the triple (IDS, k1, k2). All these elements are strings
of N bits, where N is fixed; for Gossamer is set to 96. At
each interaction, a new IDS and new keys k1, k2 are used.
When the interaction between tag and reader succeeds, the
new triple of values (IDS′, k′

1, k
′
2) replaces the old one. The

update (IDS, k1, k2) ← (IDS′, k′
1, k

′
2) is performed by the

tag, upon a successful processing of the third message, and
by the reader, upon a successful processing of the fourthmes-
sage. Since an interaction might partially succeed, resulting
in an update only on the tag, the tag needs to store both the
current/old triple of values and the potential new one, which
will become the current one, upon a successful completion
of an interaction. In such a way, the tag can roll back to the
previous triple, if necessary.

The tag has to be able to perform the following operations:
bitwise xor (⊕), modular addition (+), and circular rotation
(Rot). We denote with Rot(x, y) the left circular rotation of
x by (y mod N ) positions.

The reader has to be able to generate random numbers: at
each interaction, the reader generates two new N -bit random
numbers, n1 and n2, sometimes called nonces, since they are
used only once.

The protocol uses a bit scrambling function, called
MixBits, that takes as input two N -bit numbers and produces
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Fig. 1 Gossamer protocol specification

a new N -bit number. Since the function has to be executed
also on the tag, it uses only the operations allowed on the tag.

Figure 1 provides an overall description of the protocol.
Notice thatπ is a 96-bit string, in hexadecimal notation, equal
to 0x3243F6A8885A308D313198A2. The reader starts by
sending a “Hello”message to the tag. The tag replays with its
current IDS. If somethingwentwrong in the previous interac-
tion, the reader does not recognize this current pseudonym,
and sends again a “Hello” message. Then, the tag replays
with the old IDS.

When the reader recognize the IDS and, thus, can retrieve
the keys, k1 and k2, associated to the tag, generates two ran-
dom numbers, n1 and n2, and computes the N -bit values, A
and B, as

A = Rot((Rot(IDS + k1 + π + n1, k2) + k1, k1),

B = Rot((Rot(IDS + k2 + π + n2, k1) + k2, k2).

Then, it uses the MixBits function to obtain an N -bit string
n3 = MixBits(n1, n2). New keys k∗

1 and k∗
2 are, afterwards,

generated by performing left circular rotations operations.
Precisely:

k∗
1 = Rot(Rot(n2 + k1 + π + n3, n2) + k2 ⊕ n3, n1) ⊕ n3,

k∗
2 = Rot(Rot(n1 + k2 + π + n3, n1) + k1 + n3, n2) + n3

Finally, the function MixBits is used again to obtain another
N -bit string n′

1 = MixBits(n3, n2) and, in turn, this is used,
together with n2, n3 and the new keys k∗

1 and k∗
2 , to produce

the value

C = Rot(Rot(n3 + k∗
1 + π + n′

1, n3) + k∗
2 ⊕ n′

1, n2) ⊕ n′
1.

At this point, denoting with || the string concatenation oper-
ator, the message A||B||C is sent by the reader to the tag.

Upon reception of the message A||B||C , the tag extracts
n1 from A andn2 from B. The tag cando this because it knows
k1, k2 and IDS. Hence, it can reverse the computation, made
by the reader, to compute A (resp. B) from k1, k2, IDS and
n1 (resp. and n2). Once retrieved n1 and n2, the tag performs
exactly the same computation that the reader has performed
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Fig. 2 A de-synchronization attack on Gossamer

to obtain C : that is, it computes n3 = MixBits(n1, n2) and
the two new keys k∗

1 and k∗
2 , and, finally, the value C ′. We

have writtenC ′ because this is the tag’s “local” version ofC .
At this point, the tag can check whether C ′ = C , to validate
the entire message. If this check is successful, then the tag
performs the updating of the keys and of the pseudonym, and
responds to the reader with the value

D = Rot(rot(n2 + k∗
2 + ID + n′

1, n2) + k∗
1 + n′

1, n3) + n′
1.

Upon reception of the message D, the reader can com-
pute D′, its “local” version of D and, finally, check whether
D′ = D. If the check is successful, the authentication has
succeeded also for the reader, and the reader too performs
the updating of the keys and of the pseudonym.

2.3 Known attacks

Some vulnerabilities of Gossamer, exploited by passive and
active attacks, are known. Regarding the first ones, two pas-
sive attacks have been reported in [3]. However, these attacks
require that nonces and key values be zero. Indeed, the rota-
tion and MixBits functions depend on key and nonce values.
If these values are zero, the outputs are not pseudorandom.
For these special cases, thus, are carried out a full disclosure
and an I D disclosure attacks on the protocol.

Ahmed et al. [3] suggest to avoid these vulnerabilities by
modifying the MixBits function, to ensure that its output is
not zero, even when its two inputs are equal to zero.

Concerning the second one, the security analysis in [9]
shows that Gossamer is vulnerable to a de-synchronization
attack [40]. The attack is reported in Fig. 2.

An attacker first eavesdrops the authentication messages
exchanged between a reader and a tag, i.e., the message
A||B||C . Then, it blocks the last message, sent to the reader
by the tag, i.e., the message D, preventing the updating of
the shared secrets, i.e., (IDSx , kx1 , kx2 ) in the reader database.
Afterwards, the attacker waits for the reader to initiate and
complete successfully a genuine authentication session with
the tag. Notice that, the tag, during such a new session, sends
first the new IDSy , but the reader does not reply because the
reader has not updated his database. Thus, the tag sends out
its old IDSx . Later on, the attacker initiates an authentication
session with the tag. When it receives the new IDSz , it does
not reply, waiting to get the old one, IDSx . The eavesdropped
message A||B||C , from the first session, is then replayed to
the tag. Such a message trigger the tag to update its database
and to be, as Fig. 2 clearly shows, finally, de-synchronized
with the reader.

A simple solution for avoiding the de-synchronization
attack is presented in the same paper. It is suggested that the
reader sends to the tag a message that uses the new shared
secrets before the tag updates the shared secrets. One year
later, Gossamer was revised again in [39], to prevent the de-
synchronization attack, by storing both the old and the new
shared secrets on the tag and on the reader sides. Later on, in
[42], the authors introduced an improved key-update mecha-
nism, based on a lightweight pseudonym random generator,
that always extracts the new secrets from the old ones, rather
than creating a whole new value at the end of each session.
The newly updated secrets on the tag and the reader database
will always be the same, even if the attacker attempts to cause
a de-synchronization attack.
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3 Classification problems, machine learning,
and deep learning

In this section, we briefly describe well-known AI tech-
niques, that we will exploit in subsequent sections, to build
distinguishers for MixBits outputs and for messages of the
Gossamer protocol. We will cast the problem as a clas-
sification question and we will build adhoc classifiers. A
classification problem consists of identifying the category to
which an object belongs. In our case, the objects are strings of
bits representing random strings, MixBits outputs, and Gos-
samer messages. An algorithm capable of classifying the
objects is a classifier.

As a first attempt, we took into consideration common
machine learning techniques, namely, Decision Tree (DT),
Naive Bayes (NB), shallowNeural Network (NN), k-Nearest
Neighbors (k-NN), and Support Vector Machine (SVM) to
build a classifier. Then, in order to achieve a better clas-
sifier, we looked at more sophisticated machine learning
models, that is, deep learning techniques. More precisely,
we turned to consider Siamese networks. We emphasize that
such networks are designed to tackle a similarity problem,
not a classification one, but it is quite easy to turn a binary
classification problem into a similarity problem; and the clas-
sification problem we study is a binary classification.

3.1 Supervised learning

A classifier is first trained on known objects and, then, used
to classify unknown objects. The classificationmay be super-
vised or unsupervised, depending on whether the objects are
labeled or unlabeled. A label on an object specifies the class
of the object; for example, a 96-bit string can be labeled
as a “MixBits output.” A supervised classifier is trained on
labeled objects, and exploits a so-called feature vector, which
is derived from the objects themselves. After the training, the
trained classifier is tested on a reasonable number of previ-
ously unseen objects. We will use supervised classifiers.

3.2 Rapidminer and standardmachine learning

To implement a classifier, one can use public libraries avail-
able for many programming languages. There exist also easy
to use tools that simplify the implementation, since no cod-
ing is necessary. Rapidminer1 is a user-friendly platform for
machine learning and data mining applications, that allows
to fine tune specific parameters. The reader can find more
information and the documentation in [1,28]. For the stan-
dard approaches, we used Rapidminer to build the classifiers.

To evaluate the performance of the classifiers, Rapidminer
allows to use the k-fold cross-validation method. We used

1 www.rapidminer.com.

it choosing k = 10, i.e., 10-fold cross-validation (CV for
short). The 10-fold CV randomly divides the dataset into
10 equal-sized parts. A single part out of the 10 is held as
validation set for evaluating the classifier, while the other 9
parts are used as training set. The cross-validation process is
then repeated 10 times, with each of the 10 parts serving as
validation set exactly once. Results are collected from the 10
executions and averaged to produce an overall performance
estimation.

Rapidminer lets us choose a variety of standard evaluation
metrics. We have selected the most common ones: accuracy,
precision, and recall. In a binary classification problem, the
objects from the two classes are normally labeled as pos-
itives and negatives. Accuracy is computed as the number
of correctly classified objects, belonging to both categories,
divided by the total number of classified objects. Precision
is computed as the number of correctly classified objects as
positive, out of all those classified positive. Recall is com-
puted as the number of correctly classified objects as positive,
divided by the total number of positive objects.

More precisely, letting TP be the number of true positives,
TNbe the number of true negatives, FP be the number of false
positives, and FN be the number of false negatives, the three
metrics are defined as:

Accuracy (ACC) = TP + TN

TP + TN + FP + FN
(1)

Precision (PRC) = TP

TP + FP
(2)

Recall (RCL) = TP

TP + FN
. (3)

3.3 Classifiers based on deep learning

In order to improve the results that we obtained with stan-
dard classifiers, we explored also alternativemodels, namely,
Siamese neural networks. A Siamese network consists of two
identical sub-networks, run side-by-side, each of which takes
as input an object. The output of the entire Siamese network
is a similarity measure of the two inputs.

Siamese networks have proved to be a powerful tool for
tackling several problems. For example, in 1994, a Siamese
neural network was used to detect forged signatures [10].
Precisely, the network was able to determine, by comparing
them, whether two handwritten signatures were original or
one of them was a forgery. Since then, Siamese neural net-
works have been used for various applications [12,27]. For
further details, the interested reader is referred to [27].

Siamese networks are based on the so-called one-shot
learning. One-shot learning classifies objects given only one
training example for each category of objects. Indeed, instead
of directly classifying objects and assigning them to the cate-
gories for each test object, a Siamese network takes an extra
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Fig. 3 Convolutional Siamese neural network architecture using the 95-bit feature vector

reference object as input and produces a similarity score,
denoting the chances that the two input objects belong to
the same category. Typically the similarity score is a value
between 0 to 1, where score 0 denotes no similarity, and score
1 denotes full similarity.

After several attempts, with various configurations of the
network, we ended up implementing and using a Siamese
network based on convolutional neural networks. A convolu-
tional neural network is a particular kind of neural network,
specifically designed for dealing with images, but that has
proved to be effective also for several other problems. Our
convolutional Siamese network is depicted2 in Fig. 3.

2 For readers interested in the details and with background in the area,
each sub-network consists of a sequence of convolutional layers, each
of which uses a single channel, with filters and kernels of varying size.
The number of convolutional filters is specified as a multiple of 16, to

4 An in-depth look at theMixBits function

The Gossamer protocol uses an ultra-lightweight function,
called MixBits. The MixBits function takes as input two N -
bit numbers, and produces an N -bit number, by using only
right shifts and additions. In Gossamer,MixBits is used with
N = 96. Denoting with Z >> a denotes the right shift of Z
of a positions, with a ≥ 0, the function is the following.

get advantage of the GPU capabilities. The network applies a ReLU
activation function to the output feature maps, optionally followed by a
one-dimensional max-pooling layer. The units in the final convolutional
layer are flattened into a single vector. This convolutional layer is fol-
lowed by a fully-connected layer and, then, one more layer, computing
the induced distance metric between each siamese sub-network, which
is given to a single sigmoidal output unit.
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MixBits(X ,Y )
Z = X ;
for (i = 0; i < 32; i++)
Z = (Z >> 1) + Z + Z + Y ;
return Z

The MixBits function has been defined in [33]; the tech-
nique used to design the function has been proposed in
[20] and is quite interesting: the idea is to use genetic
programming to evolve a population of ultralightweight
functions, starting from very basic bitwise operations, like
rotations, and, or, xor, not and sum. The genetic
search is guided by a fitness function that measures the
avalanche effect, which is useful to assess the nonlinearity
of the functions.

Let x and y be two N -bit strings, and denote with H(x, y)
their Hamming distance, i.e., the number of positions in
which x and y are different. A function f : {0, 1}N →
{0, 1}N exhibits the avalanche effect if,

∀x, y such that H(x, y) = 1,

it holds that on average H( f (x), f (y)) = N/2.

In other words, f has the avalanche effect if, flipping one bit
in the input, causes the output to change, on average, in half
of the bits (see, for example, [25]). The genetic algorithm
used to find MixBits looked for the function with the best
avalanche effect.

4.1 The avalanche effect ofMixBits

To analyze the avalanche effect of MixBits we performed the
following test many times: take two random 96-bit numbers,
x and y, and compute z = MixBits(x, y); then, flip a random
bit of x , to obtain x ′, and compute z′ = MixBits(x ′, y); mea-
sure the Hamming distance between z and z′. More precisely,
we used Algorithm 1.

1 Choose two random numbers x, y ∈ {0, 1}96;
2 Compute z = MixBits(x, y);
3 i ← random(0, 95);
4 x ′ = x with bit number i flipped;
5 Compute z′ = MixBits(x ′, y);
6 Output H(z, z′);

Algorithm 1: MixBits avalanche effect test

The avalanche effect should produce an average difference
between z and z′ of 48 bits; in general, we would expect the
distribution of H(z, z′) to be a normal distribution centered
at 48. The test was repeated 100,000 times, and Fig. 4 shows
both the expected normal distribution (blue vertical columns)
and theMixBits distribution (green line), obtained in the test.

Fig. 4 MixBits avalanche effect

The x-axis reports the number of bits that have been flipped,
that is, H(z, z′), while the y-axis reports the number of times
that each specific value of H(z, z′) has been given as output.
As can be seen from the figure (green line), the distribution
is somewhat similar to a normal one, but is centered around
38, instead of 48.

MixBits, as designed in [33], uses 32 rounds; in that paper,
there is no explicit justification for this choice, neither the
MixBits function is explicitly mentioned in [20]. We, thus,
have tried the test using all possible choices for the num-
ber of rounds, that is from 1 to 96. Not surprisingly, the
avalanche effect improves with the number of rounds. Denot-
ing with MixBits(r) the MixBits function with r rounds, we
have that the center of the distribution of the avalanche effect
of MixBits(r) goes from close to 0, for small values of r , to
48, for values of r approaching 96. Moreover, the shape of
the distribution goes from a “distorted” bell-shape, for small
values of r , to an almost perfect bell-shape, for big values of
r .

Figure 5 shows the avalanche effect of MixBits as a
function of the number of rounds for a few selected val-
ues of the number of rounds, namely the ones in the
set {1, 16, 24, 32, 48, 60, 72, 96}. Using a large number
of rounds, e.g. bigger than 70, yields an almost perfect
avalanche effect; with few rounds, the center of the distri-
bution is very displaced, and the shape of the distribution is
somewhat distorted. Based on these observations, it seems
that 32 rounds is a choice that provides a good balance
between the computational power required to compute the
function and the avalanche effect achieved.

Notice that, from a theoretical perspective, MixBits can
be seen as a keyed function F(·, ·) which, for each choice
of the second argument, the key, defines a single-argument
mapping, i.e., F(·, y) = Fy(·). In different but equivalent
terms, it defines a family of functions {Fy(·)}y .
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Fig. 5 MixBits avalanche effect distribution with several values for the
number of rounds

An important property keyed functions might enjoy is
pseudorandomness: roughly speaking, to the eyes of any
efficient observer, they behave like random functions, i.e.,
domain values and range values seem to the observer to be
totally unrelated (see for example [25]). Pseudorandomness
of F(·, ·) can be defined using the following Pseudo-R exper-
iment, defined for any algorithm D:

Pseudo-RD,F
1. A bit b is chosen. If b = 1, then a key y∗ ∈

{0, 1}96 is chosen, uniformly at random, and
an oracle O(·) is set to reply to queries using
F(·, y∗). Otherwise, a function f :
{0, 1}96 → {0, 1}96 is
chosen, uniformly at random, from
the set of all the functions of 96 bits to 96 bits,
and O(·) is set to reply to queries using f (·).
2. D receives access to oracle O(·), and gets replies to at most t
queries.

3. D outputs a bit b′.
4. The output of the experiment is 1 if b′ = b, 0 otherwise.

The keyed function F is (t, ε)-pseudorandom if, for any
algorithm D (the distinguisher), which runs for at most t
steps, there exists a small ε, such that

Pr [Pseudo-RD,F = 1] ≤ 1/2 + ε.

The above analysis enables us to set up simple distinguishers
for MixBits: one possibility could be for the distinguisher,
with many trials, to estimate the probability distribution of
the replies from the oracle, i.e., to check whether the output
differences follow the green curve (MixBits) or the normal
distribution (truly random function). Actually, to prove our
claim, a simpler strategy is enough. Look at the distinguisher
D, given by Algorithm 2.

1 Chooses x and x ′, where x ′ is equal to x up to one bit;
2 Sends x to the oracle, getting z as reply;
3 Sends x ′ to the oracle, getting z′ as reply;
4 Computes the integer d = H(z, z′);
5 If d < 48, then outputs 0 (MixBits); otherwise, outputs 1 (truly
random);

Algorithm 2: Code for the distinguisher D.

Due to the shapes of the curves in Fig. 4, for the MixBits
function, the Pr(d < 48) ≈ 1. While, for a truly random
function, the Pr(d < 48) < 1/2. Since the oracle imple-
ments MixBits or a truly random function, depending on the
choice, uniformly at random, of a bit b, it holds that:

Pr(Pseudo-RD,F = 1) = Pr(b = 0) · Pr(d < 48|b = 0) +
+Pr(b = 1) · Pr(d ≥ 48|b = 1)

� 1

2
· 1 + 1

2
· [1 − Pr(d < 48|b = 1)]

≥ 1

2
· 1 + 1

2
·
(
1 − 1

2

)

= 1

2
+ 1

2
· 1
2

= 1

2
+ 1

4
= 3

4

It follows that, with advantage at least of 1
4 over a ran-

dom guess, the distinguisher D, with only two queries, is
successful. Hence,MixBits does not realize a pseudorandom
function.

4.2 A generalization of MixBits

Informally, the MixBits function could be described as the
function 3x/2+ y, repeated 32 times, with the value of x for
the next iteration divided by 2. So, informally, we can look
at MixBits as a special case of the following function,

f (x, y) = a · x/2c + b · y/2d

with parameters a ≥ 1, b ≥ 1, c ≥ 0 and d ≥ 0, and the value
of x and y updated to, respectively, x/2c and y/2d . An addi-
tional parameter r is the number of rounds. More formally,
we define the following GenMixBits function, parametrized
on a, b, c, d and r :

GenMixBits(X ,Y )
Z = X ;
W = Y ;
for (i = 0; i < r; i++)
Z = (Z >> c) + Z + Z + ... + Z︸ ︷︷ ︸

a − 1 times

+

(W >> d) + W + W + ... + W︸ ︷︷ ︸
b − 1 times

;

return Z
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Fig. 6 GenMixBits11 11x/2+ y, with several values for the number of
rounds

Thus,MixBits is the special case of GenMixBits with a =
3, b = 1, c = 1, d = 0 and r = 32.

We studied the avalanche effect of GenMixBits for several
choices of the parameters: we considered all combinations
of (relatively) small values of a, b, c, d, and r . Among these,
we found another interesting case in which we obtain a
good avalanche effect. Namely, the case with parameters
a = 11, b = 1, c = 1, d = 0, which informally is the
function 11x/2+ y. We will refer to this particular choice of
the parameters as the function GenMixBits11.

As done for MixBits we have considered all possible val-
ues for the number r of rounds. Figure 6 shows the avalanche
effect of GenMixBits11 for several choices of r . For any fixed
value of r , the avalanche effect of this function seems to be
better than that of MixBits. This is clearly due to the factor
of 3 being replaced with 11, which obviously requires more
computation; however, GenMixBits11, with only 16 rounds,
shows an avalanche effect similar to that of MixBits with 32
rounds.

The above analysis suggests us possible improvements
for future design strategies: indeed, MixBits was found
by using genetic programming, evolving a population of
ultralightweight functions, and selecting one at the end. Tra-
ditional statistical tests, like the one we presented earlier,
could be used to refine the analysis of the quality of the
selected functions and, as the example of GenMixBits shows,
once the form of the function has been found, it is possible to
look for similar other instances with post-processing meth-
ods.

4.3 On the distinguishability of MixBits outputs
through AI techniques

In this section, we study how well the MixBits function
approximates at least aweakpseudorandom function. Ideally,

it should not be possible to tellwhether a given string has been
given as output by MixBits or it is a random string, when the
input strings are chosen uniformly at random. That is, com-
pared to the previous case, a distinguisher cannot use x and
x ′, where x ′ is equal to x up to one bit (or few bits) for exam-
ple, but only queries where x and x ′ are chosen uniformly
at random. In such a setting, the output of MixBits should
be indistinguishable from the output of a truly random func-
tion. We show that this is not the case, too. We produce both
random numbers and MixBits outputs, and check whether
we can tell them apart. We first focus on the study of the
MixBits function using machine learning classifiers. Then, to
improve the result obtained, we consider deep learning tech-
niques, exploiting also an alternative representation (feature
vector) of the objects. In our context, the objects are 96-bit
strings and belong to one of two categories: random strings
or MixBits outputs.
DatasetsWehave considered two cases, the first one inwhich
we evaluated the weak pseudorandomness of MixBits, and
the second one in which we evaluated the difficulty of distin-
guishing the outputs of different instances of MixBits from
random values. The latter problem is more difficult since the
key y, used by the MixBits function, is changed in each new
evaluation. We will refer to the former case as the weak case,
and the latter as the strong case. For each case, we performed
an experiment, repeated 100 times. For each repetition of the
experiment, a dataset of 3000 objects has been built as fol-
lows.
Datasets for the weak case. Each dataset is the union of two
sets. The first one is a set of 1500 random96-bit numbers. The
second one is a set of 1500 MixBits(x, y) outputs, obtained
by fixing a randomly chosen y and, then, executing MixBits
on 1500 randomly chosen values of x (and with the fixed y).
Datasets for the strong case. As for the weak case, but with
the difference that the sets of MixBits(x, y) output where pro-
duced by choosing both x and y at random. More precisely,
for each experiment, we built a set of 1500 random 96-bit
numbers, and a set of 1500 MixBits(x, y) outputs, obtained
by choosing, for 1500 times, two random values for x and y.
The MixBits function has been implemented using the GMP
library from GNU; all the random values that we describe
in the following have been generated by using the pseudo-
random number generator of the GMP library.

4.3.1 Experimental results

Standard classifiersWith the classifiers implemented through
Rapidminer, we obtained the following results: an accuracy
of 0.5, a precision of 0.5 and a recall of 0.584 using k-NN for
theMixBits strong case, and an accuracy of 0.527, a precision
of 0.525 and a recall of 0.546, using DT for theMixBitsweak
case. Table 1 describes the configurations for the parameters
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Table 1 Configurations of the classifiers

Classifier Parameter configurations

DT (C4.5) Maximum depth = 7, criterion = Gini
index, pruning = True, confidence = 0.25

k-NN k = 25, weighted vote = True

that we have chosen as a result of several attempts to find the
best rates.

Such values for accuracy, precision, and recall mean that
these standard classifiers are not quite successful for the prob-
lem we are considering.
Siamese networks As anticipated, a Siamese network, by
definition, solves a similarity problem. However, a binary
classification problem can easily be turned into a similarity
problem. In our case, we need to distinguish whether a bit-
string s is random or is aMixBits output. To cast this problem
into a similarity problem, we can ask whether s is similar to a
random bit string sr (that we can build) or to aMixBits output
sm (that we can compute).

To use the Siamese network described in Sect. 3 for
the MixBits indistinguishability experiment, we have built
a dataset, consisting of two subsets: one including pairs of
similar bitstrings, and one including pairs of not similar bit-
strings. To this end, starting from one of the datasets used
before (randomly chosen), consisting of 1500 bitstrings from
MixBits, and of 1500 truly random bitstrings, we have built
all the possible pairs, and, then, we have split them in two
sets:

– similar-set, including all the pairs < si , s j >, such that
both are outputs of MixBits, or both are outputs of a truly
random function,

– non-similar-set, including all the pairs < si , s j >, such
that si (resp. s j ) is output of MixBits, and s j (resp. si ) is
output of a truly random function.

As training-set for the Siamese network, we have randomly
chosen 5000 pairs from similar-set, and 5000 pairs from non-
similar-set. We have trained the network for 2000 epochs,
using a learning rate of 0.00006, and using the 100-way one-
shot learning technique. Specifically, every 5 epochs (one-
shot evaluation interval), our model first chooses an anchor
object ŝ, and then builds 100 pairs < s′

i , s
′′
i > with i =

1, . . . , 100, where:

– s′
i and s′′

i are randomly chosen in similar-set ∪ non-
similar-set (resp. {similar-set ∪ non-similar-set} \
training-set), for i = 2, . . . , 100.

– s′′
1 = ŝ, and s′

1 belong to the same class, so that s′
1, s

′′
1 >

is the only one pair of objects in the same class, among
the 100 pairs.

The set of 100 pairs obtained is used as validation set (resp.
test set). In other words, the same object is compared to 100
different objects, out of which only one of them matches the
original object. For every pair in the validation set (resp. test
set), the network generates a similarity score between 0 and
1. Let us say that, by doing the above 100 comparisons, we
get 100 similarity scores S1, . . . , S100. Now, if the model is
trained properly, we expect that S1 is the maximum of all the
100 similarity scores, because the first pair is the only one
where we have two objects in the same category. Thus, if S1
happens to be the maximum score, then we treat this as a
correct prediction; otherwise, we consider it as an incorrect
prediction. Repeating this procedure � times, both for the
validation set and the test set, we compute the percentage of
correct predictions as

pcorrect = (100 ∗ ncorrect)/�,

where � is the total number of trials (in our case is 2000/5,
where 5 is the one-shot evaluation interval), and ncorrect is
the accuracy out of � trials.
Results We have repeated the experiment 10 times and, as a
result, we have obtained an average test accuracy of 0.56 for
the MixBits strong case, and of 0.586 for the MixBits weak
case, as reported in Table 2.

4.3.2 An alternative feature vector

As the dataset consists of rows of data of 96-bit numbers, the
immediate choice for the features to be used for the classi-
fication is that of using directly the 96 bits; that is, feature
number i is the i th bit. Thus, we initially used such a rep-
resentation, obtaining the results reported in the previous
subsection. However, in order to get the best possible per-
formance from the Siamese neural network, we tried other
possibilities and ended up using the following 95-number
features vector: for i = 1, . . . , 95, feature number i is the
difference, in absolute value, of the number of 1s and the
number of 0s in the first i + 1 bits. This particular feature
vector conveys information about how balanced is each pre-

Table 2 MixBits prediction
accuracy of the Siamese neural
network (S = Strong case, W =
Weak case)

1 2 3 4 5 6 7 8 9 10 Avg

S 0.54 0.55 0.58 0.57 0.57 0.55 0.56 0.56 0.54 0.58 0.560

W 0.56 0.61 0.57 0.57 0.59 0.59 0.58 0.6 0.59 0.6 0.586
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Table 3 MixBits prediction
accuracy of the Siamese neural
network, using the 95-bit feature
vector (S = Strong case, W =
Weak case)

1 2 3 4 5 6 7 8 9 10 Avg

S 0.64 0.67 0.67 0.71 0.72 0.69 0.69 0.7 0.68 0.71 0.688

W 0.66 0.68 0.72 0.7 0.75 0.72 0.72 0.73 0.74 0.74 0.716

fix of the 96-bit string and the experimental data show that
this information helps the learning process. As an example,
consider the 10-bit data string 1011101110; the 9-number
feature vector would be 012323454.

We have repeated the experiment of Sect. 4.3.1 for 10
times, with the 95-bit feature vector, and we have obtained
an average accuracy of 0.688 for theMixBits strong case, and
of 0.716 for the MixBits weak case, as reported in Table 3.

4.4 Impact of the weak avalanche effect of MixBits
on Gossamer

In the previous section, we checked the distinguishability of
MixBits outputs and random strings, concluding that they are
distinguishable. SinceMixBits is used inGossamer, we found
interesting to test also the avalanche effect on the overall Gos-
samer protocol. We studied the differences that a bit flipped
in message A of Gossamer causes in message C . Since A is
obtained from n1 and the two keys k1, k2, message A′ can
be thought of as the message obtained from n′

1 �= n1 and
the two keys k1, k2. By inverting the computation used for
message A we can compute n′

1. More formally, we consider
the test detailed by Algorithm 3.

1 Execute the reader authentication phase, that is compute A, B,C
2 Flip a random bit of A obtaining A′
3 Compute
n′
1 = Rot(Rot(A′, 96 − k1) − k1, 96 − k2) − IDS − k1 − π

4 Compute n′
3 = MixBits(n′

1, n2)
5 Compute

k∗′
1 = Rot(Rot(n2 + k1 + π + n′

3, n2) + k2 ⊕ n′
3, n

′
1) ⊕ n′

3
6 Compute

k∗′
2 = Rot(Rot(n′

1 + k2 + π + n′
3, n

′
1) + k1 + n′

3, n2) + n′
3

7 Compute n′′
1 = MixBits(n′

3, n2)
8 Compute

C ′ = Rot(Rot(n′
3 + k∗′

1 + π + n′′
1, n

′
3) + k∗′

2 ⊕ n′′
1, n2) ⊕ n′′

1
9 Output H(C,C ′).

Algorithm 3: Gossamer avalanche effect test

The test has been repeated 100,000 times and the results
are summarized in Fig. 7. The x axis shows the number of
flipped bits, and the y axis shows the percentage of experi-
ments that gave the specific avalanche effect.As it can be seen
from the figure, the distribution is very similar to a normal
distribution centered in 48.

Fig. 7 Gossamer avalanche effect

Fig. 8 Gossamer avalanche effect

Since MixBits does not have a good avalanche effect, this
means that the other operations of the protocol compensate
for the weaknesses of MixBits.

Another observation that goes in this direction is the
following: the avalanche effect of the entire protocol does
not depend on the number of rounds of MixBits. To prove
this statement, we carried out the following experiment: we
flipped one single (randomly chosen) bit of A, and looked at
the avalanche effect for the standard MixBits function, and
a simplified MixBits function that uses only one round. This
experiment was carried out 100,000 times and there were
no noticeable differences. Figure 8 reports the details of the
experiment: the blue and orange lines show the avalanche
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Fig. 9 Comparison of the Gossamer and its simplified versions for
avalanche effect

effect onC for one round, and the thirty-two rounds versions
of MixBits: they are essentially the same.

4.5 Avalanche effect analysis

As suggested by the results of the previous sections, the
avalanche effect onC is mostly due to operations of the Gos-
samer protocol, with a mild contribution from the MixBits
function. So we decided to study what are the contributions
of some of the protocol operations to the avalanche effect. To
this aim, we considered two simplified versions of the pro-
tocol, which we built having Gossamer as a guide, but using
simplified computations for the construction of themessages.
More precisely, in the first version, called Gossamer-S1, we
use only the + operation while, in the second version, called
Gossamer-S2 one rotation is added. The code is reported in
Figs. 11 and 12 at the end of the paper. In both versions, the
MixBits function is used without changes.

We repeated the test performed in Sect. 4.4: check the
avalanche effect when flipping a bit of message A, as
described in Algorithm 3. As done for Gossamer, the test
was repeated 100,000 for Gossamer-S1 and for Gossamer-
S2.

Figure 9 shows the results of the tests and compares the
simplified versions of the protocol with the original one.
The x-axis shows the number of flipped bits, and the y-axis
shows the percentage of experiments that gave the specific
avalanche effect. The orange line shows the avalanche effect
of Gossamer-S1, the green line shows the avalanche effect of
Gossamer-S2, while the blue line shows the avalanche effect
of the Gossamer protocol. The avalanche effect is more or
less the same. In conclusion, putting everything together, it is
interesting to notice that, if we reduce the number of rounds
inMixBits, then the structure of the protocol provides a good
avalanche effect; similarly, if we simplify the structure of the

protocol but we useMixBitswith 32 rounds, then theMixBits
function, together with few operations of the protocol, still
provides a good avalanche effect.

5 Privacy analysis

We focus our attention on the privacy properties. Several full
models, starting from Vaudenay’s model [41], are available
in the literature. However, sincewe do not need the full power
of them, we consider a simplified model, which enables us
to simplify our description as much as possible. Precisely,
we define a standard indistinguishability game, essentially
as defined by the Juels–Weis model for RFID protocols [22].

5.1 Themodel

A protocol party P is a T ∈ Tags or an R ∈ Readers. Tags
and readers interact in protocol sessions. Tags are identified
by unique I Ds. So, to distinguish a tag T0, with identifier
I D0, from a tag T1 with identifier I D1, we need to know the
I Ds (or at least one of the I D). In other words, to recognize
a tag we need to know its identifier. An adversary controls
the communication channel between the protocol parties, in
a passive or an active mode. The interactions of the adversary
with the parties are formally captured by giving it the ability
to issue oracle queries. Precisely, an adversary can issue four
oracle queries:

– Execute(R, T , i). This query models passive attacks,
where the adversary just has read access to an honest
execution of the i th session of the protocol between R
and T .

– Send(P1, P2, i,m). This query models active attacks,
allowing the adversary to impersonate party P1 in the
i th session of the protocol and send a message m of its
choice to party P2.

– Corrupt(T , K ′). This query allows the adversary to learn
the stored secret K of the tag T , and to change it to a new
value K ′ of its choice.

– Test(T0, T1, i). This query issues a test query on session
i : depending on a randomly chosen bit b ∈ {0; 1}, the
adversary receives access to Tb from the set {T0, T1}. The
adversary succeeds if it can guess correctly the bit b.

The indistinguishability game, ExpindA , run by a Chal-
lenger, is played between an adversaryA and a collection of
reader and tag instances. It is composed of three phases:
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ExpindA

1. Learning: A has the ability to send Execute,
Send, and Corrupt queries to the Challenger.
This phase models the adversary ability to run
passive or active attacks, while interacting with
reader and tag instances in protocol sessions.

2. Challenge:
(a) At a certain point, A chooses two fresh tags
T0 and T1, and sends to the Challenger a Test
query with these two tags. Freshness means
that to the tags have not been issued Corrupt
queries.

(b) The Challenger randomly chooses a bit b ∈ {0, 1},
and A is given oracle access to Tb,
without the knowledge of b and the possibility of a Corrupt

query on it.
A cannot also send queries to T0 and T1 any more.

(c) A continues making any Execute, Send, and
Corrupt queries on the other tags.

3. Guessing:
Eventually, A terminates the game,
and outputs a bit b′, as its guess of the value
of b. If b′ = b, then the Challenger outputs 1,
i.e., ExpindA = 1. In such a case, we say that the
adversary wins.Otherwise, ExpindA = 0.

IfA fails to win the game, it means that it cannot distinguish
the tags. Implicitly, it also means that the protocol does not
leak private information3.
A protocol is (t, ε)-private if, for any adversary A, which
runs for at most t steps, there exists a small ε, such that:

Pr [ExpindA = 1] ≤ 1

2
+ ε.

5.2 Gossamer indistinguishability game

By using the above privacy model, and exploiting machine
learning classifiers, we show that the Gossamer protocol is
not (t, ε)-private. We exhibit a passive adversary A, that is,
an adversary that does not use the Send(P1, P2, i,m) and
Corrupt(T , K ′) oracle queries. With such an attack, A pro-
duces labeled tags replies, trains a classifier, and is able to
distinguish unlabeled tag replies with a significant accuracy.

Next we describe the details of A, which plays the indis-
tinguishability game ExpindA .

3 Such a standard modeling is, of course, highly demanding, and in
some applications it might be more than strictly needed. But, as widely
agreed within the community, achieving such a notion, enables a safe
use of the protocol in any application.

Algorithm A
1. For t times, A chooses a pair of target tags, say
T (z)
0 and T (z)

1 , with identifiers I D(z)
0 and I D(z)

1 ,
and issues an Execute(R, T (z)

0 , i) query and an
Execute(R, T (z)

1 , i), for i = 1, . . . , n. This allows
him to build pairs with the final reply of the tag
(the D values in the protocol) and the identifier
I D(z)

j . Then, with the above pairs, A constructs
a dataset, and trains a Siamese neural network,
which will be used as a classifier to distinguish the tags.

2. A randomly chooses two fresh tags (T0, T1), and
handles them to the Challenger. He gets oracle
access to Tb.

3. A sends an Execute(R, Tb, 1) query.Let Db be
the last message sent by Tb. A uses the Siamese
network by giving as input D0,
a reply from one
of the Execute(R, T0, i) queries of the learning phase, and Db.

4. If the Siamese network outputs a similarity
match, then A outputs 0, otherwise A outputs 1.

To estimate A’s success probability within the game,
the specific dataset that we have used has been con-
structed by selecting 100 different pairs of tags T (z)

0 , T (z)
1 ,

z = 1, . . . , 100. Then, for each pair, we ran a set of
1500 Execute(R, T (z)

0 , i), and Execute(R, T (z)
1 , i), for i =

1, . . . , 1500, obtaining labeled pairs (D, I D), where I D is
the identifier of the tag that caused the protocol to create D as
the final reply of the tag. Thus, overall, we built a training set
with 300,000 labeled objects. These objects represent pairs
of executions of the protocol corresponding to pair of tags.
The classifier can be trained to distinguish the two tags in
each pair.

The specific Siamese network4 that we have used has
been described in Sect. 3.3. Following what has been done
in Sects. 4.3.1 and 4.3.2, we have tried with two different
approaches for the features vector, using first the direct rep-
resentation of the object as the actual string of 96 bits and
then an alternative representation of the data using as features
vector a 95-bit vector as defined in Sect. 4.3.2. Training the
Siamese network with the 96-bit feature vector, we obtained
an average accuracy5 of 0.572, while training the network
with the 95-bit features vector, we obtained an average accu-
racy of 0.638. These average values are the result of 10
repetitions of the training and test phases. Table 4 shows
the accuracy values obtained in the 10 repetitions.

4 We point out that we tried also with standard classifiers obtaining
results supersided by the Siamese network.
5 Notice that even percentages close to 0.5 could yield some advantages
to a distinguisher. However, the bigger the accuracy the stronger is the
attack.
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Table 4 Gossamer tag
distinguishability accuracy with
the Siamese network

1 2 3 4 5 6 7 8 9 10 Avg

FV1 0.57 0.58 0.56 0.57 0.59 0.55 0.55 0.59 0.59 0.57 0.572

FV2 .58 0.6 0.61 0.63 0.66 0.65 0.64 0.67 0.66 0.68 0.638

Features: FV 1 = 96-bit, FV 2 = 95-bit

Therefore, by using the best approach for training the
Siamese network (0.638 ≈ 0.64), we have that:

Pr(ExpindA = 1) = Pr(b = 0) · Pr(Aoutputs 0|b = 0) +
+Pr(b = 1) · Pr(Aoutputs 1|b = 1)

=
(
1

2
+ 1

2

)
· 0.64

= 0.50 + 0.14

>
1

2
+ 1

10
.

It follows that, with advantage of at least 1
10 over a random

guess,A succeeds. Hence, Gossamer is not (t, ε)-private, for
any adversaryAwith running time6 of at least t = 30,000 ≈
215 steps.

5.3 Cryptography and neural networks

Our findings of the previous sections have some elements
of novelty, which are of independent interest. From a theo-
retical point of view, the relation between cryptography and
machine learning has been investigated since the ’90s, e.g.,
[37]. Moreover, neural networks have been used as a tool
for designing some cryptographic primitives or protocols,
e.g., [23,24]; as well as, cryptography and, more precisely,
multiparty computation and homomorphic encryption, have
been used to set up secure and private implementations of
neural networks, e.g., [29,35] (see [7] for a survey). Few
applications to cryptanalysis are also known, e.g., [4,26].
Our application is a further example of such a possibility,
and of the potentialities that these methods might have in
cryptanalysis. Actually, Siamese neural networks, have been
extensively used in several fields, as the long list of applica-
tions, reported in [12], examplifies. However, no application
to cryptography belongs to that list. Our work is the first
example. Thus, we feel that such a similarity-finding tool
deserves an in-depth study: as a future research goal, it would
be worthy to test its power in distinguishing other pseudo-
random objects, from truly random ones [19].

6 Notice that, we are assuming implicitly that A can send an oracle
query in each execution step. Perhaps, we could be successful also with
a smaller number of oracle queries, but we did not care about possible
optimizations, since our goal was only to show that the approach works.

Fig. 10 Three-round mutual authentication protocol

6 Performance analysis

To evaluate the performance of the Gossamer protocol, we
have done a rough comparison with a standard three-round
mutual authentication protocol, based on a symmetric MAC,
whose structure is reported in Fig. 10.

We have implemented both Gossamer and four instances
of the standard three-round mutual authentication protocol,
each of them with a different choice for the MAC compu-
tation, and compared the computational effort required by
each of the implementations, obtained by employing AES,
PRESENT, Speck and Simon, respectively. For the first two,
AES and PRESENT, we have used public available imple-
mentations from github.7 For AES, we have implemented a
small optimization: to save memory usage, we generate the
S-box dynamically.

The standardmutual authentication protocol uses the iden-
tity of the participant A, directionality bits, i.e., A → B and
A ← B, counter values, i.e., 2 and 3, and randomnonces, NA

and NB , to deal with standard attacks, e.g., message reorder-
ing, message reply, and message reflection. Alice and Bob
share the secret key K . We choose the CBC-MAC scheme
for computing theMAC, instantiating the four block-ciphers,
with the following sizes:

1. AES, with a 128-bit block size and key size
2. Present, with a 64-bit block size and a 128-bit key size
3. Speck, with a 96-bit block size and key size
4. Simon, with a 96-bit block size and key size.

7 https://github.com/kokke/tiny-AES-c, https://github.com/
michaelkitson/Present-8bit.
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Table 5 Performance results Scheme [block/key size (b)] Code size (B) RAM (B) Time (cyc.) Performance

Gossamer 2974 96 381769 18.93

Present (64/128) 1528 56 1513138 43.93

AES (128/128) 1860 68 38800 7.02

Simon (96/96) 1594 64 275384 11.83

Speck (96/96) 1162 48 80592 6.07

Fig. 11 Gossamer-S1

We associated the tag to Bob in the scheme and evaluated
the cost of his computation. Assuming that the counter is
represented with 2 bits, the directionality bit with 1 bit, and
the nonces with 96 bits, in the second round of the protocol,
Bob must generate a CBC-MAC of a 195-bit message, i.e.,
of 2||0||NA||NB . Then, the message is sent to Alice. Alice
replies, and Bob, to authenticate Alice in the third round,
has to verify the CBC-MAC of a 195-bit message, i.e., of
3||1||NA||NB . Since the lengths of the messages are not a

multiple of the block lengths, the padding (10∗) is used to
reach the proper lengths.

To test the implementation of the block ciphers and of
Gossamer, we used a software platform simulating the Atmel
8-bit AVR microcontroller family. The platform is based on
the ATmega128 microprocessor, running at a frequency of
16 MHz, with a flash program memory of 128 Kbytes, and 4
Kbytes of system RAM [14]. More specifically, we used the
Atmel Studio 7 integrated development platform [2] to write
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Fig. 12 Gossamer-S2

and run the implementations written in C. The set of metrics,
provided by the platform, allows to compute a so-calledmerit
number, useful to estimate the performance and rate all the
ciphers. More precisely, the three performance metrics take
into account the following aspects:

1. RAM consumption, measured in byte: the occupied RAM
by data section (initialized variables), uninitialized vari-
ables, and stack consumption;

2. code size, measured in byte: the required flash memory
for data section and the cipher code;

3. execution time: the number of clock cycles needed to run
a cipher.

Denoting, for each metric m of set M , with wm , vm ,
and min(vm) the weight, the value, and the minimum value
among all the ciphers, respectively, the performance estimate

is given by the formula:

performance =
∑
m∈M

wm
vm

min(vm)
(4)

The execution time weight is set to one, but considering
that memory usage is more important for RFID tags, the
RAM and code size weights are set to two.

The performance results for the C-language implementa-
tion of Gossamer, and of the standard three-round protocol,
instantiated with AES, Present, Speck, and Simon, are shown
in Table 5.

Both Bob’s message and the key are kept in RAM in the
implementation of the block ciphers. Once the key-schedule
operation is done, the round keys are stored in the flash
memory, before the MAC is generated. In Gossamer imple-
mentation, the values of the keys, k1, k2, of the identifiers,
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I D, I DS, and of the messages A, B,C , are also be kept in
RAM. In order to use theRAMefficiently, whenever it is pos-
sible, their values are overwritten during the computations.
Besides, the execution time of Gossamer depends on sev-
eral circular rotations by variable numbers, i.e., k1, k2, and
the nonces extracted from the messages A and B (mod96).
Gossamer is initialized several times with random values for
these variables, generated by the /dev/random/ genera-
tor, and the average execution time is measured. The results
indicate that, among all the authentication methods, Gos-
samer has the highest code size as well as the highest RAM
usage. If we compare the performance of Gossamer with the
three-roundprotocolwhere theMACis implemented through
Speck, which is the best rated method among the four we
have considered, the comparison clearly shows that its per-
formance suffers heavily in code size and execution time. As
well as, its large execution time is mostly due to the MixBits
function, and the rotation operation. Rama et al. [36] also
analyzed the power consumption of Gossamer. They proved
that, since the MixBits function and the rotation operation
extensively employ the modulo and the shift operations in
their computations, these in turn negatively impact on the
power consumption.

7 Conclusions

We have briefly surveyed the few known attacks against
Gossamer and, then, analyzed the structure of the protocol.
We have shown that the MixBits function does not realize
a pseudorandom function, even in a weak form. Then, we
have employed artificial intelligence techniques, in order to
defeat the privacy features of the protocol, and we have
shown that tags can be distinguished with non-negligible
probability. We feel that the results obtained with the AI
techniques encourage to further study the applicability of
such techniques to certain cryptographic protocol analysis.
Finally, we have compared the performance of Gossamer
with a standard three-round mutual authentication protocol,
based on MACs, implemented through AES, Present, Simon
and Speck, and we have shown that the computational effort
required byGossamer does not provide a saving, compared to
the lightweight implementations of the standard three-round
mutual authentication protocol. Our software implementa-
tion and evaluation, with all the limits that brings with it,
e.g., an optimized hardware implementation of Gossamer
could gain in terms of circuitry costs and efficiency, sug-
gests that standard cryptographic protocols, instantiated with
lightweight and sufficiently well-scrutinized primitives, per-
haps could be a suitable better option to deal with the new
challenges, posed by the heavily constrained devices, which
populate our current computational environment.
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