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Abstract
The pervasive use of mobile technologies and GPS-equipped vehicles has resulted in a large number of moving objects
databases. Privacy protection is one of the most significant challenges related to moving objects databases because of the
legal requirements in many application domains. Over the last few years, several differentially private mechanisms have
been proposed for moving objects databases. However, most of them aim to answer statistical queries and do not release a
differentially private version of a moving objects database. In this paper, we present DP-MODR, a differentially private (DP)
mechanism for synthetic moving objects database release (MODR). DP-MODR tries to efficiently and effectively release
synthetic trajectories while preserving spatial and temporal utilities. In this way, the released differentially private moving
objects database can be used for different purposes as well, including data analysis tasks. DP-MODR keeps some main spatial
and temporal properties of original trajectories and defines a new differentially private tree structure to keep the most probable
paths with different lengths and different starting points, which are then iteratively joined to generate synthetic trajectories in
a bottom-up way. Also, we present an extension of DP-MODR to support moving objects databases whose locations are time-
dependent. Extensive experiments on real moving objects datasets using multiple spatial and temporal evaluation measures
show that DP-MODR enhances the utility of query answers and better preserves the main spatial and temporal properties of
original trajectories in comparison with recent related work.

Keywords Differential privacy · Moving objects database release · Noisy cost-sensitive path tree · Spatial utility · Temporal
utility · Time-dependent query

1 Introduction

The popularity of location-based services and applications
is growing with the rapid growth of smartphone owners,
resulting in the rapid growth of moving objects databases. A
moving objects database is a multiset of trajectories, each of
which represents the movement history of a moving object
during a period of time. Moving objects databases offer a
vast application potential for researchers and enterprises, and
there is a great interest in mining these databases for pur-
poses such as city planning, traffic control, trajectory pattern
analysis, and municipal transportation. For example, trans-
port authorities can use moving objects databases for better
designing transportation systems and optimizing resource
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consumption. However, unauthorized exposure of moving
objects’ trajectories may disclose their trip histories, home
and work locations, frequent meeting points, or visits to sen-
sitive locations such as hospitals, health clinics, and airports.
The disclosure of such information has always been of con-
cern to the owners of trajectories and prevents them from
sharing their trajectories in moving objects databases.

Traditional privacy protection techniques for moving
objects databases have mostly focused on location privacy,
which is often achieved by perturbing or obfuscating each
point of a trajectory. However, these location-based tech-
niques are not usually sufficient for protecting the spatial
and temporal properties of trajectories. On the other hand,
anonymized moving objects databases that do not contain
personal identifiers or other evidence of identity still do not
prevent the precise identification of moving objects [13]. For
example, it was shown that 87% of the population in the
USA had reported characteristics that likely made them be
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uniquely identified, even though all explicit identifiers were
removed from data records [32].

Differential privacy [9,40] has emerged as one of the
strongest privacy definitions for privacy protection. The
intuition is that the same conclusions must be reached inde-
pendently of whether an individual data record opts into or
opts out of a database. Specifically, it ensures that the prob-
ability that a statistical query will produce a given result is
approximately the same as when one data record is added
or removed from a database. Differential privacy provides
strong privacy guarantees independently of the background
knowledge of the adversary [12,19]. This is because differen-
tial privacy is a property of the data release mechanism, not
of an interaction between the mechanism and the adversary
[10]. Thus, differentially private mechanisms are immune to
a wide range of privacy attacks [12]. Initially, work on differ-
ential privacy mainly concentrated on answering statistical
queries [5,7,9,28]. However, some recent work has begun to
use differential privacy for data release scenarios in different
fields [1,29,39].

In the last years, several differentially private mechanisms
have been proposed to answer statistical queries over mov-
ing objects databases [3,8,17,33]. However, as mentioned,
the majority of them do not release a differentially private
(synthetic) version of an original moving objects database.
Although some few mechanisms have been proposed to
address this issue [15,16], they cannot properly preserve the
spatial and temporal properties of original trajectories. In
this paper, we continue this line of research by presenting
DP-MODR, a differentially private mechanism for synthetic
moving objects database release that preserves spatial and
temporal utilities as much as possible. In this mechanism,
we first derive some useful properties of an original moving
objects database, including number of trajectories, num-
ber of points in each trajectory, and mobility patterns of
trajectories, in a differentially private way. Then, we con-
struct some so-called noisy cost-sensitive path trees to keep
existing most probable paths with different lengths (up to
a maximum length) and different starting points. Finally,
using these noisy cost-sensitive path trees and by consid-
ering the obtained differentially private spatial and temporal
properties of original trajectories, we efficiently construct a
synthetic moving objects database. Furthermore, we extend
DP-MODR to support moving objects databases whose loca-
tions are time-dependent. In this new extension, also known
as DP-MODRT, the synthetic moving objects database can
preserve the time information of trajectories as well as the
location information, in a differentially private way.

In the following, we list the main contributions of this
paper:

– We introduce DP-MODR, a differentially private mech-
anism for synthetic moving objects database release,

which aims to enhance both spatial and temporal util-
ities simultaneously. DP-MODR achieves this aim by
preserving the spatial and temporal properties of origi-
nal trajectories in synthetic trajectories, in a differentially
private manner.

– We present a new tree structure, known as a noisy cost-
sensitive path tree, to keep existing most probable paths
with different lengths and different starting points while
satisfying differential privacy. We efficiently use the
noisy cost-sensitive path trees to generate synthetic tra-
jectories.

– We efficiently construct a differentially private moving
objects database by generating synthetic trajectories in
a bottom-up way. Each synthetic trajectory is generated
by iteratively joining the most probable paths until the
intended length of that trajectory is reached.

– We design an attack, called sensitive locations disclosure
attack, on synthetic moving objects databases and show
to what extent DP-MODR is resilient to it.

– We extend DP-MODR to support moving objects
databases whose locations are time-dependent. The
new differentially private mechanism, also known as
DP-MODRT, is especially suitable for answering time-
dependent queries over a synthetic moving objects
database.

– Through extensive experiments on real moving objects
datasets, we show that DP-MODR enhances the utility
of query answers and better preserves the main spatial
and temporal properties of original trajectories in com-
parison with recent related work. Also, through some
experiments, we show that DP-MODRT can preserve the
time information of trajectories as well as the location
information.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 provides some preliminar-
ies and basic definitions. Section 4 introduces DP-MODR,
explains it in detail and analyzes its privacy guarantee
and performance. In Sect. 5, we extend DP-MODR to
support moving objects databases whose locations are time-
dependent. In Sect. 6, we report our experimental results in
detail, and finally, in Sect. 7, we give a summary and discus-
sion.

2 Related work

In this section, we review the state-of-the-art mechanisms for
preserving differential privacy in moving objects databases.

The notion of differential privacy was introduced by
Dwork [9] in 2006, and since then, it has been successfully
applied to a wide range of data analysis tasks [4,6,18,35,37].
To maximize the utility of the results provided by differen-
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tial privacy, the magnitude of the random noise should be as
small as possible. The basic idea is to concentrate the prob-
ability mass around zero as much as possible. Dwork et al.
[11] proposed the Laplace mechanism to preserve differen-
tial privacy for numerical values by calibrating the standard
deviation of the noise according to the global sensitivity of
the query function. Almost all the work done in the context of
differential privacy for numerical values has used the Laplace
mechanism to achieve differential privacy guarantees. How-
ever, there is little work to find the optimal data-independent
noise distribution to achieve differential privacy [14,31]. For
example, Soria-Comas et al. [31] proposed a general opti-
mality criterion based on the concentration of the probability
mass of the noise distribution around zero. They showed
that any noise optimal under this criterion must be opti-
mal under any other sensible criterion. They also built the
optimal data-independent noise distribution. Geng et al. [14]
derived the optimal ε-differentially private mechanism for
single real-valued query functions under a very general util-
ity maximization (or cost minimization) framework. They
showed that the class of noise probability distributions in the
optimal mechanism has staircase-shaped probability density
functions that are symmetric (around the origin), monotoni-
cally decreasing, and geometrically decaying. Accordingly,
in our work, optimal differential privacy can be achieved by
applying the optimal noise distribution instead of the Laplace
distribution.

In the last few years, some mechanisms have been pro-
posed to enforce differential privacy in moving objects
databases. For the first time, Chen et al. [3] studied the prob-
lem of differential privacy for moving objects databases.
They proposed a data-dependent sanitization algorithm by
constructing a noisy prefix tree over the underlying mov-
ing objects database. However, with the growth of the noisy
prefix tree, the number of trajectories falling into the same
branch decreases quickly, resulting in poor utility. To address
this problem, in subsequent work, Chen et al. [2] employed
a variable-length n-gram model that extracts the essential
information in terms of a set of variable-length n-grams.
The model makes use of an exploration tree based on the
Markov assumption to decrease the magnitude of added
noise. However, this work still suffers from the problem that
by increasing the number of locations, the size of the explo-
ration tree will grow exponentially, and thus, it is not scalable
for spatial domains with a large number of locations. He et al.
[17] presented DPT, a system to synthesize trajectories while
ensuring differential privacy. DPT, which stands for differ-
entially private trajectories, discretizes the spatial domain
at multiple resolutions using a hierarchy of reference sys-
tems to capture movements at different speeds. However,
DPT suffers from the problem that, for fine resolutions, the
frequencies of subtrajectories will be small, and thus, the
added noise will become relatively large. Wang et al. [34]

proposed a private trajectories calibration and publication
system (PTCP), which can be used to release trajectories in
social media under differential privacy. PTCP adopts a noisy
calibrated trajectories publication solutionwith privacy guar-
antees by building noise-enhanced prefix trees and extends
the utility of released data through a differentially private
post-processing sampling approach. However, all of these
works use some tree structure to represent a moving objects
database that causes the noise added to nodes with small real
value results in a large relative error. Moreover, leveraging
tree structures to represent moving objects databases usu-
ally incurs high time and space overheads. In this paper, we
preserve the mobility patterns of original trajectories using a
so-called normalized frequency matrix, which reduces time
and space overheads.

Li et al. [23] proposed a differentially private trajectory
data release mechanismwith a bounded noise generation and
a trajectory merging algorithm. The noise generation algo-
rithm is designed such that the noise added to true trajectory
counts is sampled in a legal range. Xu et al. [36] proposed
DP-LTOD, a differential privacy latent trajectory commu-
nity discovering scheme,whichobfuscates original trajectory
sequences into differentially private trajectory sequences.
DP-LTODfirst partitions an original trajectory sequence into
different segments. Then, it selects the suitable locations and
segments to constitute an obfuscated trajectory sequence.
Specifically, it formulates a trajectory obfuscation problem
to select an optimal trajectory sequence which has the small-
est difference with the original trajectory sequence. Wang et
al. [33] proposed DP-PSP, a differentially private statistics
publication mechanism for real-time trajectory streams. DP-
PSP discovers sensitive anchor points and divides the road
network into a number of segments. Each spatial location in a
trajectory stream is then calibrated to its nearest anchor point
to handle the heterogeneity of trajectories. DP-PSP allows
users to specify their own dynamic privacy budget distribu-
tion to optimize their own privacy budget. It also presents
a private k-nearest neighbor selection and perturbation algo-
rithm to reduce the amount of perturbation distortion induced
by adding random noise.

Gursoy et al. [16] presented AdaTrace, a utility-aware
trajectory synthesizer with differential privacy guarantee.
AdaTrace performs feature extraction, learning, and noise
injection using a database of real trajectories. It then gen-
erates synthetic trajectories while preserving differential pri-
vacy, enforcing resilience to inference attacks, and upholding
statistical and spatial utilities. They also presented DP-Star
[15], similar work to AdaTrace, which uses a normalization
algorithm to summarize raw trajectories using their repre-
sentative points, in its first step. However, these works do
not properly consider some useful properties of original tra-
jectories, such as number of points and mobility patterns, in
synthetic trajectories and, thus, cannot preserve some spatial
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and temporal properties of original trajectories (as we will
show in our experiments). Moreover, they do not consider
time-dependent locations and, thus, are not able to answer
time-dependent queries.

Deldar and Abadi [8] presented PDP-SAG, a differen-
tially private mechanism that combines the sensitive attribute
generalization (SAG) with personalized differential privacy
(PDP) in a unified manner. By this combination, they aimed
to provide different levels of differential privacy protection
for moving objects that have non-spatiotemporal sensitive
attributes as well. However, this work aims to provide per-
sonalized differential privacy for moving objects databases
that have non-spatiotemporal sensitive attributes as well and
does not release synthetic moving objects databases, as we
do in this paper.

3 Preliminaries

In this section, we give some definitions and preliminaries
that are used throughout the paper.

3.1 Differential privacy

Differential privacy (DP) is one of the strongest privacy
guarantees available today that provides a mathematically
provable guarantee of privacy protection against awide range
of privacy attacks [12]. It guarantees that the adversary will
learn no information about an individual data record, even
though he/she observes sequences of query outputs from two
neighboring databases, one with and the other without that
data record. In the following, we define the concepts related
to differential privacy.

Definition 1 (Neighboringdatabases) Twodistinct databases
D1 and D2 from the universe of databases D are said to be
neighbors, denoted by D1 ∼ D2, iff one can be obtained by
adding or removing a single data record from the other.

Definition 2 (ε-Differential privacy) A randomized algo-
rithm A is said to be ε-differentially private or ε-DP iff for
any two input neighboring databases D1 and D2, and any
subset O of all possible outputs of A, we have

Pr[A(D1) ∈ O] ≤ exp(ε) × Pr[A(D2) ∈ O], (1)

where ε is a privacy parameter, known as the total privacy
budget, that determines the strength of the privacy guarantee.
A smaller ε will result in a stronger privacy guarantee, and
vice versa.

A popular and widely used mechanism for answering
statistical queries under differential privacy is the Laplace
mechanism [11], which adds random noise drawn from the

Laplace distribution to the output of statistical queries. The
magnitude of the noise is scaled according to the (global)
sensitivity of the query function, which is a measure of the
maximum possible change to query outputs over any two
neighboring databases.

Definition 3 (Sensitivity) Let f : D → R
d be a query func-

tion that maps any database in the universe of databases D
to a vector of d real numbers. The sensitivity of f , denoted
by σ f , is defined as

σ f = max
D1∼D2

‖ f (D1) − f (D2)‖1, (2)

where ‖ · ‖1 denotes the L1-norm of a vector.

Definition 4 (Laplace mechanism) Let f : D → R
d be a

query function for the universe of databasesD. A randomized
algorithmA satisfies ε-DP iff for any input databaseD ∈ D,
we have

A(D) = f (D) + Lap(σ f /ε), (3)

where Lap(λ) is a Laplace random variable with probability
density function hλ(z) = 1

2λ exp(−|z|/λ) and variance 2λ2.

The Laplace mechanism does not apply to all statistical
queries, such as those that have categorical (or discrete) out-
puts. The exponential mechanism [25] is more general than
the Laplace mechanism and applies to all types of queries. It
uses an arbitrary scoring function that given an input database
D and a discrete output r , it assigns a real-valued score to r
to quantify the quality of r .

Definition 5 (Exponential mechanism) Let q : D×R → R

be an arbitrary scoring function for the universe of databases
D and a domain of discrete outputs R. The randomized
algorithm A that returns the discrete output r ∈ R for an
input database D ∈ D with a probability proportional to
exp(εq(D, r)/2σq) satisfies ε-DP, where σq is the sensitiv-
ity of q and defined as

σq = max
r∈R,D1∼D2

‖q(D1, r) − q(D2, r)‖1. (4)

Any sequence of differential privacy computations is also
differentially private. This property is known as composi-
tionality and has two different types: sequential composition
and parallel composition [26].

Theorem 1 Let Λ = {A1,A2, . . . ,An} be a set of ran-
domized algorithms, where each Ai ∈ Λ satisfies εi -DP
for an input database D. Then, the sequential composition
A1 ◦A2 ◦ · · · ◦An overD satisfies (

∑
i εi )-DP and the par-

allel composition A1 ‖ A2 ‖ · · · ‖ An over disjoint subsets
of D satisfies (maxi εi )-DP [26].
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As mentioned above, differential privacy guarantees that
the distribution of query results changes only slightly due to
the modification of any one data record in the database. This
allows protection against powerful adversaries who know the
entire database except for one data record. On the other hand,
differential privacy mechanisms implicitly assume that data
records in a database are independent. To the best of our
knowledge, all of the works that apply differential privacy
to real databases such as moving objects databases also fol-
low this assumption [15–17]. Similarly, we follow the same
assumption in this paper. However, few works have intro-
duced the issue of dependable data records in differential
privacy [21,24]. As discussed in [21], if we do not make
this assumption and consider a database where some indi-
viduals may have multiple data records; according to the
Pareto principle, most of the individuals in this database will
have few data records (or often one data record), whereas a
small proportion of them may have more data records (see
[21] for more details). Thus, we can separate a large num-
ber of low-frequency individuals from a small number of
high-frequency ones and compute the sensitivity of the query
function based on the group of low-frequency individuals
[21]. This allows us to guarantee ε-DP for most individuals
while having a little weaker differential privacy guarantee for
others.

3.2 Moving objects database

Moving objects databases store and manage discrete or con-
tinuous changes ofmoving objects over an underlying spatial
domain.

Given a spatial domain in which the movement of moving
objects is constrained within it, a moving objects database
D over this spatial domain is a multiset of trajectories. Each
trajectory T ∈ D is a sequence of points or latitude/longitude
locations 〈X1, X2, . . . , X |T |〉, where |T | is the length (or
number of points) of T . The point X1 is called the head of T ,
and the subtrajectory 〈X2, X3, . . . , X |T |〉 is called the tail of
T . More specifically, the head of T is defined to be its lead-
ing point, and the tail of T is defined to be the subtrajectory
obtained by removing its leading point.

Definition 6 (Subtrajectory) A trajectoryTr = 〈Xr
1, X

r
2, . . . ,

Xr
n〉 is said to be a subtrajectory of a trajectory Ts =

〈Xs
1, X

s
2, . . . , X

s
m〉, iff there exists n consecutive integers

1 ≤ i < i + 1 < · · · < i + n − 1 ≤ m such that
Xr
1 = Xs

i , X
r
2 = Xs

i+1, . . . , X
r
n = Xs

i+n−1.

4 Differentially private moving objects
database release

Many companies likeGoogle, Uber, and others collect a huge
volume of data about themovements ofmoving objects every

day through their mobile apps, resulting in large moving
objects databases. Analyzing such databases is of great value
for data analysts and has many applications in different tasks
such as city planning, traffic analysis, taxi service prediction,
and passenger demand analysis. However, due to the con-
cerns of disclosure of any information about moving objects
such as trip histories, home and work locations, frequent
meeting points, or visits to sensitive locations like hospitals,
health clinics, and airports, these companies often cannot
safely provide their collected moving objects databases to
data analysts.

In this section, we introduce DP-MODR, a differentially
private mechanism for synthetic moving objects database
release that preserves spatial and temporal utilities efficiently
and effectively. DP-MODR consists of fivemain steps. In the
first step, we discretize the continuous spatial domain into a
finite set of domain cells and create a noisy histogram of
starting domain cells of original trajectories to keep the dis-
tribution of trajectory heads. In the second step, we compute
the noisy median length of original trajectories that start in
each domain cell to preserve the distribution of trajectory
lengths around their median. In the third step, we construct a
noisy transition cost matrix to preserve the mobility patterns
of original trajectories. In the fourth step, we construct some
noisy cost-sensitive path trees using the noisy transition cost
matrix to keep existing most probable domain cell paths with
different lengths and different starting domain cells. Finally,
in the fifth step,we release synthetic trajectories by construct-
ing a differentially private moving objects database using the
information obtained in the previous steps. It should be men-
tioned that the first three steps work on original trajectories;
therefore, to satisfy differential privacy,we divide ε into three
parts, namely ε1, ε2, and ε3, and give each part to one of the
steps, respectively. For the rest of this section,wewill assume
that we are given a moving objects databaseD, and our goal
is to release a differentially private version of it, denoted by
D̂. Table 1 summarizes the notations used throughout the
paper.

4.1 Creating a noisy starting domain cells histogram

In this step, we first discretize the continuous spatial domain
into a finite set of regions or domain cells C. The points of
each trajectory in D are then mapped to the domain cells
covering them. After that, we create a histogram of starting
domain cells (SDCs) of all trajectories in D. Note that by
the starting domain cell or SDC of a trajectory, we mean the
domain cell that covers the head of that trajectory. Besides,
we add Laplace noise with scale parameter 1/ε1 to each
bin of the obtained histogram independently. This results
in a noisy histogram, also known as noisy starting domain
cells histogram or NSDC histogram. By adding/removing
one trajectory to/fromD, the value of exactly one bin will be
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Table 1 Notations used
throughout the paper

Symbol Description

D A moving objects database

D̂ A synthetic moving objects database

T A trajectory

T̂ A synthetic trajectory

Ci A domain cell

C A set of domain cells

ε The total privacy budget

H An NSDC histogram

θCi The median length of trajectories starting in a domain cell Ci

θ̂Ci The noisy median length of trajectories starting in a domain cell Ci

c̄D A normalized frequency function over a moving objects database D
F A normalized frequency matrix

C A noisy transition cost matrix

hmax The maximum height of a noisy cost-sensitive path tree

ΦCi A noisy cost-sensitive path tree for a domain cell Ci

ϑ A cost function

lmax The maximum possible length of a trajectory

changed by 1. Therefore, fromDefinition 4, we conclude that
the NSDC histogram is ε1-differentially private or ε1-DP.

In fact, this step aims to keep the distribution of the starting
points of original trajectories as much as possible, which is
one of the useful properties of moving objects databases.
By preserving this property, the synthetic moving objects
database can be effectively used to answer popular queries
such as “number of trajectories that have the same starting
point.” Such queries can have many applications in urban
management and traffic analysis issues.

Example 1 Consider the moving objects database of Table 2
that has been constructed over a discretized spatial domain
with domain cells C1, C2, C3, and C4. Figure 1a shows the
SDChistogramof thismoving objects database.Also, Fig. 1b
shows an NSDC histogram that is a noisy version of the SDC
histogram of Fig. 1a.

4.2 Estimating noisy trajectory lengths

In this step, for each domain cell Ci ∈ C, we compute the
median length of trajectories starting in Ci and then run
a differentially private mechanism (with ε2 as the privacy
parameter) on the obtained median lengths. This allows us to
preserve the length of original trajectories when generating
synthetic trajectories for public release, which is one of the
important statistical properties of moving objects databases.
By preserving this property, we can generate synthetic tra-
jectories of lengths as closely as possible to the original ones.
Similar to the previous step, we can obtain a noisy median
length by perturbing it with Laplace noise, but we know

Table 2 A moving objects
database

ID Trajectory

1 〈C1,C4,C4〉
2 〈C2,C1,C2,C2,C4〉
3 〈C1,C2,C4,C4,C3,C2〉
4 〈C2,C1,C3,C2,C3,C2〉
5 〈C4,C2,C3,C2〉
6 〈C1,C3,C2,C4,C2〉
7 〈C2,C2,C4,C3〉

that the median function has a large sensitivity for trajec-
tory lengths, and therefore, adding Laplace noise destroys
data utility. Hence, similar to prior work [20,22], we choose
the exponential mechanism instead.

To obtain the noisy median lengths using the exponential
mechanism, we proceed as follows. For each domain cell
Ci ∈ C, we first create a multiset L of trajectory lengths
whose corresponding trajectories start inCi . Then, we sort L
in non-decreasing order and choose a trajectory length l ∈ L
as the noisymedian length θ̂Ci with a probability proportional
to exp(ε2s(l, θCi )/2), where θCi is the median of trajectory
lengths in L and s(l, θCi ) is the score of l with respect to θCi :

s(l, θCi ) = −|r(l) − r(θCi )|, (5)

where r(·) returns the rank of a trajectory length in L . The
intuition is that if a trajectory length is close to θCi , then its
rank will be similar to the rank of θCi . Thus, the score of each
candidate trajectory length should be negatively proportional
to the absolute difference between its rank and the rank of θCi .
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Fig. 1 SDC and NSDC histograms of the moving objects database of Table 2: a SDC histogram. b NSDC histogram

This causes trajectory lengths that are closer to θCi to have
a higher probability of being chosen as the noisy median
length.

By adding/removing one trajectory to/fromD, the rank of
only onemedian length changes by atmost 1. This shows that
the sensitivity of the scoring function s is 1. Therefore, from
Definition 5, we conclude that the obtained noisy median
lengths are ε2-differentially private or ε2-DP.

Example 2 Consider the moving objects database of Table 2
and suppose that ε2 is 0.40. To obtain the noisymedian length
of trajectories starting in C1, namely θ̂C1 , we first create the
multiset L and sort it in non-decreasing order; therefore, we
obtain L = {3, 5, 6}. Since θC1 = 5, we have s(3, 5) = −1,
s(5, 5) = 0, and s(6, 5) = −1. Thus, we set θ̂C1 to one of
the values 3, 5, or 6 with a probability of 0.31, 0.38, or 0.31,
respectively.

4.3 Constructing a noisy transition cost matrix

In this step, we construct a noisy transition cost matrix
C = (ci j )m×m over D to preserve the mobility patterns of
trajectories in D, where m is the number of domain cells in
C. It is worth mentioning that mobility patterns are the most
important properties of moving objects databases, and thus,
preserving them in synthetic moving objects databases is so
important. By preserving these properties, the syntheticmov-
ing objects database can be effectively used for different data
analysis tasks, including count query answering and frequent
pattern mining. Each element ci j ∈ C stores the noisy cost
of transition from a domain cell Ci ∈ C to a domain cell
C j ∈ C:

ci j = − log pi j , (6)

where pi j is the differentially private noisy transition prob-
ability (or just noisy transition probability in short) from Ci

to C j .
To obtain noisy transition probabilities, we first construct

a normalized frequencymatrix F = ( fi j )m×m overD, whose
rows and columns are uniquely labeled with the domain cells
of C. Each element fi j ∈ F stores the normalized frequency
of a subtrajectory 〈Ci ,C j 〉 in D, where Ci and C j belong to
C.

Definition 7 (Normalized frequency) Let C be the set of all
domain cells within a given spatial domain andD be an arbi-
trary moving objects database. The normalized frequency of
a subtrajectory 〈Ci ,C j 〉 in D, denoted by c̄D(〈Ci ,C j 〉), is
defined as

c̄D(〈Ci ,C j 〉) =
∑

T∈D

cT (〈Ci ,C j 〉)
|T | − 1

, (7)

where T is an arbitrary trajectory of D and cT (〈Ci ,C j 〉) is
the frequency of the subtrajectory 〈Ci ,C j 〉 in T .

Example 3 Consider the moving objects database of Table 2.
The normalized frequency matrix F for this moving objects
database is constructed as

F =

⎡

⎢
⎢
⎣

0 0.45 0.45 0.50
0.45 0.58 0.53 1.03
0 1.18 0 0
0 0.58 0.53 0.70

⎤

⎥
⎥
⎦ .

Subsequently, we perturb the elements of F by adding
Laplace noise with scale parameter 1/ε3 to them. The noisy
transition probabilities are then computed by normalizing the
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rows of F to sum up to 1. More formally,

pi j = f̂i j
∑

j f̂i j
, (8)

where f̂i j is the noisy version of an element fi j ∈ F.
It is worth mentioning that the sensitivity of the normal-

ized frequency function c̄D in (7) is 1. This is because the
frequency of each pair of domain cells in a desired trajectory
T is bounded by |T | − 1. Therefore, by adding/removing
T to/from D, c̄D changes by at most 1. Therefore, from
Definition 4, we conclude that the obtained noisy transition
probabilities are ε3-differentially private or ε3-DP.

4.4 Constructing noisy cost-sensitive path trees

In this step, we define a so-called noisy cost-sensitive path
tree of the maximum height hmax for each domain cell of the
underlying spatial domain to keep all existing most proba-
ble paths with different lengths (up to hmax + 1) starting in
that domain cell. The noisy cost-sensitive path trees are con-
structed to keep all existing most probable paths efficiently
in terms of time and space complexities. We use these cost-
sensitive path trees to construct synthetic trajectories in such
a way that their mobility patterns are as similar as possible
to the mobility patterns of original trajectories.

Definition 8 (Noisy cost-sensitive path tree) Let C be a set of
m domain cells defined over a given spatial domain. A noisy
cost-sensitive path tree for an arbitrary domain cell Ci ∈ C
is a triple ΦCi = (V , E, ϑ), where V is the set of nodes, E
is the set of edges, and ϑ : V → R≥0 is a cost function.
Each level ofΦCi contains at mostm nodes, each of which is
uniquely labeled with one domain cell in C. The root of ΦCi

is at level 0 and labeled with Ci . The cost function for each
node at level l gives the cost of the most probable path with
length l + 1 (if exists) from Ci to the domain cell labeling
that node.

We use an efficient bottom-up dynamic programming
algorithm (Algorithm 1) to construct a noisy cost-sensitive
path tree ΦCi for any given domain cell Ci ∈ C. In this algo-
rithm, we first create the root r of ΦCi at level 0, label r by
Ci , and set its cost to 0. Then, we create other nodes of ΦCi

in a breadth-first order until the level hmax is reached or ΦCi

cannot be expanded further. For each level, we consider m
potential nodes and label each one with a unique domain cell
in C. We then compute the cost ϑ(v) for each potential node
v at this level as

ϑ(v) = min
u∈LV (v)

ϑ(u) + c(u, v), (9)

Algorithm 1 Noisy cost-sensitive path tree construction
Input:

Ci : A domain cell
Output:

ΦCi : A noisy cost-sensitive path tree

1: Create the root r of ΦCi at level 0
2: Label r by Ci and set its cost to 0
3: for each level of ΦCi from 1 up to hmax do
4: for each domain cell C j ∈ C do
5: Create a node v and label it by C j
6: Compute the cost ϑ(v) using (9)
7: if ϑ(v) �= ∞ then
8: Compute the parent η(v) using (10)
9: Add v to V (ΦCi ) and (η(v), v) to E(ΦCi )

10: end if
11: end for
12: end for
13: for each level l of ΦCi starting from the last level do
14: for each leaf node v at level l do
15: if ϑ(v) is not minimum at level l then
16: Eliminate v from V (ΦCi )

17: Eliminate (η(v), v) from E(ΦCi )

18: end if
19: end for
20: end for

where LV (v) is the set of all nodes in the immediately preced-
ing level (i.e., the level preceding the level of v) and c(u, v)

is the noisy cost of transition from the labeling domain cell
of u to the labeling domain cell of v (refer to Sect. 4.3 for
more information). We also find the parent of v as

η(v) = argmin
u∈LV (v)

ϑ(u) + c(u, v). (10)

Ifϑ(v) �= ∞, then this means that there is at least one path
from Ci to the labeling domain cell of v. In this case, we add
the node v to V (ΦCi ) and the edge (η(v), v) to E(ΦCi ).

After the construction ofΦCi is completed, we prune it by
eliminating those nodes that do not exist in anymost probable
path. To do this, we traverseΦCi , level by level starting from
the last level, and eliminate the leaf nodes at each level whose
associated cost is not minimum at that level. In this way, we
keep the minimum number of nodes required.

Example 4 Let us assume that the noisy transition costmatrix
for the moving objects database of Table 2 is constructed as

C =

⎡

⎢
⎢
⎢
⎢
⎣

1.30 0.52 0.46 0.52

1.00 0.70 0.70 0.30

1.22 0.06 1.40 1.30

1.30 0.70 0.60 0.35

⎤

⎥
⎥
⎥
⎥
⎦

.

Figure 2 shows the noisy cost-sensitive path trees ΦC1 ,
ΦC2 , ΦC3 , and ΦC4 by fixing the maximum height hmax to 2.
For each node, its labeling domain cell is placed inside and
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Fig. 2 Noisy cost-sensitive path trees by fixing the maximum height hmax to 2: a ΦC1 . b ΦC2 . c ΦC3 . d ΦC4
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Fig. 3 Pruned noisy cost-sensitive path trees: a ΦC1 . b ΦC2 . c ΦC3 . d ΦC4

its cost is placed outside that node. Figure 3 shows the pruned
version of each of these noisy cost-sensitive path trees, where
nodes that do not exist in any most probable path have been
eliminated.

We can useΦCi to find themost probable path of any given
length starting in Ci . Specifically, to find the most probable
path with length l + 1 starting in Ci , we start from the root
of ΦCi , r , and follow the path that leads to a node with the
minimum cost at level l of ΦCi . We refer to such a path as a
most probable root-originated path.

Example 5 Consider the noisy cost-sensitive path treeΦC4 of
Fig. 3. The most probable root-originated path with length 3
in ΦC4 is 〈C4,C3,C2〉.

4.5 Constructing a differentially private moving
objects database

In this step, we construct a differentially private moving
objects database consisting of synthetic trajectories. We do
this as described below. Let lmax be the maximum possible
length of trajectories. First, we initialize the synthetic mov-
ing objects database D̂ to be an empty set. Then, for each
domain cell Ci ∈ C, we repeat the following procedure as
many times as the value of the corresponding bin of Ci in
the NSDC histogram. At each iteration, we draw a sample
l from an exponential distribution with parameter ln(2)/θ̂Ci

and limit it to lmax, where θ̂Ci is the noisy median length
of trajectories starting in Ci . We then generate a synthetic
trajectory T̂ with length l starting in Ci . To do so, we first
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Algorithm 2 Differentially private moving objects database construction
Input:

C: A set of domain cells
H : An NSDC histogram

Output:
D̂: A synthetic moving objects database

1: Initialize D̂ to be an empty set
2: for each domain cell Ci ∈ C do
3: Let H(Ci ) be the value of the corresponding bin of Ci in H
4: for k = 1 to H(Ci ) do
5: Let θ̂Ci be the noisy median length of trajectories starting in Ci

6: Draw a sample l from an exponential distribution with parameter ln(2)/θ̂Ci

7: Create a synthetic trajectory T̂ and initialize it to 〈Ci 〉
8: while |T̂ | < l do
9: Let E be the ending domain cell of T̂ and h be the height of the cost-sensitive path tree ΦE
10: Find the most probable root-originated path P with length min(l − |T̂ | + 1, h + 1) in ΦE
11: Append the tail of P to T̂
12: end while
13: Replace each domain cell of T̂ by a latitude/longitude location
14: Add T̂ to D̂
15: end for
16: end for

initialize T̂ to 〈Ci 〉. Then, we repeatedly start from the ending
domain cell E of T̂ , find the most probable root-originated
path P with length h + 1 starting in E (using the noisy cost-
sensitive path tree ΦE ), and append the tail of P to T̂ , where
h is the height of ΦE . We repeat this until the difference
between l and |T̂ | becomes lower than or equal to h. At this
time, we find the most probable root-originated path with
length l −|T̂ |+ 1 in ΦE and append its tail to T̂ . Finally, we
replace each domain cell of T̂ by a latitude/longitude loca-
tion that is covered by that domain cell (e.g., the centroid
latitude/longitude location of the domain cell) and then add
T̂ to D̂. Algorithm 2 shows the pseudocode of the procedure
described above.

Example 6 Consider the pruned noisy cost-sensitive path
trees of Fig. 3. To generate a synthetic trajectory T̂ with
length l = 6 starting inC1, we first initialize T̂ to 〈C1〉. Then,
we find the most probable root-originated path with length 3
inΦC1 and append its tail to T̂ , resulting in T̂ = 〈C1,C3,C2〉.
Subsequently, we find themost probable root-originated path
with length 3 in ΦC2 and append its tail to T̂ , resulting in
T̂ = 〈C1,C3,C2,C4,C4〉. Finally, we find the most prob-
able root-originated path with length 2 in ΦC4 and append
its tail to T̂ . Therefore, we obtain T̂ = 〈C1,C3,C2,C4,C4,

C4〉.

4.6 Privacy analysis

In the following, we analyze the privacy guarantee of DP-
MODR and prove that it satisfies ε-differential privacy or
ε-DP.

Theorem 2 DP-MODR satisfies ε-DP.

Proof As described before, DP-MODR consists of five main
steps. We have already shown that the first, second, and third
steps satisfy ε1-DP, ε2-DP, and ε3-DP, respectively. On the
other hand, the fourth andfifth stepsworkon thedifferentially
private (noisy) outputs of the first three steps, and thus, each
of them satisfies 0-DP. Thus, from Theorem 1, we conclude
that DP-MODR satisfies (ε1 + ε2 + ε3)-DP or ε-DP. �

4.7 Performance analysis

In the following, we analyze the efficiency of DP-MODR in
terms of time and space complexities.

Let n be the number of trajectories in D. As described
before, DP-MODR consists of five main steps. In the first
step, DP-MODR traverses D once to create an NSDC
histogram, which takes O(n) time. In the second step,
DP-MODR computes the noisy median length of original
trajectories starting in each domain cell, which takes as much
time as the number of these trajectories. Thus, this step takes
O(n) time for all domain cells. In the third step, DP-MODR
constructs a noisy transition cost matrix. This task takes
O(lmax × n + m2) time, where lmax is the maximum pos-
sible length of a trajectory and m is the number of domain
cells. In the fourth step, DP-MODR constructs noisy cost-
sensitive path trees. Since the number of nodes in each noisy
cost-sensitive path tree is at most hmax × m and the cost
computation for each node takes O(m) time, the construc-
tion of all m pruned noisy cost-sensitive path trees takes
O(hmax × m3) time. Finally, in the fifth step, DP-MODR
releases synthetic trajectories. Since the length of each syn-
thetic trajectory is assumed to be at most lmax and the number
of all synthetic trajectories is approximately as same as the
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number of original trajectories, this step takes O(lmax × n)

time. As a result, we conclude that the overall time com-
plexity of DP-MODR is O(lmax ×n+hmax ×m3). Since we
usually sethmax to a small value, it becomesO(lmax×n+m3).

Moreover, from the above discussion, it is clear that the
space complexity of DP-MODR is equal to the total space
required to store the NSDC histogram, the noisy median
lengths, the noisy cost matrix, and the pruned noisy cost-
sensitive path trees, which are O(m), O(m), O(m2), and
O(hmax ×m2), respectively. Therefore, we conclude that the
overall space complexity of DP-MODR is O(m2).

5 Differentially private time-dependent
moving objects database release

In this section, we explain how to extend DP-MODR to
support moving objects databases whose locations are time-
dependent. We refer to such databases as time-dependent
moving objects databases. The new differentially private
mechanism, also known as DP-MODRT, is especially suit-
able for answering time-dependent queries. An example of
such queries in the real world is “number of trajectories that
have the same starting and ending points at around the same
time.”

LetD be a time-dependent moving objects database. Each
point in a trajectory T ∈ D is denoted by a pair (Xi , ti ),
where Xi is the latitude/longitude location of the owner of
T at time stamp ti . Therefore, two trajectories with the same
sequence of locations but different time stamps are consid-
ered different. In the first step of DP-MODRT, in addition
to discretizing the continuous spatial domain into a finite set
of regions or domain cells, we also discretize the time space
into non-overlapping time intervals. Consequently, we con-
sider C to be a set of time-dependent domain cells. In other
words, all combinations of domain cells and time intervals
are included in C. Then, we create a noisy starting domain
cells histogram of all trajectories inD according to the time-
dependent domain cells in C.
Example 7 Consider the time-dependent moving objects
database of Table 3 that has been constructed over a dis-
cretized spatial domain with domain cells C1, C2, C3, and
C4, and time intervals 1, 2, and 3. Figure 4 shows the SDC
histogram of this moving objects database.

Subsequently, for each time-dependent domain cell in C,
we compute the median length of trajectories starting in that
domain cell in a differentially private way and then construct
a normalized frequency matrix F = ( fi j )m×m , where m is
the number of time-dependent domain cells in C. It is clear
that F is an almost upper triangular matrix because the time
stamps in each trajectory are non-decreasing. On the other
hand, for many pairs of time-dependent domain cells, it may

Table 3 A time-dependent moving objects database

ID Trajectory

1 〈(C1, 1), (C4, 1), (C4, 2)〉
2 〈(C2, 1), (C1, 2), (C2, 2), (C2, 3), (C4, 3)〉
3 〈(C1, 1), (C2, 1), (C4, 2), (C4, 2), (C3, 3), (C2, 3)〉
4 〈(C2, 1), (C1, 1), (C3, 1), (C2, 2), (C3, 2), (C2, 3)〉
5 〈(C4, 2), (C2, 3), (C3, 3), (C2, 3)〉
6 〈(C1, 2), (C3, 2), (C2, 2), (C4, 3), (C2, 3)〉
7 〈(C2, 2), (C2, 2), (C4, 2), (C3, 3)〉
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Fig. 4 SDC histogram of the time-dependent moving objects database
of Table 3

not be possible to have a transition (due to their corresponding
time intervals). Given this, and for the sake of simplicity, we
assume that the time interval between any two consecutive
points inD is less than or equal to the length of time intervals
in the discretized time space. Thus, if the current point of a
trajectory is at a discretized time interval t , its next point can
only be at a discretized time interval t or t+1. As a result, the
normalized frequency matrix F is sparse, and we can process
F and also the noisy transition cost matrix C by taking full
advantage of sparse matrix processing techniques. Finally,
after constructing each synthetic trajectory, we replace each
of its time-dependent domain cells by a latitude/longitude
location that is covered by that time-dependent domain cell
(e.g., the centroid latitude/longitude location) and a time
stamp that is covered by the time interval associated with
that time-dependent domain cell. Therefore, the transformed
(differentially private) moving objects database can preserve
the time information of trajectories (including the starting
and ending time of points) as well as the location informa-
tion, in a differentially private way.

6 Experiments

In this section, we empirically study the effectiveness of DP-
MODR and DP-MODRT using real moving objects datasets.
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6.1 Experimental setup

We perform our experiments using the following three real
moving objects datasets:

– Geolife dataset. This dataset collects the GPS trajectories
of some users during a period of over five years (from
April 2007 to August 2012), recording a broad range of
outdoor movements, including not only life routines like
go home and go to work but also some entertainment
and sports activities such as shopping, sightseeing, hik-
ing, and cycling [38]. The majority of the trajectories
are from Beijing, China, with few outliers from other
cities in China, Europe, etc. We preprocess the dataset to
remove some outliers; in particular, we choose the tra-
jectories from Beijing whose points (latitude–longitude
coordinates) are between [39.4, 40.8] latitude and [115.8,
117.4] longitude. In this way, we obtain approximately
17,000 trajectories.

– Taxi dataset.1 This dataset contains approximately 1.7
million trajectories of taxis in Beijing, China, during a
period of 9 days in May 2009. The trajectory data cover
a region ofBeijing restricted between [39.8, 40.1] latitude
and [116.1, 116.6] longitude.

– Porto dataset. This dataset contains approximately
290,000 GPS trajectories of some taxis operating in
Porto, Portugal, through a taxi dispatch central for one
year (fromJuly 2013 to July 2014). It is a subset of a larger
dataset that wasmade available as part of the Taxi Service
Trajectory Prediction Challenge at ECML-PKDD 2015
[27].

In our experiments, when constructing a synthetic moving
objects database, we discretize the continuous spatial domain
by partitioning it into a 32×32 grid, discretize the time space
into 24 non-overlapping time intervals, and set the maximum
height of noisy cost-sensitive path trees to hmax = 3 (unless
explicitly stated). Also, by default, we equally divide the total
privacy budget ε among ε1, ε2, and ε3.

Since the Laplace and exponential mechanisms are prob-
abilistic, we repeat each experiment five times and report
the average results. When computing the evaluation mea-
sures, we consider two different scenarios: the fine-grained
scenario in which the continuous spatial domain is uni-
formly discretized into a finite set of 1024 domain cells and
the coarse-grained scenario in which the continuous spatial
domain is uniformly discretized into a finite set of 36 domain
cells.

1 http://sensor.ee.tsinghua.edu.cn.

6.2 Evaluationmeasures

We use different measures to evaluate the spatial and tem-
poral utilities of the synthetic moving objects databases
constructed by DP-MODR.

6.2.1 Count query error

Let Q be a count query of the form “Retrieve the frequency
of a given subtrajectory.” We define the relative error of the
noisy answer to Q as

E(Q) =
∣
∣cD(Q) − cD̂(Q)

∣
∣

max {cD(Q), δ} × 100, (11)

where cD(Q) and cD̂(Q) denote the true and noisy answers

to Q when issued onD and D̂, respectively, and δ is a sanity
bound used to mitigate the influences of count queries with
extremely small true answers. Similar to most previous work
[2,30], we set δ to be 0.1% of the number of trajectories in
D.

6.2.2 Locations rank correlation

The Kendall rank correlation coefficient, also referred to
as Kendall’s tau coefficient, is a statistic used to measure
the rank correlation between two measured quantities. Intu-
itively, the Kendall rank correlation coefficient between two
variables will be high when observations have a similar rank
between two variables and will be low when observations
have a dissimilar rank between two variables. We use the
Kendall rank correlation coefficient to compute the locations
rank correlation that measures the similarities and discrep-
ancies between locations frequency ranking inD and D̂. Let
C be the set of all domain cells (discrete locations) within the
underlying discretized spatial domain. A pair of domain cells
Ci ,C j ∈ C are said to be concordant if one of the following
conditions holds:

(1) cD(Ci ) > cD(C j ) and cD̂(Ci ) > cD̂(C j ),

(2) cD(Ci ) < cD(C j ) and cD̂(Ci ) < cD̂(C j ), (12)

where cD(·) and cD̂(·) are the frequency of a given domain

cell in D and D̂, respectively. They are said to be discordant
if one of the following conditions holds:

(1) cD(Ci ) > cD(C j ) and cD̂(Ci ) < cD̂(C j ),

(2) cD(Ci ) < cD(C j ) and cD̂(Ci ) > cD̂(C j ). (13)

If cD(Ci ) = cD(C j ) or cD̂(Ci ) = cD̂(C j ), they are nei-
ther concordant nor discordant. Briefly, two domain cells
Ci ,C j ∈ C are concordant if their ranks in sorted order
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agree in D and D̂, and discordant otherwise. Accordingly,
we define the locations rank correlation as

τs = 2

m(m − 1)

(
ηs(D, D̂) − η̃s(D, D̂)

)
, (14)

where m is the number of domain cells in C. Also, ηs(D, D̂)

and η̃s(D, D̂) denote the number of concordant and discor-
dant domain cell pairs, respectively.

6.2.3 Frequent patterns rank correlation

Let F be the set of top-k frequent patterns in D. We use the
Kendall rank correlation coefficient to compute the frequent
patterns rank correlation that measures the similarities and
discrepancies between the ranking of frequent patterns of F
inD and D̂. We define the frequent patterns rank correlation
as

τt = 2

k(k − 1)

(
ηt (D, D̂) − η̃t (D, D̂)

)
, (15)

where ηt (D, D̂) and η̃t (D, D̂) denote the number of concor-
dant and discordant frequent pattern pairs, respectively.

6.2.4 Trip error

One of the main properties of a trajectory is its starting and
ending points that are mapped to regions or domain cells of
the underlying discretized spatial domain. These points show
a particular trip (e.g., a home-to-work commute or a taxi
trip) and are important for many data analysis tasks such as
city planning, taxi service prediction, and passenger demand
analysis. We use the trip error as a measure of trip preser-
vation. It aims to evaluate how the correlation between the
starting and ending domain cells of original trajectories is
preserved. We compute the trip error as the Jensen–Shannon
divergence between the empirical trip distribution (the dis-
tribution of all possible pairs of starting and ending domain
cells) of D and that of D̂.

6.2.5 Length error

The length of a trajectory is defined to be the total number
of points it contains. We use the length error as a measure
of trajectory length preservation. It aims to evaluate how the
number of points of original trajectories is preserved. We
compute the trajectory length error as the Jensen–Shannon
divergence between the empirical length distribution of orig-
inal trajectories in D and that of synthetic trajectories in D̂.

6.2.6 Diameter error

The diameter of a trajectory is defined to be the maximum
distance between any pair of its points [15,16]. We use the
diameter error as a measure of trajectory diameter preserva-
tion. For this purpose, we first find the maximum diameter in
D and quantize it into 20 equal-width buckets. Then,we com-
pute the diameter error as the Jensen–Shannon divergence
between the bucketized diameter distribution of original tra-
jectories in D and that of synthetic trajectories in D̂.

6.2.7 Total distance error

Weuse the total distance error as ameasure of trajectory trav-
eled distance preservation. For this purpose, we first sum up
the distance between consecutive points of each trajectory
in D to calculate the total distance traveled by that trajec-
tory. Then, we find the maximum traveled distance of all
the trajectories and quantize it into 20 equal-width buck-
ets. Subsequently, we compute the total distance error as the
Jensen–Shannon divergence between the bucketized traveled
distance distribution of original trajectories in D and that of
synthetic trajectories in D̂.

6.3 Experimental results

In the following, we evaluate the impact of the maximum
height of noisy cost-sensitive path trees, hmax, on the per-
formance of DP-MODR, when the total privacy budget ε is
varied.

We first evaluate the count query error measure. For this
purpose, we construct five different count query sets on each
moving objects dataset, each one having a different maxi-
mum query size (namely 4, 8, 12, 16, and 20) and containing
10,000 randomly generated count queries. Each location in
a count query is uniformly drawn from the set of domain
cells of the underlying discretized spatial domain. Tables 4,
5 and 6 compare the average count query error of DP-MODR
for different count query sets on Geolife, Taxi, and Porto
under different values of ε and hmax. From the tables, we
observe that when hmax is set to 3, DP-MODR generally
produces lower count query error than when hmax is set to 2
or 4, especially for Geolife and Porto. Although DP-MODR
yields slightly better results for Taxi when hmax is set to 2, its
results are also good when hmax is set to 3. We also observe
that the average count query error of the coarse-grained sce-
nario is higher than that of the fine-grained one. The reason
is that in the coarse-grained scenario, count queries are made
on larger domain cells, and thus, the errors applied to small
domain cells when constructing the synthetic moving objects
database are aggregated.

Then, we evaluate other measures. It is worth mentioning
that the locations rank correlation and frequent patterns rank
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Table 4 Average count query error of DP-MODR for different count query sets on Geolife under different values of ε and hmax

Scenario Maximum query size ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained 4 197.71 15.52 17.78 15.15 13.74 14.92 11.68 11.76 12.17

8 101.58 7.56 9.11 7.74 6.50 7.74 5.67 5.71 6.03

12 66.39 5.25 6.38 5.00 4.52 4.75 3.88 3.90 4.12

16 66.54 4.05 4.06 3.94 3.45 3.63 2.99 3.03 3.15

20 31.83 3.03 3.09 2.73 2.41 2.87 2.03 2.05 2.17

Coarse-grained 4 2111.32 62.97 91.14 56.46 39.95 57.78 22.25 22.79 28.79

8 1053.30 33.18 48.02 30.01 20.35 29.66 11.30 11.56 14.77

12 517.80 19.79 26.91 18.30 12.77 17.17 7.57 7.73 9.43

16 558.00 15.42 24.72 14.98 9.90 13.97 5.70 5.85 7.38

20 345.44 11.13 16.24 11.73 7.50 10.81 4.20 4.34 5.48

Table 5 Average count query error of DP-MODR for different count query sets on Taxi under different values of ε and hmax

Scenario Maximum query size ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained 4 7.02 7.77 8.04 6.91 7.27 7.81 5.95 6.41 7.10

8 3.45 3.79 3.97 3.34 3.55 3.85 2.75 3.03 3.43

12 2.39 2.60 2.70 2.31 2.42 2.64 1.96 2.13 2.39

16 1.83 2.05 2.12 1.81 1.91 2.06 1.54 1.69 1.88

20 1.19 1.36 1.43 1.18 1.24 1.37 0.96 1.07 1.24

Coarse-grained 4 14.23 17.73 18.90 13.43 15.55 17.81 16.46 14.80 13.62

8 6.93 8.94 9.40 6.61 7.69 8.86 8.25 7.36 6.64

12 4.48 5.64 5.92 4.31 4.92 5.66 5.31 4.79 4.39

16 3.50 4.22 4.49 3.29 3.73 4.24 3.97 3.61 3.34

20 2.57 3.37 3.51 2.47 2.83 3.30 3.03 2.74 2.48

Table 6 Average count query
error of DP-MODR for different
count query sets on Porto under
different values of ε and hmax

Scenario Maximum query size ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained 4 0.49 0.44 0.45 0.45 0.43 0.51 0.43 0.43 0.43

8 0.25 0.22 0.23 0.24 0.22 0.23 0.22 0.22 0.22

12 0.18 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16

16 0.09 0.08 0.08 0.08 0.07 0.08 0.07 0.07 0.07

20 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09

Coarse-grained 4 4.52 3.48 4.01 4.08 3.61 3.61 3.54 3.47 3.58

8 2.18 1.70 1.92 1.97 1.73 1.72 1.71 1.67 1.73

12 1.57 1.18 1.37 1.39 1.21 1.23 1.19 1.16 1.20

16 1.23 1.00 1.12 1.15 1.02 1.02 1.01 0.99 1.02

20 0.88 0.64 0.79 0.79 0.66 0.68 0.64 0.63 0.65
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Table 7 Locations rank correlation, frequent patterns rank correlation, and trip error of DP-MODR for Geolife under different values of ε and hmax

Scenario Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained Locations rank correlation 0.15 0.17 0.17 0.17 0.18 0.18 0.21 0.23 0.22

Frequent patterns rank correlation 1.00 0.95 0.79 1.00 0.99 0.97 1.00 1.00 1.00

Trip error 0.33 0.33 0.34 0.29 0.30 0.30 0.26 0.26 0.27

Coarse-grained Locations rank correlation 0.35 0.47 0.45 0.39 0.51 0.42 0.68 0.70 0.53

Frequent patterns rank correlation 0.36 0.38 0.21 0.40 0.40 0.37 0.41 0.41 0.39

Trip error 0.16 0.16 0.25 0.12 0.12 0.15 0.12 0.12 0.11

Table 8 Locations rank correlation, frequent patterns rank correlation, and trip error of DP-MODR for Taxi under different values of ε and hmax

Scenario Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained Locations rank correlation 0.64 0.65 0.65 0.67 0.67 0.67 0.70 0.70 0.71

Frequent patterns rank correlation 0.45 0.43 0.46 0.47 0.44 0.39 0.46 0.46 0.44

Trip error 0.48 0.49 0.50 0.48 0.48 0.49 0.47 0.47 0.47

Coarse-grained Locations rank correlation 0.88 0.87 0.86 0.88 0.88 0.87 0.88 0.88 0.88

Frequent patterns rank correlation 0.75 0.70 0.65 0.83 0.75 0.72 0.86 0.84 0.83

Trip error 0.18 0.16 0.16 0.18 0.17 0.17 0.20 0.19 0.18

correlation measures take a value between −1 and 1, with
values closer to 1 signifying better utility. Also, trip error,
length error, diameter error, and total distance error take a
value between 0 and 1, with lower values signifying better
utility. To compute the frequent patterns rank correlation, we
consider 50 top frequent patterns of real trajectories. Tables 7,
8, 9, 10, 11 and 12 report the obtained results for DP-MODR
under different values of ε and hmax. From the tables, we
observe that in most cases when hmax is set to 3, DP-MODR
produces better results than, or as good as, when hmax is set to
2 or 4. It should be noted that the length error, diameter error,
and total distance error measures are not dependent on the
discretization of the underlying continuous spatial domain
(see the definitions of these measures for more information),
and thus, they yield the same values for both fine-grained and
coarse-grained scenarios.

Furthermore,weevaluate the effectiveness ofDP-MODRT,
which is an extended version of DP-MODR to support time-
dependent moving objects databases. For this purpose, we
use three time-dependent measures, namely time-dependent
count query error, time-dependent trip error, and time-
dependent semi-trip error, to evaluate the spatial and temporal
utilities of the synthetic moving objects databases con-
structed by DP-MODRT. Note that a time-dependent count
query is a count query whose locations are time-dependent,

and a semi-trip is a trajectory with a particular starting point.
Also, the time-dependent trip (or semi-trip) error is a mea-
sure of trip (or semi-trip) preservation at around the same
time. Time-dependent count queries have many applications
in the real world. For example, in city planning or taxi ser-
vice prediction, it is so useful to know the number of moving
objects that have been in a particular location at a particu-
lar time. Table 13 reports the average time-dependent count
query error of DP-MODRT for different time-dependent
count query sets on Geolife, Taxi, and Porto under ε = 0.5.
From the table, we observe that DP-MODRT has been able
to answer time-dependent count queries of different sizes
with a relatively low error rate and, thus, can be used well
in various applications where time-dependent count queries
are their building blocks. We also observe that the average
time-dependent count query error of the coarse-grained sce-
nario is higher than that of the fine-grained one, which is an
expected result, as already observed in our previous experi-
ments. Table 14 reports the time-dependent trip and semi-trip
errors of DP-MODRT for Geolife, Taxi, and Porto under
ε = 0.5. From the table, we observe that in the coarse-
grained scenario, the results are better than the fine-grained
one. The reason is that in the coarse-grained scenario, the spa-
tial domain is discretized into larger time-dependent domain
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Table 9 Locations rank correlation, frequent patterns rank correlation, and trip error of DP-MODR for Porto under different values of ε and hmax

Scenario Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Fine-grained Locations rank correlation 0.04 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05

Frequent patterns rank correlation 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

Trip error 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Coarse-grained Locations rank correlation 0.24 0.29 0.28 0.28 0.26 0.29 0.31 0.35 0.33

Frequent patterns rank correlation 0.62 0.62 0.62 0.63 0.62 0.62 0.69 0.63 0.63

Trip error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 10 Length error, diameter
error, and total distance error of
DP-MODR for Geolife under
different values of ε and hmax

Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Length error 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09

Diameter error 0.10 0.10 0.14 0.08 0.06 0.08 0.11 0.08 0.06

Total distance error 0.06 0.06 0.10 0.05 0.05 0.06 0.06 0.05 0.06

Table 11 Length error, diameter
error, and total distance error of
DP-MODR for Taxi under
different values of ε and hmax

Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Length error 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Diameter error 0.20 0.16 0.14 0.21 0.19 0.17 0.24 0.24 0.22

Total distance error 0.01 0.00 0.00 0.01 0.01 0.00 0.03 0.03 0.02

Table 12 Length error, diameter
error, and total distance error of
DP-MODR for Porto under
different values of ε and hmax

Measure ε = 0.05 ε = 0.1 ε = 0.5

hmax hmax hmax

2 3 4 2 3 4 2 3 4

Length error 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Diameter error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total distance error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

cells, and thus, the starting and ending points of trajectories
are more likely to be preserved.

6.4 Attack resilience analysis

As we said before, differential privacy is provably resilient
to known and unknown attacks [12] and satisfies a strong
and quantifiable mathematical privacy guarantee [10]. In this
section, for further analysis and discussion, we design an
attack on synthetic moving objects databases, which we call-
sensitive locations disclosure attack and show to what extent

DP-MODR is resilient to it. A similar attack resilience anal-
ysis can be performed for DP-MODRT.

Let us assume that there are some sensitive regions or
locations, such as airports or hospitals, in the underlying spa-
tial domain. The adversary has some background knowledge
about the trip of a particular moving object and wants to
inform about its presence in the sensitive locations. Here,
we assume that the adversary knows the starting and ending
points of the trip of the moving object.

We quantitatively measure how much information the
adversary can get about the presence of moving objects
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Table 13 Average
time-dependent count query
error of DP-MODRT for
different time-dependent count
query sets on Geolife, Taxi, and
Porto under ε = 0.5

Scenario Maximum time-dependent query size Geolife Taxi Porto

Fine-grained 4 7.33 10.97 0.28

8 2.48 6.77 0.20

12 1.25 5.46 0.05

16 1.29 2.55 0.06

20 0.60 2.03 0.07

Coarse-grained 4 19.94 17.54 1.20

8 9.53 9.09 0.67

12 6.55 5.77 0.28

16 4.50 5.27 0.32

20 4.46 3.29 0.21

Table 14 Time-dependent trip
and semi-trip errors of
DP-MODRT for Geolife, Taxi,
and Porto under ε = 0.5

Scenario Measure Geolife Taxi Porto

Fine-grained Time-dependent trip error 0.53 0.67 0.65

Time-dependent semi-trip error 0.31 0.59 0.37

Coarse-grained Time-dependent trip error 0.43 0.27 0.46

Time-dependent semi-trip error 0.12 0.04 0.00

Table 15 Average SLSR of DP-MODR for different sensitive location sets on Geolife, Taxi, and Porto under different values of ε

Scenario Percent of sensitive locations Geolife Taxi Porto

ε ε ε

0.05 0.1 0.5 0.05 0.1 0.5 0.05 0.1 0.5

Fine-grained 1 0.02 0.05 0.03 0.03 0.03 0.03 0.00 0.00 0.00

5 0.05 0.08 0.05 0.04 0.04 0.04 0.07 0.07 0.07

10 0.07 0.08 0.06 0.04 0.04 0.04 0.07 0.07 0.07

Coarse-grained 1 0.08 0.08 0.07 0.19 0.20 0.26 0.00 0.00 0.00

5 0.11 0.11 0.11 0.34 0.35 0.39 0.20 0.20 0.21

10 0.26 0.27 0.26 0.37 0.39 0.42 0.20 0.21 0.22

in sensitive locations by launching the sensitive locations
disclosure attack. For this purpose, we compute a similar-
ity ratio, called sensitive locations similarity ratio (SLSR),
which indicates how much the sensitive locations (points) of
an original trajectory are similar to those of synthetic tra-
jectories. Since there is no any specific synthetic trajectory
for a particular original trajectory in a differentially private
(synthetic) moving objects database, we first individually
compute the Jaccard similarity coefficient between the sen-
sitive locations of an original trajectory and those of each
synthetic trajectory with the same starting and ending points
as the starting and ending points of the original trajectory.
We then consider the average of these similarity coefficients
as the sensitive locations similarity ratio of the original tra-
jectory. The SLSR measure takes a value between 0 and 1,
with lower values indicating more resistant to the sensitive

locations disclosure attack and, thus, stronger privacy guar-
antee.

In the following, we evaluate the resiliency of DP-MODR
to the sensitive locations disclosure attack. For this purpose,
we construct three different sensitive location sets over the
discretized spatial domain, each one having a different num-
ber of sensitive locations (namely 1%, 5%, and 10% of the
total number of domain cells of the underlying discretized
spatial domain). Each location in a sensitive location set is
uniformly drawn from the set of all domain cells.We compute
the SLSR measure for each original trajectory and average
among them. Table 15 compares the average SLSR of DP-
MODR for different sensitive location sets on Geolife, Taxi,
and Porto under different values of ε. Since the size of Taxi
and Porto is large, we randomly select 10,000 original tra-
jectories that passed through at least one sensitive location
and average among their SLSR values. From the tables, we
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Fig. 5 Average count query error of N-gram, AdaTrace, and DP-MODR for different count query sets on Geolife under different values of ε: a
Fine-grained, ε = 0.05. b Fine-grained, ε = 0.1. c Fine-grained, ε = 0.5. d Coarse-grained, ε = 0.05. e Coarse-grained, ε = 0.1. f Coarse-grained,
ε = 0.5

observe that DP-MODR can well resist the sensitive loca-
tions disclosure attack. More specifically, in the fine-grained
scenario, the results are better than the coarse-grained one.
The reason is that in the coarse-grained scenario, the spatial
domain is discretized into larger domain cells, and thus, the
number of duplicate points in the moving objects database is
much higher than the fine-grained one. Thus, in comparison
with the fine-grained scenario, the synthetic trajectories are
more similar to the original ones. We also observe that the
average SLSR is smaller for the smaller sets of sensitive loca-
tions (smaller percent of sensitive locations). This is because
as the size of sensitive location sets decreases, the likelihood
that the sensitive points of an original trajectory are similar
to those of the synthetic trajectories becomes less. Moreover,
for the small values of ε, namely 0.05, the SLSR values are
usually smaller because of a stronger privacy guarantee.

6.5 Comparison

In the following, we compare the spatial and temporal util-
ities of DP-MODR with those of N-gram [2] and AdaTrace
[16]. Due to limited space, we only report the comparison
results for two moving objects datasets, namely Geolife that
includes a broad range of outdoor movements and Taxi that
contains a large number of trajectories (refer to Sect. 6.1 for

more information). For N-gram,we discretize the continuous
spatial domain by partitioning it into an 8×8 grid for Geolife
and a 32×32 grid for Taxi, which approximately yield better
utilities than other resolutions in most evaluation measures.
It should be noted that N-gram and AdaTrace assume that
the points of trajectories have no time stamp attribute and,
thus, are not comparable with DP-MODRT.

To begin with, we evaluate the count query error measure.
Figures 5 and 6 compare the average count query error of
DP-MODR with that of N-gram and AdaTrace for different
count query sets on Geolife and Taxi under different values
of ε. Here, we use log scale instead of linear scale to show
the results due to the large differences. From the figures, we
observe that the average count query error of DP-MODR
is often better than that of N-gram and AdaTrace. The rea-
son for the large count query error of N-gram, especially for
small values of ε, is that N-gram constructs an exploration
tree [2] to answer count queries. The exploration tree keeps
themobility patterns of original trajectories, but it divides the
total privacy budget among its different levels. This results
in high count query error for small values of ε (especially
for datasets like Geolife where the real frequencies of trajec-
tories are small as well). However, in some cases, when the
fine-grained scenario is considered, N-gram can obtain good
results for large moving objects datasets (where trajectories
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Fig. 6 Average count query error of N-gram, AdaTrace, and DP-MODR for different count query sets on Taxi under different values of ε: a
Fine-grained, ε = 0.05. b Fine-grained, ε = 0.1. c Fine-grained, ε = 0.5. d Coarse-grained, ε = 0.05. e Coarse-grained, ε = 0.1. f Coarse-grained,
ε = 0.5

usually have large frequencies) or large values of ε (where a
small amount of noise is added to frequencies). This could be
due to keeping the mobility patterns of original trajectories.
However, two points need to be considered here: (1) N-gram
incurs high time and space overheads, and (2) the importance
of having good utility for large total privacy budgets is not as
important as that for small total privacy budgets. Moreover,
AdaTrace does not have good utility in count query answer-
ing as a result of the fact that it does not fully preserve the
temporal relationships between points of each trajectory.

Then, we evaluate the locations rank correlation, frequent
patterns rank correlation, and trip error measures. Tables 16
and 17 report the obtained results of N-gram, AdaTrace, and
DP-MODR for Geolife and Taxi under different values of ε.
Obviously, in most cases, DP-MODR has better results than
N-gram andAdaTrace. This is becauseDP-MODRgenerates
synthetic trajectories in a bottom-up way by iteratively join-
ing the most probable paths, which allows it to preserve the
mobility patterns and trajectory frequencies of the original
moving objects database more efficiently.

Finally, we evaluate the length error, diameter error, and
total distance error measures. Note that, as previously men-
tioned, the calculation of these measures does not depend on
the resolution of the underlying discretized spatial domain,
and thus, their values are the same for both fine-grained and

coarse-grained scenarios. Figures 7 and 8 report the length
error, diameter error, and total distance error ofN-gram,Ada-
Trace, and DP-MODR for Geolife and Taxi under different
values of ε. From the figures, we observe that DP-MODR
achieves much less length error than N-gram and AdaTrace.
The reason is that, by keeping the noisy median length of
original trajectories starting in each domain cell, DP-MODR
tries to preserve the distribution of trajectory lengths. It is
worth mentioning that the distribution of trajectory lengths is
one of the important properties of a moving objects database.
However, as can be seen in the figures, none of N-gram and
AdaTrace can preserve this distribution well. Moreover, the
results of the diameter error and total distance error mea-
sures show that each of N-gram, AdaTrace, and DP-MODR
performs better than the others in approximately 16.67%,
16.67%, and 66.67% of the cases, respectively. This shows
that N-gram and AdaTrace could not preserve the distance
traveled by original trajectories as well as DP-MODR.

7 Conclusion and discussion

Moving objects databases may contain detailed informa-
tion about moving objects, and disclosing such information
may reveal their preferences, lifestyles, social customs, and
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Table 16 Locations rank correlation, frequent patterns rank correlation, and trip error of N-gram, AdaTrace, and DP-MODR for Geolife under
different values of ε

Scenario Measure N-gram AdaTrace DP-MODR

ε ε ε

0.05 0.1 0.5 0.05 0.1 0.5 0.05 0.1 0.5

Fine-grained Locations rank correlation 0.01 0.00 0.01 0.25 0.28 0.37 0.17 0.18 0.23

Frequent patterns rank correlation 0.48 0.37 0.12 0.01 0.01 0.02 0.95 0.99 1.00

Trip error 0.42 0.40 0.41 0.67 0.66 0.61 0.33 0.30 0.26

Coarse-grained Locations rank correlation 0.35 0.33 0.49 0.44 0.50 0.59 0.47 0.51 0.70

Frequent patterns rank correlation 0.34 0.46 0.06 0.03 0.03 0.02 0.38 0.40 0.41

Trip error 0.28 0.28 0.24 0.52 0.48 0.34 0.16 0.12 0.12

Table 17 Locations rank correlation, frequent patterns rank correlation, and trip error of N-gram, AdaTrace, andDP-MODR for Taxi under different
values of ε

Scenario Measure N-gram AdaTrace DP-MODR

ε ε ε

0.05 0.1 0.5 0.05 0.1 0.5 0.05 0.1 0.5

Fine-grained Locations rank correlation 0.50 0.55 0.66 0.53 0.57 0.62 0.65 0.67 0.70

Frequent patterns rank correlation 0.57 0.66 0.73 0.15 0.17 0.20 0.43 0.44 0.46

Trip error 0.29 0.24 0.28 0.34 0.33 0.27 0.49 0.48 0.47

Coarse-grained Locations rank correlation 0.72 0.76 0.85 0.66 0.73 0.83 0.87 0.88 0.88

Frequent patterns rank correlation 0.68 0.71 0.62 0.37 0.36 0.35 0.70 0.75 0.84

Trip error 0.08 0.07 0.08 0.21 0.19 0.10 0.16 0.17 0.19
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Fig. 7 Length error, diameter error, and total distance error of N-gram, AdaTrace, and DP-MODR for Geolife under different values of ε: a length
error. b Diameter error. c Total distance error

sensitive personal information. For example, some poten-
tially sensitive personal and professional information about
a moving object can be obtained by knowing its presence
at specific locations. Therefore, there is a growing concern
about breaching the privacy of moving objects whose loca-
tions are monitored and tracked.

Differential privacy satisfies a strong and quantifiable
mathematical privacy guarantee,which has provably resilient
to known and unknown attacks. In particular, if a trajectory

data release mechanism is differentially private, any infor-
mation about a moving object is protected no matter what
the adversary knows about that moving object. By the total
privacy budget, the data owner can specify how to authorize
certain analyses while being sure that certain privacy thresh-
olds are not crossed. Therefore, any moving object can be
assured that its presence in the database will most likely not
reveal any information about it.
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Fig. 8 Length error, diameter error, and total distance error of N-gram, AdaTrace, and DP-MODR for Taxi under different values of ε: a length
error. b Diameter error. c Total distance error

Initially, differential privacy was designed to protect the
output of statistical queries, and thus, releasing a differen-
tially private version of an original database was not the
aim of work on differential privacy. In recent years, some
work has begun to use differential privacy for data release
scenarios, which are more practical scenarios than previous
ones. In this paper, we have continued this line of research
by presenting DP-MODR, a differentially private mecha-
nism for synthetic moving objects database release that tries
to preserve spatial and temporal utilities as much as possi-
ble. DP-MODR first derives some useful properties of an
original moving objects database, including the distribu-
tion of starting domain cells, the distribution of trajectory
lengths, and mobility patterns, in a differentially private
way. It then constructs some so-called noisy cost-sensitive
path trees to keep existing most probable paths with differ-
ent lengths (up to a maximum length) and different starting
domain cells. It finally constructs a synthetic moving objects
database by considering the obtained differentially private
spatial and temporal properties of original trajectories. DP-
MODR generates each synthetic trajectory in a bottom-up
way by iteratively joining the most probable paths that are
extracted from the constructed noisy cost-sensitive path trees.

In many practical location-aware applications, there is a
serious need to release a strongly private version of an origi-
nalmoving objects database for effective dataminingwithout
learning any true information about moving objects. DP-
MODR can be successfully used in such applications. For
example, consider a hospital that uses an RFID patient tag-
ging system inwhich patients’ trajectories, personal data, and
medical data are stored in a central moving objects database.
The hospital intends to allow direct access to some parts
of this database to data miners or movement pattern analysts
for research purposes.Without having a robust mechanism to
make strong guarantees about privacy, many patients will not
be willing to share their information on the moving objects
database. DP-MODR makes it possible to release synthetic

trajectories while satisfying the strong guarantee of differen-
tial privacy and preserving the spatial and temporal utilities
of original trajectories as well. Thus, DP-MODR assures
patients that releasing the synthetic moving objects database
will not reveal any information about them and also assures
movement pattern analysts that the released differentially pri-
vate moving objects database can be used for different data
analysis tasks, including count query answering and frequent
pattern mining.

Similar to most previous work, DP-MODR assumes that
the points of trajectories have no time stamp attribute. How-
ever, in the real world, some queries may be time-dependent.
An example of such queries in the real world is “number of
trajectories that have the same starting and ending points at
around the same time.” To address this problem, we have
extended DP-MODR to preserve the time information of tra-
jectories aswell as the location information, in a differentially
private way. In this extension, also known as DP-MODRT, in
addition to discretizing the continuous spatial domain into a
finite set of regions or domain cells (as we do in DP-MODR),
we also discretize the time space into non-overlapping time
intervals.

We have compared the spatial and temporal utilities of
DP-MODRwith those ofN-gram [2] (awell-known differen-
tially private mechanism for moving objects databases) and
AdaTrace [16] (a recent differentially private mechanism for
releasing trajectory data). Our comparison has shown that
DP-MODR outperforms N-gram and AdaTrace by enhanc-
ing the utility of query answers and better preserves the main
spatial and temporal properties of original trajectories. More
specifically, in most cases, the average count query error of
DP-MODR is better than that of N-gram and AdaTrace. This
is due to the fact thatDP-MODR tries to preserve themobility
patterns of original trajectories when constructing a synthetic
moving objects database. In contrast, (1) N-gram constructs
an exploration tree on an original moving objects database
and, thus, has more time and space complexities and more
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noise error (especially for moving objects databases where
the real frequencies of trajectories are small), and (2) Ada-
Trace removes some points of trajectories and, thus, does not
fully preserve the temporal relationships between points of
each trajectory. On the other hand, by multiple evaluation
measures, namely locations rank correlation, frequent pat-
terns rank correlation, trip error, length error, diameter error,
and total distance error, we have shown that, in about 68.52%
of the cases,DP-MODRcanobtain better results thanN-gram
andAdaTrace.Moreover, we have used three time-dependent
measures, namely time-dependent count query error, time-
dependent trip error, and time-dependent semi-trip error, to
evaluate the spatial and temporal utilities of the synthetic
moving objects databases constructed by DP-MODRT. In
fact, by these measures, we have tried to show how DP-
MODRT preserves the time-dependent mobility patterns of
trajectories.

DP-MODR can be successfully applied to any type of
sequential databases where data records are ordered lists of
items.More specifically, if we consider a sequence instead of
a trajectory and, as a result, a sequential database instead of
a moving objects database, DP-MODR can also be applied
to this sequential database. Sequential databases are being
increasingly used in a variety of analytical and commercial
applications, such as web usage analysis and recommen-
dation systems. The release of such databases is of vital
importance to the advancement of these applications. As
a typical scenario, consider a sequential database contain-
ing user journeys on a website. More specifically, each data
record in this database is a time-ordered sequence of URL
categories browsed by a user on the website. To release a dif-
ferentially private version of this sequential database using
DP-MODR,wefirst derive the distribution of sequence heads
(the head of a sequence is considered to be its first item)
and the distribution of sequence lengths, in a differentially
private way. Then, we obtain the patterns among the items
of sequences (URL categories) and the most probable paths
among themwhile satisfying differential privacy. Finally, we
construct a synthetic sequential database by generating syn-
thetic sequences.

There is little work [14,31] that has shown that the Laplace
distribution is not the optimal noise distribution to achieve
differential privacy. For example, Soria-Comas et al. [31]
built another distribution, based on the Laplace distribution,
that still fulfils the conditions of differential privacy, and its
probability mass is more concentrated toward zero. There-
fore, as future work, we plan to achieve optimal differential
privacy in ourwork by applying the optimal noise distribution
instead of the Laplace distribution. Also, we plan to present
differentially privatemechanisms for other types of databases
thanmovingobjects databases, to efficiently release synthetic
databases with strong privacy guarantees. Further, differen-
tial privacy guarantees that the adversary cannot distinguish

pairs of synthetic databases based on slightly different orig-
inal databases with a probability proportional to the total
privacy budget. However, a more detailed and formal analy-
sis of the extent to which differentially private mechanisms
are resistant to such attacks can be considered as future work.
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