
International Journal of Information Security (2022) 21:547–562
https://doi.org/10.1007/s10207-021-00567-2

REGULAR CONTRIBUT ION

A content-based deep intrusion detection system

Mahdi Soltani1 ·Mahdi Jafari Siavoshani1 · Amir Hossein Jahangir1

Published online: 23 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2021

Abstract
The growing number of Internet users and the prevalence of web applications make it necessary to deal with very complex
software and applications in the network. This results in an increasing number of new vulnerabilities in the systems, and
leading to an increase in cyber threats and, in particular, zero-day attacks. The cost of generating appropriate signatures for
these attacks is a potential motive for using machine learning-based methodologies. Although there are many studies on using
learning-based methods for attack detection, they generally use extracted features and overlook raw contents. This approach
can lessen the performance of detection systems against content-based attacks like SQL injection, Cross-site Scripting (XSS),
and various viruses. In this work, we propose a framework, called deep intrusion detection (DID) system, that uses the pure
content of traffic flows in addition to traffic metadata in the learning and detection phases of a passive DNN IDS. To this
end, we deploy and evaluate an offline IDS following the framework using LSTM as a deep learning technique. Due to the
inherent nature of deep learning, it can process high-dimensional data content and, accordingly, discover the sophisticated
relations between the auto extracted features of the traffic. To evaluate the proposed DID system, we use the CIC-IDS2017 and
CSE-CIC-IDS2018 datasets. The evaluation metrics, such as precision and recall, reach 0.992 and 0.998 on CIC-IDS2017,
and 0.933 and 0.923 on CSE-CIC-IDS2018, respectively, which show the high performance of the proposed DID method.

Keywords Deep learning · Intrusion detection · Content-based attacks · Recurrent neural networks · Long short-term
memory ·Machine learning · Misuse · Malware detection · DoS attacks

1 Introduction

We live in the cyber era in which network-based technologies
have become omnipresent. Meanwhile, threats and attacks
are rapidly growing in the cyberspace. Nowadays, mainly
signature-based intrusion detection systems (IDSs) are used
to detect these malicious traffic. However, since new vul-
nerabilities and, consequently, zero-day attacks appear each
day, the cost of generating accurate signatures with a low
false-positive rate is growing.

The traditional approach to intrusion detection systems is
based on detecting some form of a signature. A signature
is extracted from the known attacks by employing security

B Amir Hossein Jahangir
jahangir@sharif.edu

Mahdi Soltani
mahdi@ce.sharif.edu

Mahdi Jafari Siavoshani
mjafari@sharif.edu

1 Department of Computer Engineering, Sharif University of
Technology, Azadi Ave, Tehran 1458889694, Iran

experts. A signature must completely cover different variants
of the attack forwhich it has been extracted.Also, benign traf-
fic and other types of attacks should not be falsely confused
with it. Hence, extracting an accurate signature is a compli-
cated and time-consuming process. By the increasing growth
of the Internet’s applications and users, more vulnerabilities
are expected to appear, which results in emerging more new
attacks. Therefore, the signature extraction process becomes
a more challenging problem in the coming years.

The learning-based approach is an alternative solution to
the signature-based intrusion detection systems. In addition
to resolving the signature extraction problem, some learning
approaches can also detect zero-day attacks by determining
abnormal traffic.

There are several research studies on the use of machine
learning methods to detect intrusions in computer networks.
Among them, we can mention pioneers like Bayesian net-
works [25], support vector machine (SVM) [21], decision
trees [49], and the new deep learning techniques (e.g., see
[6] and [39]). These studies generally focus on some spe-
cific features of traffic as inputs, and they usually have a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-021-00567-2&domain=pdf
http://orcid.org/0000-0002-8837-0668


548 M. Soltani et al.

low potential to detect content-based attacks. However, it is
well known that the content-based attacks, like SQL injec-
tion, malicious software, and viruses are the most destructive
attacks against assets that are accessible on the Internet.

According to our study, only a few of previous learning-
based works on IDSs have considered content-based attacks.
These works, like [38,45,46], and [15], use n-gram methods
for extracting the frequencies of characters in deterministic
windows. However, as shown in [42], n-gram methods are
vulnerable tomimicry attacks. In these kinds of attacks, some
unused parts of packets like IP options or PADDING parts in
exploits can be used for adjusting the frequencies of n-grams.

A severe obstacle for analyzing the contents of network
traffic is the large dimension of payloads. Nowadays, this
challenge can be handled effectively by employing Deep
Learning techniques [10,34]. In this paper, a deep learning-
based intrusion detection method, called deep intrusion
detection (DID) system is proposed. It uses the pure con-
tent of traffic (i.e., packet payload) as the input data. In the
pre-processing phase, the content of each flow is converted
to a numerical matrix. The learning and detection phases use
this matrix for separating normal traffic from the malicious
one.

In this work, our primary contribution is to use all content
bytes of traffic during the learning and detection phases. This
goal is achieved by employing deep learning methods (in
particular, in this work, we leverage using the LSTM neural
network). Besides, we propose an appropriate pre-processing
phase for feeding the traffic flows into the learning models.
There aremany studies around using deep learningmodels in
IDS scope, as are reviewed in this paper. Still themain novelty
of this paper is the use of the enriched raw content bytes of
flows (not pre-extracted features) as the input, and the ability
to distinguish the content-based attacks. Finally, we evaluate
our proposed scheme on the CIC-IDS2017 dataset [40]. This
dataset has an appropriate variety of full captured normal and
attacks traffic; in particular, it contains some content-based
attacks like Heartbleed.

The remainder of the paper is organized as follows. In
Sect. 2, we summarize the most relevant related works. Sec-
tion 3 presents the details of the proposed DID system. This
system also includes a pre-processing phase for preparing
contents of traffic flows to be fed to a deep learning model
(i.e., an LSTM neural network). In Sect. 4, the conducted
experiments and results obtained are discussed. Finally, Sec-
tion 5 concludes the paper and explains the possible future
directions.

2 Related works

In the following, we will review some of the learning-based
approaches used in intrusion detection systems.

2.1 Traditional machine learning approach

In the literature, various learning-based techniques such as
support vector machine (SVM), naive Bayes, decision tree,
random forest, and neural networks have been proposed for
intrusion detection systems.

SVM is one of the most popular classification algorithms
used so far. It has been used in research studies like [13,21,26]
and [44]. In this algorithm, the classification process is per-
formed by detecting a set of hyperplanes, as separators, in
a high-dimensional space. The high time-complexity of the
learning phase and the difficulty of finding a suitable kernel
function are the most important challenges of this method.
Learning time complexity has a superlinear relation with the
number of input instances. Besides, there is a quadratic rela-
tion between the size of the kernel matrix and the number of
instances.

Bayesian classifiers [22] use Bayes’ rule for predicting
the membership of input data to classes. They are built by
using expert knowledge or efficient algorithms that perform
inference. InNaiveBayesian classifiers, features are assumed
to be conditionally independent. Though this assumption is
not satisfied in practice, however, experiments have proved
its good performance.Many papers have used this technique,
e.g., see [32] and [25].

Authors in [32] have suggested generatingmulti-Bayesian
network models in which each one separately generates
an anomaly score for the input traffic. In [25], an IDS
based on Bayesian network classifiers is proposed. In this
research, association rules are used for the detection of nor-
mal/intrusion traffic. New traffic will get a low probability
level for each of the normal or attack groups. So, these sus-
picious connections will also be labeled as an attack. In the
second phase, these attacks are classified into four known or
unknown attack categories by Bayesian rules.

One of the main data mining techniques used in intru-
sion detection systems is associated with decision trees. In
[33], the misuse detection engine of Snort [3] is replaced
by decision trees. Firstly, the existing rules are provided
to a clustering algorithm to reduce the comparison needed
to determine rules that are triggered by specific input data.
These clusters are based on the values of important features.
When the clustering algorithm reaches a rule set for the given
feature of the input data, the decision tree determines the trig-
gered rules inside that cluster.

Random forests (RF) [12] consist of a collection of deci-
sion trees. In addition to good performance in comparison
with SVM and neural networks (NNs), this approach can run
efficiently on large datasets with many features. RF is robust
against overfitting and can handle unbalanced data. Works
like [49] and [17] use this technique.

Artificial neural networks (ANNs) were the most popular
models used until the 1990s when SVM was invented. One

123



A content-based deep intrusion... 549

of the benefits of SVM against ANN is its lower learning
time besides having a less localminimumproblem.However,
with the emergence of new ANN variants like recurrent and
convolutional NNs, the ANNs have begun to be used again.

In [35], a detector for finding attacks on Telnet is pro-
posed. This system extracts 89 pre-defined keywords from
the Telnet sessions. These keywords represent the suspicious
actions or well-known attacks in Telnet. After extracting the
distribution of these keywords, their statistics are given to a
binary neural network. Finally, the instances recognized as
attacks are given to a secondary NN, which determines the
class name of the attack. They have finally obtained detection
rates up to 80%.

ANNs can also be used for the detection of DoS attacks
like SYNFLOOD, UDPSTORM, and SMURF (for example,
see [11]). For this purpose, authors of [11] use a time win-
dow, which is then labeled as normal or attack traffic. Since
the input size of an ANN is fixed, they use a pre-processing
phase with the aid of an anomaly-based ANN, namely a self-
organization map (SOM). SOM can cluster the input data
into a fixed number of clusters. Hence, independently from
the number of packets in the time window, a fixed number
of inputs are provided for the ANN by this clustering tech-
nique. The model is evaluated by DARPA 1999 dataset [36]
and reaches 100% detection of normal traffic and 76% false-
positive rate for attacks.

In 2017, feature reduction techniques had been proposed
by using ANNs [7]. The authors use a combination of infor-
mation gain and correlation for feature selection. Then, after
normalizing the numbers of each class in the KDD99 dataset
[2], their model achieves the average recall value of 91.72%.

2.2 Deep learning approach

The recurrent neural network (RNN) is a class of ANNs in
which nodes have some amount of memory. As a result, in
addition to the current input, the previous inputs can also
influence the current output. These networks are suitable for
sequential inputs that possess a dependency with each other.
Long short-termmemory (LSTM)network is a class ofRNNs
[23]. LSTM has been proposed to solve the vanishing and
exploding gradient by introducing some gates to the neural
network structure. Therefore, LSTMcan effectively learn the
relations between items that are far away from each other in
a sequence. Computer network flows, consisting of packets,
form a sequence of data; hence, RNN and LSTM are natural
candidates for analyzing computer network traffics.

Authors of [6] have employed gated recurrent unit (GRU),
which is a variant of LSTM. They have slightly modified
GRU and used SVM as a classifier instead of the softmax
function. The goal of thismodification is to increase the com-
putational efficiency of the model. They have evaluated the
proposed model with 2013 network traffic data obtained by

the honeypot systems at Kyoto University. The inputs of this
model are 24 statistical features of the dataset. For improving
performance and reducing the computation cost of the mode,
the continuous features are converted to bins and, finally, are
represented in a one-hot format. Their model has an average
accuracy of 80.53%.

In another work, Kim et al. [30] have applied LSTMarchi-
tecture in IDS and use theKDD99 dataset for evaluating their
proposed model. Their input vector contains 41 normalized
features, and the output vector is composed of 4 attack classes
and one non-attack class. In their evaluation, the average val-
ues of recall and fall-out are 98.79% and 10%, respectively.

In [43], the authors use deep learning for detecting anoma-
lies in a software-defined network (SDN) environment. They
use six basic features of theNSL-KDDdataset (duration, pro-
tocol type, SRC bytes, DST bytes, count, and SRV count) to
detect anomaly flows. Finally, the attack detection accuracy
is reported as 75.75%.

Also, in some other research studies like [8,24], and [31],
the deep learning approach is employed for the reduction in
input dimensions by selecting among pre-extracted features.

The authors of [29] propose a scalable hybrid IDS with
two-stages: the first stage is the anomaly detector mod-
ule implemented by Spark ML traditional machine learning
models; the next stage is the misuse detector, which is based
on the Conv-LSTM network. Their evaluation is based on
ISCX IDS 2012 dataset with 10-fold cross-validation tests.
The results show a 97.29% detection rate of attacks and a
0.71% of false alarm rate.

Although deep learning methods have been proposed for
solving intrusion detection problems so far, to the best of
our knowledge, they use extracted features of inputs, as in
traditional approaches. These features mostly represent gen-
eral aspects of traffic flow, like source/destination port/IP
address, duration time, start time, and packet/byte number of
sent or received packets. These features are generally crucial
to the detection of some kinds of attacks like DDoS and port
scan. However, many important attacks, like SQL injections,
worms, viruses, and XSS, which are content-based attacks,
have general features very similar to benign traffics. In the
following, some traditional research studies which have paid
attention to these kinds of attacks are reviewed.

2.3 Content-based approach

Generally, some restricting extracted features are used in
machine learning-based intrusion detectors. These general
features are rarely based on contents transmitted through the
established flow. Consequently, content-based attacks have a
high impact on the security and privacy of network applica-
tions and services in such systems.

In the following, we review some relatedworks on content
inspection for intrusion detection.Most of the payload-based

123



550 M. Soltani et al.

detectors extract statistical features by using the n-gram
technique. PYLE [46], Anagram [45], and McPAD [38]
are among the most well-known works. PYLE uses 1-gram
method and extracts the frequency of values in each byte of
the packet. Anagram uses 5-gram and stores the extracted
5-grams in Bloom filters. There are two kinds of Bloom fil-
ters in this work: one designed for attacks and the other for
benign n-grams. Finally, these two Bloom filters examine the
input traffic.

It is evident that in n-gram analysis, the dimension of
feature space grows dramatically. Hence, limited by the curse
of dimensionality problem, in practice, this approach can be
used at most for n = 2, which yields 65536 features. To
mitigate this problem, McPAD [38] measures the frequency
of the occurrences of pairs of symbols (bytes), which are k
bytes apart from each other in the payload. In this way, some
information in n-grams with n > 2 can be extracted by such
pairs of bytes.Moreover, thismethodwill only generate 2562

features regardless of the value of k.
In [42], the authors show that blending attacks can defeat

n-gram methods. These attacks fill unused parts of network
traffics with new characters in proportion to the target fre-
quency and, consequently, convert the statistics of characters
to become similar to benign traffics. Their evaluation shows
that to launch an attack against a 5-gram detector, at least two
packets (i.e., about 2000 bytes) are needed. Besides, they pro-
pose fragmentation overlapping for solving larger values of
n. Different operating systems (OSs) have different behaviors
for extracting bytes in overlapping situations. They may pre-
fer the first or last arrived overlapped bytes. The other bytes
will be ignored by the OS. So these ignored bytes can be used
in higher values of n for deluding the n-gram detectors.

In another research [41], after encoding the content by
Base64, the integer values are extracted. Finally, the frequen-
cies of these integer values are enumerated. Even though
authors do not mention an n-grams method, but in fact, they
use a 1-gram approach.

Another related work is [9]. This paper focuses on false
data injection attacks (FDIA) on phasor measurement units
(PMU), which are utilities for monitoring power systems. In
this paper, CNN is compared with RNN, LSTM, and tradi-
tional classifiers such as SVM. PMU packet data consists
of d different instances of data items, including n univariate
voltage and current phasor data stream. Finally, this work
proposes a CNN model with 2 CNN layers, a dropout prob-
ability of 0.5, and a fully connected layer with 512 neurons,
which achieves a 98.67% accuracy.

3 Methodology

The high dimensionality of traffic content is one of the
biggest challenges in the detection of content-based attacks.

Fig. 1 General illustration of DID system in the passive mode

Although this challenge can be addressed by employing deep
learning methodology, according to our survey, all the previ-
ous proposed studies have focused on pre-extracted features
which are vulnerable to content-based attacks.

In this work, we propose a deep learning-based IDS
method to extend the detection scope by covering the
content-based attacks as well. Since traffic contents can have
long-time dependencies, input feature space should have a
high dimension. As deep learning methods are designed
for such large data spaces, we propose using deep learn-
ing techniques directly on the raw bytes of contents instead
of applying it to the extracted traffic features. The proposed
method is called deep intrusion detection (DID). Thismethod
can be applied to both passive and on-line traffic. In this
research, the passivemode is followed, as illustrated in Fig. 1.

Since traffic flows consist of sequences of data, algo-
rithms like RNN and LSTM that are developed for sequential
data are among the best candidates for the DID approach.
In the following, we describe the proposed DID approach
and explain how it uses deep learning methods to detect
content-based attacks. In the following, we have two main
subsections. The first one provides a complete description
of the pre-processing module, and the second highlights the
deep learning module of DID. In particular, in this work, we
will employ LSTM for the deep learning module of DID.
However, it should be noted that DID is not limited to use
LSTM, rather, other algorithms can also be employed in the
deep learning module.

3.1 Pre-processing phase in deep intrusion
detection

Traditional learning methods highly depend on the pre-
extracted features. As a result, the accuracy of such algo-
rithms depends heavily on the selection of input fea-
tures. Hence, these features should be found and extracted
by experts, which makes the process expensive, time-
consuming, and prone to error. Moreover, due to the increase
in variant of known attacks and the emergence of new ones,
extracting some static and definite features cannot provide
adequate information for intrusion detection tasks.

In contrast, deep learning algorithms can extract com-
plicated features from the raw data automatically. Conse-

123



A content-based deep intrusion... 551

quently, to address the above issues, DID uses deep learning
techniques to learn various cyber-attacks, including content-
based attacks. It is well known that deep learning algo-
rithms can detect sophisticated relations in high-dimensional
spaces. Hence, they are good candidates for the detection of
content-based attacks.

Although some content-based intrusion detection systems
like [45,46], and [38] focus on packet-level granularity, in
real-world, some packets can belong to both benign and
attack flows (e.g., SYN or FIN packets, or HTTP GET
requests in DDoS attacks). Moreover, some attacks are dis-
tributed amongmore than one packet. Therefore, the concept
of malicious traffic resides in the flow contents. As a result,
we assume that the input to the DIDmethod is based on flows
instead of packets.

3.1.1 Basic normalized matrix

In this work, we propose an offline version of DID, where
each flow is considered as an input sequence to an LSTM
neural network. Each packet represents a data point in the
input sequence. Since the maximum Ethernet frame size is
around 1514 bytes, so we consider 1514 as the dimension for
each packet. Hence, the input is assumed to be a sequence of
1514-dimensional points.

Additionally, the size of input sequences depends on the
number of packets in the traffic flows. In the offline DID,
we assume some reasonable maximum value for the number
of packets (which we will later determine this parameter by
inspecting the dataset). Finally, since each byte is in the range
of 0 to 255, in order to improve the deep network performance
and make the parameters on the same scale, we normalize
each byte value to a number between 0 and 1, by dividing it
to 255.

According to the pre-processing phase explained above,
we have a normalized matrix per each flow (as depicted in
Fig. 2), where rows describe different packets in the flow,
and the i th column contains the normalized value of the i th
bytes of packets. Moreover, we add a column to the matrix
for storing inter-arrival times of packet flows to detect attacks
such as HTTP flooding, which sends some benign requests
continuously over the established connection. These normal-
ized matrices can be the input of the deep learning module
of DID (we will later enrich these matrices).

Considering a large number of parameters in deep learning
algorithms, and a limited number of flows that are used in the
training phase, there is a reasonable chance of overfitting if
the datasets are not used with enough care. As an example, IP
addresses can be a misleading factor. This misleading effect
exists in most available public datasets like CIC-IDS2017
[40] and KDD99 [2]. In [37], authors have shown that many
parameters of the DARPA 99 [36] traffic, like TTL (Time
To Live), ToS (Type of Service), and the IP addresses, can

3rd byte
packet’s 

�me
interval

1st byte 2nd byte

2nd

packet

1st

packet

3rd

packet

...

kth

packet

...

nth byte

Fig. 2 The output of the pre-processing phase in the form of a normal-
izedmatrix fed into the deep learningmodule. Each cell,Ci j , represents
the content of the j th byte of the i th packet. The first column is different
from other columns and represents the time interval between i th packet
and (i − 1)th packet

cause overfitting. For example, TTLs of the attack traffics are
mostly 126 and 253, but benign traffic has nine restricted val-
ues, which are different from the attack ones. Besides, source
IP addresses of attacks are different from benign traffics and
can simply be used for discrimination. The KDD99 dataset
also has inherited these vulnerabilities. Since the attack traf-
fic constitutes a small part of the dataset, there are so many
IP addresses that are purely normal, and the algorithm can
assign a substantial weight for IP addresses to attain higher
accuracy. However, we know that this is not a valid assump-
tion in the real-world.

Considering the above issues, in our pre-processing phase,
we eliminate some bytes of packets that belong to fields
like CHECKSUM and IP addresses. Specifically, the total
data-link header, the Source/Destination IP addresses and the
checksum from the network header, and the checksum of the
transport layer are the removed items in the pre-processing
phase. It should be noted that this elimination can cause some
performance reduction in the detection phase. For example,
ignoring the client’s IP address in a monolithic environment,
like a university, can avoid overfitting, but in heterogeneous
networks with different types of clients, some valuable infor-
mation can be missed. Besides, server IP addresses can be
beneficial in server-side IDSes. So, in the real world, this
elimination should be applied according to the conditions of
the deployment environment.

3.1.2 Enriched normalized matrix

The pre-processing phase can be completed by enriching the
normalized matrices. The basic pre-processing matrices are
adequate for detecting flow-based attacks. However, other
kinds of attacks can be recognized by considering some
intra-flows features. These features are also added to the first
row of the basic pre-processing matrix to make it richer. For
example, flooding attacks can be generated by making many
legitimate connections rapidly, and these kinds of attacks can

123



552 M. Soltani et al.

be detected by adding time intervals between flows. Since in
the real world, the normal and attack flows are interleaved,
the computation of the time interval between flows should be
based on the original flows’ arrival times. The other approach
is based on splitting the flows into benign traffic and attack,
and then extracting the time interval in each subgroup. This
approach can increase the detection error ratio when there
exists normal traffic between attacks.

To address the intra-flow attacks, we use four more exten-
sive intra-flows features as follows: aggregative source or
destination address repetition in a fixed-size bucket of pack-
ets or in a time window. Attacks like DDoS use multiple
different IP addresses to send requests to the victim server,
called Type I attacks. Detection of this kind of attack can
be done by aggregating flows that have the same destina-
tion IP address. On the other hand, in some attacks like port
scanning, a single client IP address tries to recognize dif-
ferent active services (ports) on a specific victim IP address
or a specific service (port), which is activated on a network
range. Thementioned scenarios have the same source address
and destination port or same source and destination address,
respectively. For simplification, we call these kinds of attacks
as Type II.

Another important aspect of detecting intra-flow attacks
is network bandwidth. For networks with low bandwidth, a
fixed size window (or bucket) is used for aggregation. As the
time interval between flows can exceed the time threshold,
time windows cannot detect the attacks. On the other hand,
the fixed-size window cannot detect attacks in high-speed
traffics, because thewindowwill befilled rapidly, and the new
informationwill overwrite the older ones.A timewindowcan
handle this situation as well. In real networks, bandwidth
has no fixed value, and according to the conditions like days
vs. nights, it can have low or high bandwidth. So we use a
combination of these two kinds of windows for the detection
of intra-flow attacks.

The four aforementioned intra-flow features are extracted
per each flow. Detection of Type I attacks depends on the
aggregation of flows based on their destination IP addresses.
Hence, as a new flow arrives, it is compared with flows that
are observed in the fixed-size and fixed-time windows. The
number of flows having the same IP address as the new one
in both windows is used as features. Similarly, aggregation
based on the source IP address is done for the detection of
Type II attacks. In this case, the source address of each flow is
compared with the source addresses of flows in the fixed-size
and fixed-time windows.

Finally, the five new intra-flow features will be added to
the first row of the basic normalized matrix (see Fig. 3). This
enriched matrix will be used as an input of the deep learning
module of DID. In the following, some candidates for DID
deep learning module are discussed, and the LSTMmodel is
implemented.

Fig. 3 The structure of enriched normalized matrices used as the input
to the deep learning module of DID. The main difference with Figure
2 is the first row of the matrix, added as the features that represent the
intra-flow context

3.2 Deep learningmodule of deep intrusion
detection

As mentioned earlier, in DID, we prepare a rich normal-
ized matrix as the input for a deep learning algorithm. This
matrix has the potential for extracting content-based and
some intra-flow attacks. In the following, some candidates
for deep learning modules are discussed. The main impor-
tant point, which is common among the proposedmethods, is
the sequential nature of these algorithms. In fact, since pack-
ets, flows, and network traffics are all, in general, sequential
data, the chosen algorithms should match or benefit from this
feature.

3.2.1 Recurrent neural networks

Recurrent Neural Network (RNN) is suitable for learning
patterns in data sequences and time series, such as process-
ing natural languages and genetic data [16]. This feature
makes RNN an extremely useful tool for analyzing computer
network traffic. The difference between recurrent neural net-
works and feed-forward neural networks is that besides the
current input, some information from previous inputs is also
processed. In RNN, decision making related to an input
instant at the moment t depends on the decision made at
the moment t − 1.

Themathematical definition of the forwardmemory trans-
fer process in recursive neural networks is as follows

ht = φ(Wxt +Uht−1),

where ht is the state of the hidden layer of the recurring
neural network at the moment t . The value of ht is a function
of the input at the moment t (i.e., xt ) which is multiplied to
hidden layer weights W , and the last moment hidden layer
feedback ht−1 which is multiplied to its own weightsU . The
weight matrices apply the relative importance of the input at
the current moment and the feedback input from the previous
moment.

123



A content-based deep intrusion... 553

Fig. 4 The internal structure of an LSTM cell

3.2.2 LSTM

LSTM is a special type of recurring neural network which is
capable of learning long-term dependencies. These networks
have proven to be very effective in many different circum-
stances and are now widely used in practice. An LSTM layer
consists of some similar units, called LSTM cell. Inside each
cell, four neural networks are linked to each other in a spe-
cific structure (see Fig. 4). This special structure enables an
LSTM network to learn simultaneously short and long-term
dependencies very well. For more details on the LSTM the
interested readers can refer to [20].

3.2.3 LSTM-based classifier

Since, in practice, it has been observed that LSTM-based
classifiers and their variants perform very well on sequential
data, we construct a deep learning model with two LSTM
layers as a proof of concept for our proposed deep intrusion
detection (DID) framework. The hyper-parameters that are
dedicated to this model are based on the evaluations which
are discussed later.

Figure 5 presents the details of the proposed model. As
shown in Fig. 5, after extraction of sequential features with
LSTM layers (with 100 and 50 units, respectively), some
fully connected layers (with 2500, 1250, 512, 256, 64, and
16 neurons) are employed to extract the more complicated
features. Finally, a softmax layer is applied for binary clas-
sification between attack and benign traffics. The activation
functions of all layers (except the last one) are ReLU, and in
order to avoid overfitting, some dropout layers with a 20%
drop rate are added among fully connected ones. Finally,
the Adam algorithm is used for optimization in the training
phase, and the loss value is computed by binary cross-entropy
as the loss function.

Fig. 5 The proposed LSTM-based classifier used in the our DID frame-
work

4 Experiment

This section contains a real implementation of aDID instance
on the CIC-IDS2017 and CSE-CIC-IDS2018 datasets. In the
following, first, the CIC-IDS2017 and CSE-CIC-IDS2018
datasets are briefly introduced. Then, after explaining the
pre-processing phase, the experimental results are presented
and compared with previous works. The reported results in
this paper are based on the 10-fold cross-validation tests.

4.1 Dataset

In this work, we use the CIC-IDS2017 and CSE-CIC-
IDS2018 datasets to benchmark the proposed DID method.
According to [19], there are few labeled datasets with PCAP
format traffic files; among them, ISCX/CIC IDS is one of
the best and up-to-date ones. CIC IDS is the only option
with adequate labeled attacks/benign traffics in PCAP for-
mat. Hence, we made our evaluations based on this dataset
solely. This dataset is made of 50 GB network traffic cap-
tured in five different days, which is the most recent IDS
evaluation dataset and contains different types of attacks.
In particular, content-based attacks like Heartbleed are also
included in this dataset. Traffic capturing is done in a simu-
lated computer network with several servers and clients. The
developers of CIC-IDS2017 have analyzed real traces of a
client-server network and have tried to create the same pro-
file for the clients. The details of the five days of network
traffic are shown in Table 1.

The main advantages of this dataset compared to the pre-
vious ones are:

– Implementing a complete network configuration, includ-
ing Modem, Firewall, Switches, Routers, and a variety
of operating systems.

– Simulation of user profiles.
– The dataset is labeled. This is a requirement for classi-
fication purposes. Besides, it presents the full captured
traffic without anonymization techniques.

123



554 M. Soltani et al.

– Implementing all kinds of interactions in the network.
– Using a wide range of protocols and network attacks.

Although, as explained above, this dataset has many
advantages, it has its shortcomings too. One of the most
important deficiencies of this dataset is its limited variety
of protocols and attacks compared to real-world traffics.
For example, IP addresses of attack traffic are very lim-
ited, and hence, the other IP addresses can be recognized
as pure benign traffic. More precisely, attacks on Tuesday
and Wednesday are just focused on one and two destination
addresses, respectively. Besides, DoS attacks on Friday are
all from a specific client IP address. On the other hand, real
network conditions like packet loss and different TTLs are
not presented in this dataset. Moreover, so many kinds of
applications like social networking are not considered.

For reporting more reliable results we also evaluated the
DID over a newer version of the IDS evaluation dataset
which is called CSE-CIC-IDS2018 [4] and is introduced by
CIC (Canadian Institute for Cybersecurity) and CSE (Com-
munications Security Establishment) collaboratively. This
dataset extends the variety of packets, OSes, network topol-
ogy, and servers. For example, the attacking infrastructure
includes 50 machines and the victim organization has 5
departments including 420 PCs and 30 servers. However,
the attack types and normal protocols remain the same as
the CIC-IDS2017 dataset. Due to its better implementation
topology, this dataset can provide a better challenge for the
DID framework.

Finally, as mentioned above, according to our survey, the
CIC-IDS2017 and CSE-CIC-IDS2018 are the best datasets
available in the context of IDS. However, we should be aware
of their weaknesses and simplicity. Obviously, in the real
world, we need to implement more sophisticated ML mod-
els with a higher number of layers and nodes in each layer.
Moreover, as discussed in Sect. 3.1, we should be aware of
the lack of diversity of these datasets in the pre-processing
phase.

4.2 Pre-processing

In this phase, we prepare the dataset as the input of a neural
network. First, we need to extract and split the network flows
from the pcap files. To this end, we read the large pcap files
and make separate files per each bi-directional flow. Flow
separation is basedon the source port, destination port, source
IP address, destination IP address, and flow start time for
TCP and UDP protocols. We consider a timeout threshold
that divides a series of packets into two separate flows if they
have the same 5-tuples but are delayed by more than 180
seconds. In the case of TCP flows, besides the mentioned
metrics (timeout and 5-tuple), the states of TCP termination

phase like FIN/ACK or RST/ACK packets are considered as
the termination of a TCP flow.

4.2.1 Constructing the input matrix

Network flows are not suitable to be input directly to the
neural network. To make the flows applicable, we have to
apply several changes to them. First, we read the frames of
each flow. The data link header is removed for extracting the
packet since it does not have any information for network
intrusion detection tasks. Thenwe read the bytes of the packet
and divide them by 255 to obtain a normalized value between
0 and 1.

The maximum size of each packet is 1514 bytes, and
smaller packets are padded by zero-value bytes. Besides,
since the header length of UDP is less than TCP, we add
zero to the end of the UDP header so it will have the same
size as the TCP header. It is notable that we also vectorize
the control packets, such as ACK packets. Even though these
control packets do not have adequate payload information,
their timing is useful for determining the protocol behavior.
As a result, in our enriched input matrix, they have inter-
packet intervals that can be used as a piece of information
for the learning model.

There are somefields in network traffic,which canmislead
the deep learning model. For example, the checksum field
can have random values, and most probably, it is useless.
Moreover, as explained above, IP addresses can lead to the
overfitting problem. We mask the value of these fields by
zero. In the end, we will have an n × 1514 matrix, where n
is the number of packets.

The dimensions of the input matrix for this dataset can
be reduced by inspecting the dataset traffic. As shown in
Fig. 6, packet size in normal and attack traffic has two dis-
tinct ranges: packetswith only the first 200 bytes, and packets
with the maximum size of 1514 bytes. By performing sev-
eral experiments on the dataset, we found that the first 200
bytes of each packet constitutes the discriminant bytes, and
inspecting extra bytes has no significant impact on the learn-
ing accuracy. In addition, benign and attack flows in this
dataset contain mainly less than 100 packets (as shown in
Fig. 7). So, inspecting only the first 100 packets of each flow
can yield almost a complete evaluation of the nature of flows
in the ISCX/CIC 2017 dataset.

Finally, we have chosen the first 200 bytes of the first
100 packets of each flow as an input matrix according to the
nature of flows in this dataset.

4.2.2 Subsampling

As shown in Table 1, the size of the CIC-IDS2017 dataset
is 50GB before the pre-processing phase, and the pre-
processing phase increases its size tremendously to more

123



A content-based deep intrusion... 555

Table 1 Details of the CIC-IDS2017 dataset

Day Attack type Attack size Benign size

Monday – 0B 11GB

Tuesday Brute Force 51MB 11GB

Wednesday DoS / DDoS 2GB 11GB

Thursday Web Attack, Infiltration 42MB 8.4GB

Friday Botnet ARES, Port Scan 2GB 7.5 GB

Fig. 6 The distribution of number of bytes per packet in the benign and
attack traffics

Fig. 7 The distribution of the number of packets per flow in benign and
attack traffics

than 500GB. Due to hardware limitations, we cannot use
all traffic flows to train the neural network. Therefore, we
need to reduce the size of the dataset. Also, the dataset is
imbalanced, and the number of benign flows is much higher
than the number of attack flows. This imbalance in data does

Table 2 Details of the CSE-CIC-IDS2018 dataset

Day Attack type Pcap size

Friday-02-03-2018 Botnet 45GB

Friday-16-02-2018 DoS 39GB

Friday-23-02-2018 Web Attacks 59GB

Thursday-01-03-2018 Infiltration 53GB

Thursday-15-02-2018 DoS 41GB

Thursday-22-02-2018 Web Attacks 50GB

Tuesday-20-02-2018 DDoS 46GB

Wednesday-14-02-2018 Brute Force 40GB

Wednesday-21-02-2018 DDoS 55GB

Wednesday-28-02-2018 Infiltration 53GB

not allow to train the neural network correctly. To fix these
issues, we choose all of the attack flows and randomly select
the same amount of benign flows, balancing the dataset and
reducing the input data size. Finally, we have a pre-processed
dataset with a size of around 40GB.

The size of the CSE-CIC-IDS2018 dataset is even more
challenging. Its original size is around 480GB, and the traf-
fic is in 10 different days that are represented in Table
2. Table 3 represents the selected flow numbers of each
category in these two datasets. The categories and their
sub-category attacks are as follows: Botnet, Port Scan,
DoS/DDoS (DoS slowloris, DoS Slowhttptest, DoS Hulk,
DoS GoldenEye), Heartbleed/Infiltration, Brute Force (FTP-
Patator, SSH-Patator), Web Attack (Brute Force, XSS, SQL
Injection). The two datasets have the same attack categories
with some little differences such as The 2017 version con-
tains heartbleed attacks. On the other side, the 2018 version
has lots of infiltration attacks. Besides, the port scan attacks
are absent in the CSE-CIC-IDS2018 and the number of its
web attacks is more limited.

As mentioned above, the subsampling technique is one of
the main approaches to pre-process an unbalanced dataset
before input to ML models. As mentioned above, in the
binary classification scenario, we have balanced the two
classes (benign and attack). When we consider a multi-class
classification setup, the same technique can be applied. In

123



556 M. Soltani et al.

Table 3 The balanced number of evaluated flows in the binary classification experiment

Category Sub-Category CIC-IDS2017 CSE-CIC-IDS2018

Benign – 15000 15000

Web Attacks 1500 200

Botnet 2000 3000

Attack Port Scan 2000 –

DoS / DDoS 6000 6000

Brute Force 3500 3000

Heartbleed / Infiltration 10 3000

Table 4 The balanced number of evaluated flows in the multi-class classification experiment

Category Sub-Category CIC-IDS2017 CSE-CIC-IDS2018

Benign – 5000 5000

Web Attacks 1500 200

Botnet 2000 3000

Attack Port Scan 2000 –

DoS / DDoS 6000 6000

Brute Force 3500 3000

Heartbleed / Infiltration 10 3000

Table 5 The hardware specification of the experiment environment

OS Debian version 9.3 with kernel 4.9.0-amd64

CPU Intel(R) Xeon(R) X5680 3.33GHz with 24 virtual cores

RAM 18 GB

GPU GeForce GTX 1080 Ti

GPU Frame Buffer 11 GB

this case, the subsampling equalizes all classes, including
the benign and other attack categories.

Finally, the two evaluated CIC datasets have the same
attack types and categories. The attack types of each attack
category and the selected number of flows for each attack
category of the datasets are described in Table 4.

4.3 Experimental results

After converting each flow to an enriched input matrix, we
have split the dataset randomly into three subsets. The first
set, which contains 64% of the flows, is used to train and tune
the weights of the deep learning model. The second and third
sets are used during validation and test phases and contain
16% and 20% of flows, respectively. We performed 10-fold
cross-validation and grid search for the hyper-parameter tun-
ing.

There exist several metrics for evaluating the performance
of the trainedmodel. Among them, we have chosen precision

(PR), recall (RC), fall-out (FO), and F1 score (F1). Based on
a confusion matrix, equations of these parameters are stated
as follows (TP: true positive, FP: false positive, TN: true
negative, and FN: false negative)

PR = TP/(TP + FP), (1)

RC = TP/(TP + FN), (2)

FO = FP/(FP + TN), (3)

F1 = 2× PR × RC

PR + RC
. (4)

Recall (RC) is a valuable metric in IDSs as it deter-
mines the ratio of attacks that have been detected to the
actual attacks. Besides, the ratio of benign flows, labeled
as attacks, to the total actual benign flows is determined
by the fall-out (FO). Precision (PR) shows the ratio of cor-
rectly generated alerts (existence of attacks) to all alerts. This
metric represents the trust of network administrators to the
generated security alarms. Finally, F1 score tries to make

123



A content-based deep intrusion... 557

Table 6 The traditional ML models for the binary classification evalu-
ated on the pre-extracted features given in CSV files of CIC-IDS2017
and CSE-CIC-IDS2018

Dataset Model Precision Recall F1 score

SVM 0.79 0.76 0.75

CIC-IDS2017 RF 0.98 0.98 0.98

NB 0.66 0.61 0.58

SVM 0.77 0.69 0.66

CSE-CIC-IDS2018 RF 0.95 0.95 0.95

NB 0.72 0.61 0.56

Table 7 The traditional ML models for the binary classification evalu-
ated on the enriched raw data of CIC-IDS2017 and CSE-CIC-IDS2018

Dataset Model Precision Recall F1 score

RF 0.96 0.96 0.96

CIC-IDS2017 NB 0.91 0.91 0.90

RF 0.90 0.89 0.89

CSE-CIC-IDS2018 NB 0.75 0.75 0.75

a balance between the importance of precision and recall.
This is achieved by calculating the harmonic mean of these
valuable metrics.

To implement our deep learning model, we have used the
Keras library [14], with Tensorflow [5] as its backend. The
characteristic of our experiment environment is shown in
Table 5.

4.3.1 Evaluation of the traditional MLmodels

First, we evaluate the performance of different traditional
machine learning classifiers like Support Vector Machine
(SVM), Random Forests (RF), and Naive Bayes (NB) over
both the CIC-IDS2017 and CSE-CIC-IDS2018 datasets. We
have only presented the best results obtained by the hyper-
parameters chosen through an empirical random search (see
Table 6). The results are based on pre-extracted features,
which are presented in CSV files alongside the dataset.

In the next step, we evaluate the traditional ML models
based on detection with the enriched raw data (i.e., here,
we do not use the pre-extracted features of datasets). The
traditional ML models are evaluated over the pre-processed
vectorized flows (see Table 7). Due to the dependence of the
size of the SVM model to the size of the input data, and also
according to the huge size of the pre-processed dataset, the
SVM model cannot be fit in our server and it is impractical
for the real-world IDSs. Among the traditional ML models,
the RF shows remarkable results than the others over the raw
data.

Fig. 8 The loss of the proposed deep learning module (LSTM-2a) of
DID during the training phase

The results of the multi-class RF model as the best tra-
ditional ML model over the enriched raw data are also
presented in Table 8.

4.3.2 Determining the hyper-parameters for the DID-based
LSTM

Asmentioned before, the sequential nature of flows, packets,
and bytes leads us to use LSTM models for the DID frame-
work. Hence, the next step is to determine the appropriate
hyper-parameters of the proposed LSTM models. The main
hyper-parameters of an LSTM model are the number of lay-
ers and the number of units in each layer. The main results
of the grid search to tune hyper-parameters are reported in
the following. LSTM-1a has one LSTM layer with 50 units
and some fully connected layers with 2500, 1250, 512, 256,
64, and 16 neurons. LSTM-2a has the same fully connected
layers but two LSTM layers, whereas the number of units
of the first LSTM layer is 100, and the second one is 50
units. LSTM-1b and LSTM-2b are similar to LSTM-1a and
LSTM-1b, respectively. The main difference between these
two models comes from their fully connected layers. They
have simpler fully connected layers than “a” models (they
only have two 64 and 16 neurons layers). In all models, all
layers’ activation functions (except the last one) are ReLU,
and dropout layers with a 20% drop rate are added among
fully connected ones.

Table 9 represents the results of different LSTM models
introduced above, evaluated on the CIC-IDS2017 dataset.
As the results show, LSTM-2a outperforms other models;
however, the performance and simplicity of LSTM-1b can
also be a good candidate for practical implementations.

Figure 8 depicts the loss value in the training phase with
selected hyper-parameters for LSTM-2a. At the end of the
training phase, the mean of loss in training and validation
data is 0.03 and 0.01, respectively. The lower value of loss
in the validation phase is due to the dropout layers applied
during the training phase, which improves the generalization

123



558 M. Soltani et al.

Table 8 The RF multi-class classifier evaluated on the enriched raw data of CIC-IDS2017 and CSE-CIC-IDS2018

Dataset Category Precision Recall F1 score

Benign 0.97 0.84 0.90

Botnet 0.99 0.94 0.96

Port Scan 0.99 0.99 0.99

CIC-IDS2017 DoS/DDoS 0.96 1.00 0.98

Heartbleed/ Infiltration 0.00 0.00 0.00

Brute Force 0.98 1.00 0.99

Web Attacks 0.85 0.91 0.88

Total 0.96 0.96 0.96

Benign 0.74 0.93 0.82

Heartbleed/ Infiltration 0.33 0.12 0.18

Botnet 0.99 1.00 0.99

CSE-CIC-IDS2018 DoS/DDoS 0.95 0.91 0.93

Web Attacks 1.00 0.79 0.88

Brute Force 1.00 0.93 0.97

Total 0.82 0.84 0.82

of the deep model. Consequently, by removing them in the
validation phase, better results are achieved. The results of
the evaluation of thismodel by the test data are also presented
in Table 11 for comparison with previous works.

We also evaluated our model as a multi-class classifier. In
this scenario, not only the type of traffic but also its category
type will be determined. The performance of the multi-class
classification over the attack categories of the CIC-IDS2017
and CSE-CIC-IDS2018 datasets are presented in Table 10.

The evaluations (Tables 8 and 10) result in lower precision
values for CSE-CIC-IDS2018 dataset compared to CIC-
IDS2017 dataset. According to [4], the CSE-CIC-IDS2018
dataset has a larger simulation network and more different
protocols and user behaviors. For example, the attacking
infrastructure of the CSE-CIC-IDS2018 dataset includes 50
machines, and the victim organization has five departments
and includes 420 machines and 30 servers. Meanwhile, the
CIC-IDS2017 dataset has only a simulation infrastructure
composed of 4 attackers and 14 victim machines.

4.3.3 Comparison with similar research studies

Ourwork is comparablewith two categories of relatedworks.
The first category belongs to studies evaluated on ISCX/CIC
IDS datasets and the second one concerns those that focus on
the contents of the traffic payloads. Soheily-Khah et al. [41]
use 50 features of the ISCX 2012 dataset to evaluate their
model, which is achieved by combining K -means and ran-
dom forest algorithms. This research is somehowcomparable
to our work since it uses some learning algorithms over
the ISCX dataset, and this method can be compared with
deep learning. Their model has achieved recall and fall-out

Table 9 The comparison of different LSTM models employed in the
DID framework

Model Precision Recall F1 score

LSTM-1a 0.989 0.995 0.991

LSTM-1b 0.983 0.990 0.987

LSTM-2a 0.992 0.998 0.994

LSTM-2b 0.987 0.993 0.990

Bold numbers are the best values of each metric

of around 98.9 and 0.1, respectively. Note that since they
have not announced the average evaluation metrics, we have
used their reported tables and the mean of their metrics for
different protocols (since PR was not reported, we calcu-
late its value). The first category also comprises some other
works such as [29,48], and [18], which all focus on using
deep-learning methods over features that are extracted from
ISCX/CIC IDS datasets. The main point that makes related
works on ISCX IDS 2012 comparable with studies on CIC-
IDS2017 is that the CIC 2017 just an updated version of
ISCX 2012. It includes more benign profiles and attack ver-
sion [40]. Due to the more complexity and completeness of
the CIC-IDS2017, the produced results are more reliable.

In the second category, we have works like [38], which
is one of the best research studies about detecting content-
based attacks. We have evaluated this method by using its
source code, which is available at [1]. Even though this code
yields good results over the dataset used by themselves in
[38], but it shows a weak performance in learning CIC-
IDS2017 dataset. This weakness is related to the ISCX/CIC
IDS dataset’s comprehensiveness against previous ones like

123



A content-based deep intrusion... 559

Table 10 The LSTM-based DID multi-class classifier evaluated on the enriched raw data of CIC-IDS2017 and CSE-CIC-IDS2018

Dataset Category Precision Recall F1 score

Benign 0.99 0.94 0.97

Botnet 0.86 1.00 0.92

Port Scan 0.99 0.99 0.99

DoS/DDoS 1.00 1.00 1.00

CIC-IDS2017 Heartbleed/ Infiltration 0.00 0.00 0.00

Brute Force 1.00 1.00 1.00

Web Attacks 0.95 0.98 0.96

Total 0.99 0.99 0.99

Benign 0.96 0.77 0.85

Heartbleed/ Infiltration 0.53 0.90 0.67

Botnet 1.00 1.00 1.00

CSE-CIC-IDS2018 DoS/DDoS 0.99 1.00 1.00

Web Attacks 0.95 0.97 0.96

Brute Force 1.00 1.00 1.00

Total 0.93 0.90 0.90

Table 11 The results achieved by the proposed DID framework on
the CIC-IDS2017 and CSE-CIC-IDS2018 alongside its comparison to
[47], McPAD, and Deepcoin which are evaluated on the CIC-IDS2017.

Besides, the reported values of [28,29,41], and [48] over ISCX IDS
2012 are presented

Dataset Model Precision Fall-out Recall F1 score

DID (with LSTM) 0.933 0.105 0.923 0.927

CSE-CIC IDS 2018 Random Forest 0.902 0.196 0.891 0.892

DID (with LSTM) 0.992 0.002 0.998 0.994

CIC-IDS 2017 Zavrak et al. [47] – 0.550 0.950 –

McPAD [38] 0.993 0.019 0.177 0.300

DeepCoin [18] 0.983 0.009 – –

Soheily-Khah et al. [41] 0.987 0.001 0.989 0.988

PCA-based TMAD [28] 0.999 0.012 0.970 0.984

ISCX IDS 2012 Kahn et al. [29] 0.972 0.007 0.975 0.973

DFR [48] 0.981 – 0.991 0.986

Bold characters are the best cases in each dataset

DARPA or KDD99. The results of the evaluation of McPAD
by CIC-IDS2017 are also represented in Table 11.

The main weakness of McPAD is its detection rate, repre-
sented by the recall, which is around 20%. AlthoughMcPAD
has a significant detection rate over the dataset used in [38], it
cannot be beneficial in real-world traffic. Further inspections
show that while their benign traffic is suitable, the attack ones
used for the evaluation have some notable weaknesses. For
example, allShellcode.pcap file has only 11 TCP sessions,
which in each one contains a shell-code attack. As the NOP
sled in these attacks has many repetitions of bytes like 0x90
and 0x61, they can be easily detected. Besides, the other
attack file, which is called allGeneric.pcap, has 66 HTTP
attacks. Among them, 11 shell-code attacks can be detected
as the previous one, and the others have hostnames that do not

exist in the training dataset (like www and www.i-pi.com).
Consequently, the n-gram mechanism can detect these kinds
of attacks. However, in the case of the CIC-IDS2017 dataset,
although its alarm has significant reliability (PR = 99.3%),
its detection rate is low (RC = 17.7%).

Another relatedwork in the second category is [28], which
focuses on extracting features of HTTP packet payloads
by the PCA algorithm. Finally, using a Text Mining-based
Anomaly Detection (TMAD) model tries to detect attack
traffics.

Zavrak et al. [47] usevariational autoencoders as anomaly-
based IDS sensors. Their evaluation has been done over the
CIC-IDS2017 dataset. The anomaly model is trained by the
records from Monday’s CSV file that only contains benign
traffic. Other days of the dataset are used for the test phase.

123



560 M. Soltani et al.

Table 12 The average processing time per flow in the training and test
phases

Model Type Training (sec) Test (sec)

DID Binary 0.014 0.007

Multi-Class 0.016 0.008

RF Binary 0.004 0.004

Multi-Class 0.005 0.005

Finally, the FPR and TPRmetrics are reported that are equiv-
alent to the FO and RC, respectively.

Finally, we would like to report the resource and time con-
sumption of the proposed model and the comparison with
the RF model as the best traditional ML model over the
enriched raw network data. The RF model requires much
lower resources in comparisonwith the LSTMmodel accord-
ing to our evaluations. On average, the RFmodel needs about
208MB memory and 100% usage of one CPU core of the
machine. In contrast, the LSTM model uses about 900MB
memory and 20% of the GPU processing power for the same
training data records. As presented in Table 12, the RFmodel
ismuch faster in the training phase than theLSTMmodel.But
the twomodels are competitive in the test phase. Since an IDS
is mainly used in the test mode in the real world, the training
time can have less weight on the final comparison of these
two models. On the other side, as shown in Tables 8 and 10,
the strength of the LSTM model can be highlighted in more
complicated dataset like CSE-CIC-IDS2018. Definitely, in
the real world, there are complicated data that makes the
LSTM model more applicable. However, for a more relaxed
scenario where the RF model has an acceptable performance
and requires lower hardware resources, the RF might be a
better choice for the IDS implementation.

The input data to DID are flows and time consumption of
evaluation of each flow is around 7 milliseconds. According
to [27], on average, we can assume each flow contains 78
packets, and each packet contains 870 bytes. As a result, the
proposed model in our test environment can handle around
75 Megabit per second traffic data per GPU. This can be
a challenge in high-performance applications. However, by
applying various optimizations, the above performance can
be significantly increased and this can be an interesting direc-
tion for future works.

4.4 Discussion

According to our experiments, the proposed deep intrusion
detection (DID) approach can have a comparative advan-
tage over previous works in inspecting more varieties of
attacks, especially those who manipulate the payload of traf-
fic. However, the proposed approach has some challenges

which should be addressed in future works. Some of these
challenges are discussed below.

The main current shortcoming of using deep learning
in network detection is its throughput. By increasing the
Internet bandwidth, we have to count on devices with high
throughput along with a high detection rate and low false
alarm. Consequently, according to the complexity of deep
learning algorithms, one of the main forward steps toward
this goal is to optimize the deep intrusion detectors and imple-
ment them over high-performance devices like FPGAs or
ASICs.

One of the most challenging issues in the scope of intru-
sion detection systems is analyzing the encrypted traffics.
Since the content of encrypted flows is randomized, most
of the signature-based IDSes have significant issues with
these kinds of traffics. Evaluation of DID framework over
encrypted traffics can be studied in future works.

Another challenge to making ML-based IDSes more
applicable in practice is to adapt them to imbalanced data.
The imbalance of data can make a machine learning model
tend to the “more observed” (major) category. However,
detecting theminor categorymaybeof highvalue for us (such
as detecting cancer in medical applications or attack detec-
tion in computer networks). Alongside, if the test dataset is
also imbalanced, the overall detection rate of the algorithm
cannot provide a useful measure of the performance of the
intrusion detection method in real scenarios. For example,
for a dataset with 95% benign traffic, this can lead to a model
that labels all the inputs as benign traffic to achieve 95%
accuracy while the desired goal of the intrusion detection
system is to detect attacks as much as possible with low false
positive. In this paper, the data reduction mechanism for the
majority group has been applied. However, this solution can
cause some losses in the diversity of the major category (i.e.,
in this paper, the benign traffic). Consequently, some kinds
of benign flows may be detected as attacks in a more com-
prehensive dataset, which has more complicated attacks.

Finally, in this research, we have used a labeled dataset for
training the model. However, the lack of adequate diversity
in this dataset can lead to poor performance in real networks.
On the other hand, each network has its own behavior for
normal traffics (like the number of new connections per sec-
ond),whichmaybe considered an abnormal behavior in other
networks. Hence, it is very crucial that we learn the models
according to their deployment environment.

5 Conclusion

This paper presented a Deep Intrusion Detection approach
that uses deep learning algorithms for detecting a wide range
of attacks, including content-based ones like SQL injection
and Heartbleed attack. We have used an LSTM-based model

123



A content-based deep intrusion... 561

as an implementation of the deep learning module of the
DID approach. LSTM layers can extract meaningful rela-
tions among bytes of packets of each flow. Besides using
dropout layers, we tried to avoid overfitting. Fourmetrics that
provide valuable information in intrusion detection applica-
tions have been selected for evaluation, namely precision,
recall, fall-out, and F1 score. On the CIC-IDS2017 dataset,
we have achieved a precision of 0.992, fall-out of 0.2, recall
of 0.998, and F1 score of 0.994. Furthermore, on the CSE-
CIC-IDS2018, the recall of 0.923 and precision of 0.933
achieved. The experimental results show that the proposed
approach has better performance than the previous works.

Acknowledgements The authorswould like to thankRamin Shirali and
Jafar Gholamzadeh for their invaluable help, discussion, and feedback
on this work.

Funding No funding was received to assist with the preparation of this
manuscript.

Declarations

Conflict of interests The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Mcpad project. http://roberto.perdisci.com/projects/mcpad
(2009). [Online; accessed 12-November-2018]

2. Kdd cup 1999. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html (2018). [Online; accessed 12-November-2018]

3. Snort 2.9. https://www.snort.org (2018). [Online; accessed 18-
October-2018]

4. Cse-cic-ids2018. https://www.unb.ca/cic/datasets/ids-2018.html
(2021). [Online; accessed 18-May-2021]

5. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning
on heterogeneous systems (2015). http://tensorflow.org/. Software
available from tensorflow.org

6. Agarap Abien, F.M.: A neural network architecture combining
gated recurrent unit (GRU) and support vector machine (SVM) for
intrusion detection in network traffic data. Proceedings of the 2018
10th International Conference on Machine Learning and Comput-
ing. pp. 26-30 (2018)

7. Akashdeep, Manzoor I., Kumar, N.: A feature reduced intrusion
detection system using ann classifier. Expert Syst. Appl. 88, 249–
257 (2017)

8. AminantoMuhamad,E.,Choi,R., TanuwidjajaHarry,C.,YooPaul,
D., Kwangjo, K.: Deep abstraction and weighted feature selection

forwi-fi impersonation detection. IEEETrans. Inf. Forensics Secur.
13(3), 621–636 (2018)

9. Basumallik, S., Ma, R., Eftekharnejad, S.: Packet-data anomaly
detection in pmu-based state estimator using convolutional neural
network. Int. J. Electr. Power Energy Syst. 107, 690–702 (2019)

10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a
review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 35(8), 1798–1828 (2013)

11. Bivens, A., Palagiri, C., Smith, R., Szymanski, B., Embrechts, M.:
Network-based intrusion detection using neural networks. Intell.
Eng. Syst. through Artif. Neural Netw. 12(1), 579–584 (2002)

12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
13. Chen, R.C., Cheng, K.F., Chen, Y.H., Hsieh, C.F.: In: Using rough

set and support vector machine for network intrusion detection
system,In: First Asian Conference on Intelligent Information and
Database Systems, pp. 465–470. IEEE (2009)

14. Chollet, F.: keras. https://github.com/fchollet/keras (2017)
15. Cretu-Ciocarlie, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J.,

Keromytis, A.D.: Casting out demons: Sanitizing training data for
anomaly sensors. IEEESymposiumonSecurity and Privacy (2008)

16. Dorffner, G.: Neural networks for time series processing. Neural
Netw. World 6, 447–468 (1996)

17. Farnaaz,N., Jabbar,M.:Random forestmodeling for network intru-
sion detection system. Procedia Comput. Sci. 89, 213–217 (2016)

18. Ferrag, M.A., Maglaras, L.: Deepcoin: A novel deep learning
and blockchain-based energy exchange framework for smart grids.
IEEE Transactions on Engineering Management (2019)

19. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.:
Deep learning for cyber security intrusion detection: approaches,
datasets, and comparative study. J. Inf. Secur. Appl. 50, 102419
(2020)

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press (2016). http://www.deeplearningbook.org

21. Heba, F.E., Darwish, A., Hassanien Aboul, E., Abraham, A.:
Principle components analysis and support vector machine based
intrusion detection system. 2010 10th International Conference on
Intelligent Systems Design and Applications pp. 363–367 (2010)

22. Heckerman, D.: A tutorial on learning with bayesian networks
In Innovations in Bayesian networks, pp. 33–82. Springer, Berlin
(2008)

23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

24. Javaid, A., Niyaz, Q., Sun, W., Mansoor, A.: A deep learning
approach for network intrusion detection system. BICT’15 Pro-
ceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIO-
NETICS) pp. 21–26 (2016)

25. Jemili, F., Zaghdoud, M., Ahmed Mohamed, B.: A framework for
an adaptive intrusion detection system using Bayesian network.
2007 IEEE Intelligence and Security Informatics pp. 66–70 (2007)

26. Jia, N., Liu, D.: Application of svm based on information entropy
in intrusion detection. In: International Conference on Intelligent
and Interactive Systems and Applications, pp. 464–468. Springer
(2017)

27. Jurkiewicz, P., Rzym, G., Borylo, P.: Flow length and size distri-
butions in campus internet traffic. Comput. Commun. 167, 15–30
(2021)

28. Kakavand,M.,Mustapha,N.,Mustapha,A.,Abdullah,M.T.: Effec-
tive dimensionality reduction of payload-based anomaly detection
in tmad model for http payload. TIIS 10(8), 3884–3910 (2016)

29. Khan, M.A., Karim, M., Kim, Y., et al.: A scalable and hybrid
intrusion detection system based on the convolutional-lstm net-
work. Symmetry 11(4), 583 (2019)

30. Kim, J., Kim, J., Thu Huong, L.T., Kim, H.: Long short term
memory recurrent neural network classifier for intrusion detec-

123

http://roberto.perdisci.com/projects/mcpad
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.snort.org
https://www.unb.ca/cic/datasets/ids-2018.html
http://tensorflow.org/
https://github.com/fchollet/keras
http://www.deeplearningbook.org


562 M. Soltani et al.

tion. 2016 International Conference on Platform Technology and
Service (PlatCon) pp. 1–5 (2016)

31. Kim, K., Aminato Muhaamad, E.: Deep learning in intrusion
detection perspective:Overview and further challenges. 2017 Inter-
national Workshop on Big Data and Information Security (IWBIS)
pp. 5–10 (2017)

32. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event
classification for intrusion detection. Proceedings of the 19th
Annual Computer Security Applications pp. 14–23 (2003)

33. Kruegel, C., Toth, T.: Using decision trees to improve signa-
ture based intrusion detection. International Workshop on Recent
Advances in Intrusion Detection pp. 173–191 (2003)

34. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)

35. Lippmann Richard, P., Cunningham Robert, K.: Improving intru-
sion detection performance using keyword selection and neural
networks. Comput. Netw. 34(4), 597–603 (2000)

36. Lippmann, R., Haines Joshua, W., Fried David, J., Korba, J., Das,
K.: The 1999 darpa off-line intrusion detection evaluation. Comput.
Netw. 34(4), 579–595 (2000)

37. Mahoney Matthew, V., Chan Philip, K.: An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly
detection. International Workshop on Recent Advances in Intru-
sion Detection, pp. 220–237. (2003)

38. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: Mcpad-
a multiple classifier system for accurate payload-based anomaly
detection. Comput. Netw. 53(6), 864–881 (2009)

39. SalamaMostafa,A., EidHeba, F.,RamadanRabie,A.,Darwish,A.,
HassaneinAboul, E.: Hybrid intelligent intrusion detection scheme
InSoft computing in industrial applications, pp. 293–303. Springer,
Berlin (2011)

40. Sharafaldin, I., Lashkari Arash, H., Ghorbani Ali, A.: Toward
generating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSP, pp. 108–116 (2018)

41. Soheily-Khah, S., Marteau, P.F., Béchet, N.: Intrusion detection
in network systems through hybrid supervised and unsupervised
mining

process-a detailed case study on the ISCX benchmark dataset. In:
2018 1st International Conference on Data Intelligence and Secu-
rity (ICDIS), pp. 219–226. IEEE (2018)

42. Song, Y., Locasto Michael, E., Starvrou, A., Keromytis, A., Stolfo
Salvatroe, J.: On the infeasibility of modeling polymorphic shell-
code. Mach. Learn. 81(2), 179–205 (2010)

43. Tang Tuan, A., Mhamdi, L., McLernon, D., Zaidi Syed, A.R.,
Ghogho, M.: Deep learning approach for network intrusion detec-
tion in software defined networking. 2016 InternationalConference
on Wireless Networks and Mobile Communications (WINCOM)
pp. 258–263 (2016)

44. Wang, H., Gu, J., Wang, S.: An effective intrusion detection frame-
work based on svmwith feature augmentation. Knowl-Based Syst.
136, 130–139 (2017)

45. Wang, K., Parekh Janak, J., Salvatore, Stolfo, J.: Anagram: A con-
tent anomaly detector resistant to mimicry attack. International
Workshop on Recent Advances in Intrusion Detection, pp. 226–
248. (2006)

46. Wang, K., Stolfo Salvatore, J.: Anomalous payload-based network
intrusion detection. International Workshop on Recent Advances
in Intrusion Detection pp. 203–222 (2004)

47. Zavrak, S., Iskefiyeli, M.: Anomaly-based intrusion detection from
network flow features using variational autoencoder. IEEE Access
8, 108346–108358 (2020)

48. Zeng, Y., Gu, H., Wei, W., Guo, Y.: deep − f ull − range: a deep
learning based network encrypted traffic classification and intru-
sion detection framework. IEEE Access 7, 45182–45190 (2019)

49. Zhang, J., Zulkernine, M., Haque, A.: Random-forests-based net-
work intrusion detection systems. IEEETrans. Syst.,Man,Cybern.,
Part C (Appl. Rev.) 38(5), 649–659 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A content-based deep intrusion detection system
	Abstract
	1 Introduction
	2 Related works
	2.1 Traditional machine learning approach
	2.2 Deep learning approach
	2.3 Content-based approach

	3 Methodology
	3.1 Pre-processing phase in deep intrusion detection
	3.1.1 Basic normalized matrix
	3.1.2 Enriched normalized matrix

	3.2 Deep learning module of deep intrusion detection
	3.2.1 Recurrent neural networks
	3.2.2 LSTM
	3.2.3 LSTM-based classifier


	4 Experiment
	4.1 Dataset
	4.2 Pre-processing
	4.2.1 Constructing the input matrix
	4.2.2 Subsampling

	4.3 Experimental results
	4.3.1 Evaluation of the traditional ML models
	4.3.2 Determining the hyper-parameters for the DID-based LSTM
	4.3.3 Comparison with similar research studies

	4.4 Discussion

	5 Conclusion
	Acknowledgements
	References




