
Vol.:(0123456789)1 3

International Journal of Information Security (2022) 21:37–59
https://doi.org/10.1007/s10207-020-00533-4

REGULAR CONTRIBUTION

Automatic analysis of attack graphs for risk mitigation
and prioritization on large‑scale and complex networks in Industry 4.0

George Stergiopoulos1,2 · Panagiotis Dedousis2 · Dimitris Gritzalis2 

Published online: 27 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Threat models and attack graphs have been used more than 20 years by enterprises and organizations for mapping the actions
of potential adversaries, analyzing the effects of vulnerabilities and visualizing attack scenarios. Although efficient when
describing high-level interactions in simpler enterprise networks, they fall short in modern decentralized systems, especially
in microservices architectures and multi-cloud environments with increased complexity and interactions. Most current
research focuses on automatically generating attach graphs for such complex environments and deals with scaling and map-
ping issues, while neglecting to address the overall complexity of actually analyzing and extracting useful information from
these overly convoluted models. In this paper, we present a method for automatically analyzing complex attack graphs both
in microservices-based and multi-cloud infrastructures. We piggyback on previous research to automatically create complex
attack graphs for such enterprise networks and use it as input to relate microservices, virtual system states and cloud services
(represented as graph nodes) with prioritization algorithms that use mathematical graph series and group clustering. Our
tool prioritizes existing vulnerabilities, analyzes the effect of system states to the overall network and proposes which system
states, vulnerabilities and configurations have the biggest overall risk to the ecosystem, while taking into consideration every
potential sub-attack path and subliminal path on an attack graph. We test the efficiency of our software on two real-world
use cases: one multi-cloud enterprise network and a NetFlixOSS microservices Docker architecture.

Keywords  Attack graph · Attack paths · Arborescence · Clustering · Closeness · Centrality · CVE · Derivation · Risk ·
Dependency · Microservices · Docker

1  Introduction

Researchers and industry practitioners use threat models
[1], vulnerability assessments [2, 3], and asset-oriented
risk assessments [4] both in IT and OT enterprise networks
to model adversary behavior and predict malicious activi-
ties [5]. These tools are often used together or in isolation.

Efficient threat models reflect multiple, complex attacks and
produce meaningful results to be used by security officers
to secure enterprise networks and mitigate existing cyber-
security risks.

A major issue when creating threat models is the inher-
ent complexity of interactions between company services
and systems. Modern companies utilize complex system
interconnections that include cloud systems, microservices
and virtual services (e.g., Kubernetes/Docker in cloud envi-
ronments [6]) to support everyday business. Therefore, it
is important to utilize efficient tools and techniques able to
automatically model and analyze such enterprise networks,
risks and configurations and highlight potential risks and
underlying vulnerabilities.

Modern research has mostly focused on automatic tools
that model networks and detect vulnerabilities. Proposed
software automatically maps potential vulnerabilities and
connected systems to form attack paths, where potential
malicious actions are tied to detected vulnerabilities and

 *	 Dimitris Gritzalis
	 dgrit@aueb.gr

	 George Stergiopoulos
	 g.stergiopoulos@aegean.gr

	 Panagiotis Dedousis
	 dedousisp@aueb.gr

1	 Department of Information and Communication Systems
Engineering, University of the Aegean, Mytilene, Greece

2	 INFOSEC Laboratory, Department of Informatics, Athens
University of Economics and Business, Athens, Greece

http://orcid.org/0000-0002-7793-6128
http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00533-4&domain=pdf

38	 G. Stergiopoulos et al.

1 3

systems to form attack paths. Such models put IT staff in
the adversary’s position and have been proven crucial for
security officers during risk mitigation [5, 7].

Still, threat models and attack graphs find it difficult to
interpret and adequately analyze attacks on modern Industry
4.0 systems. Modern enterprise networks have more com-
plex connections and corporate networks combine multiple
systems and service environments with seemingly disjoint
configuration issues [8]. Microservices and service-oriented
architectures structure corporate systems as collections of
loosely coupled services over virtual systems and Docker
images. Other implementations structure enterprise net-
works over multi-cloud environments, with dedicated tun-
neling between each cloud.

In this context, security officers struggle to prioritize and
remediate security findings provided by the assessments
and solutions mentioned above. Existing automatic threat
model tools and attack graph generators have come a long
way toward automatically modeling and mapping complex
enterprise networks, tackling scalability and detecting cau-
sality relations between adversary actions and system states,
but suffer when interpreting produced models and prioritiz-
ing targets and mitigation solutions.

1.1 � Contribution

This paper extends previous work on automatic attack graph
generation and modeling to provide a new mathematical
approach in analyzing and understanding attack graphs.
Our methodology does not focus on improving upon attack
graph generation research, but it picks up from where previ-
ous studies have ended to analyze already-generated attack
graphs. We provide a novel solution that automatically pro-
poses network security solutions for risk mitigation and pri-
oritizes security control implementation on large-scale and
complex networks in Industry 4.0. Tested systems include
modern Docker and cloud environments. The proof-of-con-
cept tool detects the highest risk attack paths and offers a
metric analysis of existing vulnerability effects on the overall
enterprise network. To our knowledge, no similar research
can automatically analyze complex attack graphs and offer
prioritization solutions for risk mitigation.

The idea is to use Edmonds’ algorithm, graph centrality
metrics and clustering on attack graphs weighted with risk
assessment calculations to provide automated prioritiza-
tion of systems and detected vulnerabilities. Logical attack
graphs model potential attacks over interconnected system
configuration states and their derived events. We produce a
spanning arborescence and groups of tightly interdepended
malicious events and states. This way, we can extract data to:

1.	 Prioritize detected attack paths based on their overall
risk to the enterprise network,

2.	 Pinpoint present system configurations that introduce
the highest risk on the overall system, and

3.	 Use Clustering techniques to detect system states with
attack patterns that often contain functionally related
vulnerabilities.

We use this output to propose which system states, vul-
nerabilities and configurations have the biggest overall risk
to the ecosystem while considering every potential sub-
attack path and subliminal path on an attack graph. We
develop a standalone software and test its efficiency on two
real-world use cases: one multi-cloud enterprise network and
a NetFlixOSS microservices Docker architecture.

1.2 � Structure

Section 2 briefly presents research publications that are rel-
evant to our work and compares our contributions to exist-
ing literature. Section 3 introduces the main building blocks
used in our methodology. Section 4 presents the algorithmic
steps of our methodology, along with input and output for
each step. In Sect. 5 we discuss our experiments and present
our findings to validate the methodology. Section 6 con-
cludes our work and focuses on current limitations, the limits
of our current contribution and potential future challenges.

2 � Related work

Various forms of attack graphs have been proposed for ana-
lyzing and evaluating the security of industry and corporate
networks [7, 9–13]. Attack graphs can be categorized in two
major types. In Phillips and Swiler [12], Sheyner et al. [13]
authors consider each node that represents an entire system
state and edges represent state transitions caused by a propa-
gating attack, these types of attack graphs often are identi-
fied as state enumeration attack graphs [14]. In Ammann
et al. [9], Ingols et al. [10], Noel et al. [11], Noel and Jajodia
[14] authors identify each node as a system condition, not as
an entire system state, in some form of logical sentence, and
edges as the causality relations between the system condi-
tions. These types of attack paths are recognized as depend-
ency attack paths [15].

A broad range of publications exists that deals with
attack paths and attack graph generation [9, 11, 12, 16, 17].
Advances on the sector enabled processing of attack graphs
for complex networks of thousands of machines [7, 10].
While some focus on graph scalability issues [9, 11, 18],
others focus on automatically generating detailed attack sce-
narios to depict potential adversary routes inside enterprise
networks [19].

Sheyner et al. [13] utilize a finite-state machine model
checker to calculate multi-stage, multi-host attack paths on a

39Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

network in the form of a scenario graph. Still, their approach
scales poorly against graph generation time and graph size
[20]. Following a similar approach, authors in Phillips and
Swiler [12] applied model checking with a custom search
engine to conduct the analysis of attack graphs, facing the
same scalability problems.

Ammann et al. [9] address the scalability problem of the
model checking-based attack graph methodologies by utiliz-
ing the monotonicity characteristic, where an attacker does
not need to relinquish privileges he already gained since his
ability to attack does not diminish. They implemented their
algorithm in the Topological Vulnerability Analysis tool and
provided a tangible understanding of how individual and
combined vulnerabilities impact overall network security
[16]

In Musa et al. [21], authors utilizing organization vul-
nerability assessments effectively model and produce attack
graphs to quantitatively assess and analyze the attacks per-
formed on the computing networks. Ivanov et al. [22] present
an automated system based on a comprehensive method that
includes calculation of security indicators, risk assessment
and selection of protective measures, based on attack graphs
for assessing the security risks in the smart infrastructure
and choosing the protective measures. In Al Ghazo et al.
[23], authors propose a model-checking-based automated
attack graph generator and visualizer in order to analyze
how interdependencies among existing vulnerabilities may
be exploited by an adversary to stitch together an attack that
can compromise a system. In Ibrahim et al. [24], authors
present the Attack Scenarios Generation and Filtration Tool
(ASGFT) which automatically generates all possible attack
scenarios utilizing the description of an industrial control
system.

In Ou [25] authors present the MulVal framework that
utilizes a different attack tree mapping based on logical
statements. They named their models “logical attack graphs”
and utilize Datalog (a subset of Prolog) to express system
configuration information as Datalog tuples and attack tech-
niques and OS security semantics as Datalog rules. Their
model uses two kinds of nodes: derivation nodes and fact
nodes. Fact nodes are further divided into primitives and
derived facts, while edges in their tree represent depend-
encies between these logical constructs. However, their
approach fell short in terms of scalability even in medium
sized network [7]. Authors in Ou [7] based on the work of
[25] proposed a tool that has the ability of generating com-
plete attack graphs for networks with thousands of machines
by utilizing the monotonicity characteristic to validate the
polynomial time of similar attack trees that use system
configuration information. More recent research on “logi-
cal attack graphs” presents several alternate improvements
on MulVal framework addressing several assumptions and
limitations [26].

Recent advances have enabled computing attack graphs
for large and complex networks [9, 10, 26]. However, even
when attack graphs can be efficiently computed, the result-
ing size and complexity of the graphs is still too large and
complex for a human to fully comprehend [27, 28]. Even for
relatively small networks, produced attack graphs are still
complex and difficult to understand and analyze for network
administrators and security officers.

While network administrators and security officers uti-
lizing attack graphs will quickly understand that attackers
can penetrate the network, it is extremely challenging to
identify which privileges, vulnerabilities, and assets are
the most important/critical to the attacker success. Network
administrators and security officers require a tool, which can
automatically process the immense amount of information
into a simple list of priorities, proposing specific risk miti-
gation actions that will help them to secure the network at
hand fast, making efficient use of often limited human and
financial resources [29].

Our proposed method utilizes multiple algorithms to
achieve the analysis of such attack graphs (both logical and
automatically generated): We implement (i) a previous meth-
odology on automatic attack graph generation and modeling
[7, 19, 25, 26], (ii) the risk dependency analysis for attack
paths from [30, 31], and (iii) the clustering concept from
[32], utilizing centrality metrics [33, 34].

While solutions proposed in Ammann et al. [9], Ibrahim
et al. [24], Ingols et al. [10], Ivanov et al. [22], Lippmann
and Ingols [20], Musa et al. [21], Ramadhan et al. [26] pro-
vide automatic modelling, mapping, and analysis of complex
networks through attack path generation, still they lack the
ability to automatically suggest mitigation solutions and
prioritization. Our solution can also automatically analyze
attacks graphs but continues ahead in providing solutions for
risk mitigation and prioritization, detect highest risk attack
paths, and offer metric analysis of existing vulnerability
effects on the overall enterprise network addressing issues
and limitations network administrators and security officers
are facing [29]. In addition, our implementation is capable
of handling and analyzing large and complex attack graphs
addressing issues of scalability [9, 10, 26].

3 � Building blocks

3.1 � CVE metrics for risk estimation

Common Vulnerabilities and Exposures (CVE) is a data-
base of entries that contains information on publicly known
cybersecurity vulnerabilities on vendor systems and ser-
vices. According to CVE, “CVE Entries are used in numer-
ous cybersecurity products and services from around the
world, including the U.S. National Vulnerability Database

40	 G. Stergiopoulos et al.

1 3

(NVD)” (Common Vulnerability and Exposures [35] (2020).
The NVD is “the U.S. government repository of standards-
based vulnerability management data” (National Vulnerabil-
ity Database [36] (2020).

NVD entries on publicly recorded CVEs utilize the CVSS
2.0 Severity and Metrics scoring system. The Common Vul-
nerability Scoring System (CVSS) provides a quantitative
algorithm that captures key characteristics of a vulnerability
and produces numerical scores that reflect each vulnerabil-
ity’s Severity (i.e. impact on a system) and Exploitability
(ease of use from malicious users). These metrics are in line
with international and industry standards on measuring the
risk of a cybersecurity attack and underlying vulnerability
[4, 37]. The common reference of risk as a cybersecurity
assessment metric is the following Eq. 1:

The presented method calculates the Overall Attack
Graph Risk as follows:

In our case, we model attack paths based on CVE vulner-
abilities that can be exploited in each step until the attacker
reaches his goal. By applying risk measurements on CVE
paths, we can calculate the risk of each attack path step using
the aforementioned definition, where the feasibility of a
threat and vulnerability is reflected by the CVE’s Exploit-
ability Subscore and Severity of an attack is reflected by
CVE’s Impact Subscore. This way, each attack graph con-
nection that depicts an attacker’s use of an exploit can have
a quantifiable Risk metric.

3.2 � Attack graphs

Attack path mapping (APM) is a methodology that identifies
the highest risk assets in a corporate network and prioritizes
controls, mitigations, and remediations by “mapping and
validating all routes an attacker could use to reach a target”
[8]. Attack paths depict information flow on a company’s
interdepended assets. Together they create an attack graph.
Attack graphs map potential attacks in a system based on its
configuration and detected vulnerabilities. They are a concise
representation of all possible attack paths through a system
that ends in a state where an intruder/attacker has successfully
achieved his goal [38]. They depict ways that an adversary
can exploit system vulnerabilities to achieve a desired state.

NIST proposes the use of attack graphs for forensic analy-
sis and to aid investigators and security officers in identify-
ing attack scenarios and pinpoint necessary countermeasures
for mitigation (pre-attack) and evidence acquisition (post-
attack) [19]. Attack graphs identify vulnerabilities in a net-
work and how potential attackers can exploit these.

Following the conceptual modeling of [18], our attack
risk graphs utilize derivation nodes and graph edges. In the

(1)
Risk = Likelihood* Severity == (Threat* Vulnerability) ∗ Severity

presented methodology, each node represents a potential sys-
tem state; i.e., a malicious action that produces a specific
system state proven able to happen, since previous logical
dependencies leading up to that derived fact are true. Nodes
are the result of applying interaction rules iteratively on facts
(represented by edge attributes).

A directed edge illustrates the dependency of a system
state (node) Vj on another Vi , i.e. Vi → Vj . Edge dependencies
effectively construct attack traces with information to con-
struct a logical dependency path [7]. Each edge depicts a dif-
ferent derivation, so the number of edges is equal to all pos-
sible states’ derivations from observed system configurations
[7, 18, 19]. Edges represent logical dependencies between
potential system states and contain logical requirements as
attributes. These attributes reflect the preconditions for an
attacker to realize a step/achieve a system state. Attributes
can either be configuration primitives (an implemented sys-
tem configuration state) or derived facts detected during the
analysis of primitives (e.g., vulnerability CVE-2019 exists
on a web server). Primitives are generally configuration
information of systems, as reported by the host and network
scanners (e.g., “access control list granted” that indicates
that a firewall permits access to a server)

3.2.1 � Attack graph reduction

A graph reduction is used on the modeled attack multigraph
to produce a simple graph. A weighted directed multigraph
is a graph with multiple edges with the same start and end
nodes. We reduce an attack multigraph by replacing all the
given edges Ei,j, {i, j} ∈ V between nodes with the respec-
tive optimum one, thus producing a simple weighted graph
G′ with V � = V nodes and E′ ⊆ E edges. In a simple weight
graph, each edge connects two distinct nodes, and no two
edges connect the same pair of nodes. Also, the sum of the
weights of all the edges in the reduced simple weighted
graph should be optimum. Depending on the problem at
hand, maximum or minimum weight defines the aforemen-
tioned optimum edge or graph. Based on risk assessment
consensus and the fact that edge (attacks) weights depict
risk, we consider optimum the edge with the maximum
weight (worst-case scenario).

In case multiple maximum weight edges between two
nodes exist, the reduction process can produce multiple
alternates, simple graphs with the same overall weight. The
produced graph represents possible attacks with the highest
risk (maximum), and as such, we choose one of them for
further analyses. We utilize graph reduction to detect and
remove low-risk attacks (minimum weight edges) between
connected assets and thus producing a disjunctive attack
tree(s) with the higher overall risk.

For our implementation of the proposed reduction
process, as presented in Algorithm 1, we utilize a simple

41Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

iterative algorithm, which iterates over all graph edges and
uniquely stores the edge with the maximum weight for
each pair of connected nodes. This way, we remove low-
risk attacks (minimum weight edges) between connected
assets. The running time of our implementation of the sug-
gested algorithm for graph reduction is O

(
|E|2

)
 , where |E|

the number graph edges. After finding a reduced graph with
the maximum weight, we can find all the alternative ones by
simply altering edges with those with the same source and
target node pair, and weight from the original graph.

3.3 � Attack paths and risk chains

A multi-risk dependency analysis algorithm [39, 40] is used
on the graph model. In our implementation, an edge denotes
a derivation, i.e.,Vi → Vj ; thus it inherits a risk relation that
is derived from a dependence of state Vj on an accessible/
available vulnerability provided by state Vi . Based on risk
assessment standards [4, 37], the methodology quantifies the
risk of each graph edge using the impact Ii,j , and the likeli-
hood Li,j of a vulnerability being exploited. The product of
these two values is defined as the dependency risk Ri,j of sys-
tem state Vj due to its dependence on state Vi . The numerical
value of each edge is the level of the cascade risk between
the receiver and the sender node. This risk is depicted using
a risk scale [1–10] where 10 is the most severe risk.

The algorithm assesses the nth-order cascading risks or
attack paths using a recursive algorithm based on [31, 39].
If S1 → S2 → ⋯ → Sn is an nth-order dependency between
n system states S , with weights Ri,i+1 = Li,i+1Ii,i+1 corre-
sponding to each first-order dependency of the attack path,
then the cascading risk R1,…,n exhibited by Sn for this state
dependency path is computed as shown in Eq. 2.

The presented method calculates the Cascading risk of a
system state dependency path as follows:

The cumulative dependency risk (Eq. 3) is the overall risk
exhibited by all the system states in the sub-chains of the
nth-order dependency. If S1 → S2 → ⋯ → Sn is a chain of
system states dependencies of length n, then the cumulative
dependency risk, denoted as CR1,…,n , is defined as the overall
risk produced by an nth-order dependency:

The presented method calculates the Cumulative depend-
ency risk of an nth-order dependency as follows:

(2)R1,…,n = L1,…,nIn−1,n =

(
n−1∏

i=1

Li,i+1

)
In−1,n

(3)CR1,…,n =

n∑

i=1

R1,…,i =

n∑

i=1

(
i−1∏

j=1

Lj,j+1

)
Ii−1,i

42	 G. Stergiopoulos et al.

1 3

43Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

Equation 4 computes the overall dependency risk as the
sum of the dependency risks of the affected nodes in the
chain due to a system state realized in the source node of the
dependency chain. Using the total number n of all system
state sub-chains (possible attack paths) and their cumulative
dependency risks, the methodology can calculate the graph’s
overall risk Gr as the sum of the cumulative dependency risk
for each nth-order dependency in the graph:

The presented method calculates the Overall attack graph
risk as follows:

3.3.1 � Risk chains calculation

An attack graph analysis always needs to analyze all poten-
tial chains. To calculate these risk chains of an attack graph,
we must first find all its simple non-cyclic paths. Finding
all such paths in any graph is a costly process, considering
that in a fully connected graph of order V  , where every node
connects to every other node, there are (|V|!) possible paths.

As presented in Algorithm 2, in our implementation we
utilized a modified DFS algorithm. The algorithm starts with
any input graph node, and at each recursive call, we attempt
to extend a path (save visited nodes to an array) by visiting
nodes (traversing the graph) until reaching a dead end. If the
visited node does not have any output edges (dead end), cal-
culate the cumulative dependency risk and output the result
for the calculated path (array) containing the visited nodes.
Finally, remove the last stored node in the array and start
again with the (n − 1)th node. We do this until we reach all
the dead ends or reach the first node. In our study, we should
note that we were only interested in paths (chains) up to a
predefined length, which is up to length 6. The running time
complexity of our implementation is O

(
|V|3 ∗ log (6)

)
 for

(4)Gr =

n∑

i=1

CR1,…,n

chains of length = 6 nodes, where V is the number of nodes
of the input graph.

3.4 � Graph arborescences

In graph theory, the Edmonds’ algorithm is an algorithm for
finding a spanning arborescence of minimum weight (some-
times called an optimum branching). A graph arborescence
is the directed analog of the minimum spanning tree for
directed graphs. The algorithm was proposed independently
first by Yoeng-Jin Chu and Tseng-Hong Liu [41] and then by
Jack Edmonds [42]. It takes a graph and a selected root node
as input and creates a tree with directed edges where the root
node only connects once with each node in the graph (i.e.,
there is exactly one directed path from the root to any other
node). Only the root node has no edge directed toward it.
Arborescence can either be Minimum Weight Arborescence
as directed spanning trees with the minimum total weight, or
Maximum Weight Arborescence, connecting the root node
with all other nodes opting for the maximum possible total
weight [43].

In our methodology, we produce Maximum and Minimum
Weight Arborescence on automatically generated attack
graphs and define the attacker’s end goal (attack result)
as the root node. This way, we produce the maximum (or
minimum) weighted spanning trees from the attacker’s end
goal to potential attack surfaces. This modeling approach is
particularly useful for understanding complex configurations
and system states, and extracting the highest (or lowest) risk
attack scenarios and corresponding system states.

Minimum weight arborescence algorithms are often used
to find approximate solutions for complex problems such as
the bottleneck Traveling Salesman [44], and network flow/
reliability optimizations [45, 46].

44	 G. Stergiopoulos et al.

1 3

A spanning arborescence is a directed graph (digraph) in
which, for a node V ′

i
 called the root and any other node V  ,

there is exactly one directed path from V ′

i
 to Vi . An arbores-

cence T of a weighted directed graph G is thus the directed-
graph G′ form of a rooted tree such that (i) T contains every
node V of graph G , and (ii) T does not contain any cycle.
A cycle is a graph path in which the first node corresponds

to the last. A spanning arborescence of minimum weight
can be perceived as the directed equivalent of the minimum
spanning tree (MST) problem [47].

The problem of finding an optimum arborescence
is trickier than its undirected version since for any cut
C = (Q,W),where {x, y} ∈ E|x ∈ Q, y ∈ W|Q ⊆ V ,W ⊆ V

,of V  , of a graph G = (V, E) , if there is a least-cost edge

45Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

{x’, y’}, x’, y’ ∈ V crossing that cut, that edge may not
belong to all optimum arborescence’s of G , hence the cut
property does not apply. A minimum weight arborescence
of a weighted directed graph can be found by algorithms
such as those described in Bock [48], Chu and Liu [41],
Edmonds [42].

The running time of Edmonds branching algorithm is
O(|V||E|) , where |E| is the number edges and |V| the number
of nodes [47, 49]. In our implementation the branching algo-
rithm is based on the work of [50, 51] utilizing a Fibonacci
heap [52] resulting O(|E| + |V|log|V|) in running time [47,
49], and is constructed by design to find both maximum and
minimum weight arborescence of an input graph.

We apply our implementation of Edmonds algorithm
on the reduced weighted simple graph, produced from the
reduction process, producing a single-node tree. The result-
ing graph G� =

(
V ,E�

)
 is directed and non-circular, since it

is based on Edmond’s algorithm, where E′

⊆ E.

3.5 � Closeness centrality clustering

We use Clustering to build groups of system states reached
by attack paths. Grouped states have related attack patterns
and often contain functionally related vulnerabilities, such as
remote code executions (RCEs) for a specific system, or vul-
nerabilities that are commonly exploited by previous steps.
Such group clusters can be a powerful tool for vulnerability
prioritization and understanding of influence on an overall
network.

Centrality metrics are used in network models and quan-
tify the influence of nodes and their relative importance
within a graph [53–55]. Nodes with high centrality values
have increased influence on other graph nodes and are, thus,
good candidates for implementing risk mitigation controls
[33, 34]. A network asset group or cluster can be defined as
a subset of nodes [56].

We use the centrality metrics technique on graphs and
their arborescence to quantify the importance of each sys-
tem state (i.e. a node), within the context of a cyber-attack
scenario (i.e. an attack path). Affected system states (nodes)
with high centrality values are able to pinpoint vulnerabili-
ties with the highest impact in an enterprise network. Dif-
ferent centrality metrics capture different aspects of net-
work topology. In this methodology, we tested and use the

Closeness centrality metric for attack state analysis and clus-
tering. Closeness centrality calculates the average shortest
path between node x and any other node in the graph [57].
Closeness centrality captures the average distance between
every pair of nodes in a graph and assumes that nodes only
affect nodes with whom they are directly connected through
graph edges.

By experimenting with all potential centrality metrics, we
found that Closeness provides the most realistic results when
quantifying vulnerability influences. Degree centrality is not
relevant since it is useful in multipath graphs where some
nodes have numerous incoming or outgoing connections
(more than four). Attack graphs rarely include such con-
nections. Also, Betweenness centrality metrics offer similar
results with Closeness. In contrast, Eigenvector centralities
quantify the importance of neighboring nodes, which is
irrelevant to attack graphs. During attacks, adjacent system
states have no direct relation to current states besides their
direct dependency. These direct dependencies are modeled
in our model through edge connections.

3.5.1 � Cluster formation

The Closeness centrality metric with midpoint on extreme
values works best when identifying high influence nodes and
clusters with a satisfying number of attack states and deriva-
tions [32]. Higher Closeness values are better candidates for
system state (i.e., node) cluster generators. As presented in
Algorithm 3, we use the midpoint of the calculated close-
ness centrality values from all nodes as a decision boundary.
Nodes with greater influence than or equal to the midpoint
are considered high-risk and are candidates for cluster gen-
erators. Instead, nodes with less influence are marked as
low-risk. Cluster generators are then used over partitioning
methods as key points to divide the population or system
states into groups with similarities. For each pair of nodes in
the set of high-risk nodes, we identify a single acyclic path
that connects them, and we remove all its edges, thus split-
ting the graph and creating clusters. Possible orphan assets
(single asset clusters) are assigned to the nearest cluster,
based on the initial graph topology. The running time of our
implementation is O(|V| + |E|) , where |E| the number edges
and |V| the number of nodes of the input graph.

46	 G. Stergiopoulos et al.

1 3

Algorithm 3. Graph clustering utilizing closeness centrality to identify high influence nodes and clusters with
a satisfying number of attack states and derivations

Procedure Clustrering ()
Inputs:

A reduced graph :
Output:

A clustered attack graph:

Let maxCentrality = 0
Let minCentrality = 0
Let centralityMidpoint = 0
For each node in graph.nodes do

Let node.centrality = ClosenessCentrality(node , graph) //Calculates the closeness centrality metric
If maxCentrality < node.centrality then

maxCentrality = node.centrality
End if
If minCentrality > node.centrality then

minCentrality = node.centrality
End if

End for
//Calculate decision boundary
centralityMidpoint = (maxCentrality + minCentrality) / 2
Let highInfluenceNodes as New List
Let lowInfluenceNodes as New List
For each node in graph.nodes do

If node.centrality >= centralityMidpoint then
highInfluenceNodes.add(node)

Else
lowInfluenceNodes.add(node)

End if
End for
Let clusteredGraph = graph // copy the original graph
For each x in highInfluenceNodes do

For each y in highInfluenceNodes do
//Return a set of edges denoting a path in the specified graph, starting from node x and ending at node y
Let path = getGraphPath(x, y, graph)
For each edge in path do

clusteredGraph.edges.remove(edge)
End for

End for
End for
//Find and assign to clusters orphan nodes
For each n in clusteredGraph.nodes do

Let adjacentNodeList = FindAdjacentNodes(n, clusteredGraph) // Find all adjacent nodes of the input node
If adjacentNodeList is empty then

// Find all adjacent nodes of the input node in original graph
Let adjacentNodes = FindAdjacentNodes(n, graph)
//Get an edge from the original graph that connects the current node with an adjacent
Let edge = getEdge(n, adjacentNodes, graph)
//Assign node to a cluster by restoring a removed edge
clusteredGraph.edges.add(edge)

End if
End for

End Procedure

47Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

4 � Methodology

Presented approach utilizes numerous techniques to achieve
its goals. Each step of the presented methodology utilizes
a distinct set of algorithms, where each one provides some
insight on an IoT network under analysis and outputs

information to be used as input by a following step. This
process uses four fundamental building blocks:

Step 1 Attack graph modelling All potential attack paths
that exist and can be exploited by adversaries are mapped
onto a graph. In our experiments, we use the tools, enterprise
networks and research models from previous research to

Table 1   Input/output data for each step of the methodology

Input Output

Attack graph modelling Attack multigraph Reduced attack graph (JSON)
Risk chains calculation Reduced attack graph (JSON) Weighted attack paths and rankings (CSV)
Spanning arborescence creation Reduced attack graph (JSON)

Attacker end-goals
(e.g. “steal data from database”)

Maximum Graph Arborescence
Minimum Graph Arborescence

System states clustering Maximum Graph Arborescence
Minimum Graph Arborescence

Groups of nodes, (state clusters)
Influence of attack steps on overall enterprise network

Fig. 1   Graphical representation
of the overall methodology flow

Graph
Reduc�on

Risk Chains
Calcula�on

Arborescence
Crea�on

Clustering

Security
Experts

A�ack Mapping

Weighted a�ack paths
& rankings (CSV)

Groups of nodes
(state clusters)

Influence of a�ack
steps

(Closeness Centrality
values)

Automated
Tools

Modeled A�ack
Mul�-Graph

Reduced Simple
A�ack Graph(s)

Maximum
Arborescence

Minimum
Arborescence

OR

Step 1
A�ack Graph

Modelling

Step 2
Graph Risk

Analysis

Step 3
Spanning

arborescence

Step 4
Cluster

forma�on

Methodology Flow

Outputs

Max & Min
arborescence

removed deriva�ons
(Edges)

Removed low risk
a�acks (Edges)

48	 G. Stergiopoulos et al.

1 3

automatically generate attack graphs and run our algorithm
on their output [18, 19].

Step 2 Risk chains calculation We calculate the above
reduced attack graph and then we compute all n-order attack
paths as chains of nodes. This step outputs the cumulative
dependency risk of each attack path and calculates the over-
all risk of all potential attack scenarios that exist (i.e. the
entire network/graph risk). This step also sorts attack paths
per risk and prioritizes them based on their influence on the
overall enterprise network.

Step 3 Spanning arborescence creation In this step, input
the reduced attack graph and create arborescence an arbores-
cence for each one of the attackers’ end-goal. For example, if
attack paths map scenarios toward two different attacker end
states (e.g. steal data from database server and access files
in admin server), then two different arborescence will be
created. This step outputs removed edges and arborescence
paths, from attack surfaces to end goals. Max arborescence
full attack paths introduce the highest risk on the overall sys-
tem, while Min arborescence removed derivations (edges)
must be considered for mitigation or removal from system
preferences.

Step 4 Clustering of system states and output For each
arborescence, the algorithm pre-computes the centrality met-
ric values for each attack state (node) and creates clusters
and rankings of system states.

The input and output for each step of the algorithm are
summarized in Table 1. The overall methodology flow and
the dependencies between its different building blocks are
depicted in Fig. 1.

5 � Evaluation

5.1 � Tool implementation

The framework was developed as a client–server web appli-
cation. Front end is implemented utilizing technologies such
as HTML and JavaScript while the backend server and algo-
rithm components are developed in Java Spring using the
MySQL database.

5.2 � Use case 1: multi‑cloud enterprise network

To validate our methodology, we use a multi-cloud network
topology consisting of two cloud infrastructures connected
to the Internet through an external firewall.

5.2.1 � Use case architecture

The first cloud server hosts three virtual machines, Mail
server, Web server, and DNS server connected to a virtual
switch. The second cloud server consists of two networks:

public and private. The public network hosts two VMs; the
first one hosts an SQL server; the second one hosts a NAT
gateway server. The private network hosts one Admin server
and three VMs (called VMs Group). Also, outside users can
access the Web Server, and employees can access the SQL
server through workstations inside the same LAN. Figure 2
depicts the enterprise network diagram for the use case 1
ecosystem.

Each server reflects an actual vendor-specific system and
is vulnerable to a set of real-world CVE vulnerabilities. The
impact of exploiting each vulnerability has been extracted
from CVE (Common Vulnerability and Exposures [35]
(2020). The overall attack graph is depicted in Tables 1 and
2. Figure 2 shows the attack graph, generated based on the
vulnerabilities exist on the services in the second scenario.
The attacker’s goal is to compromise one of the VMs in
VMs group in the private network, and/or compromise the
database in the public network, by obtaining root access. As
seen, the attacker may traverse different ways in this attack
graph.

5.2.2 � Tool analysis

Tables 2 and 3 present the system states (node with their
IDs) that can be reached by attack path scenarios, along with
the relevant derivation steps (edges). Presented edges are
only worst-case scenario edges, as results from reducing the
original multigraph from [18] to produce the reduced worst-
case attack graph. Figure 3 provides a visual representation
of the generated reduced graph (step 1).

Table 4 depicts the worst-case attack paths detected by
our tool, ranked according to their cumulative risk from the
used CVE vulnerabilities.

Figure 3 presents the attack graph as generated from the
use case testbed and relevant vulnerabilities, while Fig. 4
depicts the produced arborescence from running the meth-
odology on the reduced worst-case attack graph.

5.2.3 � Results and prioritization

Clustering results point out that there exist system states
and functionally related vulnerabilities with common attack
steps that can be mitigated all-in-once by applying controls
to their related attack origin states. Specifically, accessing
the VMGroups LICQ using user access privileges (CVE-
2001-0439) seems to have the highest overall influence in
all possible attack scenarios, closely followed by the attack
state where adversaries have root access to the VMGroups
Active Template Library (CVE-2008-0015) (see Table 5).
Prioritizing these two vulnerabilities will have the highest
cumulative impact on all possible attack paths.

System states most frequently detected in highest risk
attack paths involve. By combining the clustering and

49Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

arborescence results with the weighted risk ranking of attack
paths, we see that that the highest risk states for the overall
network that can be reached by attackers are (i) VmGroups—
LICQ (User access privilege) and (ii) WebServer (User
access privilege). Related vulnerabilities (CVE-2001-0439
and CVE-2009-1535) should be heavily prioritized during
remediation prioritization and risk mitigation.

Vulnerability OpenSSH1 access on the NAT server has
the least influence and only in the lower risk (min arbores-
cence) attack scenarios. This, coupled by the fact that this
vulnerability is detected in both fastest attack paths (with
least steps from start to finish), means that this vulnerabil-
ity is key in order to perform the easiest attacks possible
(albeit not the most influential on the enterprise network)
(see Table 6).

5.3 � Use case 2: Netflix OSS microservice system

The second testbed we used is a combination of containers
provided by Netflix. The NetlixOSS high-level architecture
of the testbed used in Use case 2 experiments is depicted
in Fig. 5.

5.3.1 � Use case architecture

The testbed is a public repository that realizes the spring
cloud ecosystem. Figure 5 shows the different components
of the system and Table 7 lists the main container parts and
relevant repositories.

We used the tool from [18] to generate the NetflixOSS
attack graph needed to feed it in our system. As presented in
Ibrahim et al. [18], the Netflix OSS graph has linear attack
dependencies, and each node connects to a small set of
nodes. Containers have limited connections and keep outgo-
ing dependencies to a minimum. In this example, each attack
path can reach its end goal through multiple intermediate
steps. Also, no directed edges (attack step) lead from system
states with higher privileges to states with lower privileges.
Also, no duplication of nodes exists (attacks that require

Table 2   System states/nodes and their ID

System State Node ID

Start S1
AdminServer (Root access privilege) S2
dbServer (execCode[user]) S3
dbServer (netAccess[tcp,1434]) S4
MailServer—ACLs (Root access privilege) S5
MailServer—SMTP (Root access privilege) S6
Nat Server—OpenSSH1 (User access privilege) S7
NAT Server—OpenSSH2 (Root access privilege) S8
Root access to VMs S9
VmGroups—Active Template Library (Root access privi-

lege)
S10

VmGroups—C Library (Root access privilege) S11
VmGroups—LICQ (User access privilege) S12
WebServer (Execute code) S13
WebServer (netAccess[tcp,80]) S14
WebServer (User access privilege) S15
WorkStation (execCode[user]) S16
WorkStation (accessMaliciousInput[secretary,’IE’]) S17
End S18

Fig. 2   Tool graphical representation of examined Netflix attack graph

50	 G. Stergiopoulos et al.

1 3

actions in the same asset/service), which is in line with the
monotonicity property [18].

This specific use case utilizes microservices. Based on
the presented architecture, each component builds as a set
of services, and each service runs its processes and commu-
nicates through APIs. Each microservice may run in a vir-
tual machine (hardware and OS visualization) or a container
(only OS virtualization). Either way, the attacker’s goal is to
compromise one of the available servers (virtual machines
or containers) by obtaining root access (admin privilege).

Netflix’s original attack graph is a multigraph, and as
such, a pair of nodes can be connected to more than one
edge, resulting in an overly complex graph. On the original
Netflix attack graph, each different edge between a pair of
connected nodes corresponds to a mapped CVE with differ-
ent weight/risk. Each node only connects through exactly
one edge with the maximum potential weight/risk on the
reduced attack graph. Table 8 depicts the potential system
states (nodes) that can be reached from all different scenar-
ios and attack paths of the reduced graph we created using
the highest-risk CVE between each pair of connected nodes.

5.3.2 � Tool analysis

The attack graph is generated by [18], and modeled by our
tool. The overall graph and its graph edges are not presented
in detail due to size restriction. Figure 6 depicts the graphi-
cal representations of the maximum (left) and minimum
(right) weight arborescence attack graph for NetFlixOSS
graph (entire preliminary input graph omitted due to size).
For information on attack step derivations, preconditions
and underlying CVE vulnerabilities present in NetFlixOSS
components, please refer to “Appendix 1: “NetflixOSS CVE
and edge derivations” at the end of this document.

Attack paths that exist on the graph have an order of equal
or less than 6 (Table 9). The list depicted below sorts the top

Table 4   Top 6 derivatives dependency paths output from the risk
analysis step (descending)

The bold notation indicates which nodes are the most influential con-
cerning the cumulative results calculated and presented in each table
Italic values indicate the highest ranked chains with the top risk grade
detected

Paths Cumulative
dependency
risk

S14–S15–S12–S10–S9 42
S14–S15–S12–S8–S2 42
S14–S15–S12–S11–S9 37.8
S6–S5–S2 34.5
S7–S10–S9 33.4
S7–S8–S2 33.4

Fig. 3   A graphical representation of examined attack graph

Table 3   Attack graph derivations and their risk

Edge ID Vulnerability Risk CVE reference

E1 Browsing a malicious website 8 –
E2 Direct network access 0 –
E3 GNU C library loader flow 7 CVE-2010-3847
E4 GNU C library loader flow 7 CVE-2010-3847
E5 Heap Corruption in OpenSSH 10 CVE-2003-0693
E6 Heap Corruption in OpenSSH 10 CVE-2003-0693
E7 Improper Cookies Handler in

OpenSSH
6 CVE-2007-4752

E8 LICQ buffer overflow 8 CVE-2001-0439
E9 MS SMV service stack buffer

overflow
9 CVE-2008-4050

E10 MS SMV service stack buffer
overflow

9 CVE-2008-4050

E11 MS video activex stack buffer
overflow

9 CVE-2008-0015

E12 MS video activex stack buffer
overflow

9 CVE-2008-0015

E13 Multi-hop access 8 CVE-2009-1918
E14 Multi-hop access 6 CVE-2018-7841
E15 Remote code execution in SMTP 10 CVE-2004-0840
E16 Remote exploit for a client

program
8 CVE-2009-1918

E17 Remote exploit of a server pro-
gram

4.8 CVE-2008-5416

E18 Remote exploit of a server pro-
gram

6 CVE-2018-7841

E19 Remote exploit of db server 6 CVE-2008-5416
E20 Root access of VM Groups 7 CVE-2010-3847
E21 Root access of VM Groups 9 CVE-2008-0015
E22 Root access of VMs 9 CVE-2008-0015
E23 Root access of Admin Server 9 CVE-2008-0015
E24 Squid port scan 8 CVE-2001-1030
E25 WebDav Authentication Bypass 8 CVE-2009-1535

51Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

highest risk system states dependency paths according to the
total cumulative risk. Top paths have all highest possible
cumulative risk due to all having CVEs ranked at maximum
risk (10.0).

5.3.3 � Results and prioritization

Accessing the “Eureka” and “Service a” microservices
seems to have the highest overall influence in all possible
attack scenarios on the NetFlixOSS, closely followed by the
attack state where adversaries have user access to the Zuul
microservice environment (Table 10). Prioritizing vulner-
abilities that affect these system states will have the highest
cumulative impact on all possible attack paths.

System states most frequently detected in highest risk
attack paths involve turbine (User privilege) (S9) and rab-
bitmq (User privilege) (S19). Still, by combining the cluster-
ing and arborescence results with the weighted risk ranking
of attack paths, we see that that these two may be included in
all most high-risk attacks, but are not key attack steps when
considering all possible attacks on NetFlixOSS.

Clustering relations show that both max and min arbores-
cence have the same highest influential nodes, which means
that these system states are indeed the highest influential
states for all attack, and specifically: (i) Eureka (ADMIN),

Table 6   Key system vulnerabilities with highest overall impact and
fastest attacks in all attack scenarios

Key vulnerabilities with highest impact overall Key vulner-
abilities
for fastest
attacks

VmGroups—LICQ (User access privilege)
(CVE-2001-0439)

OpenSSH1
access on
the NAT
server

(CVE-2003-
0693)

WebServer (User access privilege)
(CVE-2009-1535)

Table 5   Top 4 nodes/system states closeness centrality values for max and min weight arborescence (descending)

Max weight arborescence Top nodes Min weight arborescence Top nodes

Attack state—system Closeness metric Attack state—system Closeness metric

VmGroups—LICQ (User access privilege) 0.071428571 Mail Server—SMTP (Root access privilege) 0.090909091
VmGroups—Active Template Library
(Root access privilege)

0.058823529 WorkStation (access Malicious Input [secretary,
‘IE’])

0.076923077

WebServer
(User access privilege)

0.058823529 Mail Server—ACLs (Root access privilege) 0.071428571

WorkStation (access Malicious Input [secretary,
‘IE’])

0.055555556 Nat Server-OpenSSH1
(User access privilege)

0.066666667

Fig. 4   Graphical representations of the max (left) and min (right) weight arborescence attack graphs

52	 G. Stergiopoulos et al.

1 3

Table 7   Netflix OSS microservices testbed components

Component Repository

Eureka https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/eurek​a-serve​r
Config Service https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/confi​g-servi​ce
Turbine https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/turbi​ne
Hystrix Dashboard https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/hystr​ix-dashb​oard
Microservice C: [Server micro-service for service B] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_c
Microservice B: [Server micro-service for service A] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_b
Microservice A: [Client micro-service] https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/servi​ce_a
Zuul https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/zuul
Spring Cloud Dashboard https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/sprin​g-cloud​-dashb​oard
RabbitMq [histryx stats aggregator] http://www.rabbi​tmq.com/
Docker Compose https​://githu​b.com/Orest​e-Luci/netfl​ix-oss-examp​le/tree/maste​r/docke​r-compo​se

Fig. 5   NetflixOSS high-level
architecture

Zuul

Server
A

Server
A

Server
A

Server
B

Server
B

Server
B

Server
C

Server
C

Server
C

Eureka Config
Server

RabbitMQ

Turbine

Hystrix
Dashboard

Spring Cloud
Dashboard

Git

. . .

. . .

. . .

https://github.com/Oreste-Luci/netflix-oss-example/tree/master/eureka-server
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/config-service
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/turbine
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/hystrix-dashboard
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_c
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_b
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/service_a
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/zuul
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/spring-cloud-dashboard
http://www.rabbitmq.com/
https://github.com/Oreste-Luci/netflix-oss-example/tree/master/docker-compose

53Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

(ii) Service a (User privilege), (iii) Zuul (User privilege),
and (iv) Service a (ADMIN). Their related vulnerabilities
(CVE-2005-2541, CVE-2017-7376, CVE-2017-1000116,
and CVE-2016-2108) should be heavily prioritized during
remediation prioritization and risk mitigation.

Above analysis implies that some vulnerabilities are
more important when we are trying to secure specific end
services (Turbine (User privilege) (CVE-2011-2895), Rab-
bitmq (User privilege) (CVE-2016-2108)), while others are
more important when trying to generally secure the overall
network from as many attacks possible (see Table 11).

Fig. 6   Graphical representations of the max (left) and min (right) weight arborescence attack graph for NetFlixOSS

Table 8   System states/facts and
node IDs’ association

System State/Fact Node ID System State/Fact Node ID

Config service (Admin privilege) S1 Service b (Admin privilege) S12
Config service (User privilege) S2 Service b (User privilege) S13
Eureka (Admin privilege) S3 Service c (Admin privilege) S14
Eureka (User privilege) S4 Service c (User privilege) S15
Hystrix dashboard (Admin privilege) S5 Spring cloud dashboard (Admin privilege) S16
Hystrix dashboard (User privilege) S6 Spring cloud dashboard (User privilege) S17
outside (Admin privilege) S7 Turbine (Admin privilege) S18
rabbitmq (Admin privilege) S8 Turbine (User privilege) S19
rabbitmq (User privilege) S9 Zuul (Admin privilege) S20
Service a (Admin privilege) S10 Zuul (User privilege) S21
Service a (User privilege) S11 Outside (Admin privilege) S22

Table 9   Top 5 derivatives dependency paths output from the risk
analysis step

The bold notation indicates which nodes are the most influential con-
cerning the cumulative results calculated and presented in each table

Netflix Top 5 worst-risk attack paths

S9–S8–S19–S18–S6–S5
S13–S12–S9–S19–S18–S5
S17–S16–S12–S9–S18–S6
S11–S10–S9–S8–S18–S5
S11–S10–S9–S19–S18–S5

54	 G. Stergiopoulos et al.

1 3

5.4 � Efficiency and scalability

Analyzing a graph based on the proposed methodology
and algorithms is a complex and computationally intensive
issue that raises concerns about efficiency and scalability.
The overall complexity from a single run is equal with the
worst-case algorithm complexity. Among all algorithms
used in our approach, the worst performance is attributed to
risk chain calculation. Risk chain calculation requires us to
detect all (|V|!) simple paths in an attack graph of order V  .
Finding all possible paths is a NP-Hard problem, since there
is an exponential number of simple paths. The running time
complexity of the algorithm is O

(
|V|3 ∗ log (6)

)
 for chains

of length = 6 nodes, where V is the number of nodes.
To cope with such a computationally intensive problem,

we selected the Neo4J graph database as the main building
block of our tool implementation. Graph databases are stor-
age systems optimized for graph calculations and provide
index-free adjacency. They model data more effectively than
relational databases, especially when relationships between
elements are the driving force for data model design [58,
59]. In a graph database, every node only needs to know the
nodes to which it is connected (i.e., its edges). This allows
a graph database system to use graph theory to analyze the
edges of a graph effectively. Graph databases scale naturally
to large data sets and/or to data sets with frequently-chang-
ing or on-the-fly schema [59].

We used the Neo4J graph database (Neo4j 2020) to
implement the attack graph analysis tool due to its scal-
ability, efficiency and implemented functionality on ana-
lyzing graph models with multiple attributes. According to

research, Neo4J outperforms other systems and alternative
libraries in (a) load time for millions of elements as well as
in (b) time required to compute the total paths and detect the
shortest path of an examined graph [60, 61, 62, 34, 58, 63].
In addition, Neo4j greatly outperforms relational databases
such as MySQL in traversal tests like the one needed for our
risk chain calculation. Also, Neo4J was shown to achieve the
best performance among other popular graph databases in
most benchmarks for graphs with over 20 M nodes and an
approximate mean node degree equal to 10 [64].

Table 12 shows part of the output results of a comparative
analysis presented in Kolomičenko et al. [64] demonstrating
low execution times for extremely large graphs, thus proving
the efficiency and scalability of graph theory algorithms in
Neo4j. These numbers are at least 3 times bigger, in order
of magnitude, that what is needed for our experiments (see
below).

Neo4j uses property graph models, where nodes can have
numerous labels as attributes and nodes and relationships
can hold arbitrary properties (key-value pairs) [62, 58].
Neo4j facilitates the modeling of dependent attack path
states in weighted, directed graphs and can work efficiently
for up to millions of nodes without significant delays in eve-
ryday PC systems.

The tool was developed and tested on an Intel Core-i7
with 16 GB of RAM and an SSD. The number of nodes and
edges greatly affects the execution time of any algorithm
that analyzes graph models. Even though attack graphs and
attack multigraphs differ on how the model system states
and steps, we still believe that comparing scalability perfor-
mance is feasible, since all graphs utilize similar concepts.

Table 11   Key system
vulnerabilities with highest
overall impact and highest
influence in all attack scenarios

Key vulnerabilities involved in highest impact attacks Key vulnerabilities with the highest influence
in all attack scenarios

Turbine (User privilege) (CVE-2011-2895) Eureka (Admin privilege)—(CVE-2005-2541)
Rabbitmq (User privilege) (CVE-2016-2108) Service a (User privilege)—(CVE-2017-7376)

Zuul (User privilege)—(CVE-2017-1000116)
Service a (Admin privilege) (CVE-2016-2108)

Table 10   Top 7 nodes/system
states closeness centrality
values for max and min weight
arborescence (descending)

Max weight arborescence Top nodes Min weight arborescence Top nodes

Top state—system Closeness metric Top state—system Closeness metric

Eureka (Admin privilege) 0.022727273 Eureka (Admin privilege) 0.022727
Service a (User privilege) 0.020408163 Service a (User privilege) 0.018868
Zuul (User privilege) 0.01754386 Service a (Admin privilege) 0.018182
Service a (Admin privilege) 0.016949153 Zuul (User privilege) 0.017544
Spring cloud dashboard

(Admin privilege)
0.016949153 Spring cloud dashboard

(Admin privilege)
0.016949

Service c (User privilege) 0.016666667 Service c (Admin privilege) 0.016393
Service c (Admin privilege) 0.016393443 Eureka (Admin privilege) 0.022727

55Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

Table 13 shows the execution times for both use cases, and
the corresponding times for each methodology step.

6 � Conclusions

This paper presented a method for automatic analysis of gen-
erated attacks using a set of different mathematical mod-
els and algorithms. Experiments included two real-world
microservices environments that realize complex, modern
enterprise networks with seemingly disjoint configurations
and dependencies.

To our knowledge, current literature on attack graphs
mostly focuses on the automatic generation and scalability
issues, rather in analyzing complex information within them
and trying to extract useful information for security control
prioritization and proper risk mitigation.

The proposed framework utilizes graph modeling algo-
rithms such as mathematical series analysis, clustering and
optimization to extract information about the effect of vul-
nerabilities and attack steps on enterprise networks. We con-
ceptualize attack scenarios and extract the impact of each

step from all possible attacks on the system. To this end, we
have extended previous automatic generation methodologies
with two features: Prioritizing detected vulnerabilities and
analyze the effect of system states to the overall network for
proposing which system states, vulnerabilities, and configu-
rations have the biggest overall risk to the ecosystem. Our
approach takes into consideration every potential sub-attack
path and subliminal path on an attack graph.

Preliminary tests on actual microservices infrastruc-
tures and multi-cloud environments show that the presented
approach looks efficient and trustworthy for attack graphs of
several thousands of interconnections.

Finally, in order to validate the analysis and prioritization
results we compared the output results with the correspond-
ing practices and procedures that can actually be applied to
the infrastructure and relevant networks, as they emerged
from the manual analysis by the industrial cyber security
experts. The comparison verified the accuracy of the analy-
sis and the results for the two demonstrated Use Cases.

6.1 � Restrictions

The presented approach should meet a number of require-
ments to be effective. First, information dissemination
between asset owners, security officers and consultants be
of utmost importance.

A white-box approach is needed to map attack paths,
which requires considerable employee time. Also, it takes for
granted that a risk assessment or a business impact assess-
ment exists, from which to draw information on asset risk
and potential consequences from security incidents. Without
prior work, this approach will not have the necessary input
to produce any results.

Finally, the attack path analyzer provides a comprehensive
set of attack paths and proposes possible minimizations, but
does not output an exhaustive set of every possible combina-
tion of attacks and potential mitigation schemas. Instead, it
focuses only on worst-case scenarios that exploit the worst
CVE available between every service or microservice connec-
tion and dependency. In other words, detections of high-risk
attack paths and high-risk connection removal proposals are
always true positives in terms of high risk. Still, these find-
ings are not necessarily the result of exhaustive state analysis.

Compliance with ethical standards 

Conflict of interest  None of the authors have received any research
grants. None of the authors have received a speaker honorarium from
any company. All authors declare that none of them has any conflict
of interest.

Table 13   Methodology steps execution times

Methodology steps Execution
time (s)

Use case 1 Graph reduction ~6
Risk chains calculation ~12
Arborescence creation ~4
Cluster formation ~6
Overall execution ~28

NetFlixOSS Graph reduction ~9
Risk chains calculation ~22
Arborescence creation ~6
Cluster formation ~7
Overall execution ~45

Table 12   Neo4j execution times for pertinent graph theory algo-
rithms (graph nodes have an approximate mean node degree equal to
10)

Graph Size (nodes) Time (ms)

BFS algorithm Dijkstra’s
algorithm

10,000 ~5 ~100
50,00,000 ~20 ~500
10,000,000 ~70 ~1300
20,000,000 ~110 ~2900

56	 G. Stergiopoulos et al.

1 3

Appendix 1: NetflixOSS CVE and edge
derivations

Edge ID Vulnerability Risk Source Node Target
Node

Edge ID Vulnerability Risk Source Node Target
Node

E1 CVE-2005-2541 10 S15 S1 E48 CVE-2017-
1000116

10 S13 S12

E2 CVE-2005-2541 10 S14 S1 E49 CVE-2017-
1000116

10 S11 S12

E3 CVE-2005-2541 10 S13 S1 E50 CVE-2017-
1000116

10 S10 S12

E4 CVE-2005-2541 10 S12 S1 E51 CVE-2017-
1000116

10 S4 S12

E5 CVE-2005-2541 10 S11 S1 E52 CVE-2017-
1000116

10 S3 S12

E6 CVE-2005-2541 10 S10 S1 E53 CVE-2017-7376 10 S17 S13
E7 CVE-2005-2541 10 S2 S1 E54 CVE-2017-7376 10 S16 S13
E8 CVE-2017-7376 10 S15 S2 E55 CVE-2017-7376 10 S15 S13
E9 CVE-2017-7376 10 S14 S2 E56 CVE-2017-7376 10 S14 S13
E10 CVE-2017-7376 10 S13 S2 E57 CVE-2017-7376 10 S11 S13
E11 CVE-2017-7376 10 S12 S2 E58 CVE-2017-7376 10 S10 S13
E12 CVE-2017-7376 10 S11 S2 E59 CVE-2017-7376 10 S4 S13
E13 CVE-2017-7376 10 S10 S2 E60 CVE-2017-7376 10 S3 S13
E14 CVE-2005-2541 10 S21 S3 E61 CVE-2017-13090 9.3 S15 S14
E15 CVE-2005-2541 10 S20 S3 E62 CVE-2017-13090 9.3 S11 S14
E16 CVE-2005-2541 10 S11 S3 E63 CVE-2017-13090 9.3 S10 S14
E17 CVE-2005-2541 10 S4 S3 E64 CVE-2017-13090 9.3 S4 S14
E18 CVE-2017-7376 10 S21 S4 E65 CVE-2017-13090 9.3 S3 S14
E19 CVE-2017-7376 10 S20 S4 E66 CVE-2009-2347 9.3 S11 S15
E20 CVE-2017-16997 9.3 S19 S5 E67 CVE-2009-2347 9.3 S10 S15
E21 CVE-2017-16997 9.3 S18 S5 E68 CVE-2009-2347 9.3 S4 S15
E22 CVE-2017-16997 9.3 S6 S5 E69 CVE-2009-2347 9.3 S3 S15
E23 CVE-2017-16997 9.3 S6 S5 E70 CVE-2017-

1000116
10 S17 S16

E24 CVE-2019-3855 9.3 S19 S6 E71 CVE-2017-
1000116

10 S15 S16

E25 CVE-2019-3855 9.3 S18 S6 E72 CVE-2017-
1000116

10 S14 S16

E26 CVE-2016-2842 10 S15 S8 E73 CVE-2017-
1000116

10 S11 S16

E27 CVE-2016-2842 10 S14 S8 E74 CVE-2017-
1000116

10 S10 S16

E28 CVE-2016-2842 10 S13 S8 E75 CVE-2017-
1000116

10 S4 S16

E29 CVE-2016-2842 10 S12 S8 E76 CVE-2017-
1000116

10 S3 S16

E30 CVE-2016-2842 10 S11 S8 E77 CVE-2017-7376 10 S15 S17
E31 CVE-2016-2842 10 S10 S8 E78 CVE-2017-7376 10 S14 S17
E32 CVE-2016-2842 10 S9 S8 E79 CVE-2017-7376 10 S11 S17
E33 CVE-2016-2108 10 S15 S9 E80 CVE-2017-7376 10 S10 S17
E34 CVE-2016-2108 10 S14 S9 E81 CVE-2017-7376 10 S4 S17
E35 CVE-2016-2108 10 S13 S9 E82 CVE-2017-7376 10 S3 S17
E36 CVE-2016-2108 10 S12 S9 E83 CVE-2017-13090 9.3 S19 S18
E37 CVE-2016-2108 10 S11 S9 E84 CVE-2017-13090 9.3 S17 S18

57Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

Edge ID Vulnerability Risk Source Node Target
Node

Edge ID Vulnerability Risk Source Node Target
Node

E38 CVE-2016-2108 10 S10 S9 E85 CVE-2017-13090 9.3 S16 S18
E39 CVE-2017-

1000116
10 S11 S10 E86 CVE-2017-13090 9.3 S9 S18

E40 CVE-2017-
1000116

10 S4 S10 E87 CVE-2017-13090 9.3 S8 S18

E41 CVE-2017-
1000116

10 S3 S10 E88 CVE-2011-2895 9.3 S17 S19

E42 CVE-2017-7376 10 S4 S11 E89 CVE-2011-2895 9.3 S16 S19
E43 CVE-2017-7376 10 S3 S11 E90 CVE-2017-7376 10 S9 S19
E44 CVE-2017-

1000116
10 S17 S12 E91 CVE-2011-2895 9.3 S8 S19

E45 CVE-2017-
1000116

10 S16 S12 E92 CVE-2017-
1000116

10 S21 S20

E46 CVE-2017-
1000116

10 S15 S12 E93 CVE-2017-13090 9.3 S22 S20

E47 CVE-2017-
1000116

10 S14 S12 E94 CVE-2017-7376 10 S22 S21

References

	 1.	 Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based
attack and defense modeling: don’t miss the forest for the
attack trees. Comput. Sci. Rev. 13–14, 1–38 (2014). https​://doi.
org/10.1016/j.cosre​v.2014.07.001

	 2.	 Acunetix: (2008) http://www.acune​tix.com/vulne​rabil​ity-scann​er/
	 3.	 Deraison, R.: Nessus (1999). https​://www.tenab​le.com/produ​cts/

nessu​s
	 4.	 BS ISO/IEC 27001: Information technology–security techniques–

information security management systems–requirements (2013)
	 5.	 Cerotti, D., Raiteri, D.C., Dondossola, G., Egidi, L., Franc-

eschinis, G., Portinale, L., Terruggia, R.: A Bayesian network
approach for the interpretation of cyber attacks to power systems.
In: ITASEC (2019)

	 6.	 Sanders, S., Border, C.: Private cloud deployment with docker and
kubernetes. J. Comput. Sci. Coll. 33, 58–59 (2018)

	 7.	 Ou, X., Boyer, W., McQueen, M.: A scalable approach to attack
graph generation. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security—CCS’06. pp. 336–345.
ACM Press, USA (2006)

	 8.	 Whitcombe, M.: What is attack graph mapping (2020) https​://
www.f-secur​e.com/en/consu​lting​/our-think​ing/what-is-attac​
k-path-mappi​ng

	 9.	 Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based
network vulnerability analysis. In: Proceedings of the 9th ACM
conference on Computer and communications security—CCS’02,
p. 217. ACM Press, Washington, DC, USA (2002)

	10.	 Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph
generation for network defense. In: 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06). pp. 121–130.
IEEE, USA (2006)

	11.	 Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-
cost network hardening via exploit dependency graphs. In: Pro-
ceedings of the 19th Annual Computer Security Applications
Conference. p. 86. IEEE Computer Society, USA (2003)

	12.	 Phillips, C., Swiler, L.P.: A graph-based system for network-
vulnerability analysis. In: Proceedings of the 1998 Workshop on

New security paradigms—NSPW’98. pp. 71–79. ACM Press,
USA (1998)

	13.	 Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Auto-
mated generation and analysis of attack graphs. In: Proceedings
2002 IEEE Symposium on Security and Privacy. pp. 273–284.
IEEE Comput. Soc, USA (2002)

	14.	 Noel, S., Jajodia, S.: Managing attack graph complexity through
visual hierarchical aggregation. In: Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer Secu-
rity—VizSEC/DMSEC’04. p. 109. ACM Press, USA (2004)

	15.	 Sawilla, R., Ou, X.: Identifying Critical Attack Assets in Depend-
ency Attack Graphs. In: Computer Security—ESORICS 2008. pp.
18–34. Springe (2008)

	16.	 Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network
attack vulnerability. In: Managing Cyber Threats. pp. 247–266.
Springer-Verlag, New York (2005)

	17.	 Tidwell, T., Larson, R., Fitch, K., Hale, J.: Modeling internet
attacks. In: Proceedings of the 2001 IEEE Workshop on Infor-
mation Assurance and security. United States Military Academy,
USA (2001)

	18.	 Ibrahim A, Bozhinoski S, Pretschner A (2019) Attack graph gen-
eration for microservice architecture. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 1235–
1242. ACM, Cyprus (2019)

	19.	 Liu, C., Singhal, A., Wijesekera, D.: Mapping evidence graphs to
attack graphs. In: 2012 IEEE International Workshop on Informa-
tion Forensics and Security (WIFS). pp. 121–126 (2012)

	20.	 Lippmann, R., Ingols, K.: An Annotated review of past papers on
attack graphs. Presented at the (2005)

	21.	 Musa, T., Yeo, K., Azam, S., Shanmugam, B., Karim, A., Boer,
F., Nur, F., Faisal, F.: Analysis of complex networks for security
issues using attack graph. In: 2019 International Conference on
Computer Communication and Informatics (ICCCI). pp. 1–6.
IEEE, India (2019)

	22.	 Ivanov, D., Kalinin, M., Krundyshev, V., Orel, E.: Automatic secu-
rity management of smart infrastructures using attack graph and
risk analysis. In: 2020 Fourth World Conference on Smart Trends
in Systems, Security and Sustainability (WorldS4). pp. 295–300.
IEEE, United Kingdom (2020)

https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1016/j.cosrev.2014.07.001
http://www.acunetix.com/vulnerability-scanner/
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://www.f-secure.com/en/consulting/our-thinking/what-is-attack-path-mapping
https://www.f-secure.com/en/consulting/our-thinking/what-is-attack-path-mapping
https://www.f-secure.com/en/consulting/our-thinking/what-is-attack-path-mapping

58	 G. Stergiopoulos et al.

1 3

	23.	 Al Ghazo, A., Ibrahim, M., Ren, H., Kumar, R.: A2G2V: auto-
matic attack graph generation and visualization and its applica-
tions to computer and SCADA networks. IEEE Trans. Syst. Man
Cybern. Syst. 50, 3488–3498 (2020). https​://doi.org/10.1109/
TSMC.2019.29159​40

	24.	 Ibrahim, M., Alsheikh, A., Al-Hindawi, Q.: Automatic attack
graph generation for industrial controlled systems. In: Recent
Developments on Industrial Control Systems Resilience. pp.
99–116. Springer International Publishing, Cham (2020)

	25.	 Ou, X., Govindavajhala, S.: Mulval: A logic-based network
security analyzer. In: In 14th USENIX Security Symposium. pp.
113–128 (2005)

	26.	 Ramadhan, M., Gondokaryono, Y., Arman, A.: Network Secu-
rity Risk Analysis using Improved MulVAL Bayesian Attack
Graphs. IJEEI 7, 735–753 (2015). https​://doi.org/10.15676​/ijeei​
.2015.7.4.15

	27.	 Noel, S., Jacobs, M., Pramod, K. Jajodia, S.: Multiple coordinated
views for network attack graphs. In: IEEE Workshop on Visu-
alization for Computer Security, 2005. (VizSEC 05). pp. 99–106
(2005)

	28.	 Williams L, Lippmann R, Ingols K (2008) An Interactive Attack
Graph Cascade and Reachability Display. In: VizSEC 2007: Pro-
ceedings of the Workshop on Visualization for Computer Security.
pp. 221–236. Springer (2008)

	29.	 Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security
hardening using multi-objective optimization on attack tree mod-
els of networks. In: Proceedings of the 14th ACM conference on
Computer and communications security—CCS’07. p. 204. ACM
Press, USA (2007)

	30.	 Homer, J.: A sound and practical approach to quantifying security
risk in enterprise networks. In: CiteSeerX (2009)

	31.	 Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M., Lykou,
G., Gritzalis, D.: Time-based critical infrastructure dependency
analysis for large-scale and cross-sectoral failures. Int. J. Crit.
Infrastruct. Prot. 12, 46–60 (2016). https​://doi.org/10.1016/j.ijcip​
.2015.12.002

	32.	 Stergiopoulos, G., Dedousis, P., Gritzalis, D.: Automatic network
restructuring and risk mitigation through business process asset
dependency analysis. Comput. Secur. 96, 101869 (2020). https​://
doi.org/10.1016/j.cose.2020.10186​9

	33.	 Oldham, S., Fulcher, B., Parkes, L., Arnatkevic̆iūtė, A., Suo, C.,
Fornito, A.: Consistency and differences between centrality meas-
ures across distinct classes of networks. PLoS ONE. 14, e0220061
(2019). https​://doi.org/10.1371/journ​al.pone.02200​61

	34.	 Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M., Gritzalis,
D.: Risk mitigation strategies for critical infrastructures based on
graph centrality analysis. Int. J. Crit. Infrastruct. Prot. 10, 34–44
(2015). https​://doi.org/10.1016/j.ijcip​.2015.05.003

	35.	 Common Vulnerability and Exposures (MITRE) (2020). https​://
cve.mitre​.org/cve/

	36.	 National Vulnerability Database (NIST) (2020). https​://nvd.nist.
gov/

	37.	 NIST SP 800-30: Guide for conducting risk assessments. National
Institute of Standards and Technology, USA (2012)

	38.	 Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack
graphs. In: Proceedings 15th IEEE Computer Security Founda-
tions Workshop. CSFW-15. pp. 49–63. IEEE, Canada (2002)

	39.	 Kotzanikolaou, P., Theoharidou, M., Gritzalis, D.: Assessing
n-order dependencies between critical infrastructures. IJCIS.
(2013). https​://doi.org/10.1504/IJCIS​.2013.05160​6

	40.	 Kotzanikolaou, P., Theoharidou, M., Gritzalis, D.: Interdependen-
cies between critical infrastructures: analyzing the risk of cascad-
ing effects. In: Critical Information Infrastructure Security. pp.
104–115. Springer (2013)(b)

	41.	 Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed
graph. Sci. Sinica 14, 1396–1400 (1965)

	42.	 Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stan. Sect.
B. Math. Math. Phys. 71B, 233 (1967). https​://doi.org/10.6028/
jres.071B.032

	43.	 Guignard, M., Rosenwein, M.: An application of lagrangean
decomposition to the resource-constrained minimum weighted
arborescence problem. Networks 20, 345–359 (1990). https​://
doi.org/10.1002/net.32302​00306​

	44.	 Carpaneto, G., Martello, S., Toth, P.: An algorithm for the bottle-
neck traveling salesman problem. Oper. Res. 32, 380–389 (1984).
https​://doi.org/10.1287/opre.32.2.380

	45.	 Coscia, M.: Using arborescences to estimate hierarchicalness in
directed complex networks. PLoS ONE 13, e0190825 (2018).
https​://doi.org/10.1371/journ​al.pone.01908​25

	46.	 Glover, F.: Flows in arborescences. Manage. Sci. 17, 568–586
(1971). https​://doi.org/10.1287/mnsc.17.9.568

	47.	 Korte, B., Vygen, J.: Spanning trees and arborescences. In: Com-
binatorial Optimization. pp. 131–155. Springer (2012)

	48.	 Bock, F.: An algorithm to construct a minimum directed spanning
tree in a directed network. Dev. Oper. Res. 29–44 (1971)

	49.	 Jungnickel, D.: Spanning trees. In: Graphs, networks and algo-
rithms. pp. 99–123. Springer, Berlin (2013)

	50.	 Camerini, P., Fratta, L., Maffioli, F.: A note on finding optimum
branchings. Networks 9, 309–312 (1979). https​://doi.org/10.1002/
net.32300​90403​

	51.	 Gabow, H., Galil, Z., Spencer, T., Tarjan, R.: Efficient algo-
rithms for finding minimum spanning trees in undirected and
directed graphs. Combinatorica 6, 109–122 (1986). https​://doi.
org/10.1007/BF025​79168​

	52.	 Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM 34, 596–615
(1987). https​://doi.org/10.1145/28869​.28874​

	53.	 Dwivedi, A., Yu, X., Sokolowski, P.: Analyzing power network
vulnerability with maximum flow-based centrality approach. In:
2010 8th IEEE International Conference on Industrial Informatics.
pp. 336–341. IEEE, Japan (2010)

	54.	 Kiesling, S., Klünder, J., Fischer, D., Schneider, K., Fischbach,
K.: Applying social network analysis and centrality measures to
improve information flow analysis. In: Product-Focused Software
Process Improvement. pp. 379–386. Springer International Pub-
lishing, Cham (2016)

	55.	 Maccari, L., Nguyen, Q., Lo Cigno, R.: On the computation of
centrality metrics for network security in mesh networks. In: 2016
IEEE Global Communications Conference (GLOBECOM). pp.
1–6. IEEE, USA (2016)

	56.	 Zegura, E., Calvert, K., Donahoo, M.: A quantitative comparison
of graph-based models for Internet topology. IEEE/ACM Trans.
Netw. 5, 770–783 (1997)

	57.	 Bavelas, A.: Communication patterns in task-oriented
groups. J. Acoust. Soc. Am. 22, 725–730 (1950). https​://doi.
org/10.1121/1.19066​79

	58.	 Shao, B., Wang, H., Xiao, Y.: Managing and mining large graphs:
systems and implementations. In: Proceedings of the 2012 Inter-
national Conference on Management of Data—SIGMOD’12. p.
589. ACM Press, USA (2012)

	59.	 Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins,
D.: A comparison of a graph database and a relational database: a
data provenance perspective. In: Proceedings of the 48th Annual
Southeast Regional Conference on—ACM SE’10. p. 1. ACM
Press, USA (2010)

	60.	 Allen, D., Hodler, A., Hunger, M., Knobloch, M., Lyon, W., Need-
ham, M., Voigt, H.: Understanding trolls with efficient analytics
of large graphs in Neo4j. BTW (2019). https​://doi.org/10.18420​/
BTW20​19-23

	61.	 Geepalla, E., Asharif, S.: Analysis of Physical Access Control
System for Understanding Users Behavior and Anomaly Detection

https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.15676/ijeei.2015.7.4.15
https://doi.org/10.15676/ijeei.2015.7.4.15
https://doi.org/10.1016/j.ijcip.2015.12.002
https://doi.org/10.1016/j.ijcip.2015.12.002
https://doi.org/10.1016/j.cose.2020.101869
https://doi.org/10.1016/j.cose.2020.101869
https://doi.org/10.1371/journal.pone.0220061
https://doi.org/10.1016/j.ijcip.2015.05.003
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://doi.org/10.1504/IJCIS.2013.051606
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.1002/net.3230200306
https://doi.org/10.1002/net.3230200306
https://doi.org/10.1287/opre.32.2.380
https://doi.org/10.1371/journal.pone.0190825
https://doi.org/10.1287/mnsc.17.9.568
https://doi.org/10.1002/net.3230090403
https://doi.org/10.1002/net.3230090403
https://doi.org/10.1007/BF02579168
https://doi.org/10.1007/BF02579168
https://doi.org/10.1145/28869.28874
https://doi.org/10.1121/1.1906679
https://doi.org/10.1121/1.1906679
https://doi.org/10.18420/BTW2019-23
https://doi.org/10.18420/BTW2019-23

59Automatic analysis of attack graphs for risk mitigation and prioritization on large‑scale…

1 3

Using Neo4j. In: Proceedings of the 6th International Conference
on Engineering and MIS 2020. pp. 1–6. ACM, Kazakhstan (2020)

	62.	 Jouili, S., Vansteenberghe, V.: An empirical comparison of graph
databases. In: 2013 International Conference on Social Comput-
ing. pp. 708–715. IEEE, USA (2013)

	63.	 Ugurel, S., Krovetz, R., Giles, C.: What’s the code? Automatic
classification of source code archives. In: Proceedings of the
eighth ACM SIGKDD International Conference on Knowledge
discovery and Data Mining—KDD’02. p. 632. ACM Press, Can-
ada (2002)

	64.	 Kolomičenko, V., Svoboda, M., & Mlýnková, I. H.: Experimental
comparison of graph databases. In: Proceedings of International
Conference on Information Integration and Web-Based Applica-
tions & Services—IIWAS’13. pp. 115–124. (2013). https​://doi.
org/10.1145/25391​50.25391​55

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2539150.2539155
https://doi.org/10.1145/2539150.2539155

	Automatic analysis of attack graphs for risk mitigation and prioritization on large-scale and complex networks in Industry 4.0
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Related work
	3 Building blocks
	3.1 CVE metrics for risk estimation
	3.2 Attack graphs
	3.2.1 Attack graph reduction

	3.3 Attack paths and risk chains
	3.3.1 Risk chains calculation

	3.4 Graph arborescences
	3.5 Closeness centrality clustering
	3.5.1 Cluster formation

	4 Methodology
	5 Evaluation
	5.1 Tool implementation
	5.2 Use case 1: multi-cloud enterprise network
	5.2.1 Use case architecture
	5.2.2 Tool analysis
	5.2.3 Results and prioritization

	5.3 Use case 2: Netflix OSS microservice system
	5.3.1 Use case architecture
	5.3.2 Tool analysis
	5.3.3 Results and prioritization

	5.4 Efficiency and scalability

	6 Conclusions
	6.1 Restrictions

	References

