
Vol.:(0123456789)1 3

International Journal of Information Security (2021) 20:347–370
https://doi.org/10.1007/s10207-020-00506-7

REGULAR CONTRIBUTION

Using homomorphic encryption for privacy‑preserving clustering
of intrusion detection alerts

Georgios Spathoulas1  · Georgios Theodoridis1 · Georgios‑Paraskevas Damiris1

Published online: 13 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Cyber-security attacks are becoming more frequent and more severe day by day. To detect the execution of such attacks,
organizations install intrusion detection systems. It would be beneficial for such organizations to collaborate, to better assess
the severity and the importance of each detected attack. On the other hand, it is very difficult for them to exchange data, such
as network traffic or intrusion detection alerts, due to privacy reasons. A privacy-preserving collaboration system for attack
detection is proposed in this paper. Specifically, homomorphic encryption is used to perform alerts clustering at an inter-
organizational level, with the use of an honest but curious trusted third party. Results have shown that privacy-preserving
clustering of intrusion detection alerts is feasible, with a tolerable performance overhead.

Keywords  Intrusion detection · Clustering · Homomorphic encryption · Privacy

1  Introduction

Security has become one of the most important aspects of
digital life. As installed systems and services become larger
and more complex, their attack surface becomes more dif-
ficult to be controlled and protected. Organizations try to
protect their digital infrastructure through the use of vari-
ous countermeasures, and one of those is intrusion detection
systems [3, 21]. The main concept in such systems is the
analysis of data relevant to the activity of hosts or networks,
to detect cyber-security events that occur in the protected
system.

Through the last two decades, the security research
community has been very active in the intrusion detection
domain. Multiple systems, employing various approaches,
have been proposed, to increase the detection performance
against various attacks. The main taxonomies of intrusion
detection systems are network-based systems, which analyze

the traffic in a protected network, and host-based systems,
which analyze the logs, the integrity checking results and the
traffic from a specific host. Additionally, such systems are
categorized according to the detection approach they use,
with the main options being misuse detection and anomaly
detection. Misuse detection-based systems detect predefined
patterns of malicious activity and then produce informative
alerts. On the other hand, anomaly-based systems model the
normal activity and then detect significant deviations from
that. The alerts produced by such systems are less informa-
tive about the actual attack going on. [18]

While intrusion detection systems detect a significant por-
tion of the attacks executed against an organization, their
performance has been proven insufficient [2, 13]. They fail
to detect an important percentage of committed attacks,
especially when it comes to recent attacks that have not been
modeled by misuse based systems [22, 31]. Moreover, they
produce a high rate of false-positive results, which are alerts
that do not correspond to real attacks [26, 32]. This hinders
such systems from providing high-quality representation of
the committed attacks, even in the cases that those are suc-
cessfully detected.

An interesting approach that enables intrusion detection
systems to produce better results is collaborative intrusion
detection [34, 41], where multiple intrusion detection sys-
tems, installed in different organizations, collaborate, to
produce more accurate results. The data collected at each

 *	 Georgios Spathoulas
	 gspathoulas@uth.gr

	 Georgios Theodoridis
	 gtheodoridis@uth.gr

	 Georgios‑Paraskevas Damiris
	 gdamiris@uth.gr

1	 Department of Computer Science and Biomedical
Informatics, University of Thessaly, Lamia, Greece

http://orcid.org/0000-0003-2947-486X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00506-7&domain=pdf

348	 G. Spathoulas et al.

1 3

system may not be sufficient to detect an attack, while the
aggregation of such data can be used to achieve better detec-
tion accuracy.

While collaborative intrusion detection seems like a
promising approach, its use raises a significant issue related
to privacy violations due to the exchange of information
between organizations. Independently of the exact infor-
mation exchanged (this can be raw traffic data or intrusion
detection alerts), a significant privacy violation risk is pre-
sent, which has recently been recognized by the research
community [4, 6, 38]. The standard way to process intru-
sion detection alerts produced by different organizations is to
gather such alerts on a single node and commit the required
processing there. Irrespective of whether this node belongs
to one of the organizations or not, its owner has access to
all alerts’ fields for all organizations. Those fields contain
private data related to network connections. IPs of com-
munications that happen in organizations’ networks (e.g.,
an organization’s employee accesses an external server or
an organization’s client accesses a service offered by the
organization) are revealed along with the services (ports)
those communications refer to. Additionally, intrusion detec-
tion alerts reveal vulnerabilities that exist on those networks
or attacks that have already happened against them. Such
information is sensitive for both organizations and users
interacting with their networks. Gathering all such data on
a single node creates considerable privacy risks as the node
controller cannot be fully trusted, while at the same time
such a node can be a tempting target for malicious attackers,
due to the significance of the stored data.

In this paper, a collaborative system for intrusion detec-
tion alerts clustering is proposed. It enables the clustering
of alerts produced by different organizations, while at the
same time it protects the privacy of each organization’s data.
Inter-organizational clustering can produce a high-level rep-
resentation of large-scale attacks that may not be detected at
the organization level or may reveal multiple instances of the
same attack being executed against different organizations.
The system consists of a trusted third party that adheres to
the honest but curious model and one node per each organi-
zation that is locally installed and coupled with a local intru-
sion detection system. The proposed scheme is based on the
use of homomorphic encryption, and the role of the trusted
third party is to commit the required processing while hav-
ing access to encrypted data only. To preserve the privacy
of the participating organizations, the homomorphic encryp-
tion algorithm Paillier [25], which enables the processing
of encrypted data, has been employed. Specifically, all the
participating nodes encrypt their alerts and submit those to
the trusted third-party server. The latter conducts the cluster-
ing, without decrypting the data, and returns the resulting
clusters’ information to the nodes, in encrypted form. Each
node’s data are not exposed to the trusted third party or any

other node, and all nodes get to know the clustering results.
There is an initial step, during which the third party calcu-
lates a distance metric for all possible alerts’ pairs. Conse-
quently, it commits an iterative procedure for forming the
clusters of alerts. The result of this procedure is clusters of
similar alerts at an inter-organizational level. At the end of
the procedure, the private information of organizations is not
revealed nor to other organizations or the trusted third party.
The trusted third party gets access only to encrypted data,
while the organization’s nodes are not able to infer private
data from other organizations.

The rest of the paper is structured as follows : Sect. 2
discusses the related work, Sect. 3 describes the main con-
cept or the proposed approach, Sect. 4 presents prerequisite
methods, Sect. 5 presents the architecture of the proposed
system, Sect. 6 analyzes its implementation, Sect. 7 presents
the experiments conducted along with the corresponding
results and finally Sect. 8 discusses the main conclusions
of the paper.

2 � Related work

There has been a lot of work on collaborative intrusion
detection systems. Previous research efforts have shown that
collaborative intrusion detection systems among multiple
partners can be more effective than a single such system
installed on the premises of a single organization. Recent
research efforts have either highlighted the requirement for
collaborative systems or have even proposed such archi-
tectures. We present a literature review of such efforts in
this Section. Section 2.1 presents the applications of col-
laborative intrusion detection on different domains, Sect. 2.2
discusses why privacy protection is significant in such
schemes and Sect. 2.3 enumerates the recent approaches in
privacy-preserving collaborative intrusion detection. Finally,
Sect. 2.4 discusses the proposed system regarding related
work.

2.1 � Collaborative intrusion detection

The requirement for moving on from single installations
of intrusion detection agents to networks of collaborating
agents installed in different networks has emerged in dif-
ferent domains such as cloud computing, multiple devices
networks or detection of large-scale attacks.

Tan and Nagar discussed intrusion detection in cloud
computing context [33] and concluded that an enhance-
ment to the security of cloud systems through collaborative
intrusion detection is necessary. They propose a cooperative
intrusion detection system characterized by fast detection,
minimal false positive rates, scalability, self-adaption to
changes in the cloud computing environment and resistance

349Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

to compromise. The primary components of the proposed
architecture are cooperative agents and a central coordinator.
While the system they propose seems interesting, they do not
thoroughly analyze it, so their contribution is limited. Liang
and Ge moved further by presenting a collaborative mul-
tilevel intrusion detection system for cloud computing, to
achieve more accurate and effective protection in cloud envi-
ronments [20]. They deploy the intrusion detection system as
a lightweight service through a noncentralized architecture
between different cloud providers. Specifically, detectors are
offered as a service, and machine learning methods are used
to create detection rules. Authors also designed a mecha-
nism to exchange alerts between cloud systems and to share
knowledge about attacks. Their experimental results have
shown that their system enhances security when network
attacks occur. Dermott, Shi and Kifayat developed a cloud
intrusion detection method for collaborative intrusion detec-
tion to be used in a federated cloud environment [8]. They
base the proposed approach upon the distribution of respon-
sibilities to set up a more resilient system. The main enti-
ties of the system are the cloud broker which offers security
services to the rest, the monitoring nodes that act locally in
each installation, the local coordinator that manages all local
monitoring nodes and the global coordinator which all local
coordinators refer to. They used the Dempster–Shafer theory
to capture the findings of all monitoring nodes and to make
the final decision about an attack. The aim of the system
is to enable collaboration among cloud service providers,
through a security as a service paradigm, in order for them
to be more secure against different cloud threats.

Andreolini, Colajanni and Marchetti introduced a new
category of attacks where an attacker breaks down the mali-
cious load in such a way that the most capable intrusion
detection systems can detect no part of it [1]. Sending dif-
ferent parts of the payload from different networks enables
the attackers to avoid being detected. They then proposed an
original detection solution and implemented it as an exten-
sion of the Snort system that enables mobile network oper-
ators to collaboratively detect such attacks. The proposed
scheme allows sharing of internal state information among
multiple NIDSs deployed in different networks or network
segments. They base the implementation on a lightweight
agent and a set of plug-ins handling different protocols; thus,
it is characterized by great flexibility in terms of deploy-
ment. Their experimental results confirmed the effectiveness
of the proposed solution for various protocols at a negligi-
ble cost in terms of performance. Morais and Cavalli pro-
posed a distributed intrusion detection systems architecture
for wireless mesh networks [23]. In such self-organized
and self-configured networks, the nodes need to trust each
other since a node depends on intermediate nodes to reach
other nodes. Authors detect real-time attacks by analyzing
traffic and creating corresponding communication flows.

A distributed intrusion detection engine (DIDE) applies
restrictions to these flows, while a cooperative consensus
mechanism (CCM) performs bad behavior measurements to
identify the source of the intrusions. The system was imple-
mented on a virtual mesh network platform, and experimen-
tal results have shown that it detects message-based attacks
with high accuracy and low resources requirements. Hong
and Liu studied the use of collaborative intrusion detection
on a network of smart electronic devices [14]. They have
had a significant contribution regarding the actual integra-
tion of intrusion detection systems with electronic devices,
as they have designed and implemented the integrated
devices. These devices can monitor and detect abnormal
network behavior. They also can work with other neighbor-
ing devices to make accurate decisions and detect the ori-
gins of attacks. Because of having the intrusion detection
system implemented on the hardware layer of the devices,
their approach can provide reliable, fault-free and very effi-
cient intrusion detection functionality. In their experiments,
a common embedded system was used to measure the pro-
posed system’s performance for a power supply network.
The results showed that the network of electronic devices
worked accurately and efficiently.

Large-scale attacks detection has also been proposed
as a domain for collaborative intrusion detection applica-
tion by Zhou [39]. They propose a scalable decentralized
framework which provides a platform for sharing suspicious
evidence between participants to detect large-scale attacks
at an early stage. Each local node periodically sends evi-
dence collected from its own sub-network to the large-scale
intrusion detection service, and it is notified if the evidence
has been confirmed as a potential attack. All suspicious evi-
dence is exchanged anonymously. Authors state that if there
is sufficient geographical diversity among the participants,
then their system can detect stealthy port-scans or worm
outbreaks at an early stage. The same authors [40] proposed
a multidimensional alert clustering algorithm for extracting
important patterns from alerts. They used a two-phase corre-
lation algorithm that first clusters the alerts locally into each
IDS and then reports significant alert patterns to a common
IDS correlation network. Through a probabilistic approach,
they decide when a pattern at the local level is important
enough, to use it at the network level. Their experiments
have shown that this approach can achieve a significant
reduction in the number of false alerts. On the same concept,
Francois and others have presented a collaborative system
that detects flooding DDoS attacks at the Internet service
provider (ISP) level before those reach the victim host [11].
The authors propose a distributed architecture composed of
multiple ISPs who collaborate by computing and exchang-
ing belief scores on potential attacks. The calculation of the
threat score is based on the overall traffic bandwidth directed
to the customer compared to the maximum bandwidth it

350	 G. Spathoulas et al.

1 3

supports. The results obtained through experiments show
that the proposed system is much more capable of single
installations of intrusion detection systems in different ISPs
regarding detecting flooding attacks.

2.2 � Requirement for privacy

Jin et al. [16] studied the required compromise between
privacy and utility, when using a collaborative intrusion
detection system, through a game theoretic approach. They
proposed a two-level game with one leader and multiple
followers. According to their theoretical analysis, it is pos-
sible to model the expected behavior of the attacker and the
intrusion detection system, and to produce a utility–privacy
curve. In addition, Nash equilibrium was proven and an
asynchronous dynamic algorithm was proposed to calcu-
late the best collaborative strategies for intrusion detection
systems. Finally, through a simulation, they tried to validate
their analysis.

The team of Li and Meng [19] created a trust model for
intrusion detection systems’ networks. They used machine
learning techniques to automate assessing trust. Specifically,
they tried to enable intrusion detection systems to automati-
cally decide if they should trust other systems or not. For
evaluation, they compared the performance of three differ-
ent supervised classifiers, while they also tested their trust
model under different attack scenarios. Their experimental
results showed that it is very important to have increased
trust between nodes in such networks and a misbehaving
node may create large issues for other participants. The pro-
posed trust model can enhance the accuracy of detection of
malicious nodes.

2.3 � Privacy‑preserving approaches

While it is commonly accepted that global collaborative
intrusion detection systems can enhance results obtained
by local systems, it is not possible to overlook the privacy
implications of such schemes. There are references in the
literature which are focused on providing privacy-preserving
methodologies for collaborative intrusion detection but most
of it is work in progress or methods that solve too specific
problems.

Multiple approaches are still in the early stages or lack
robust technical implementation. Dara and Muralidhara [6]
presented the landscape of privacy-preserving collabora-
tive intrusion detection in a position paper and discussed
potential architectures. Zhang et al. [38] proposed a secure
multiparty computation method to conduct PCA upon data
collected from different organizations. Finally, Benali and
others presented ideas on privacy-preserving methods to ena-
ble the network manager to collect information on the state
of the network from different nodes and react to abnormal

situations [4]. Authors in [9] presented an approach that is
based on storing homomorphically encrypted alerts of dif-
ferent intrusion detection systems on a common infrastruc-
ture and then provided the means for checking the similarity
between a pair of alerts. While there is no concrete technical
presentation of the solution, the method used is interesting
and could be used as the basis for more mature solutions.

In other cases, more advanced research efforts focus on
more specific problems of the domain. Vasilomanolakis and
Krugl analyzed the need to move from the traditionally iso-
lated intrusion detection systems to a large and distributed
IDS (CIDS) [35]. They presented a new CIDS approach,
which is able to share alarms only on tracking sensors that
may communicate with each other. In addition, when data
are being distributed, they argue that the system ensures that
the data are protected. Authors in [36, 37] proposed a fog-
based privacy-preserving approach for distributed signature-
based intrusion detection, where they focus on offloading
the procedure of conducting signature matching calcula-
tions to cloud-based infrastructure. To protect data privacy,
they have used Rabin fingerprint algorithm to conduct the
required calculations and to prevent the cloud provider from
getting access to sensitive data of the installation.

2.4 � Our contribution

The review of the relevant literature clarifies that using col-
laborative intrusion detection structures can bring a signifi-
cant efficiency improvement regarding traditional systems.
Despite the plethora of published work in the domain, few
researchers are dealing with privacy leakage in such col-
laborative systems. Data collected by intrusion detection
systems contain sensitive personal information of both the
protected organization and the individuals using its services.
Exchanging traffic data or the outcome of any kind of pro-
cessing of such data violates privacy of anyone related to the
corresponding traffic flows.

In the present paper, we present one of the first research
efforts to develop a complete system, which will enable mul-
tiple collaborating intrusion detection systems to unify their
results in a privacy-preserving way. The presented workflow
allows for a privacy preserving clustering procedure that
will end up with clusters of similar alerts between different
organizations, without though leaking any private data of
their users.

3 � Concept

In this and in the subsequent sections, the proposed system
is thoroughly described. In the current section, we give the
general concept of the system, we present specific examples
for its use and we briefly describe its functionality. The main

351Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

underlying mathematical concepts are discussed in Sect. 4,
and the detailed description of the system’s architecture and
workflow are presented in Sect. 5.

Current cyber-security landscape is characterized by
large-scale attacks during which similar events take place
at the same time in different networks or systems. These
may either relate to different instances of the same attack
executed by the same or different attackers against multiple
targets or be part of a single distributed attack (e.g., distrib-
uted denial of service attack).

For such cyber-security attacks, the combination of
detected events on different networks or organizations could
improve the detection accuracy or the assessment of the
attacks’ severity. An example could be a distributed attack
such as the distributed denial of service attempts. Recently,
Mirai [17] botnet attacks have created significant problems
globally, as attackers took control of many IoT devices and
used those to execute a large-scale denial of service attacks.
The combination of the IDSs findings for each one of the
networks to which the infected devices belonged would
enable the timely detection of the attack and would allow to
perform more efficient mitigation measures. Apart from that,
there are attacks that, because of a recently disclosed vulner-
ability or the release of new tooling, tend to happen concur-
rently against different targets across over one organization.
Such an example is recent ransomware attacks [10], where
the release of such tools triggered a series of similar attack
attempts against different organizations. In such cases, a col-
laborative clustering approach would enable the formation
of clusters, representative of the magnitude of the problem.
This would reveal the volume of attack attempts and would
help to better protect uninfected installations.

The main concept in this paper is the combination of the
results got locally at different organizations through their
network IDS, which can produce useful information about
such attacks and enable the faster and more effective appli-
cation of mitigation measures. By clustering of alerts pro-
duced by different organizations, the produced result will be
clusters that comprise similar alerts produced by resembling
activity in different networks. A distributed attack or mul-
tiple executions of the same attack against different targets
will produce a single cluster that will be informative about
the ongoing activity.

To commit intrusion detection alerts clustering, the most
significant alerts’ features that could reflect the similarity
between alerts of different organizations have been selected.
Features of alerts that are not significant or related to the
local installation (e.g., network interface) have not been
included as they are irrelevant to the global clustering pro-
cedure. Specifically, the features that have been used are:

–	 External IP address Each IDS alert holds the source
and destination IP address of the IP packet that has

triggered the alert. One of the two that is external to the
network of the organization (IP of the host potentially
committing the attack) is used as the first alert feature.

–	 Alert signature In signature-based IDSs, each alert is
characterized by a signature id which corresponds to
the specific signature (rule), upon which the alert has
been triggered. Signatures are attack specific, and each
one corresponds to a single attack.

–	 Alert class Each alert also carries a class feature which
corresponds to the generic attack type the specific alert
belongs to. Such classes correspond to broad catego-
ries of attacks such as attempted administrator privi-
lege gain, attempted denial of service, detection of a
network scan or access to a potentially vulnerable web
application.

–	 Time stamp Each alert holds a time stamp which corre-
sponds to the exact time of the packet that has triggered
the alert. This is very useful for correlating events that
happen concurrently in different networks, as different
parts of a large scale attack.

We use the aforementioned features, to compute a distance
metric between pairs of alerts that is directly related to their
similarity. Upon this distance metric, the proposed method
creates clusters of similar alerts that can reveal informa-
tion about attacks that affect over one organization at the
same time. While bringing together on a single host, the
features for each alert of each organization would enable the
execution of any clustering algorithm and it would also raise
significant privacy concerns. The alerts are related to the
network traffic of the organization and could reveal sensitive
information about its users.

To overcome such concerns, an alternative approach,
based on homomorphic encryption, has been chosen. Homo-
morphic encryption enables the processing of encrypted data
and the production of encrypted results. Fully homomorphic
encryption techniques offer more flexibility regarding the
processing allowed, but are not yet efficient enough, to be
used in large-scale computations. Partially homomorphic
encryption algorithms impose restrictions on the calcula-
tions that can be carried on encrypted data, but are more
efficient. Paillier encryption algorithm has been chosen as
it offers a good balance between calculations feasibility and
processing efficiency.

There is a trusted third-party server that functions as the
main point for the procedure, while there is a client at each
organization, which is coupled with a local IDS. Each cli-
ent of the system (installed at each organization) gathers
alerts produced locally for a specific time window. Clients
share a common pair of Paillier encryption keys. They
encrypt all the data they send to the server through the use
of this key pair. Only encrypted data are sent to the server
and any processing that happens there is on encrypted data.

352	 G. Spathoulas et al.

1 3

Consequently, the trusted third-party server commits the
clustering procedure for the global set of encrypted alerts.

The process comprises an initial phase which is the cal-
culation of the encrypted distance between every pair of
alerts and an iterative execution of the K-medoids clustering
algorithm. K-medoids is a variation of K-means algorithm,
where the center of each cluster is always one of the existing
data points. This variation minimizes the distance calcula-
tion requirements, as all distances that may be required dur-
ing the process have been already calculated in the initial
phase of our protocol.

Because of the limitations for the processing that can be
carried out on encrypted data, as those will be analyzed in
Sect. 4.2, there are specific points in the workflow at which
the server cannot conduct the required calculations. In such
cases, the server randomly picks a client, sends the input
data (in encrypted form) to it and asks for the result. The
client decrypts the data, commits the required processing,
encrypts the result and sends that back to the server.

At the end of the procedure, encrypted information about
the formed clusters is sent to the clients from the server. The
clients can decrypt this information by using the shared Pail-
lier keys’ pair. This procedure is then repeated for the alerts
gathered during the subsequent time window.

The following sections present the proposed method, and
specifically, Sect. 4 discusses both K-medoids algorithm and
Paillier encryption algorithm. Section 5 presents the high-
level design behind the proposed approach, and Sect. 6 con-
tains all the implementation details.

4 � Prerequisites

4.1 � K‑medoids

The K-medoids algorithm is a clustering algorithm that
combines both K-means and medoidshift algorithms [30].
K-means and K-medoids algorithms are very similar as they
both break down the set of data points into groups and then
try to minimize the distance between the points belonging to
each group and its center, by shifting points among groups.
The main difference between the two algorithms is that
K-medoids selects existing data points (medoids) as clusters’
centers, while k-means calculates an optimal center point for
each cluster. Additionally, K-medoids typically uses Manhat-
tan distance, while k-means uses Euclidean distance.

K-medoids uses only distances between existing points,
without generating new center points at each iteration. This
characteristic makes K-medoids an appropriate choice for
the proposed scheme, as it enables the calculation of dis-
tances for all pairs of points in advance. Then, during the
iterative K-medoids rounds, the algorithm uses these precal-
culated distances and skips distance calculations.

The main steps of the algorithm are:

–	 Arbitrary selection of k points as the initial clusters’ cent-
ers (medoids) of the individual clusters.

–	 The procedure, with the following individual steps, is
then repeated:

–	 Each one of the points is associated with the cluster
represented by the nearest medoid

–	 For each medoid oj and for each object orandom
belonging to this:

•	 Calculate the total cost S of the oj exchange with
orandom

•	 If S < 0 replace oj with orandom

–	 The iterative process is completed when there is no
change regarding the previous rounds.

4.2 � Paillier

Paillier cryptosystem [25] is a probabilistic asymmetric public
key cryptographic algorithm. It is characterized by an addi-
tive homomorphic property, so given the public key and two
encrypted numbers e1 and e2, one can calculate the encrypted
result of their addition e1 + e2, with no decryption taking
place. Key generation for Paillier algorithm is based on ran-
domly choosing two large prime numbers p and q.

4.2.1 � Encryption: decryption

Encryption procedure is characterized by a probabilistic
property, as in order to encrypt a plain message m the for-
mula is :

where g is part of the public key and r is randomly selected,
0 ≤ r < n

The decryption of ciphertext c is conducted by the for-
mula :

where � and � are parts of the private key and L(x) = x−1

n
.

4.2.2 � Homomorphic properties

The most notable features of the Paillier cryptosystem is the
homomorphic properties it is characterized by and its nonde-
terministic encryption function. The encryption function is
additionally homomorphic, and the following three proper-
ties enable partial processing of encrypted data :

(1)c = gm ⋅ rn mod n2

(2)e = L(c� mod n2) ⋅ � mod n

353Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

–	 Homomorphic addition of encrypted values
	  It is possible to add two encrypted numbers, by calcu-

lating the product of the two corresponding ciphertexts.
The result can then be decrypted into the sum of the
respective plaintexts.

–	 Homomorphic addition of an encrypted value and a non
encrypted value

	  It is possible to add an encrypted number with a
nonencrypted one. The product of a ciphertext and the
g-based exponential of the nonencrypted number can
then be decrypted into the sum of the plaintext and the
nonencrypted number.

–	 Homomorphic multiplication of an encrypted value and
a nonencrypted value

	  It is possible to multiply an encrypted number by a
nonencrypted one. If ciphertext is raised in the power of
a nonencrypted number, then the result will be decrypted
in the product of the plaintext and the nonencrypted num-
ber.

–	 Homomorphic opposite of an encrypted value Addition-
ally, it is possible to calculate the encrypted opposite of
an encrypted number. Because of the structure of Paillier
algorithm, this can happen by calculating the multiplica-
tive inverse of the encrypted number with respect to n2 .
This property can be used to conduct subtraction between
two encrypted numbers.

On the other hand, Paillier algorithm is partially homomor-
phic as given two ciphertexts, there is no way to calculate
the encryption of the product of the corresponding plain-
texts, without knowing the private key. Additionally, there
is no way to make a comparison of two encrypted values and
decide which one of the two is larger than the other. These
are the main limitations of the algorithm with respect to the
proposed method requirements. As we will analyze it in sub-
sequent sections, it has been chosen to outsource infeasible
calculations to clients, while the privacy of the values is still
protected by obfuscation. The mechanism to achieve this is
described in Sect. 5.5.

Finally, another interesting feature of the algorithm is
the nondeterministic encryption. The integer r used during
encryption is randomly selected, and that results into dif-
ferent ciphertexts produced by successive encryptions of
the same plaintext. This property is important as it prevents

(3)D(E(e1, r1) ⋅ E(e2, r2)modn2) = e1 + e2modn

(4)D(E(e1, r1) ⋅ g
e2modn2) = e1 + e2modn

(5)D(E(e1, r1)
e2modn2) = e1e2modn

(6)D(E(e)−1modn2) = −emodn

anyone who has access to the ciphertexts of two identical
plaintexts, to perceive this equality.

We have chosen the Paillier encryption algorithm for the
system proposed in the present paper, as it enables for cal-
culations required for alerts clustering to be done while the
alerts’ data remain in encrypted form. To give an example
for that, we assume that the data fields of two distinct alerts
that belong to two different parties (organizations) have been
encrypted with the same Paillier public key. As it will be
further analyzed, in Sect. 5.2, the distance of the two alerts
(inversely proportional to the their similarity) is calculated
as a function of the values of the alert’s data fields.

Calculating the aforementioned distance would require
one of the two parties to send the fields of the alert to the
other which could then decrypt the received data and carry
on the required calculations. That would directly violate
the data privacy for the first party. An alternative option
because of the homomorphic properties of Paillier algo-
rithm would be to have a third party that does not possess
the corresponding Paillier private key but only the public
one. In that case, and given that the two parties have share
the encrypted alerts’ data with the third party, the latter can
proceed with the calculation of the distance of the alerts by
using the properties of Eqs. 3, 4, 5 and 6. The feasible cal-
culations are not unlimited, but by structuring the distance
calculation formula appropriately it is feasible to conduct the
required calculations with minimum data privacy loss. Thus,
Paillier algorithm can be one of the main building blocks of
a privacy-preserving alert clustering algorithm.

5 � System design

5.1 � Architecture

The proposed system enables multiple organizations to col-
laborate on processing the alerts produced by their intrusion
detection systems, to make more meaningful conclusions out
of those alerts. Specifically, the organizations can perform
alerts’ clustering at an inter-organization level and produce
global clusters that correspond to events that affect over
one of them at the same time. The system comprises two
subsystems, the client subsystem that is installed at every
participating organization and the server subsystem that is
installed at a trusted third party. These subsystems collabo-
rate, to commit the inter-organization clustering of the alerts.

The clients and the server commit the clustering for the
alerts produced by the local IDSs for a given time window.
When this procedure ends, it is repeated for the alerts of the
next time window. The approach periodically produces the
clusters of alerts of all organizations for the current time
window. The size of the time window tw is configurable and

354	 G. Spathoulas et al.

1 3

is related to the volume of alerts (which is on average pro-
portional to the volume of traffic) of the organizations.

Each one of the client subsystems is tightly coupled with
a locally installed IDS. At the end of time windows, a client
subsystem initially reads the alerts produced by the IDS and
extracts the four main features for each alert, as described
in Sect. 3, External IP address, Signature, Class and Time
stamp. It then encrypts the values of these features by using
the Paillier algorithm, and the resulting encrypted data are
fed to the server, as a vector of four elements, to be used as
input for the global clustering procedure. Throughout this
procedure, the clients support the server, as some of the
required operations are not feasible on the encrypted alert
data. Finally, encrypted information about the produced clus-
ters is returned to the clients, where it can be decrypted, in
order for each participating organization to get access to it.

The main processing, regarding alerts’ clustering, is exe-
cuted on the server subsystem, which is installed at a trusted
third party. It receives the four encrypted features for each
alert from the clients, and it executes the K-medoids cluster-
ing algorithm on them. Most of the required operations can be
executed on the encrypted data. Whenever an operation is not
feasible, because of the encryption, the server requests sup-
port from a randomly selected client, to conduct it. The result
of the global procedure is encrypted information about the
formed alerts’ clusters, which is then returned to the clients.

The general architecture of the system is depicted in
Fig. 1, while we give a more detailed description of the pro-
cedure through the rest of Sect. 5.

5.2 � Distance between alerts

The main metric used to conduct the clustering is the dis-
tance between alerts. The more similar two alerts are, the
less their distance is. So similar alerts eventually end up in

the same clusters. The distance between two alerts is cal-
culated upon four distance coefficients, based on the four
features presented in Sect. 3.

Specifically, the IP addresses distance coefficient provides
the information on the similarity of two IP addresses. The
least significant byte of the IP addresses is more important
concerning the IPs comparison, and then the other bytes
from last to first follow. Thus, a formula that takes into
account the bytes in reverse order is required. The signature
and class fields are categorical fields, and only an equality
(or nonequality) relationship can be justified for their values.
Thus, a simple comparison of values for these two features
suffices for the distance calculation. The timestamp field is
an integer field, and the distance between two values can
be calculated by subtracting those. The subtraction and the
calculation of the absolute value of the result would well
indicate the similarity of two timestamp values. The calcula-
tion for each one of the four distance coefficients is presented
in the next Subsections.

5.2.1 � External IP distance coefficient

The first distance coefficient dIP is decided upon the external
IP of each alert. Each client extracts from the IP fields of the
alert the IP address that does not belong to the network of
the protected organization, denoted as IPext . This practically
is the IP address of the external malicious attacker and may
appear in either source or destination IP fields of the alert.

The coefficient is calculated according to the four bytes
of the IP address. If the external IP addresses of alert ai are
IPi

ext
∶ xi

4
.xi
3
.xi
2
.xi
1
 , then the distance of IP addresses is

(7)
dip(ai, aj) = 23 ∗ |xi

4
− x

j

4
| + 22 ∗ |xi

3
− x

j

3
|

+ 21 ∗ |xi
2
− x

j

2
| + 20 ∗ |xi

1
− x

j

1
|

Fig. 1   General architecture of the system

355Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

It is obvious that the four bytes of the IP addresses are taken
into account with different weights. The IP distance coef-
ficient is an integer in the range [0, dipmax] , and according to
Eq. 7, dipmax = 3850.

5.2.2 � Alert signature distance coefficient

The second coefficient is calculated upon the alert signature
(or alert id). This is an integer number that corresponds to
the attack detected and is denoted as alertsig . The signature
distance coefficient dsig between two alerts is a binary value
that is equal to one if the two alerts share the same signature,
while it is zero otherwise.

Signature distance coefficient is an integer in the range
[0, 1].

5.2.3 � Alert class distance coefficient

Alerts, besides their signature, are also characterized by a
more general class attribute, which denotes a more general
attack type. Alerts with different signatures can belong to
the same attack type. The class distance coefficient dclass
between two alerts is a binary value equal to one if the two
alerts share the same class, or zero otherwise.

Alert class distance coefficient is an integer in the range
[0, 1].

5.2.4 � Alert time distance coefficient

The last distance coefficient is related to the time stamp of
alerts, and more specifically to the difference of time stamps
of the alerts to be compared. The time difference metric is
upper bounded by the time window width tw.

Time distance coefficient is an integer in the range [0, tw].

5.2.5 � Distance calculation

The distance between two alerts ai, aj is denoted as d(ai, aj)
and is calculated as a combination of the four distance coef-
ficients. It has to be noted that all coefficients are represented
by integer values and thus it is feasible to use those within
Paillier algorithm calculations. In order for all coefficients to

(8)dsig(ai, aj) =

{
1 if ai

sig
= a

j

sig

0 otherwise

(9)dclass(ai, aj) =

{
1 if ai

class
= a

j

class

0 otherwise

(10)dtime(ai, aj) = |ai
time

− a
j

time
|

be equally taken into account when calculating the final dis-
tance, a normalization step is required. The range for coef-
ficients’ values differs significantly as it has been analyzed
in the previous subsections. Normalization factors are used
to make all coefficients equivalent.

The normalization factors are dependent to the maximum
value for each coefficient. Specifically, the normalization
factor for signature coefficient is the product of the maxi-
mum values of all other three coefficients, as depicted in
Eqs. 11 and 12. Similarly, a normalization factor is prede-
fined for each coefficient and shared among clients:

Finally, after the four coefficients have been normalized, the
final distance can be calculated according to Eq. 13:

5.3 � Clients

All the client subsystems share a common pair of Paillier
keys. The private key of this pair shall not be available to
the server entity. Clients gather alerts produced by the local
IDSs for a time interval, which depends on the volume of
traffic and is predecided among all partners. As soon as these
alerts are produced for a specific time window, the client
subsystems commit two tasks:

–	 They encrypt the four alerts fields with the common Pail-
lier public key

–	 They calculate the distances between the locally pro-
duced alerts and encrypt the distances with the common
Paillier public key. The formula for calculating distance
between two alerts is a function of the four main features
of the two alerts, and it is analyzed in Sect. 5.2.

Clients send to the server the list of encrypted features of
alerts, produced locally, along with the two-dimensional
matrix (upper triangle) that contains the encrypted distances
between these alerts.

As soon as all clients have sent their input, they become
available to support the server. Server carries on with the
clustering procedure on the encrypted data. This procedure
is further analyzed in Sect. 6. Whenever the server needs to
commit an unfeasible operation on a set of encrypted values,
it randomly selects a client to send the values to, in order for
the operation to be committed. The selected client decrypts

(11)dsig
n

= dsig ∗ nf sig

(12)nf sig = dip
m
∗ dclass

m
∗ dtime

m

(13)
d(ai, aj) = dsig

n
(ai, aj) + dip

n
(ai, aj)

+ dclass
n

(ai, aj) + dtime
n

(ai, aj)

356	 G. Spathoulas et al.

1 3

the values with the common Paillier private key, commits
the operation, encrypts the result with the common Paillier
public key and returns it to the server. Specific measures are
taken to protect data privacy, as it is analyzed in Sect. 5.5.

Finally, when the clustering is finalized, clients receive
the resulting clusters’ information from the server and
decrypt it by using the common Paillier private key.

5.4 � Server

At the end of each time interval, the server waits for all
clients to send their input, four encrypted features of their
alerts, along with the encrypted distances of all pairs formed
between their alerts. As soon as the server receives all
inputs, it calculates the distances between alerts of different
clients. When these are calculated, the server builds a matrix
with the distances of all the alerts’ pairs irrespective of their
origin and starts executing the K-medoids algorithm.

The server makes use of the Paillier algorithm’s homo-
morphic properties, to commit additions between encrypted
values and additions and multiplications between an
encrypted value and a non-encrypted one. Whenever the
server needs to commit any other operation, it requests sup-
port from a randomly selected client, as it has been stated in
the previous section. This approach practically overcomes the
limitations of partially homomorphic encryption, but has an
efficiency cost and may cause a minimal loss of privacy. We
further discuss the implications of this approach in Sect. 7.

5.5 � Auxiliary client calculations

As it has been stated, clients proceed with the calculations
that the server is not able to commit, due to data being
encrypted on its side. As it is described in Sect. 4.2, Paillier
is a partially homomorphic encryption algorithm, so specific
operations are feasible on encrypted data. All such operations
happen on the server side. There are some cases, though,
when the calculations that have to be conducted are not feasi-
ble while the data are encrypted. For such cases, clients offer
auxiliary functionality to the server. The server obfuscates
the input values, in a way that this obfuscation is reversible
on the server side, and sends the data to a random client. The
client decrypts the input data, commits the required calcula-
tions, encrypts the result and sends it back to the server.

The different auxiliary calculations offered from the cli-
ents to the server are:

5.5.1 � Multiplication

Multiplication of encrypted values is impossible under the
homomorphic properties of Paillier algorithm, so when such
a calculation is required, the server uses a client.

Let us assume that the server needs to multiply two values
x and y. Before sending those to the client, it adds to both of
them random values rx, ry where rx, ry > 0 . This is feasible,
as server needs to add an encrypted with a nonencrypted
value, which can happen as described in Eq. 4 in Sect. 4.2.

The client then decrypts the values, calculates the prod-
uct (x + rx) ∗ (y + ry) , encrypts the result and returns it to
the server, without being able to know the actual values of
x and y. Finally, the server uses the returned value, which
is the encrypted (x + rx) ∗ (y + ry) product, to calculate the
encrypted x ∗ y product, as shown in Eq. 14.

The server has received (x + rx)(y + ry) from the
client in encrypted form, while it can calculate
(rx ∗ y + ry ∗ x + rx ∗ ry) according to Paillier homomor-
phic properties.

It is possible to calculate both the product and the sum
of a nonencrypted value with an encrypted one, as it is
analyzed in Eqs. 4, 5 in Sect. 4.2. Server holds x and y in
encrypted form, while it also holds rx and ry in nonencrypted
form. According to the third Paillier homomorphic property,
the server can calculate the encrypted values of rx ∗ y and
ry ∗ y , while it can straightly multiply rx and ry to calculate
rx ∗ ry in nonencrypted form. Finally, the encrypted ver-
sion of (rx ∗ y + ry ∗ x + rx ∗ ry) element can be calculated
according to the first and the second homomorphic proper-
ties of the Paillier algorithm (Eqs. 3, 4).

The server holds an encrypted version of
(x + rx) ∗ (y + ry) received by the client and an encrypted
version of (rx ∗ y + ry ∗ x + rx ∗ ry) element that has been
locally calculated. Finally, the encrypted product x ∗ y is
calculated by conducting the subtraction on the right side
of Eq. 14. This operation is feasible even if both elements
are encrypted, because of the first and the fourth properties
of Paillier algorithm (Eqs. 3, 6).

5.5.2 � Comparison

Clients are also required to conduct some processing, when
server needs to compare values. As it will be analyzed in
Sect. 6, the server needs to find the minimum value out of
a set of values, while zero values may be required to be
excluded. Let us suppose that the server needs to find the
minimum element out of a set [x1, x2,… xn] of encrypted
values. The client multiplies the elements with a random
highly composite value r, r > 0 [24] and randomly scram-
bles the order of the elements to obfuscate the data sent to
the client. The multiplication is feasible as the server can
multiply encrypted values [x1, x2,… xn] by a nonencrypted
one (value of r), according to Eq. 5. The server also keeps in
memory the changes in the order of the elements, to revert

(14)x ∗ y = (x + rx)(y + ry) − (rx ∗ y + ry ∗ x + rx ∗ ry)

357Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

the obfuscation at the end of the procedure. The server then
sends the obfuscated set to the client.

The client decrypts all values of the set and finds the
position of the minimum element (potentially without taking
into account the zero valued elements). The multiplication
by the r value does not alter the ordering of the elements,
but just obfuscates their real values. Zero-valued elements
retain the same value even after the multiplication by r. The
client sets the value in the selected position of the set equal
to one, while it sets the value in all other positions equal to
zero. The client encrypts the elements of the produced set
and returns it to the server.

The server conducts the reverse of the initial scrambling
of order and ends up with a set of encrypted values, all of
which are zero, except the one that corresponds to the posi-
tion of the minimum element of the initial set. It has to be
noted that due to the probabilistic property of the Paillier
algorithm, the encrypted versions of all zero-valued ele-
ments have different values, so it is impossible for the server
to learn anything about the result.

5.5.3 � Absolute value

If the server needs to calculate the absolute value |z| of
an encrypted integer number z, which is bounded as
z ∈ [−zm, zm] , it also has to communicate with a randomly
selected client. The server initially calculates both (z + a) ∗ b
and (−z + a) ∗ b , where a is a random integer, with a > zm
and b is a random highly composite integer. This is feasible
as the server can add or multiply an encrypted number to
a nonencrypted one, according to Eqs. 4, 5 of Sect. 4.2. It
then sends both (z + a) ∗ b and (−z + a) ∗ b , to the client, in
random order and in encrypted form

The client decrypts the two received values and answers
which one of the two is the largest one. If (z + a) ∗ b is larg-
est then |z| = z , otherwise |z| = −z . The client does not know
the values of the random variables a, b, nor the ordering, so
it cannot make any guess about the number, the absolute
value of which needs to be calculated.

5.6 � Workflow

The workflow for a specific time window is described in
this section. K-medoids algorithm operates with a prede-
fined clusters’ number, so the server initially defines this
number as k (number of clusters). This parameter is decided
by the server and is related to both the required granular-
ity of results and the available processing resources. A
higher value for the number of clusters would produce more
detailed information about ongoing attacks, while it would
require more calculations.

5.6.1 � Clients send data to server

In the first step of the procedure, clients send initial data to
the server. Each client shares the four features of the alerts
the local IDS has observed during the previous time window.
These data are encrypted using Paillier algorithm before
being sent to the server. The server is required to calculate
the distances for all pairs of alerts sent from clients.

Distance calculation is a demanding operation in terms of
resources. To make the procedure more efficient, each client
calculates the distances for the pairs of alerts that have been
produced locally, as required features are available in non-
encrypted form. The calculated distances are also encrypted
and sent to the server. This will save the server from a signif-
icant amount of operations. Specifically for n clients, which
individually hold approximately mc alerts, the total number
of distances to be calculated is calctot:

The number of calculations that can be carried out locally
at the clients is calcloc :

The ratio of these estimated calculations is :

Thus, for a relatively small number of clients n and numer-
ous alerts per client mc (which is the most common case),
this ratio tends to be equal to 1

n
 , which is a significant per-

centage of the calculations.
After the first step is finalized, the server holds the alerts

of all clients in encrypted form. Additionally, it holds all the
distances between alerts that have been produced in the same
client, also in encrypted form.

5.6.2 � Server calculates the rest of the distances

The second step of the workflow is the calculation of all
distances between pairs of alerts that have been produced
at different clients. The calculation of the distances must be
carried out in the server, while the alerts’ features remain
encrypted. As it has been noted in Sect. 4.2, Paillier algo-
rithm is characterized by specific homomorphic properties
that enable committing additions between two encrypted
values and both multiplications and additions between one
encrypted and one non encrypted value. Distance calcula-
tion demands multiplications between encrypted values at

(15)calctot =
n ∗ mc(n ∗ mc − 1)

2

(16)calcloc = n ∗
mc(mc − 1)

2

(17)ratio =
calcloc

calctot
=

n ∗
mc(mc−1)

2

n∗mc(n∗mc−1)

2

=
mc − 1

n ∗ mc − 1

358	 G. Spathoulas et al.

1 3

some point, and these calculations are conducted by return-
ing the pair of encrypted values to a random client. The
random client decrypts the values, commits the multiplica-
tion, encrypts the result and returns that to the server. The
server then carries on with the calculation of the distance
between the alerts. At the end of this step, the server holds
the distances between all pairs of alerts in encrypted form.

5.6.3 � Server commits clustering

As soon as all distances are available, the clustering algo-
rithm can then be executed. As it is described in Sect. 4.1,
K-medoids algorithm creates clusters, the centers of which
are being selected from the points (alerts) to be clustered.
The distance of a point (alert) from the center of a cluster
is one of the already calculated distances between points
(alerts) of the initial dataset. The previous step has produced
all the required distances, so the repetitive procedure of for-
mulating the clusters does not require any additional dis-
tances to be calculated.

These distances have to be compared to conduct the
actual clustering. Each point (alert) is assigned to the cluster,
the center of which is the nearest to it. This means that the
server has to conduct comparisons between encrypted dis-
tance values. Actually, the server has to pick the minimum
from a set of encrypted values, so it requests intervention
from a random client. The server sends a set of encrypted
elements to the client which then picks the minimum one out
of these values. In practice, the client returns an encrypted
version of a set of elements (equal in size with the submitted
set). All values of the returned set are equal to zero, except
the one that corresponds to the same index as the minimum
value of the set submitted by the server which is set equal
to one.

The final step of each round ends up with the allocation of
points (alerts) to clusters. This information is being returned
to the server by the clients in nonencrypted format. This
happens because the server has to check whether there has
been any change in this allocation between any two consecu-
tive rounds, to decide that the execution of the K-medoids
clustering algorithm has reached to an end.

Through this procedure, the server can run all the required
rounds for the K-medoids algorithm and eventually produce
a final allocation of the alerts to the k different clusters.

5.6.4 � Server returns the results

After the execution of the K-medoids algorithm has been
terminated, the server can return to the clients information
about the security events that have occurred throughout the
network in the last time slot. According to the setup chosen,
different amounts of information may be revealed. For exam-
ple, server may reveal to a client:

–	 only the volume of alerts in a cluster, an alert of the client
belongs to.

–	 the IPs of the alerts in a cluster, an alert of the client
belongs to.

–	 all data about alerts in a cluster, an alert of the client
belongs to.

–	 all data about alerts in all clusters.

According to the information in the cluster results returned,
there may be a limited data privacy leak between participat-
ing organizations. The amount of information being shared
between organizations ranges according to the predefined
scheme they have agreed to collaborate on.

For example, it can be the case that when a relatively
large cluster involving multiple organizations comes up, then
all organizations are notified about the size of the cluster
and the set of external IPs that are involved in it. All organi-
zations can better defend their networks without getting to
know what has exactly happened to other organizations or
specific details about their networks. This is a great improve-
ment in terms of privacy compared to the case of trying to
achieve the same result by having a node gathering all alert
data from all organizations and conducting the clustering
locally.

Another case would be to have a persistent cluster of
alerts between two organizations, which could mean that
these two may be victims of the same attack because they
share the same vulnerability in their networks. In that case,
more information could be revealed to the two organizations
(e.g., the set of alert’s signatures or the set of ports), in order
for them to understand what is the exact issue and probably
collaborate offline to find a solution. Again this would end
up revealing bits of information of the two organizations
to each other, but the level of data privacy loss would be
minimal compared to the data privacy loss when clustering
the data on a single node.

While the scheme under which organizations share data at
the end of the procedure is out of the context of this paper, it
can be set in a way that the privacy loss risks are minimized.

6 � Implementation

In this section, we present a more detailed description of all
the operations of the proposed scheme.

6.1 � Main parameters

To analyze the implementation of the proposed method, we
present the main parameters used in advance. We assume
that we have m alerts and that the K-medoids algorithm will
create k clusters.

359Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

The distances matrix DIST (mxm) is a square matrix that
contains the distances between all m alerts. Both rows and
columns of this matrix correspond to alerts. DIST matrix is
symmetric as the distance between two alerts is the same
irrespective of the order in which these two alerts are taken
into consideration in the calculation.

The clusters’ centers matrix CC (mxk) is a matrix that
holds the information regarding which alert is the center
for each cluster. Each row of the matrix corresponds to an
alert, and each column of the matrix corresponds to a cluster.
Each column contains zeros and only one element, the one
in the row that corresponds to the alert being the center of
the cluster is equal to one.

The distance from clusters matrix DFC (mxk) is a matrix
that stores the distance of each alert from each cluster. Each
row corresponds to each alert and each column to each clus-
ter. The elements in the row are equal to the distances of
the corresponding alert from all clusters (according to the
column of the element).

The belong to cluster matrix BTC (mxk) is a matrix that
stores information about to which cluster each alert belongs
to. Each row corresponds to each one alert. Each row holds
one element equal to one, which corresponds to the cluster
the alert belongs to, while all other elements of the row are
equal to zero.

The clusters groups CG matrix (mxm) is a square matrix
that denotes which alerts are in the same cluster. Each row
corresponds to each alert, and each column also corresponds
to each alert. An element in this matrix is equal to one, if
the alert that corresponds to the row and the alert that cor-
responds to the column of the element belong to the same
cluster. Otherwise, the element’s value is zero.

The distance in groups DG matrix (mxm) is a square
matrix that holds the distance of an alert from all other alerts
that belong to the same cluster. Each row corresponds to
each alert, and each column also corresponds to each alert.
An element in this matrix is equal to the distance of the
alerts that correspond to the row and the column of the ele-
ment if these two alerts belong to the same cluster. Other-
wise, the elements value is zero.

The center metrics vector CM (mx1) is a one-dimensional
vector. Each element belongs to each alert and is equal to
the sum of all distances of the specific alert from the alerts
with which it belong to the same cluster. In practice, it is a
metric used for updating the clusters’ centers.

where ci is the cluster to which ai belongs to.
The cluster center metric CCM (mxk) is a matrix, each col-

umn of which corresponds to each one of the clusters. Each
element stores the calculated center metric for the alert that
corresponds to the row of the element, regarding the specific

(18)cmi =
∑

dist(ai, aj),∀j ∶ aj ∈ ci

cluster. The values of elements that correspond to alerts that
do not belong to the specific column’s cluster are equal to zero.

6.2 � Calculations

Each client holds a shared pair of private and public Paillier
keys. The keys pair is common among all clients in order for
the procedure to be feasible, while the server does not have
access to this information.

6.2.1 � Vectors alerts
i
 and matrices dist

i

Initially, the clients have to submit to the server all the data
regarding their alerts along with the distances between the
latter. Each client ci , holding mi alerts for the specific time
window, submits to the server a vector of length mi with alerts’
data:

where each adj is a tuple of data relevant to the specific alert.

In Eq. 20, ai
sig

 stands for the signature of the alert. The sig-
nature of the alert is represented by a vector equal in length
with the possible signature values. It holds zeros, and only
the element that corresponds to the signature of the alert is
equal to one. Similarly, ai

class
 stands for the class of the alert

and is represented by a vector equal in length with the pos-
sible class values. All values are zero except the one that
corresponds to the class of the alert, which is equal to one.
Regarding time stamp, ai

time
 is an integer value that corre-

sponds to the time that the alert is produced with regards to
the start of the examined time window. The granularity of
this parameter (seconds/milliseconds) can be commonly
adjusted by the clients, according to their needs. Finally, the
x
j

4
, x

j

3
, x

j

2
, x

j

1
 variables stand for the four coefficients of the

external IP address of the alert.
Each client constructs the vector of Eq. 19 for all the alerts

monitored by the corresponding IDS sensor in the previous
time window. Additionally, the client calculates the distances
between the mi alerts and builds a square matrix of size mixmi
denoted as disti that contains the results.

In Eq. 21, each element dij corresponds to the distance for
alerts ai , aj , that has been calculated according to the proce-
dure defined in Sect. 5.2.

(19)alertsi = [ad1,… admi
]

(20)adj = (ai
sig
, ai

class
, ai

time
, x

j

4
, x

j

3
, x

j

2
, x

j

1
,)

(21)disti =

⎡
⎢⎢⎢⎢⎣

d11 d12 … d1mi

d21 d22 … d2mi

⋮ ⋮ ⋱ ⋮

dmi1
dmi2

… dmimi

⎤⎥⎥⎥⎥⎦

360	 G. Spathoulas et al.

1 3

Clients encrypt all tuple elements in the vector of alerts
and all distances one by one with the common Paillier public
key and construct the encrypted versions of vector alertsi and
matrix disti denoted as e(alerti) and e(disti) . These encrypted
data structures are consequently sent to the server.

6.2.2 � Constructing DIST matrix

The server receives a pair of e(alerti) and e(disti) from each
client. When all clients have sent their input, the server can
construct the global distances matrix DIST, which holds the
distances between all alerts of all clients. The rows and col-
umns of DIST matrix correspond to alerts in the global set.
The ordering of these alerts is restricted as they have to be
grouped by the client that has produced them. The alerts of a
specific client have to appear in a continuous range regarding
the indexing of DIST array’s rows and columns.

Partial submatrices of DIST matrix have already been cal-
culated by clients in the form of disti matrices as presented
in Eq. 21. These submatrices are aligned along the DIST
matrix diagonal and practically correspond to the distances
between alerts submitted from the same client. The rest of
the elements that correspond to pairs of alerts produced by
different clients have to be calculated by the server. These
calculations are conducted by using the encrypted values in
the e(alerti) vectors submitted by clients (Eq. 19).

An example is given in Eq. 22, where it is assumed that
two clients have submitted three alerts each. Here, the bold
elements belong to the two distance matrices the clients have
sent, while the rest of the elements have to be calculated by
the server.

The server will use the already available distances between
pairs of alerts of the same client to fill in the bold elements.
Then, the server will calculate the distances between all
other pairs of alerts one by one and fill in the nonbold ele-
ments. At the end of the procedure, the server will have the
DIST matrix, as described in Sect. 6.1, in encrypted form.

Distance calculation follows what we have described in
Sect. 5.2 and is straightforward when it is conducted by the
client for pairs of local alerts, given that the required field
is available in nonencrypted form. In the server’s case, the
required data are encrypted, and the server needs to con-
duct calculations by using Paillier homomorphic properties,
while at some points, it is required to use the auxiliary pro-
cessing offered by the clients.

(22)DIST =

⎡⎢⎢⎢⎢⎢⎢⎣

d
11

d
12

d
13

d14 d15 d16
d
21

d
22

d
23

d24 d25 d26
d
31

d
32

d
33

d34 d35 d36
d41 d42 d43 d

44
d
45

d
46

d51 d52 d53 d
54

d
55

d
56

d61 d62 d63 d
64

d
65

d
66

⎤⎥⎥⎥⎥⎥⎥⎦

If the server needs to calculate the distance between two
alerts ai and aj , the formula of Eq. 13 is used. The server
needs to calculate the four normalized distance coeffi-
cients. The four normalization factors are predefined and
available in nonencrypted form. The server calculates the
four distance coefficients in encrypted form, so the calcu-
lation of the normalized ones, as shown in Eq. 11 for sig-
nature coefficient, is feasible because of the homomorphic
Paillier property of Eq. 5. Practically, the server calculates
the four distance coefficients, shown in Eqs. 7, 8, 9 and 10,
in encrypted form.

The calculation of the signature distance coefficient
dsig(ai, aj) is conducted by multiplying the two signature
vectors ai

sig
 , aj

sig
 element by element and then summing up

all the elements of the resulting vector. If the two signature
vectors are identical, then the result of the procedure is
equal to 1; otherwise, it is equal to 0. During this proce-
dure, the server needs to make additions and multiplica-
tions between encrypted values. It is possible to commit
the additions, because of the homomorphic Paillier prop-
erty of Eq. 3; however, to commit the multiplications, the
server has to outsource some of the processing to the cli-
ents randomly. The clients’ auxiliary processing for mul-
tiplication, as analyzed in Sect. 5.5.1, is used.

The calculation of the class distance coefficient,
denoted as dclass(ai, aj) , is very similar to that of the signa-
ture coefficient, as representations of class and signature
alert attributes are identical. The same procedure used by
the server for the signature coefficient is also used for the
calculation of the class distance coefficient dclass(ai, aj).

Regarding the calculation of the dip(ai, aj) distance, the
server needs to commit some subtractions which are feasi-
ble even if data are encrypted according to Sect. 4.2. Addi-
tionally, it shall decide on the absolute value of integers
and in this case it should use clients’ auxiliary processing,
as analyzed in Sect. 5.5.3.

Finally, regarding the time distance coefficient, denoted
as dtime(ai, aj) , and according to Eq. 10, the server needs
to commit a subtraction between two integers, which is
feasible because of homophobic properties analyzed in
Sect. 4.2, and then decide on an absolute value. For the
latter, the server uses the absolute value auxiliary process-
ing offered by a randomly selected client.

6.2.3 � A typical K‑medoids round

After the initial step of calculating all values for the DIST
matrix, the server can go on with the actual clustering
procedure. This is an iterative process that executes the
required K-medoids rounds, until the final clusters of alerts
are formalized.

361Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

The data used during the execution of the K-medoids
rounds have been formed as matrices and vectors, as
described in Sect. 6.1. This enables the server to commit
the required calculations for all data points at once. Each
one step of the algorithm is practically encoded as an opera-
tion on one or two matrices. For example, the step of the
calculation of the distance of each point from the centers of
all available clusters is encoded as a multiplication between
matrices DIST and CC, as shown in Eq. 23. Each row of
DIST matrix contains the distances of a single alert from
all other alerts. Each column of CC matrix is related to a
specific cluster and holds zeros for all elements except the
one that corresponds to its center. The multiplication of the
two gives a metric, which is the distance of the specific alert
from the center of the specific cluster. The same approach
holds for all other steps of the K-medoids algorithm which
are conducted through the equations described in the rest of
this section.

Beforehand, the server populates CC matrix with random
values. In practice, the server assigns random points as cent-
ers for each cluster. It has to be noted that CC is the only
nonencrypted matrix, as the server needs to check at the end
of each round whether its values have changed with respect
to the previous round.

DFC matrix
At the start of each round, the server calculates the

DFC matrix that contains the distance of each point from
the center of each cluster, by multiplying matrices CC and
DIST. The DIST matrix is encrypted, while the CC array
is not. The multiplication of the arrays requires multiplica-
tions between nonencrypted and encrypted values, which
are feasible and additions between encrypted values, which
are also feasible. No auxiliary client processing is required
at this step:

Every row of the resulting DFC matrix corresponds to one
alert and holds k values. These are the distances of the alert
represented by the row from each one of the centers of the
k clusters.

BTC matrix
The next step is to construct the BTC matrix from the

DFC matrix. The BTC matrix denotes to which cluster an
alert belongs to. The server has to find the minimum value
in each row of the DFC matrix (excluding zeros) and set the
corresponding value of BTC matrix equal to 1, while setting
all other elements of the row equal to zero:

Multiple comparisons between the values of the row are
required, and these cannot be conducted by the server, as

(23)DFC = DIST ∗ CC

(24)btc(i0, j0) =

{
1 if dfc(i0, j0) ≤ dfc(i0, j),∀j

0 otherwise

the values are encrypted. In this point, the server makes use
of the comparison auxiliary processing offered by clients.

CG matrix
The CG matrix is a square matrix that denotes for each

alert ai , which other alerts belong to the same cluster with it.
This can be easily calculated from BTC matrix by multiply-
ing it with its transpose matrix BTC⊺:

To commit this calculation, the server needs to conduct mul-
tiplications and additions between encrypted values. For the
multiplications, it has to use clients’ multiplication auxiliary
processing. The server can then proceed with the required
additions, as it is described in Sect. 4.2.

DG matrix
For the next step, the server has to calculate DG matrix

that holds the distances of alerts from all other alerts that
belong to the same cluster. This matrix is calculated as the
Hadamard product [7, 15] of CG and DIST. The server mul-
tiplies CG and DIST matrices, element by element.

In this step, the server needs to use the clients’ multiplica-
tion auxiliary processing to conduct the multiplications of
encrypted elements.

CM vector
The CM vector holds one value for each alert. It corre-

sponds to the cluster center metric for this alert, with respect
to the cluster it belongs to. In practice, for each alert, this
metric is the sum of the distances from alerts belonging to
the same cluster. The CM vector is calculated by summing
up the elements of each row of the DG matrix. Only addi-
tions are required so the server can calculate the CM vector:

CCM matrix
CCM matrix holds metrics that are then used to decide

the clusters’ centers. To construct the CCM matrix, a diag-
onal matrix of size mxm that holds the CM vector in its
diagonal is required. The server constructs the matrix and
then multiplies it by BTC matrix. The diag(CM) matrix can
be built element by element by the server. For the multipli-
cation of the matrices, the server needs to use the clients’
multiplication auxiliary processing:

The resulting matrix CCM holds one column for each one of
the k clusters. Each column holds metrics for all alerts of the
cluster, and these metrics need to be compared, to choose the
minimum value. The elements of the column that correspond
to alerts and do not belong to the corresponding cluster are
equal to zero.

(25)CG = BTC ∗ BTC⊺

(26)DG = CG⊙ DIST

(27)cm(i0) =
∑

(dg(i0, j)),∀j

(28)CCM = diag(CM) ∗ BTC

362	 G. Spathoulas et al.

1 3

CC matrix
The final step for the round is to recalculate the CC

matrix, which holds the center point for each cluster. In order
for this to happen, the server needs to pick the minimum
value (excluding zeros) in each column of the CCM matrix.
The server uses a slightly modified version of the compari-
son auxiliary processing provided by clients. Specifically,
the returned set of values is not encrypted, in order for the
server to construct a nonencrypted CC matrix and compare
it with the one from the previous round.

This typical K-medoids round is repeated, until the result-
ing CC matrix is identical with that of the previous round.
Then, the clustering algorithm has converged and the server
can notify clients about the results.

According to the level of collaboration between the part-
ners, the amount of information returned to the clients may
vary. The server holds encrypted alerts information in the
format denoted in Eq. 20, along with the distribution of
alerts into clusters. So it can notify clients only about large
clusters, and it can send just the population of the clusters,
the identity of clients, the alerts of which make up a cluster,
or the actual encrypted data of the alerts in the cluster.

The workflow of the protocol is depicted in the sequence
diagram of Fig. 2. The distinct phases of the proposed algo-
rithm (distances calculation, K-medoids rounds and cluster
information sharing) are shown in the figure. Additionally,
the interaction between the server and the clients is clearly
noted for every step of the calculations.

7 � Experiments

The proposed method offers privacy-preserving clustering
for intrusion detection alerts, but it bears an overhead in
terms of performance. It requires multiple additional calcu-
lations, while a lot of network communication has to take
place. To validate the proposed method, the corresponding
implementation has been tested by using a network traffic
dataset in a twofold approach. We have proved the validity
of the method, as it produced the same results as the cor-
responding clustering procedure did in nonencrypted space.
The performance of the algorithm has also been evaluated
as both the execution time and the number of calculations
server outsourced to clients have been measured.

7.1 � Dataset

An intrusion detection-related traffic dataset that would refer
to multiple different networks was required to test the pro-
posed system. Ideally, the traffic of these networks should
contain artifacts related to different instances of the same
malicious activity or/and to similar attacks conducted in
more than one of the networks. Because of not being able to

find such a dataset, we have opted for employing a dataset
that refers to the network of a single organization with over
one subnetworks, and to manage the different subnetworks
as different networks monitored by different IDSs. Such an
experiment setting would provide the input for multiple cli-
ents of the proposed system that would then need to collabo-
rate, along with a trusted third-party server instance, to carry
out the privacy-preserving clustering workflow described in
Sects. 5 and 6. It is significant for the testing procedure to
have as many client as possible, to stress the system and to
have a balanced mix of normal and malicious traffic, in order
to get a normal alerts’ rate. The criteria set for finding out an
appropriate dataset were:

–	 Dataset released after 2010.
–	 Dataset related to at least five different networks.
–	 Dataset containing information on packet level.
–	 Dataset containing general malicious traffic (datasets for

specific attacks were excluded)

After going through the recently released intrusion detec-
tion datasets [27], only two were found to abide with all the
aforementioned criteria, ISCX 2012 [29] and TUIDS [12]
datasets. Out of the two, the ISCX 2012 dataset was found
to be better documented and more concrete. Because of that,
it was chosen to be used to test the proposed method.

The dataset used is UNB ISCX 2012 Intrusion Detec-
tion Evaluation Data Set [29]. This dataset is based on the
concept of profiles, containing detailed descriptions of intru-
sions, to simulate malicious traffic. It also contains benign
traffic created by abstract distribution models for applica-
tions, protocols or lower level network entities.

The traffic it contains is related to a network of an organi-
zation with five different inside networks and a DMZ zone,
accommodating the organization’s servers. The approach
used to test the proposed inter-organization clustering sys-
tem was to handle the six different subnetworks as networks
that belong to different organizations. Based on this assump-
tion, network traffic of the six networks is required to be han-
dled in a privacy-preserving way throughout the clustering
procedure. The selected dataset provides an appropriate test
bed for the proposed method.

Practically, the traffic has been split according to the IP
ranges of the six different networks into six different traffic
chunks. For each one of the different networks, a combi-
nation of a Snort [28] sensor and a client of the proposed
system has been used. Each one of the six traffic chunks has
been used as input for the corresponding Snort sensor. In this
way, we have simulated a collaboration between six different
organizations, to test the proposed system. The correlation
between the traffic of the different networks in the dataset is
relatively high, and thus, this makes it appropriate for testing
a clustering method.

363Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

7.2 � Experiment setup

Two software implementations have been developed to test
the proposed system. We have implemented the client soft-
ware that runs at each collaborating node, gets as input the

alerts, produced by the local intrusion detection sensor, and
collaborates with the server. We have also implemented the
trusted third-party server component that accepts input from
clients and commits the clustering, while it also collaborates
with the clients, when it is required.

Fig. 2   Sequence diagram

364	 G. Spathoulas et al.

1 3

For implementing the client Python 3.6 has been used,
as it provides libraries that enable the development of
all the required functionality. The implemented software
needs to conduct cryptographic operations, matrix opera-
tions, and to efficiently communicate with other parties.
Each client of the network along with the trusted third-
party client has been executed on a midlevel computer
equipped with Intel i5-7200U processor, which consists
of four CPU cores. This feature potentially enables the
clients to reply to four different calculation requests at the
same time.

We have employed multiple different use-case scenarios
to assess the performance of the system. Specifically, the
number of collaborating nodes has been varied from 3 to
6, while for each one of those cases the number of alerts
submitted from each node has been set equal to 10, 60, 30,
90 and 120. Each simulation run corresponds to the clus-
tering procedure for a single time window where a specific
number of nodes produce a specific number of alerts. In
all these combinations, we have measured the time needed
to complete the whole clustering procedure along with the
number of operations for which the server requested for
the interference of client nodes.

To reproduce the experiment, it is required to split the
traffic dataset into six different parts according to the six
sub-networks. The next step is to feed the six different
traffic sets into a Snort installation to get the produced
alerts. Consequently, these alerts shall be used as input to
six different client installations that share the same Paillier
key pair. The following procedure shall be repeated for
each time window:

–	 Extraction of the four main features for each alert (as
described in Sect. 3)

–	 Calculation of the distance for all alert pairs (as
described in Sect. 5.2)

–	 Encryption of both features and distances (as described
in Sect. 4.2)

–	 Sending of data to the server

Then, the server shall:

–	 Calculate distances for all alert pairs (as described in
Sect. 5 and by using the auxiliary client services as
described in Sect. 5.5)

–	 Build the matrix of distances for all alerts’ pairs (as
described in Sect. 6.2.2)

–	 Allocate the alerts to clusters randomly.
–	 Repeat the K-medoids clustering round (as described

in Sect. 6.2.3)
–	 Stop when the clusters remain the same for two con-

secutive rounds.

7.3 � Remote processing estimation

The proposed methodology requires additional process-
ing, to protect the privacy of the alerts submitted for inter-
organizational clustering. The main performance overhead is
because of the requirement for the server to use remote aux-
iliary processing offered by clients, presented in Sect. 5.5,
when processing encrypted data is not feasible. According
to the analysis of the calculations presented in Sects. 6.2.2
and 6.2.3, regarding the construction of the DIST matrix and
the execution of a K-medoids round, the required remote
calculations can be predicted. We assume that the number
of clients is n, the number of alerts per client is mn and the
predefined number of clusters is k. The total number of alerts
can be calculated as m = n ∗ mn . Additionally, nsig is the
number of different possible signature values and nclass is the
number of different possible class values.

Initially, the server shall calculate the distance between
every pair of m alerts, so it commits m∗(m−1)

2
 distance cal-

culations. A portion of these distances have been precal-
culated in the client sides. Specifically, each client has
conducted mn∗(mn−1)

2
 calculations for the local alerts, so the

actual distance calculations committed by the server are
m∗(m−1)

2
−

mn∗(mn−1)

2
 . For each one of the distance calcula-

tions, the remote processing required is depicted in Table 1.
The construction of the DIST matrix happens only once

in the beginning of the algorithm, so the overhead is limited.
The remote processing required at each K-medoids round is
related to the actual procedure of the round and is presented
in Table 2.

The main calculation issue that is clear from Table 2 is
that during execution of K-medoids rounds, the number of
multiplications required is proportional to the square of total
number of alerts m. This means that if the number of alerts
per client increases significantly, the number of required
multiplications will become very high and will have per-
formance implications to the system. Even if the number of
alerts is practically bounded in a real-world scenario, there
may be extreme cases where the system will not be able
to cope up with the resources requirements. In such cases,
organizations may make use of more hardware resources.

Table 1   Remote calculations required for a single distance calculation

Multiplications Comparisons Abso-
lute
value

Signature coefficient nsig – –
Class coefficient nclass – –
IP coefficient – – 4
Timestamp coefficient – – 1
Distance calculation nsig + nclass – 5

365Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

Theoretically, each client can consume more that one
requests for auxiliary calculation at the same time, if it has
the hardware resources to process those requests in parallel.

7.4 � Results

The execution time for each scenario is shown in Figs. 3 and 4.
The execution time consists of the time needed to calculate
the DIST matrix and the time needed to execute the required
K-medoids rounds. The required number of rounds has ranged
between 3 to 5, for the experiments executed. Figures 3 and 4
show the required time in seconds for both these steps, for all dif-
ferent combinations for number of clients and number of alerts.

Table 2   Remote calculations required for a K-medoids round

Multiplications Comparisons Abso-
lute
value

DFC – – –
BTC – m –
CG m

2 ∗ k – –
DG m

2 – –
CM – – –
CCM m

2 ∗ k – –
CC – k –
K-medoids round m

2 ∗ (2k + 1) m + k -

Fig. 3   Time for DIST matrix calculation

Fig. 4   Average time for a single K-medoids round

366	 G. Spathoulas et al.

1 3

The same experiments have been repeated but with more
hardware resources in place. The client implementation of the
system has been revised, to process in parallel over one request
by the server. Specifically, three additional configurations were
tested at which the client had two, three and four threads run-
ning in parallel, to accept and process over one request for aux-
iliary processing at the same time. The total execution time
results obtained from these experiments are depicted in Table 3.

7.5 � Performance analysis

Homomorphic encryption employment penalizes the perfor-
mance of the approach. As it is depicted in Figs. 3 and 4, and
given the hardware used, there are specific delays in the pro-
cessing of the alerts. For processing to be sustainable in the
long run, the execution time of the algorithm must be less
that the time window for which the nodes collect the alerts.
In this way, the processing of a specific time window will
end, before the processing for the next time window begins.

For example, five nodes, each one of which produces 30
alerts per time window, need approximately 1 second, to
complete the clustering. This means that the alerts produc-
tion rate must be limited in order for the system to be able to
process each time window as soon as it expires. Specifically,
the nodes should produce at most 30 alerts per second or in
other words the system is suitable for networks of nodes that
produce at most 30 alerts per second.

The typical alert rate in real-world networks is relatively
low. While it is related to the volume and the nature of traf-
fic, it is expected that it should not be greater than 1 alert
per second. The dataset used throughout the experiments
had an average alert rate of 0.304 alerts/s. In practice, this
means that our system would easily process the required
information. For a scenario of six nodes, ten clusters and
a time window of 60 s, the total number of alerts would be
around 120; thus, the size of the different matrices (analyzed
in Sect. 6) would be 120 × 120, 120 × 10 or 120 × 1 . Accord-
ing to execution times shown in Figs. 4 and 3, the processing
time would be some seconds; thus, the system would easily
process the information produced every 60 s, with no delays.

It must be noted that the hardware used in the experiments
has to be taken into account when assessing the execution
time results. Organizations that produce alerts in higher rates
must use more capable hardware to cope with the required
processing. The proposed method is designed to be scalable
for nodes that can use over one processing threads. For exam-
ple, if clients can concurrently execute multiple processing
threads, the server can send to them batches of requests for
processing of encrypted data. In this way, we can achieve
a significant reduction in the execution time. As shown in
Table 3, using multiple threads has a significant effect on the
performance of the system. Using two threads speeds up the
process by a factor of approximately 1.9, using three threads
gives a speed up of 2.8 and using four threads gives a speed
up of 3.7. There is a small management overhead, but for
groups of clients that have higher traffic rates and probably
higher alerts’ rates, the clients can use additional hardware
resources to cope with the demand for calculations.

The proposed system is based on the network commu-
nication between the server and the clients. We have con-
ducted the experiments with all the subsystems connected
on the same local area network. In a real-world scenario,
each of the clients would be installed at different organi-
zations, the network connection between which would be
more challenging. In such a scenario, it is expected to have
larger connection delays, packet drops or even clients going
temporarily offline. These circumstances would hinder the
normal operation of the protocol, and the server should be
able to overcome any issues that come up.

Irrespective of the reason behind that (network failure,
client failure) the server may receive no answer from a cli-
ent when requesting for the auxiliary processing clients pro-
vide. In that case, and after a timeout period, the server shall
make the same request to another client, to get the required
results. If a client is unresponsive, the server may tempo-
rarily exclude it from the list of clients to request auxiliary
processing from, to minimize the probability of the failure
being repeated.

Theoretically, in a fault-free scenario, and given that the
number of clients is n, the total number of requests is nr and

Table 3   Total execution times for multithreaded experiments

Clients Alerts Total execution time (s)

1 thread 2 threads 3 threads 4 threads

3 10 0.058 0.030 0.021 0.016
3 30 0.529 0.275 0.192 0.146
3 60 2.121 1.103 0.772 0.586
3 90 4.776 2.484 1.738 1.319
3 120 8.495 4.418 3.092 2.346
4 10 0.087 0.045 0.032 0.024
4 30 0.788 0.410 0.287 0.218
4 60 3.158 1.642 1.149 0.872
4 90 7.112 3.699 2.588 1.964
4 120 12.648 6.578 4.603 3.493
5 10 0.118 0.061 0.043 0.033
5 30 1.069 0.556 0.389 0.295
5 60 4.285 2.228 1.559 1.183
5 90 9.648 5.018 3.511 2.664
5 120 17.156 8.922 6.244 4.738
6 10 0.152 0.079 0.055 0.042
6 30 1.376 0.716 0.501 0.380
6 60 5.510 2.866 2.005 1.522
6 90 12.404 6.451 4.514 3.426
6 120 22.058 11.472 8.028 6.092

367Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

the average time per request is tav , the time required for the
process to complete is :

If, for the same setup, there was a failure rate pf (requests
to clients failed with pf probability), then the total time
required would be :

where tt is the timeout time that the server waits before re-
dispatching a request. The increased time (with delay) with
respect to the time required in the fault-free scenario is as
follows :

And by making all the calculations, the delay is :

In Eq. 32, it is obvious that failure probability is the deciding
factor for the effect to the performance of the system. For
example, given a relatively safe timeout time value (e.g.,
tt = 10 ∗ tav ), then a failure probability of 10% (which is an
extreme case) would end up with halving the system’s alert
processing rate. The processing rate of the system for fault-
free scenarios is at least one magnitude higher than required
in real-world situations. Thus, it can be conducted that the
proposed system can withstand the delay induced by failures
in a real-world network environment, with no issues.

7.6 � Privacy analysis

The main advantage of the proposed system is that organiza-
tions can collaboratively cluster their alerts without leaking
the relevant data, and avoid any personal private informa-
tion disclosure, for the organization itself or for its users. To
overcome the limitations of the Paillier algorithm, we have
opted for involving the clients in the operation. Clients hold
the cryptographic keys, so they can decrypt values, commit
the required operation and encrypt the result before sending
it back to the trusted third-party server.

By using this approach, some information of clients is
disclosed to other clients, but this happens in a privacy-
respecting manner. As we have analyzed in Sect. 5, the
trusted third-party server obfuscates encrypted values before
sending those to the clients for processing.

(29)timetot =
nr ∗ tav

n

(30)timef
tot

=
nr ∗ (1 − pf)tav + nr ∗ pf ∗ (tav + tt)

n

(31)delay =
timef

tot

timetot
=

nr∗(1−pf)tav+nr∗pf∗(tav+tt)

n

nr∗tav

n

(32)delay =
tav + tt ∗ pf

tav

7.6.1 � Obfuscation of auxiliary services

Specifically, in the multiplication use case, the server sends
values x + rx and y + ry to the client instead of x and y. It is
impossible for the client to calculate the initial values of x
and y as there is no restriction for rx and ry.

For the comparison use case, all values are multiplied
by a highly composite number r, to hinder the client from
getting to know the exact values. One minor drawback for
this use case is that client finds out which elements are zero
valued. The order of the elements though has been scram-
bled by the server, so the client can only conclude on the
percentage of the zero-value elements out of all elements,
but cannot learn to which alerts or clusters these elements
may correspond.

Finally, regarding the absolute value use case, the client
cannot conclude on the value of b as the submitted numbers
have multiple divisors. Practically, the client cannot con-
clude on the value of z element that the server needs to know
the absolute value of.

7.6.2 � Proposed approach privacy analysis

During multiplications and absolute value calculations, there
is no privacy leakage to the processing clients. The values
sent as input from the server are sufficiently obfuscated, and
clients cannot conduct any useful information regarding the
actual values. The only part of the protocol that may reveal
information to the clients is the comparison auxiliary service
provided by the clients to the server. This functionality is
used during each K-medoids round in the construction of
BTC and CC matrices. Server needs to send a vector of ele-
ments to a client, in order for the client to pick the minimum
value. With the BTC matrix, the elements of the vector are
the distances of a single alert regarding all the clusters’ cent-
ers (rows of DFC matrix). In the case of the CC matrix, the
elements of the vector are calculated metrics for deciding the
new center of a cluster (columns of CCM matrix).

The server, before sending the vector to the client, mul-
tiplies each element by a common random variable r and
then scrambles the order of the elements. The client has to
decrypt all values to conduct the required processing, so it
get access to the obfuscated vector. The client can attempt
to calculate the common factors between all elements of the
vector and then try to conclude on the value of r. Finding the
common divisors of all the elements is a demanding task in
terms of resources and may end up with over one candidate
values for parameter r. If that is successful, the client will get
access to all the values of the vector, but without knowing
their proper order (as the order is scrambled).

As the client does not know which is the alert to which
the DFC row corresponds to or the cluster to which the CCM
column corresponds to, it cannot make any conclusions on

368	 G. Spathoulas et al.

1 3

the features of alerts and how those relate to the private
information of other clients. The only thing that the process-
ing client can probably do is recognizing that two different
requests (in two different K-medoids rounds) correspond to
the same alert or to the same cluster, as in that case many
of the elements should remain the same. That information
might give knowledge to the processing client about what
percentage of clusters has changed their centers (along with
the set of alerts they comprise) between the two rounds.
The probability that a client gets a vector for the same alert/
cluster over one times is relatively limited as the required
number of rounds for K-medoids to converge is 3–5. Thus,
in a setup with six clients, a client may never process vectors
for the same alert/cluster for the second time. Even if that
is the case, the information that the client gets is related the
procedure and not to the private data of others.

To assess the probability that a client may get access
to information regarding how a cluster evolves through
K-medoids rounds, an experiment has been conducted. For
fixed parameters regarding number of clients, number of
alerts and number of clusters, the clustering procedure has
been repeated multiple times. At each one of these iterations,
the actual data points have been varied and the ability of
any client to conclude upon information regarding clusters
formation has been checked. Through this experiment, we
have calculated the probability of such information leak-
age. The results of the procedure are depicted in Table 4.
The table shows the probability that a random client gets

information about how a cluster is evolving between two
different K-medoids rounds. The private data of the clients
remain out of reach for other clients.

From the results, it is obvious that as the number of
clients increases, the probability that they get vectors for
the same alert or the same cluster twice decreases. While
there is no direct privacy leakage for clients, it seems that
relatively larger sets of clients are safer with respect to this
information disclosure to clients.

7.6.3 � GDPR limitations

In a real-world scenario, the application of the proposed
method would trigger concerns regarding the fact that organ-
izations process data of other organizations. Specifically,
under the General Data Protection Regulation (GDPR),
this could create an important practical issue. The proposed
approach requires organizations to process others’ data, but
under two significant constraints:

–	 Data are anonymized; thus, an organization does not have
any indication to which of the other organizations the
data, being processed, belong to.

–	 Data are obfuscated; thus, even by getting access to an
obfuscated value, the processing organization does not
get to know to which real value it reflects.

Under the aforementioned rules, the privacy implications
are minimized and it would be more feasible to have par-
ticipating organizations consent to the specific scheme that
would allow others to process a part of their data. Given
that organizations give their consent when they accept to
become members of this collaborative intrusion detection
consortium, there should be no GDPR issues in the long run.

8 � Conclusions and future work

The system proposed enables privacy-preserving alert clus-
tering between multiple organizations. Such alerts post-
processing may reveal important information about cyber-
attacks being conducted and set the organizations able to
efficiently protect their networks. To comply with the real-
world requirements, the proposed system protects the pri-
vacy of the participating organizations. This comes with a
cost, as to preserve privacy the system has to bear with a
performance penalty. As it is shown in Sect. 7, the rate, at
which the system can cluster alerts, depends on the hardware
used and it is expected that participating organizations will
use sufficient hardware resources.

It has been proven that it is possible to conduct privacy-
preserving alerts clustering between different organizations.
Given that these organizations are willing to invest in the

Table 4   Probability of clients concluding information about clusters

Clients Alerts/client Probability

3 10 0.19
3 30 0.27
3 60 0.22
3 90 0.26
3 120 0.26
4 10 0.22
4 30 0.18
4 60 0.20
4 90 0.23
4 120 0.16
5 10 0.13
5 30 0.13
5 60 0.10
5 90 0.11
5 120 0.19
6 10 0.08
6 30 0.04
6 60 0.06
6 90 0.05
6 120 0.09

369Using homomorphic encryption for privacy‑preserving clustering of intrusion detection alerts﻿	

1 3

required hardware, according to their needs, it is possible to
make this collaboration scheme effective and able to process
alerts without inducing any significant overhead.

A requirement for the system to function properly is that
all participants, the server and the clients, operate according
to the protocol. Every participant adheres to the honest but
curious model; thus, they send the proper values calculated
according to the protocol. At the same time, they may try
to get access to available private information regarding oth-
ers. The privacy of participants is protected by the proposed
methodology, as it is analyzed in Sect. 7.6. The integrity
of the calculations is protected by the honesty of the par-
ticipants. If a malicious client (or even a malicious server)
attempts to destroy the calculations’ workflow, it is easy to
do so by sending invalid data to others. Given the fact that
data in the system are mainly encrypted, it is challenging
to do any integrity checking, to prevent participants from
sending invalid inputs.

Regarding future work, we intend to justify that the
method presented is appropriate for scaling up with hard-
ware. The system implemented is going to be tested in more
demanding conditions. We plan to test the system with
higher traffic and alert rates, while using more capable hard-
ware. This approach will reveal any performance bottleneck
that our approach may suffer from.

Another improvement to the approach would be to use an
alternative encryption algorithm such as the homomorphic
encryption scheme BGN [5] that would enable more pro-
cessing on the trusted third-party side. BGN algorithm may
create the need for more resources in the TTP server side,
but would significantly limit the required network commu-
nications. This would have a positive effect on both perfor-
mance and privacy protection.

Compliance with ethical standards 

Ethical approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

References

	 1.	 Andreolini, M., Colajanni, M., Marchetti, M.: A collabora-
tive framework for intrusion detection in mobile networks.
Inf. Sci. 321(C), 179–192 (2015). https​://doi.org/10.1016/j.
ins.2015.03.025

	 2.	 Axelsson, S.: The base-rate fallacy and the difficulty of intrusion
detection. ACM Trans. Inf. Syst. Secur. (TISSEC) 3(3), 186–205
(2000)

	 3.	 Barry, B.I.A., Chan, H.A.: Intrusion Detection Systems, pp. 193–
205. Springer, Berlin (2010)

	 4.	 Benali, F., Bennani, N., Gianini, G., Cimato, S.: A distributed
and privacy-preserving method for network intrusion detection.

In: OTM Confederated International Conferences On the Move
to Meaningful Internet Systems, pp. 861–875. Springer (2010)

	 5.	 Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on
ciphertexts. In: Theory of Cryptography Conference, pp. 325–341.
Springer (2005)

	 6.	 Dara, S., Muralidhara, V.: Privacy preserving architectures for col-
laborative intrusion detection. arXiv preprint arXiv​:1602.02452​
(2016)

	 7.	 Davis, C.: The norm of the schur product operation. Numer. Math.
4(1), 343–344 (1962). https​://doi.org/10.1007/BF013​86329​

	 8.	 Dermott, A., Shi, Q., Kifayat, K.: Collaborative intrusion detection
in federated cloud environments. J. Comput. Sci. Appl. 3(3A),
10–20 (2015). https​://doi.org/10.12691​/jcsa-3-3A-2

	 9.	 Do, H.G., Ng, W.K.: Privacy-preserving approach for sharing
and processing intrusion alert data. In: 2015 IEEE Tenth Inter-
national Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), pp. 1–6. IEEE (2015)

	10.	 Fayi, S.Y.A.: What petya/notpetya ransomware is and what its
remidiations are. In: Information Technology-New Generations,
pp. 93–100. Springer (2018)

	11.	 Francois, J., Aib, I., Boutaba, R.: Firecol: a collaborative protec-
tion network for the detection of flooding ddos attacks. IEEE/
ACM Trans. Netw. 20(6), 1828–1841 (2012)

	12.	 Gogoi, P., Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.:
Packet and flow based network intrusion dataset. In: Parashar,
M., Kaushik, D., Rana, O.F., Samtaney, R., Yang, Y., Zomaya,
A. (eds.) Contemporary Computing, pp. 322–334. Springer,
Berlin (2012)

	13.	 Ho, C.Y., Lai, Y.C., Chen, I.W., Wang, F.Y., Tai, W.H.: Statisti-
cal analysis of false positives and false negatives from real traf-
fic with intrusion detection/prevention systems. IEEE Commun.
Mag. 50(3), 146–154 (2012)

	14.	 Hong, J., Liu, C.C.: Intelligent electronic devices with collab-
orative intrusion detection systems. IEEE Trans. Smart Grid
PP(99), 1-1 (2017). https​://doi.org/10.1109/TSG.2017.27378​26

	15.	 Horn, R.A.: The hadamard product. Proc. Symp. Appl. Math.
40, 87–169 (1990)

	16.	 Jin, R., He, X., Dai, H.: On the tradeoff between privacy and
utility in collaborative intrusion detection systems-a game
theoretical approach. In: Proceedings of the Hot Topics in
Science of Security: Symposium and Bootcamp, HoTSoS,
pp. 45–51. ACM, New York, NY, USA (2017). https​://doi.
org/10.1145/30553​05.30553​11

	17.	 Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the
iot: Mirai and other botnets. Computer 50(7), 80–84 (2017)

	18.	 Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion Detection: A
Survey, pp. 19–78. Springer, Boston (2005)

	19.	 Li, W., Meng, W., Kwok, L.F., Horace, H.: S: Enhancing col-
laborative intrusion detection networks against insider attacks
using supervised intrusion sensitivity-based trust management
model. J. Netw. Comput. Appl. 77, 135–145 (2017). https​://doi.
org/10.1016/j.jnca.2016.09.014

	20.	 Liang, H., Ge, Y., Wang, W., Chen, L.: Collaborative intrusion
detection as a service in cloud computing environment. In: 2015
IEEE International Conference on Progress in Informatics and
Computing (PIC), pp. 476–480 (2015). https​://doi.org/10.1109/
PIC.2015.74898​93

	21.	 McHugh, J., Christie, A., Allen, J.: Defending yourself: the role
of intrusion detection systems. IEEE Softw. 17(5), 42–51 (2000)

	22.	 Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D.:
Evaluating computer intrusion detection systems: a survey of
common practices. ACM Comput. Surv. (CSUR) 48(1), 12 (2015)

	23.	 Morais, A., Cavalli, A.: A distributed and collaborative intru-
sion detection architecture for wireless mesh networks. Mobile
Netw. Appl. 19(1), 101–120 (2014). https​://doi.org/10.1007/s1103​
6-013-0457-8

https://doi.org/10.1016/j.ins.2015.03.025
https://doi.org/10.1016/j.ins.2015.03.025
http://arxiv.org/abs/1602.02452
https://doi.org/10.1007/BF01386329
https://doi.org/10.12691/jcsa-3-3A-2
https://doi.org/10.1109/TSG.2017.2737826
https://doi.org/10.1145/3055305.3055311
https://doi.org/10.1145/3055305.3055311
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1109/PIC.2015.7489893
https://doi.org/10.1109/PIC.2015.7489893
https://doi.org/10.1007/s11036-013-0457-8
https://doi.org/10.1007/s11036-013-0457-8

370	 G. Spathoulas et al.

1 3

	24.	 Nicolas, J.L., Robin, G.: Highly composite numbers by srini-
vasa ramanujan. Ramanujan J. 1(2), 119–153 (1997). https​://doi.
org/10.1023/A:10097​64017​495

	25.	 Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. In: International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 223–238.
Springer (1999)

	26.	 Pietraszek, T., Tanner, A.: Data mining and machine learning-
towards reducing false positives in intrusion detection. Inf. Secur.
Tech. Rep. 10(3), 169–183 (2005)

	27.	 Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.:
A survey of network-based intrusion detection data sets. Comput.
Secur. 86, 147–167 (2019)

	28.	 Roesch, M.: Snort—lightweight intrusion detection for net-
works. In: Proceedings of the 13th USENIX Conference on
System Administration, LISA’99, pp. 229–238. USENIX Asso-
ciation, Berkeley, CA, USA (1999). http://dl.acm.org/citat​ion.
cfm?id=10398​34.10398​64

	29.	 Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 31(3), 357–374 (2012).
https​://doi.org/10.1016/j.cose.2011.12.012

	30.	 Singh, S.S., Chauhan, N.: K-means v/s k-medoids: a comparative
study. In: National Conference on Recent Trends in Engineering
& Technology, vol. 13 (2011)

	31.	 Sommer, R., Paxson, V.: Outside the closed world: on using
machine learning for network intrusion detection. In: 2010 IEEE
Symposium on Security and Privacy (SP), pp. 305–316. IEEE
(2010)

	32.	 Spathoulas, G.P., Katsikas, S.K.: Reducing false positives in intru-
sion detection systems. Comput. Secur. 29(1), 35–44 (2010)

	33.	 Tan, Z., Nagar, U.T., He, X., Nanda, P., Liu, R.P., Wang, S., Hu, J.:
Enhancing big data security with collaborative intrusion detection.
IEEE Cloud Comput. 1(3), 27–33 (2014). https​://doi.org/10.1109/
MCC.2014.53

	34.	 Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer,
M.: Taxonomy and survey of collaborative intrusion detection.
ACM Comput. Surv. (CSUR) 47(4), 55 (2015)

	35.	 Vasilomanolakis, E., Krügl, M., Cordero, C.G., Mühlhäuser, M.,
Fischer, M.: Skipmon: A locality-aware collaborative intrusion
detection system. In: 2015 IEEE 34th International Performance
Computing and Communications Conference (IPCCC), pp. 1–8
(2015). https​://doi.org/10.1109/PCCC.2015.74102​82

	36.	 Wang, Y., Meng, W., Li, W., Li, J., Liu, W.X., Xiang, Y.: A fog-
based privacy-preserving approach for distributed signature-based
intrusion detection. J. Parallel Distrib. Comput. 122, 26–35 (2018)

	37.	 Wang, Y., Xie, L., Li, W., Meng, W., Li, J.: A privacy-preserving
framework for collaborative intrusion detection networks through
fog computing. In: Wen, S., Wu, W., Castiglione, A. (eds.) Cyber-
space Safety and Security, pp. 267–279. Springer International
Publishing, Cham (2017)

	38.	 Zhang, P., Huang, X., Sun, X., Wang, H., Ma, Y.: Privacy-preserv-
ing anomaly detection across multi-domain networks. In: 2012
9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), pp. 1066–1070. IEEE (2012)

	39.	 Zhou, C.V., Karunasekera, S., Leckie, C.: Evaluation of a decen-
tralized architecture for large scale collaborative intrusion detec-
tion. In: 2007 10th IFIP/IEEE International Symposium on Inte-
grated Network Management, pp. 80–89 (2007)

	40.	 Zhou, C.V., Leckie, C., Karunasekera, S.: Decentralized multi-
dimensional alert correlation for collaborative intrusion detec-
tion. J. Netw. Comput. Appl. 32(5), 1106–1123 (2009). https​://
doi.org/10.1016/j.jnca.2009.02.010. Next Generation Content
Networks

	41.	 Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated
attacks and collaborative intrusion detection. Comput. Secur.
29(1), 124–140 (2010)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1023/A:1009764017495
https://doi.org/10.1023/A:1009764017495
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/MCC.2014.53
https://doi.org/10.1109/MCC.2014.53
https://doi.org/10.1109/PCCC.2015.7410282
https://doi.org/10.1016/j.jnca.2009.02.010
https://doi.org/10.1016/j.jnca.2009.02.010

	Using homomorphic encryption for privacy-preserving clustering of intrusion detection alerts
	Abstract
	1 Introduction
	2 Related work
	2.1 Collaborative intrusion detection
	2.2 Requirement for privacy
	2.3 Privacy-preserving approaches
	2.4 Our contribution

	3 Concept
	4 Prerequisites
	4.1 K-medoids
	4.2 Paillier
	4.2.1 Encryption: decryption
	4.2.2 Homomorphic properties

	5 System design
	5.1 Architecture
	5.2 Distance between alerts
	5.2.1 External IP distance coefficient
	5.2.2 Alert signature distance coefficient
	5.2.3 Alert class distance coefficient
	5.2.4 Alert time distance coefficient
	5.2.5 Distance calculation

	5.3 Clients
	5.4 Server
	5.5 Auxiliary client calculations
	5.5.1 Multiplication
	5.5.2 Comparison
	5.5.3 Absolute value

	5.6 Workflow
	5.6.1 Clients send data to server
	5.6.2 Server calculates the rest of the distances
	5.6.3 Server commits clustering
	5.6.4 Server returns the results

	6 Implementation
	6.1 Main parameters
	6.2 Calculations
	6.2.1 Vectors and matrices
	6.2.2 Constructing DIST matrix
	6.2.3 A typical K-medoids round

	7 Experiments
	7.1 Dataset
	7.2 Experiment setup
	7.3 Remote processing estimation
	7.4 Results
	7.5 Performance analysis
	7.6 Privacy analysis
	7.6.1 Obfuscation of auxiliary services
	7.6.2 Proposed approach privacy analysis
	7.6.3 GDPR limitations

	8 Conclusions and future work
	References

