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Abstract
Threat models and attack graphs have been used more than 20 years by enterprises and organizations for mapping the actions 
of potential adversaries, analyzing the effects of vulnerabilities and visualizing attack scenarios. Although efficient when 
describing high-level interactions in simpler enterprise networks, they fall short in modern decentralized systems, especially 
in microservices architectures and multi-cloud environments with increased complexity and interactions. Most current 
research focuses on automatically generating attach graphs for such complex environments and deals with scaling and map-
ping issues, while neglecting to address the overall complexity of actually analyzing and extracting useful information from 
these overly convoluted models. In this paper, we present a method for automatically analyzing complex attack graphs both 
in microservices-based and multi-cloud infrastructures. We piggyback on previous research to automatically create complex 
attack graphs for such enterprise networks and use it as input to relate microservices, virtual system states and cloud services 
(represented as graph nodes) with prioritization algorithms that use mathematical graph series and group clustering. Our 
tool prioritizes existing vulnerabilities, analyzes the effect of system states to the overall network and proposes which system 
states, vulnerabilities and configurations have the biggest overall risk to the ecosystem, while taking into consideration every 
potential sub-attack path and subliminal path on an attack graph. We test the efficiency of our software on two real-world 
use cases: one multi-cloud enterprise network and a NetFlixOSS microservices Docker architecture.

Keywords  Attack graph · Attack paths · Arborescence · Clustering · Closeness · Centrality · CVE · Derivation · Risk · 
Dependency · Microservices · Docker

1  Introduction

Researchers and industry practitioners use threat models 
[1], vulnerability assessments [2, 3], and asset-oriented 
risk assessments [4] both in IT and OT enterprise networks 
to model adversary behavior and predict malicious activi-
ties [5]. These tools are often used together or in isolation. 

Efficient threat models reflect multiple, complex attacks and 
produce meaningful results to be used by security officers 
to secure enterprise networks and mitigate existing cyber-
security risks.

A major issue when creating threat models is the inher-
ent complexity of interactions between company services 
and systems. Modern companies utilize complex system 
interconnections that include cloud systems, microservices 
and virtual services (e.g., Kubernetes/Docker in cloud envi-
ronments [6]) to support everyday business. Therefore, it 
is important to utilize efficient tools and techniques able to 
automatically model and analyze such enterprise networks, 
risks and configurations and highlight potential risks and 
underlying vulnerabilities.

Modern research has mostly focused on automatic tools 
that model networks and detect vulnerabilities. Proposed 
software automatically maps potential vulnerabilities and 
connected systems to form attack paths, where potential 
malicious actions are tied to detected vulnerabilities and 
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systems to form attack paths. Such models put IT staff in 
the adversary’s position and have been proven crucial for 
security officers during risk mitigation [5, 7].

Still, threat models and attack graphs find it difficult to 
interpret and adequately analyze attacks on modern Industry 
4.0 systems. Modern enterprise networks have more com-
plex connections and corporate networks combine multiple 
systems and service environments with seemingly disjoint 
configuration issues [8]. Microservices and service-oriented 
architectures structure corporate systems as collections of 
loosely coupled services over virtual systems and Docker 
images. Other implementations structure enterprise net-
works over multi-cloud environments, with dedicated tun-
neling between each cloud.

In this context, security officers struggle to prioritize and 
remediate security findings provided by the assessments 
and solutions mentioned above. Existing automatic threat 
model tools and attack graph generators have come a long 
way toward automatically modeling and mapping complex 
enterprise networks, tackling scalability and detecting cau-
sality relations between adversary actions and system states, 
but suffer when interpreting produced models and prioritiz-
ing targets and mitigation solutions.

1.1 � Contribution

This paper extends previous work on automatic attack graph 
generation and modeling to provide a new mathematical 
approach in analyzing and understanding attack graphs. 
Our methodology does not focus on improving upon attack 
graph generation research, but it picks up from where previ-
ous studies have ended to analyze already-generated attack 
graphs. We provide a novel solution that automatically pro-
poses network security solutions for risk mitigation and pri-
oritizes security control implementation on large-scale and 
complex networks in Industry 4.0. Tested systems include 
modern Docker and cloud environments. The proof-of-con-
cept tool detects the highest risk attack paths and offers a 
metric analysis of existing vulnerability effects on the overall 
enterprise network. To our knowledge, no similar research 
can automatically analyze complex attack graphs and offer 
prioritization solutions for risk mitigation.

The idea is to use Edmonds’ algorithm, graph centrality 
metrics and clustering on attack graphs weighted with risk 
assessment calculations to provide automated prioritiza-
tion of systems and detected vulnerabilities. Logical attack 
graphs model potential attacks over interconnected system 
configuration states and their derived events. We produce a 
spanning arborescence and groups of tightly interdepended 
malicious events and states. This way, we can extract data to:

1.	 Prioritize detected attack paths based on their overall 
risk to the enterprise network,

2.	 Pinpoint present system configurations that introduce 
the highest risk on the overall system, and

3.	 Use Clustering techniques to detect system states with 
attack patterns that often contain functionally related 
vulnerabilities.

We use this output to propose which system states, vul-
nerabilities and configurations have the biggest overall risk 
to the ecosystem while considering every potential sub-
attack path and subliminal path on an attack graph. We 
develop a standalone software and test its efficiency on two 
real-world use cases: one multi-cloud enterprise network and 
a NetFlixOSS microservices Docker architecture.

1.2 � Structure

Section 2 briefly presents research publications that are rel-
evant to our work and compares our contributions to exist-
ing literature. Section 3 introduces the main building blocks 
used in our methodology. Section 4 presents the algorithmic 
steps of our methodology, along with input and output for 
each step. In Sect. 5 we discuss our experiments and present 
our findings to validate the methodology. Section 6 con-
cludes our work and focuses on current limitations, the limits 
of our current contribution and potential future challenges.

2 � Related work

Various forms of attack graphs have been proposed for ana-
lyzing and evaluating the security of industry and corporate 
networks [7, 9–13]. Attack graphs can be categorized in two 
major types. In Phillips and Swiler [12], Sheyner et al. [13] 
authors consider each node that represents an entire system 
state and edges represent state transitions caused by a propa-
gating attack, these types of attack graphs often are identi-
fied as state enumeration attack graphs [14]. In Ammann 
et al. [9], Ingols et al. [10], Noel et al. [11], Noel and Jajodia 
[14] authors identify each node as a system condition, not as 
an entire system state, in some form of logical sentence, and 
edges as the causality relations between the system condi-
tions. These types of attack paths are recognized as depend-
ency attack paths [15].

A broad range of publications exists that deals with 
attack paths and attack graph generation [9, 11, 12, 16, 17]. 
Advances on the sector enabled processing of attack graphs 
for complex networks of thousands of machines [7, 10]. 
While some focus on graph scalability issues [9, 11, 18], 
others focus on automatically generating detailed attack sce-
narios to depict potential adversary routes inside enterprise 
networks [19].

Sheyner et al. [13] utilize a finite-state machine model 
checker to calculate multi-stage, multi-host attack paths on a 
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network in the form of a scenario graph. Still, their approach 
scales poorly against graph generation time and graph size 
[20]. Following a similar approach, authors in Phillips and 
Swiler [12] applied model checking with a custom search 
engine to conduct the analysis of attack graphs, facing the 
same scalability problems.

Ammann et al. [9] address the scalability problem of the 
model checking-based attack graph methodologies by utiliz-
ing the monotonicity characteristic, where an attacker does 
not need to relinquish privileges he already gained since his 
ability to attack does not diminish. They implemented their 
algorithm in the Topological Vulnerability Analysis tool and 
provided a tangible understanding of how individual and 
combined vulnerabilities impact overall network security 
[16]

In Musa et al. [21], authors utilizing organization vul-
nerability assessments effectively model and produce attack 
graphs to quantitatively assess and analyze the attacks per-
formed on the computing networks. Ivanov et al. [22] present 
an automated system based on a comprehensive method that 
includes calculation of security indicators, risk assessment 
and selection of protective measures, based on attack graphs 
for assessing the security risks in the smart infrastructure 
and choosing the protective measures. In Al Ghazo et al. 
[23], authors propose a model-checking-based automated 
attack graph generator and visualizer in order to analyze 
how interdependencies among existing vulnerabilities may 
be exploited by an adversary to stitch together an attack that 
can compromise a system. In Ibrahim et al. [24], authors 
present the Attack Scenarios Generation and Filtration Tool 
(ASGFT) which automatically generates all possible attack 
scenarios utilizing the description of an industrial control 
system.

In Ou [25] authors present the MulVal framework that 
utilizes a different attack tree mapping based on logical 
statements. They named their models “logical attack graphs” 
and utilize Datalog (a subset of Prolog) to express system 
configuration information as Datalog tuples and attack tech-
niques and OS security semantics as Datalog rules. Their 
model uses two kinds of nodes: derivation nodes and fact 
nodes. Fact nodes are further divided into primitives and 
derived facts, while edges in their tree represent depend-
encies between these logical constructs. However, their 
approach fell short in terms of scalability even in medium 
sized network [7]. Authors in Ou [7] based on the work of 
[25] proposed a tool that has the ability of generating com-
plete attack graphs for networks with thousands of machines 
by utilizing the monotonicity characteristic to validate the 
polynomial time of similar attack trees that use system 
configuration information. More recent research on “logi-
cal attack graphs” presents several alternate improvements 
on MulVal framework addressing several assumptions and 
limitations [26].

Recent advances have enabled computing attack graphs 
for large and complex networks [9, 10, 26]. However, even 
when attack graphs can be efficiently computed, the result-
ing size and complexity of the graphs is still too large and 
complex for a human to fully comprehend [27, 28]. Even for 
relatively small networks, produced attack graphs are still 
complex and difficult to understand and analyze for network 
administrators and security officers.

While network administrators and security officers uti-
lizing attack graphs will quickly understand that attackers 
can penetrate the network, it is extremely challenging to 
identify which privileges, vulnerabilities, and assets are 
the most important/critical to the attacker success. Network 
administrators and security officers require a tool, which can 
automatically process the immense amount of information 
into a simple list of priorities, proposing specific risk miti-
gation actions that will help them to secure the network at 
hand fast, making efficient use of often limited human and 
financial resources [29].

Our proposed method utilizes multiple algorithms to 
achieve the analysis of such attack graphs (both logical and 
automatically generated): We implement (i) a previous meth-
odology on automatic attack graph generation and modeling 
[7, 19, 25, 26], (ii) the risk dependency analysis for attack 
paths from [30, 31], and (iii) the clustering concept from 
[32], utilizing centrality metrics [33, 34].

While solutions proposed in Ammann et al. [9], Ibrahim 
et al. [24], Ingols et al. [10], Ivanov et al. [22], Lippmann 
and Ingols [20], Musa et al. [21], Ramadhan et al. [26] pro-
vide automatic modelling, mapping, and analysis of complex 
networks through attack path generation, still they lack the 
ability to automatically suggest mitigation solutions and 
prioritization. Our solution can also automatically analyze 
attacks graphs but continues ahead in providing solutions for 
risk mitigation and prioritization, detect highest risk attack 
paths, and offer metric analysis of existing vulnerability 
effects on the overall enterprise network addressing issues 
and limitations network administrators and security officers 
are facing [29]. In addition, our implementation is capable 
of handling and analyzing large and complex attack graphs 
addressing issues of scalability [9, 10, 26].

3 � Building blocks

3.1 � CVE metrics for risk estimation

Common Vulnerabilities and Exposures (CVE) is a data-
base of entries that contains information on publicly known 
cybersecurity vulnerabilities on vendor systems and ser-
vices. According to CVE, “CVE Entries are used in numer-
ous cybersecurity products and services from around the 
world, including the U.S. National Vulnerability Database 
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(NVD)” (Common Vulnerability and Exposures [35] (2020). 
The NVD is “the U.S. government repository of standards-
based vulnerability management data” (National Vulnerabil-
ity Database [36] (2020).

NVD entries on publicly recorded CVEs utilize the CVSS 
2.0 Severity and Metrics scoring system. The Common Vul-
nerability Scoring System (CVSS) provides a quantitative 
algorithm that captures key characteristics of a vulnerability 
and produces numerical scores that reflect each vulnerabil-
ity’s Severity (i.e. impact on a system) and Exploitability 
(ease of use from malicious users). These metrics are in line 
with international and industry standards on measuring the 
risk of a cybersecurity attack and underlying vulnerability 
[4, 37]. The common reference of risk as a cybersecurity 
assessment metric is the following Eq. 1:

The presented method calculates the Overall Attack 
Graph Risk as follows:

In our case, we model attack paths based on CVE vulner-
abilities that can be exploited in each step until the attacker 
reaches his goal. By applying risk measurements on CVE 
paths, we can calculate the risk of each attack path step using 
the aforementioned definition, where the feasibility of a 
threat and vulnerability is reflected by the CVE’s Exploit-
ability Subscore and Severity of an attack is reflected by 
CVE’s Impact Subscore. This way, each attack graph con-
nection that depicts an attacker’s use of an exploit can have 
a quantifiable Risk metric.

3.2 � Attack graphs

Attack path mapping (APM) is a methodology that identifies 
the highest risk assets in a corporate network and prioritizes 
controls, mitigations, and remediations by “mapping and 
validating all routes an attacker could use to reach a target” 
[8]. Attack paths depict information flow on a company’s 
interdepended assets. Together they create an attack graph. 
Attack graphs map potential attacks in a system based on its 
configuration and detected vulnerabilities. They are a concise 
representation of all possible attack paths through a system 
that ends in a state where an intruder/attacker has successfully 
achieved his goal [38]. They depict ways that an adversary 
can exploit system vulnerabilities to achieve a desired state.

NIST proposes the use of attack graphs for forensic analy-
sis and to aid investigators and security officers in identify-
ing attack scenarios and pinpoint necessary countermeasures 
for mitigation (pre-attack) and evidence acquisition (post-
attack) [19]. Attack graphs identify vulnerabilities in a net-
work and how potential attackers can exploit these.

Following the conceptual modeling of [18], our attack 
risk graphs utilize derivation nodes and graph edges. In the 

(1)
Risk = Likelihood* Severity == (Threat* Vulnerability) ∗ Severity

presented methodology, each node represents a potential sys-
tem state; i.e., a malicious action that produces a specific 
system state proven able to happen, since previous logical 
dependencies leading up to that derived fact are true. Nodes 
are the result of applying interaction rules iteratively on facts 
(represented by edge attributes).

A directed edge illustrates the dependency of a system 
state (node) Vj on another Vi , i.e. Vi → Vj . Edge dependencies 
effectively construct attack traces with information to con-
struct a logical dependency path [7]. Each edge depicts a dif-
ferent derivation, so the number of edges is equal to all pos-
sible states’ derivations from observed system configurations 
[7, 18, 19]. Edges represent logical dependencies between 
potential system states and contain logical requirements as 
attributes. These attributes reflect the preconditions for an 
attacker to realize a step/achieve a system state. Attributes 
can either be configuration primitives (an implemented sys-
tem configuration state) or derived facts detected during the 
analysis of primitives (e.g., vulnerability CVE-2019 exists 
on a web server). Primitives are generally configuration 
information of systems, as reported by the host and network 
scanners (e.g., “access control list granted” that indicates 
that a firewall permits access to a server)

3.2.1 � Attack graph reduction

A graph reduction is used on the modeled attack multigraph 
to produce a simple graph. A weighted directed multigraph 
is a graph with multiple edges with the same start and end 
nodes. We reduce an attack multigraph by replacing all the 
given edges Ei,j, {i, j} ∈ V  between nodes with the respec-
tive optimum one, thus producing a simple weighted graph 
G′ with V � = V  nodes and E′ ⊆ E edges. In a simple weight 
graph, each edge connects two distinct nodes, and no two 
edges connect the same pair of nodes. Also, the sum of the 
weights of all the edges in the reduced simple weighted 
graph should be optimum. Depending on the problem at 
hand, maximum or minimum weight defines the aforemen-
tioned optimum edge or graph. Based on risk assessment 
consensus and the fact that edge (attacks) weights depict 
risk, we consider optimum the edge with the maximum 
weight (worst-case scenario).

In case multiple maximum weight edges between two 
nodes exist, the reduction process can produce multiple 
alternates, simple graphs with the same overall weight. The 
produced graph represents possible attacks with the highest 
risk (maximum), and as such, we choose one of them for 
further analyses. We utilize graph reduction to detect and 
remove low-risk attacks (minimum weight edges) between 
connected assets and thus producing a disjunctive attack 
tree(s) with the higher overall risk.

For our implementation of the proposed reduction 
process, as presented in Algorithm 1, we utilize a simple 
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iterative algorithm, which iterates over all graph edges and 
uniquely stores the edge with the maximum weight for 
each pair of connected nodes. This way, we remove low-
risk attacks (minimum weight edges) between connected 
assets. The running time of our implementation of the sug-
gested algorithm for graph reduction is O

(
|E|2

)
 , where |E| 

the number graph edges. After finding a reduced graph with 
the maximum weight, we can find all the alternative ones by 
simply altering edges with those with the same source and 
target node pair, and weight from the original graph.

3.3 � Attack paths and risk chains

A multi-risk dependency analysis algorithm [39, 40] is used 
on the graph model. In our implementation, an edge denotes 
a derivation, i.e.,Vi → Vj ; thus it inherits a risk relation that 
is derived from a dependence of state Vj on an accessible/
available vulnerability provided by state Vi . Based on risk 
assessment standards [4, 37], the methodology quantifies the 
risk of each graph edge using the impact Ii,j , and the likeli-
hood Li,j of a vulnerability being exploited. The product of 
these two values is defined as the dependency risk Ri,j of sys-
tem state Vj due to its dependence on state Vi . The numerical 
value of each edge is the level of the cascade risk between 
the receiver and the sender node. This risk is depicted using 
a risk scale [1–10] where 10 is the most severe risk.

The algorithm assesses the nth-order cascading risks or 
attack paths using a recursive algorithm based on [31, 39]. 
If S1 → S2 → ⋯ → Sn is an nth-order dependency between 
n system states S , with weights Ri,i+1 = Li,i+1Ii,i+1 corre-
sponding to each first-order dependency of the attack path, 
then the cascading risk R1,…,n exhibited by Sn for this state 
dependency path is computed as shown in Eq. 2.

The presented method calculates the Cascading risk of a 
system state dependency path as follows:

The cumulative dependency risk (Eq. 3) is the overall risk 
exhibited by all the system states in the sub-chains of the 
nth-order dependency. If S1 → S2 → ⋯ → Sn is a chain of 
system states dependencies of length n, then the cumulative 
dependency risk, denoted as CR1,…,n , is defined as the overall 
risk produced by an nth-order dependency:

The presented method calculates the Cumulative depend-
ency risk of an nth-order dependency as follows:

(2)R1,…,n = L1,…,nIn−1,n =

(
n−1∏

i=1

Li,i+1

)
In−1,n

(3)CR1,…,n =

n∑

i=1

R1,…,i =

n∑

i=1

(
i−1∏

j=1

Lj,j+1

)
Ii−1,i
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Equation 4 computes the overall dependency risk as the 
sum of the dependency risks of the affected nodes in the 
chain due to a system state realized in the source node of the 
dependency chain. Using the total number n of all system 
state sub-chains (possible attack paths) and their cumulative 
dependency risks, the methodology can calculate the graph’s 
overall risk Gr as the sum of the cumulative dependency risk 
for each nth-order dependency in the graph:

The presented method calculates the Overall attack graph 
risk as follows:

3.3.1 � Risk chains calculation

An attack graph analysis always needs to analyze all poten-
tial chains. To calculate these risk chains of an attack graph, 
we must first find all its simple non-cyclic paths. Finding 
all such paths in any graph is a costly process, considering 
that in a fully connected graph of order V  , where every node 
connects to every other node, there are (|V|!) possible paths.

As presented in Algorithm 2, in our implementation we 
utilized a modified DFS algorithm. The algorithm starts with 
any input graph node, and at each recursive call, we attempt 
to extend a path (save visited nodes to an array) by visiting 
nodes (traversing the graph) until reaching a dead end. If the 
visited node does not have any output edges (dead end), cal-
culate the cumulative dependency risk and output the result 
for the calculated path (array) containing the visited nodes. 
Finally, remove the last stored node in the array and start 
again with the (n − 1)th node. We do this until we reach all 
the dead ends or reach the first node. In our study, we should 
note that we were only interested in paths (chains) up to a 
predefined length, which is up to length 6. The running time 
complexity of our implementation is O

(
|V|3 ∗ log (6)

)
 for 

(4)Gr =

n∑

i=1

CR1,…,n

chains of length = 6 nodes, where V is the number of nodes 
of the input graph.

3.4 � Graph arborescences

In graph theory, the Edmonds’ algorithm is an algorithm for 
finding a spanning arborescence of minimum weight (some-
times called an optimum branching). A graph arborescence 
is the directed analog of the minimum spanning tree for 
directed graphs. The algorithm was proposed independently 
first by Yoeng-Jin Chu and Tseng-Hong Liu [41] and then by 
Jack Edmonds [42]. It takes a graph and a selected root node 
as input and creates a tree with directed edges where the root 
node only connects once with each node in the graph (i.e., 
there is exactly one directed path from the root to any other 
node). Only the root node has no edge directed toward it. 
Arborescence can either be Minimum Weight Arborescence 
as directed spanning trees with the minimum total weight, or 
Maximum Weight Arborescence, connecting the root node 
with all other nodes opting for the maximum possible total 
weight [43].

In our methodology, we produce Maximum and Minimum 
Weight Arborescence on automatically generated attack 
graphs and define the attacker’s end goal (attack result) 
as the root node. This way, we produce the maximum (or 
minimum) weighted spanning trees from the attacker’s end 
goal to potential attack surfaces. This modeling approach is 
particularly useful for understanding complex configurations 
and system states, and extracting the highest (or lowest) risk 
attack scenarios and corresponding system states.

Minimum weight arborescence algorithms are often used 
to find approximate solutions for complex problems such as 
the bottleneck Traveling Salesman [44], and network flow/
reliability optimizations [45, 46]. 
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A spanning arborescence is a directed graph (digraph) in 
which, for a node V ′

i
 called the root and any other node V  , 

there is exactly one directed path from V ′

i
 to Vi . An arbores-

cence T  of a weighted directed graph G is thus the directed-
graph G′ form of a rooted tree such that (i) T  contains every 
node V  of graph G , and (ii) T does not contain any cycle. 
A cycle is a graph path in which the first node corresponds 

to the last. A spanning arborescence of minimum weight 
can be perceived as the directed equivalent of the minimum 
spanning tree (MST) problem [47].

The problem of finding an optimum arborescence 
is trickier than its undirected version since for any cut 
C = (Q,W),where {x, y} ∈ E|x ∈ Q, y ∈ W|Q ⊆ V ,W ⊆ V

,of V  , of a graph G = (V, E) , if there is a least-cost edge 
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{x’, y’}, x’, y’ ∈ V crossing that cut, that edge may not 
belong to all optimum arborescence’s of G , hence the cut 
property does not apply. A minimum weight arborescence 
of a weighted directed graph can be found by algorithms 
such as those described in Bock [48], Chu and Liu [41], 
Edmonds [42].

The running time of Edmonds branching algorithm is 
O(|V||E|) , where |E| is the number edges and |V| the number 
of nodes [47, 49]. In our implementation the branching algo-
rithm is based on the work of [50, 51] utilizing a Fibonacci 
heap [52] resulting O(|E| + |V|log|V|) in running time [47, 
49], and is constructed by design to find both maximum and 
minimum weight arborescence of an input graph.

We apply our implementation of Edmonds algorithm 
on the reduced weighted simple graph, produced from the 
reduction process, producing a single-node tree. The result-
ing graph G� =

(
V ,E�

)
 is directed and non-circular, since it 

is based on Edmond’s algorithm, where E′

⊆ E.

3.5 � Closeness centrality clustering

We use Clustering to build groups of system states reached 
by attack paths. Grouped states have related attack patterns 
and often contain functionally related vulnerabilities, such as 
remote code executions (RCEs) for a specific system, or vul-
nerabilities that are commonly exploited by previous steps. 
Such group clusters can be a powerful tool for vulnerability 
prioritization and understanding of influence on an overall 
network.

Centrality metrics are used in network models and quan-
tify the influence of nodes and their relative importance 
within a graph [53–55]. Nodes with high centrality values 
have increased influence on other graph nodes and are, thus, 
good candidates for implementing risk mitigation controls 
[33, 34]. A network asset group or cluster can be defined as 
a subset of nodes [56].

We use the centrality metrics technique on graphs and 
their arborescence to quantify the importance of each sys-
tem state (i.e. a node), within the context of a cyber-attack 
scenario (i.e. an attack path). Affected system states (nodes) 
with high centrality values are able to pinpoint vulnerabili-
ties with the highest impact in an enterprise network. Dif-
ferent centrality metrics capture different aspects of net-
work topology. In this methodology, we tested and use the 

Closeness centrality metric for attack state analysis and clus-
tering. Closeness centrality calculates the average shortest 
path between node x and any other node in the graph [57]. 
Closeness centrality captures the average distance between 
every pair of nodes in a graph and assumes that nodes only 
affect nodes with whom they are directly connected through 
graph edges.

By experimenting with all potential centrality metrics, we 
found that Closeness provides the most realistic results when 
quantifying vulnerability influences. Degree centrality is not 
relevant since it is useful in multipath graphs where some 
nodes have numerous incoming or outgoing connections 
(more than four). Attack graphs rarely include such con-
nections. Also, Betweenness centrality metrics offer similar 
results with Closeness. In contrast, Eigenvector centralities 
quantify the importance of neighboring nodes, which is 
irrelevant to attack graphs. During attacks, adjacent system 
states have no direct relation to current states besides their 
direct dependency. These direct dependencies are modeled 
in our model through edge connections.

3.5.1 � Cluster formation

The Closeness centrality metric with midpoint on extreme 
values works best when identifying high influence nodes and 
clusters with a satisfying number of attack states and deriva-
tions [32]. Higher Closeness values are better candidates for 
system state (i.e., node) cluster generators. As presented in 
Algorithm 3, we use the midpoint of the calculated close-
ness centrality values from all nodes as a decision boundary. 
Nodes with greater influence than or equal to the midpoint 
are considered high-risk and are candidates for cluster gen-
erators. Instead, nodes with less influence are marked as 
low-risk. Cluster generators are then used over partitioning 
methods as key points to divide the population or system 
states into groups with similarities. For each pair of nodes in 
the set of high-risk nodes, we identify a single acyclic path 
that connects them, and we remove all its edges, thus split-
ting the graph and creating clusters. Possible orphan assets 
(single asset clusters) are assigned to the nearest cluster, 
based on the initial graph topology. The running time of our 
implementation is O(|V| + |E|) , where |E| the number edges 
and |V| the number of nodes of the input graph.
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Algorithm 3. Graph clustering utilizing closeness centrality to identify high influence nodes and clusters with 
a satisfying number of attack states and derivations

Procedure Clustrering ( )
Inputs:

A reduced graph :
Output:

A clustered attack graph: 

Let maxCentrality = 0
Let minCentrality = 0
Let centralityMidpoint = 0
For each node in graph.nodes do

Let node.centrality = ClosenessCentrality(node , graph) //Calculates the closeness centrality metric
If maxCentrality < node.centrality then

maxCentrality = node.centrality
End if
If minCentrality > node.centrality then

minCentrality = node.centrality
End if

End for
//Calculate decision boundary
centralityMidpoint = (maxCentrality + minCentrality) / 2
Let highInfluenceNodes as New List
Let lowInfluenceNodes as New List
For each node in graph.nodes do

If node.centrality >= centralityMidpoint then
highInfluenceNodes.add(node)

Else
lowInfluenceNodes.add(node)

End if
End for
Let clusteredGraph = graph // copy the original graph
For each x in highInfluenceNodes do

For each y in highInfluenceNodes do
//Return a set of edges denoting a path in the specified graph, starting from node x and ending at node y
Let path = getGraphPath(x, y, graph)
For each edge in path do

clusteredGraph.edges.remove(edge)
End for

End for
End for
//Find and assign to clusters orphan nodes
For each n in clusteredGraph.nodes do

Let adjacentNodeList = FindAdjacentNodes(n, clusteredGraph) // Find all adjacent nodes of the input node
If adjacentNodeList is empty then

// Find all adjacent nodes of the input node in original graph
Let adjacentNodes = FindAdjacentNodes(n, graph)
//Get an edge from the original graph that connects the current node with an adjacent
Let edge = getEdge(n, adjacentNodes, graph)
//Assign node to a cluster by restoring a removed edge
clusteredGraph.edges.add(edge)

End if
End for

End Procedure
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4 � Methodology

Presented approach utilizes numerous techniques to achieve 
its goals. Each step of the presented methodology utilizes 
a distinct set of algorithms, where each one provides some 
insight on an IoT network under analysis and outputs 

information to be used as input by a following step. This 
process uses four fundamental building blocks:

Step 1 Attack graph modelling All potential attack paths 
that exist and can be exploited by adversaries are mapped 
onto a graph. In our experiments, we use the tools, enterprise 
networks and research models from previous research to 

Table 1   Input/output data for each step of the methodology

Input Output

Attack graph modelling Attack multigraph Reduced attack graph (JSON)
Risk chains calculation Reduced attack graph (JSON) Weighted attack paths and rankings (CSV)
Spanning arborescence creation Reduced attack graph (JSON)

Attacker end-goals
(e.g. “steal data from database”)

Maximum Graph Arborescence
Minimum Graph Arborescence

System states clustering Maximum Graph Arborescence
Minimum Graph Arborescence

Groups of nodes, (state clusters)
Influence of attack steps on overall enterprise network

Fig. 1   Graphical representation 
of the overall methodology flow
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automatically generate attack graphs and run our algorithm 
on their output [18, 19].

Step 2 Risk chains calculation We calculate the above 
reduced attack graph and then we compute all n-order attack 
paths as chains of nodes. This step outputs the cumulative 
dependency risk of each attack path and calculates the over-
all risk of all potential attack scenarios that exist (i.e. the 
entire network/graph risk). This step also sorts attack paths 
per risk and prioritizes them based on their influence on the 
overall enterprise network.

Step 3 Spanning arborescence creation In this step, input 
the reduced attack graph and create arborescence an arbores-
cence for each one of the attackers’ end-goal. For example, if 
attack paths map scenarios toward two different attacker end 
states (e.g. steal data from database server and access files 
in admin server), then two different arborescence will be 
created. This step outputs removed edges and arborescence 
paths, from attack surfaces to end goals. Max arborescence 
full attack paths introduce the highest risk on the overall sys-
tem, while Min arborescence removed derivations (edges) 
must be considered for mitigation or removal from system 
preferences.

Step 4 Clustering of system states and output For each 
arborescence, the algorithm pre-computes the centrality met-
ric values for each attack state (node) and creates clusters 
and rankings of system states.

The input and output for each step of the algorithm are 
summarized in Table 1. The overall methodology flow and 
the dependencies between its different building blocks are 
depicted in Fig. 1.

5 � Evaluation

5.1 � Tool implementation

The framework was developed as a client–server web appli-
cation. Front end is implemented utilizing technologies such 
as HTML and JavaScript while the backend server and algo-
rithm components are developed in Java Spring using the 
MySQL database.

5.2 � Use case 1: multi‑cloud enterprise network

To validate our methodology, we use a multi-cloud network 
topology consisting of two cloud infrastructures connected 
to the Internet through an external firewall.

5.2.1 � Use case architecture

The first cloud server hosts three virtual machines, Mail 
server, Web server, and DNS server connected to a virtual 
switch. The second cloud server consists of two networks: 

public and private. The public network hosts two VMs; the 
first one hosts an SQL server; the second one hosts a NAT 
gateway server. The private network hosts one Admin server 
and three VMs (called VMs Group). Also, outside users can 
access the Web Server, and employees can access the SQL 
server through workstations inside the same LAN. Figure 2 
depicts the enterprise network diagram for the use case 1 
ecosystem.

Each server reflects an actual vendor-specific system and 
is vulnerable to a set of real-world CVE vulnerabilities. The 
impact of exploiting each vulnerability has been extracted 
from CVE (Common Vulnerability and Exposures [35] 
(2020). The overall attack graph is depicted in Tables 1 and 
2. Figure 2 shows the attack graph, generated based on the 
vulnerabilities exist on the services in the second scenario. 
The attacker’s goal is to compromise one of the VMs in 
VMs group in the private network, and/or compromise the 
database in the public network, by obtaining root access. As 
seen, the attacker may traverse different ways in this attack 
graph.

5.2.2 � Tool analysis

Tables 2 and 3 present the system states (node with their 
IDs) that can be reached by attack path scenarios, along with 
the relevant derivation steps (edges). Presented edges are 
only worst-case scenario edges, as results from reducing the 
original multigraph from [18] to produce the reduced worst-
case attack graph. Figure 3 provides a visual representation 
of the generated reduced graph (step 1).

Table 4 depicts the worst-case attack paths detected by 
our tool, ranked according to their cumulative risk from the 
used CVE vulnerabilities.

Figure 3 presents the attack graph as generated from the 
use case testbed and relevant vulnerabilities, while Fig. 4 
depicts the produced arborescence from running the meth-
odology on the reduced worst-case attack graph.

5.2.3 � Results and prioritization

Clustering results point out that there exist system states 
and functionally related vulnerabilities with common attack 
steps that can be mitigated all-in-once by applying controls 
to their related attack origin states. Specifically, accessing 
the VMGroups LICQ using user access privileges (CVE-
2001-0439) seems to have the highest overall influence in 
all possible attack scenarios, closely followed by the attack 
state where adversaries have root access to the VMGroups 
Active Template Library (CVE-2008-0015) (see Table 5). 
Prioritizing these two vulnerabilities will have the highest 
cumulative impact on all possible attack paths.

System states most frequently detected in highest risk 
attack paths involve. By combining the clustering and 
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arborescence results with the weighted risk ranking of attack 
paths, we see that that the highest risk states for the overall 
network that can be reached by attackers are (i) VmGroups—
LICQ (User access privilege) and (ii) WebServer (User 
access privilege). Related vulnerabilities (CVE-2001-0439 
and CVE-2009-1535) should be heavily prioritized during 
remediation prioritization and risk mitigation.

Vulnerability OpenSSH1 access on the NAT server has 
the least influence and only in the lower risk (min arbores-
cence) attack scenarios. This, coupled by the fact that this 
vulnerability is detected in both fastest attack paths (with 
least steps from start to finish), means that this vulnerabil-
ity is key in order to perform the easiest attacks possible 
(albeit not the most influential on the enterprise network) 
(see Table 6).

5.3 � Use case 2: Netflix OSS microservice system

The second testbed we used is a combination of containers 
provided by Netflix. The NetlixOSS high-level architecture 
of the testbed used in Use case 2 experiments is depicted 
in Fig. 5.

5.3.1 � Use case architecture

The testbed is a public repository that realizes the spring 
cloud ecosystem. Figure 5 shows the different components 
of the system and Table 7 lists the main container parts and 
relevant repositories.

We used the tool from [18] to generate the NetflixOSS 
attack graph needed to feed it in our system. As presented in 
Ibrahim et al. [18], the Netflix OSS graph has linear attack 
dependencies, and each node connects to a small set of 
nodes. Containers have limited connections and keep outgo-
ing dependencies to a minimum. In this example, each attack 
path can reach its end goal through multiple intermediate 
steps. Also, no directed edges (attack step) lead from system 
states with higher privileges to states with lower privileges. 
Also, no duplication of nodes exists (attacks that require 

Table 2   System states/nodes and their ID

System State Node ID

Start S1
AdminServer (Root access privilege) S2
dbServer (execCode[user]) S3
dbServer (netAccess[tcp,1434]) S4
MailServer—ACLs (Root access privilege) S5
MailServer—SMTP (Root access privilege) S6
Nat Server—OpenSSH1 (User access privilege) S7
NAT Server—OpenSSH2 (Root access privilege) S8
Root access to VMs S9
VmGroups—Active Template Library (Root access privi-

lege)
S10

VmGroups—C Library (Root access privilege) S11
VmGroups—LICQ (User access privilege) S12
WebServer (Execute code) S13
WebServer (netAccess[tcp,80]) S14
WebServer (User access privilege) S15
WorkStation (execCode[user]) S16
WorkStation (accessMaliciousInput[secretary,’IE’]) S17
End S18

Fig. 2   Tool graphical representation of examined Netflix attack graph
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actions in the same asset/service), which is in line with the 
monotonicity property [18].

This specific use case utilizes microservices. Based on 
the presented architecture, each component builds as a set 
of services, and each service runs its processes and commu-
nicates through APIs. Each microservice may run in a vir-
tual machine (hardware and OS visualization) or a container 
(only OS virtualization). Either way, the attacker’s goal is to 
compromise one of the available servers (virtual machines 
or containers) by obtaining root access (admin privilege).

Netflix’s original attack graph is a multigraph, and as 
such, a pair of nodes can be connected to more than one 
edge, resulting in an overly complex graph. On the original 
Netflix attack graph, each different edge between a pair of 
connected nodes corresponds to a mapped CVE with differ-
ent weight/risk. Each node only connects through exactly 
one edge with the maximum potential weight/risk on the 
reduced attack graph. Table 8 depicts the potential system 
states (nodes) that can be reached from all different scenar-
ios and attack paths of the reduced graph we created using 
the highest-risk CVE between each pair of connected nodes.

5.3.2 � Tool analysis

The attack graph is generated by [18], and modeled by our 
tool. The overall graph and its graph edges are not presented 
in detail due to size restriction. Figure 6 depicts the graphi-
cal representations of the maximum (left) and minimum 
(right) weight arborescence attack graph for NetFlixOSS 
graph (entire preliminary input graph omitted due to size). 
For information on attack step derivations, preconditions 
and underlying CVE vulnerabilities present in NetFlixOSS 
components, please refer to “Appendix 1: “NetflixOSS CVE 
and edge derivations” at the end of this document.

Attack paths that exist on the graph have an order of equal 
or less than 6 (Table 9). The list depicted below sorts the top 

Table 4   Top 6 derivatives dependency paths output from the risk 
analysis step (descending)

The bold notation indicates which nodes are the most influential con-
cerning the cumulative results calculated and presented in each table
Italic values indicate the highest ranked chains with the top risk grade 
detected

Paths Cumulative 
dependency 
risk

S14–S15–S12–S10–S9 42
S14–S15–S12–S8–S2 42
S14–S15–S12–S11–S9 37.8
S6–S5–S2 34.5
S7–S10–S9 33.4
S7–S8–S2 33.4

Fig. 3   A graphical representation of examined attack graph

Table 3   Attack graph derivations and their risk

Edge ID Vulnerability Risk CVE reference

E1 Browsing a malicious website 8 –
E2 Direct network access 0 –
E3 GNU C library loader flow 7 CVE-2010-3847
E4 GNU C library loader flow 7 CVE-2010-3847
E5 Heap Corruption in OpenSSH 10 CVE-2003-0693
E6 Heap Corruption in OpenSSH 10 CVE-2003-0693
E7 Improper Cookies Handler in 

OpenSSH
6 CVE-2007-4752

E8 LICQ buffer overflow 8 CVE-2001-0439
E9 MS SMV service stack buffer 

overflow
9 CVE-2008-4050

E10 MS SMV service stack buffer 
overflow

9 CVE-2008-4050

E11 MS video activex stack buffer 
overflow

9 CVE-2008-0015

E12 MS video activex stack buffer 
overflow

9 CVE-2008-0015

E13 Multi-hop access 8 CVE-2009-1918
E14 Multi-hop access 6 CVE-2018-7841
E15 Remote code execution in SMTP 10 CVE-2004-0840
E16 Remote exploit for a client 

program
8 CVE-2009-1918

E17 Remote exploit of a server pro-
gram

4.8 CVE-2008-5416

E18 Remote exploit of a server pro-
gram

6 CVE-2018-7841

E19 Remote exploit of db server 6 CVE-2008-5416
E20 Root access of VM Groups 7 CVE-2010-3847
E21 Root access of VM Groups 9 CVE-2008-0015
E22 Root access of VMs 9 CVE-2008-0015
E23 Root access of Admin Server 9 CVE-2008-0015
E24 Squid port scan 8 CVE-2001-1030
E25 WebDav Authentication Bypass 8 CVE-2009-1535
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highest risk system states dependency paths according to the 
total cumulative risk. Top paths have all highest possible 
cumulative risk due to all having CVEs ranked at maximum 
risk (10.0).

5.3.3 � Results and prioritization

Accessing the “Eureka” and “Service a” microservices 
seems to have the highest overall influence in all possible 
attack scenarios on the NetFlixOSS, closely followed by the 
attack state where adversaries have user access to the Zuul 
microservice environment (Table 10). Prioritizing vulner-
abilities that affect these system states will have the highest 
cumulative impact on all possible attack paths.

System states most frequently detected in highest risk 
attack paths involve turbine (User privilege) (S9) and rab-
bitmq (User privilege) (S19). Still, by combining the cluster-
ing and arborescence results with the weighted risk ranking 
of attack paths, we see that that these two may be included in 
all most high-risk attacks, but are not key attack steps when 
considering all possible attacks on NetFlixOSS.

Clustering relations show that both max and min arbores-
cence have the same highest influential nodes, which means 
that these system states are indeed the highest influential 
states for all attack, and specifically: (i) Eureka (ADMIN), 

Table 6   Key system vulnerabilities with highest overall impact and 
fastest attacks in all attack scenarios

Key vulnerabilities with highest impact overall Key vulner-
abilities 
for fastest 
attacks

VmGroups—LICQ (User access privilege)
(CVE-2001-0439)

OpenSSH1 
access on 
the NAT 
server

(CVE-2003-
0693)

WebServer (User access privilege)
(CVE-2009-1535)

Table 5   Top 4 nodes/system states closeness centrality values for max and min weight arborescence (descending)

Max weight arborescence Top nodes Min weight arborescence Top nodes

Attack state—system Closeness metric Attack state—system Closeness metric

VmGroups—LICQ (User access privilege) 0.071428571 Mail Server—SMTP (Root access privilege) 0.090909091
VmGroups—Active Template Library
(Root access privilege)

0.058823529 WorkStation (access Malicious Input [secretary, 
‘IE’])

0.076923077

WebServer
(User access privilege)

0.058823529 Mail Server—ACLs (Root access privilege) 0.071428571

WorkStation (access Malicious Input [secretary, 
‘IE’])

0.055555556 Nat Server-OpenSSH1
(User access privilege)

0.066666667

Fig. 4   Graphical representations of the max (left) and min (right) weight arborescence attack graphs
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Table 7   Netflix OSS microservices testbed components

Component Repository

Eureka https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/eurek​a-serve​r
Config Service https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/confi​g-servi​ce
Turbine https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/turbi​ne
Hystrix Dashboard https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/hystr​ix-dashb​oard
Microservice C: [Server micro-service for service B] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_c
Microservice B: [Server micro-service for service A] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_b
Microservice A: [Client micro-service] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_a
Zuul https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/zuul
Spring Cloud Dashboard https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/sprin​g-cloud​-dashb​oard
RabbitMq [histryx stats aggregator] http://www.rabbi​tmq.com/
Docker Compose https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/docke​r-compo​se

Fig. 5   NetflixOSS high-level 
architecture

Zuul

Server 
A

Server 
A

Server 
A

Server 
B

Server 
B

Server 
B

Server 
C

Server 
C

Server 
C

Eureka Config
Server

RabbitMQ

Turbine

Hystrix 
Dashboard

Spring Cloud
Dashboard

Git

. . .

. . .

. . .

https://github.com/Oreste-Luci/netflix-oss-example/tree/master/eureka-server
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/config-service
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/turbine
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/hystrix-dashboard
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_c
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_b
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_a
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/zuul
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/spring-cloud-dashboard
http://www.rabbitmq.com/
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/docker-compose
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(ii) Service a (User privilege), (iii) Zuul (User privilege), 
and (iv) Service a (ADMIN). Their related vulnerabilities 
(CVE-2005-2541, CVE-2017-7376, CVE-2017-1000116, 
and CVE-2016-2108) should be heavily prioritized during 
remediation prioritization and risk mitigation.

Above analysis implies that some vulnerabilities are 
more important when we are trying to secure specific end 
services (Turbine (User privilege) (CVE-2011-2895), Rab-
bitmq (User privilege) (CVE-2016-2108)), while others are 
more important when trying to generally secure the overall 
network from as many attacks possible (see Table 11).

Fig. 6   Graphical representations of the max (left) and min (right) weight arborescence attack graph for NetFlixOSS

Table 8   System states/facts and 
node IDs’ association

System State/Fact Node ID System State/Fact Node ID

Config service (Admin privilege) S1 Service b (Admin privilege) S12
Config service (User privilege) S2 Service b (User privilege) S13
Eureka (Admin privilege) S3 Service c (Admin privilege) S14
Eureka (User privilege) S4 Service c (User privilege) S15
Hystrix dashboard (Admin privilege) S5 Spring cloud dashboard (Admin privilege) S16
Hystrix dashboard (User privilege) S6 Spring cloud dashboard (User privilege) S17
outside (Admin privilege) S7 Turbine (Admin privilege) S18
rabbitmq (Admin privilege) S8 Turbine (User privilege) S19
rabbitmq (User privilege) S9 Zuul (Admin privilege) S20
Service a (Admin privilege) S10 Zuul (User privilege) S21
Service a (User privilege) S11 Outside (Admin privilege) S22

Table 9   Top 5 derivatives dependency paths output from the risk 
analysis step

The bold notation indicates which nodes are the most influential con-
cerning the cumulative results calculated and presented in each table

Netflix Top 5 worst-risk attack paths

S9–S8–S19–S18–S6–S5
S13–S12–S9–S19–S18–S5
S17–S16–S12–S9–S18–S6
S11–S10–S9–S8–S18–S5
S11–S10–S9–S19–S18–S5
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5.4 � Efficiency and scalability

Analyzing a graph based on the proposed methodology 
and algorithms is a complex and computationally intensive 
issue that raises concerns about efficiency and scalability. 
The overall complexity from a single run is equal with the 
worst-case algorithm complexity. Among all algorithms 
used in our approach, the worst performance is attributed to 
risk chain calculation. Risk chain calculation requires us to 
detect all (|V|!) simple paths in an attack graph of order V  . 
Finding all possible paths is a NP-Hard problem, since there 
is an exponential number of simple paths. The running time 
complexity of the algorithm is O

(
|V|3 ∗ log (6)

)
 for chains 

of length = 6 nodes, where V is the number of nodes.
To cope with such a computationally intensive problem, 

we selected the Neo4J graph database as the main building 
block of our tool implementation. Graph databases are stor-
age systems optimized for graph calculations and provide 
index-free adjacency. They model data more effectively than 
relational databases, especially when relationships between 
elements are the driving force for data model design [58, 
59]. In a graph database, every node only needs to know the 
nodes to which it is connected (i.e., its edges). This allows 
a graph database system to use graph theory to analyze the 
edges of a graph effectively. Graph databases scale naturally 
to large data sets and/or to data sets with frequently-chang-
ing or on-the-fly schema [59].

We used the Neo4J graph database (Neo4j 2020) to 
implement the attack graph analysis tool due to its scal-
ability, efficiency and implemented functionality on ana-
lyzing graph models with multiple attributes. According to 

research, Neo4J outperforms other systems and alternative 
libraries in (a) load time for millions of elements as well as 
in (b) time required to compute the total paths and detect the 
shortest path of an examined graph [60, 61, 62, 34, 58, 63]. 
In addition, Neo4j greatly outperforms relational databases 
such as MySQL in traversal tests like the one needed for our 
risk chain calculation. Also, Neo4J was shown to achieve the 
best performance among other popular graph databases in 
most benchmarks for graphs with over 20 M nodes and an 
approximate mean node degree equal to 10 [64].

Table 12 shows part of the output results of a comparative 
analysis presented in Kolomičenko et al. [64] demonstrating 
low execution times for extremely large graphs, thus proving 
the efficiency and scalability of graph theory algorithms in 
Neo4j. These numbers are at least 3 times bigger, in order 
of magnitude, that what is needed for our experiments (see 
below).

Neo4j uses property graph models, where nodes can have 
numerous labels as attributes and nodes and relationships 
can hold arbitrary properties (key-value pairs) [62, 58]. 
Neo4j facilitates the modeling of dependent attack path 
states in weighted, directed graphs and can work efficiently 
for up to millions of nodes without significant delays in eve-
ryday PC systems.

The tool was developed and tested on an Intel Core-i7 
with 16 GB of RAM and an SSD. The number of nodes and 
edges greatly affects the execution time of any algorithm 
that analyzes graph models. Even though attack graphs and 
attack multigraphs differ on how the model system states 
and steps, we still believe that comparing scalability perfor-
mance is feasible, since all graphs utilize similar concepts. 

Table 11   Key system 
vulnerabilities with highest 
overall impact and highest 
influence in all attack scenarios

Key vulnerabilities involved in highest impact attacks Key vulnerabilities with the highest influence 
in all attack scenarios

Turbine (User privilege) (CVE-2011-2895) Eureka (Admin privilege)—(CVE-2005-2541)
Rabbitmq (User privilege) (CVE-2016-2108) Service a (User privilege)—(CVE-2017-7376)

Zuul (User privilege)—(CVE-2017-1000116)
Service a (Admin privilege) (CVE-2016-2108)

Table 10   Top 7 nodes/system 
states closeness centrality 
values for max and min weight 
arborescence (descending)

Max weight arborescence Top nodes Min weight arborescence Top nodes

Top state—system Closeness metric Top state—system Closeness metric

Eureka (Admin privilege) 0.022727273 Eureka (Admin privilege) 0.022727
Service a (User privilege) 0.020408163 Service a (User privilege) 0.018868
Zuul (User privilege) 0.01754386 Service a (Admin privilege) 0.018182
Service a (Admin privilege) 0.016949153 Zuul (User privilege) 0.017544
Spring cloud dashboard 

(Admin privilege)
0.016949153 Spring cloud dashboard 

(Admin privilege)
0.016949

Service c (User privilege) 0.016666667 Service c (Admin privilege) 0.016393
Service c (Admin privilege) 0.016393443 Eureka (Admin privilege) 0.022727
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Table 13 shows the execution times for both use cases, and 
the corresponding times for each methodology step.

6 � Conclusions

This paper presented a method for automatic analysis of gen-
erated attacks using a set of different mathematical mod-
els and algorithms. Experiments included two real-world 
microservices environments that realize complex, modern 
enterprise networks with seemingly disjoint configurations 
and dependencies.

To our knowledge, current literature on attack graphs 
mostly focuses on the automatic generation and scalability 
issues, rather in analyzing complex information within them 
and trying to extract useful information for security control 
prioritization and proper risk mitigation.

The proposed framework utilizes graph modeling algo-
rithms such as mathematical series analysis, clustering and 
optimization to extract information about the effect of vul-
nerabilities and attack steps on enterprise networks. We con-
ceptualize attack scenarios and extract the impact of each 

step from all possible attacks on the system. To this end, we 
have extended previous automatic generation methodologies 
with two features: Prioritizing detected vulnerabilities and 
analyze the effect of system states to the overall network for 
proposing which system states, vulnerabilities, and configu-
rations have the biggest overall risk to the ecosystem. Our 
approach takes into consideration every potential sub-attack 
path and subliminal path on an attack graph.

Preliminary tests on actual microservices infrastruc-
tures and multi-cloud environments show that the presented 
approach looks efficient and trustworthy for attack graphs of 
several thousands of interconnections.

Finally, in order to validate the analysis and prioritization 
results we compared the output results with the correspond-
ing practices and procedures that can actually be applied to 
the infrastructure and relevant networks, as they emerged 
from the manual analysis by the industrial cyber security 
experts. The comparison verified the accuracy of the analy-
sis and the results for the two demonstrated Use Cases.

6.1 � Restrictions

The presented approach should meet a number of require-
ments to be effective. First, information dissemination 
between asset owners, security officers and consultants be 
of utmost importance.

A white-box approach is needed to map attack paths, 
which requires considerable employee time. Also, it takes for 
granted that a risk assessment or a business impact assess-
ment exists, from which to draw information on asset risk 
and potential consequences from security incidents. Without 
prior work, this approach will not have the necessary input 
to produce any results.

Finally, the attack path analyzer provides a comprehensive 
set of attack paths and proposes possible minimizations, but 
does not output an exhaustive set of every possible combina-
tion of attacks and potential mitigation schemas. Instead, it 
focuses only on worst-case scenarios that exploit the worst 
CVE available between every service or microservice connec-
tion and dependency. In other words, detections of high-risk 
attack paths and high-risk connection removal proposals are 
always true positives in terms of high risk. Still, these find-
ings are not necessarily the result of exhaustive state analysis.
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Table 13   Methodology steps execution times

Methodology steps Execution 
time (s)

Use case 1 Graph reduction ~6
Risk chains calculation ~12
Arborescence creation ~4
Cluster formation ~6
Overall execution ~28

NetFlixOSS Graph reduction ~9
Risk chains calculation ~22
Arborescence creation ~6
Cluster formation ~7
Overall execution ~45

Table 12   Neo4j execution times for pertinent graph theory algo-
rithms (graph nodes have an approximate mean node degree equal to 
10)

Graph Size (nodes) Time (ms)

BFS algorithm Dijkstra’s 
algorithm

10,000 ~5 ~100
50,00,000 ~20 ~500
10,000,000 ~70 ~1300
20,000,000 ~110 ~2900
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Appendix 1: NetflixOSS CVE and edge 
derivations

Edge ID Vulnerability Risk Source Node Target 
Node

Edge ID Vulnerability Risk Source Node Target 
Node

E1 CVE-2005-2541 10 S15 S1 E48 CVE-2017-
1000116

10 S13 S12

E2 CVE-2005-2541 10 S14 S1 E49 CVE-2017-
1000116

10 S11 S12

E3 CVE-2005-2541 10 S13 S1 E50 CVE-2017-
1000116

10 S10 S12

E4 CVE-2005-2541 10 S12 S1 E51 CVE-2017-
1000116

10 S4 S12

E5 CVE-2005-2541 10 S11 S1 E52 CVE-2017-
1000116

10 S3 S12

E6 CVE-2005-2541 10 S10 S1 E53 CVE-2017-7376 10 S17 S13
E7 CVE-2005-2541 10 S2 S1 E54 CVE-2017-7376 10 S16 S13
E8 CVE-2017-7376 10 S15 S2 E55 CVE-2017-7376 10 S15 S13
E9 CVE-2017-7376 10 S14 S2 E56 CVE-2017-7376 10 S14 S13
E10 CVE-2017-7376 10 S13 S2 E57 CVE-2017-7376 10 S11 S13
E11 CVE-2017-7376 10 S12 S2 E58 CVE-2017-7376 10 S10 S13
E12 CVE-2017-7376 10 S11 S2 E59 CVE-2017-7376 10 S4 S13
E13 CVE-2017-7376 10 S10 S2 E60 CVE-2017-7376 10 S3 S13
E14 CVE-2005-2541 10 S21 S3 E61 CVE-2017-13090 9.3 S15 S14
E15 CVE-2005-2541 10 S20 S3 E62 CVE-2017-13090 9.3 S11 S14
E16 CVE-2005-2541 10 S11 S3 E63 CVE-2017-13090 9.3 S10 S14
E17 CVE-2005-2541 10 S4 S3 E64 CVE-2017-13090 9.3 S4 S14
E18 CVE-2017-7376 10 S21 S4 E65 CVE-2017-13090 9.3 S3 S14
E19 CVE-2017-7376 10 S20 S4 E66 CVE-2009-2347 9.3 S11 S15
E20 CVE-2017-16997 9.3 S19 S5 E67 CVE-2009-2347 9.3 S10 S15
E21 CVE-2017-16997 9.3 S18 S5 E68 CVE-2009-2347 9.3 S4 S15
E22 CVE-2017-16997 9.3 S6 S5 E69 CVE-2009-2347 9.3 S3 S15
E23 CVE-2017-16997 9.3 S6 S5 E70 CVE-2017-

1000116
10 S17 S16

E24 CVE-2019-3855 9.3 S19 S6 E71 CVE-2017-
1000116

10 S15 S16

E25 CVE-2019-3855 9.3 S18 S6 E72 CVE-2017-
1000116

10 S14 S16

E26 CVE-2016-2842 10 S15 S8 E73 CVE-2017-
1000116

10 S11 S16

E27 CVE-2016-2842 10 S14 S8 E74 CVE-2017-
1000116

10 S10 S16

E28 CVE-2016-2842 10 S13 S8 E75 CVE-2017-
1000116

10 S4 S16

E29 CVE-2016-2842 10 S12 S8 E76 CVE-2017-
1000116

10 S3 S16

E30 CVE-2016-2842 10 S11 S8 E77 CVE-2017-7376 10 S15 S17
E31 CVE-2016-2842 10 S10 S8 E78 CVE-2017-7376 10 S14 S17
E32 CVE-2016-2842 10 S9 S8 E79 CVE-2017-7376 10 S11 S17
E33 CVE-2016-2108 10 S15 S9 E80 CVE-2017-7376 10 S10 S17
E34 CVE-2016-2108 10 S14 S9 E81 CVE-2017-7376 10 S4 S17
E35 CVE-2016-2108 10 S13 S9 E82 CVE-2017-7376 10 S3 S17
E36 CVE-2016-2108 10 S12 S9 E83 CVE-2017-13090 9.3 S19 S18
E37 CVE-2016-2108 10 S11 S9 E84 CVE-2017-13090 9.3 S17 S18
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Edge ID Vulnerability Risk Source Node Target 
Node

Edge ID Vulnerability Risk Source Node Target 
Node

E38 CVE-2016-2108 10 S10 S9 E85 CVE-2017-13090 9.3 S16 S18
E39 CVE-2017-

1000116
10 S11 S10 E86 CVE-2017-13090 9.3 S9 S18

E40 CVE-2017-
1000116

10 S4 S10 E87 CVE-2017-13090 9.3 S8 S18

E41 CVE-2017-
1000116

10 S3 S10 E88 CVE-2011-2895 9.3 S17 S19

E42 CVE-2017-7376 10 S4 S11 E89 CVE-2011-2895 9.3 S16 S19
E43 CVE-2017-7376 10 S3 S11 E90 CVE-2017-7376 10 S9 S19
E44 CVE-2017-

1000116
10 S17 S12 E91 CVE-2011-2895 9.3 S8 S19

E45 CVE-2017-
1000116

10 S16 S12 E92 CVE-2017-
1000116

10 S21 S20

E46 CVE-2017-
1000116

10 S15 S12 E93 CVE-2017-13090 9.3 S22 S20

E47 CVE-2017-
1000116

10 S14 S12 E94 CVE-2017-7376 10 S22 S21
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