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Abstract
Cyber-security attacks are becoming more frequent and more severe day by day. To detect the execution of such attacks, 
organizations install intrusion detection systems. It would be beneficial for such organizations to collaborate, to better assess 
the severity and the importance of each detected attack. On the other hand, it is very difficult for them to exchange data, such 
as network traffic or intrusion detection alerts, due to privacy reasons. A privacy-preserving collaboration system for attack 
detection is proposed in this paper. Specifically, homomorphic encryption is used to perform alerts clustering at an inter-
organizational level, with the use of an honest but curious trusted third party. Results have shown that privacy-preserving 
clustering of intrusion detection alerts is feasible, with a tolerable performance overhead.
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1  Introduction

Security has become one of the most important aspects of 
digital life. As installed systems and services become larger 
and more complex, their attack surface becomes more dif-
ficult to be controlled and protected. Organizations try to 
protect their digital infrastructure through the use of vari-
ous countermeasures, and one of those is intrusion detection 
systems [3, 21]. The main concept in such systems is the 
analysis of data relevant to the activity of hosts or networks, 
to detect cyber-security events that occur in the protected 
system.

Through the last two decades, the security research 
community has been very active in the intrusion detection 
domain. Multiple systems, employing various approaches, 
have been proposed, to increase the detection performance 
against various attacks. The main taxonomies of intrusion 
detection systems are network-based systems, which analyze 

the traffic in a protected network, and host-based systems, 
which analyze the logs, the integrity checking results and the 
traffic from a specific host. Additionally, such systems are 
categorized according to the detection approach they use, 
with the main options being misuse detection and anomaly 
detection. Misuse detection-based systems detect predefined 
patterns of malicious activity and then produce informative 
alerts. On the other hand, anomaly-based systems model the 
normal activity and then detect significant deviations from 
that. The alerts produced by such systems are less informa-
tive about the actual attack going on. [18]

While intrusion detection systems detect a significant por-
tion of the attacks executed against an organization, their 
performance has been proven insufficient [2, 13]. They fail 
to detect an important percentage of committed attacks, 
especially when it comes to recent attacks that have not been 
modeled by misuse based systems [22, 31]. Moreover, they 
produce a high rate of false-positive results, which are alerts 
that do not correspond to real attacks [26, 32]. This hinders 
such systems from providing high-quality representation of 
the committed attacks, even in the cases that those are suc-
cessfully detected.

An interesting approach that enables intrusion detection 
systems to produce better results is collaborative intrusion 
detection [34, 41], where multiple intrusion detection sys-
tems, installed in different organizations, collaborate, to 
produce more accurate results. The data collected at each 
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system may not be sufficient to detect an attack, while the 
aggregation of such data can be used to achieve better detec-
tion accuracy.

While collaborative intrusion detection seems like a 
promising approach, its use raises a significant issue related 
to privacy violations due to the exchange of information 
between organizations. Independently of the exact infor-
mation exchanged (this can be raw traffic data or intrusion 
detection alerts), a significant privacy violation risk is pre-
sent, which has recently been recognized by the research 
community [4, 6, 38]. The standard way to process intru-
sion detection alerts produced by different organizations is to 
gather such alerts on a single node and commit the required 
processing there. Irrespective of whether this node belongs 
to one of the organizations or not, its owner has access to 
all alerts’ fields for all organizations. Those fields contain 
private data related to network connections. IPs of com-
munications that happen in organizations’ networks (e.g., 
an organization’s employee accesses an external server or 
an organization’s client accesses a service offered by the 
organization) are revealed along with the services (ports) 
those communications refer to. Additionally, intrusion detec-
tion alerts reveal vulnerabilities that exist on those networks 
or attacks that have already happened against them. Such 
information is sensitive for both organizations and users 
interacting with their networks. Gathering all such data on 
a single node creates considerable privacy risks as the node 
controller cannot be fully trusted, while at the same time 
such a node can be a tempting target for malicious attackers, 
due to the significance of the stored data.

In this paper, a collaborative system for intrusion detec-
tion alerts clustering is proposed. It enables the clustering 
of alerts produced by different organizations, while at the 
same time it protects the privacy of each organization’s data. 
Inter-organizational clustering can produce a high-level rep-
resentation of large-scale attacks that may not be detected at 
the organization level or may reveal multiple instances of the 
same attack being executed against different organizations. 
The system consists of a trusted third party that adheres to 
the honest but curious model and one node per each organi-
zation that is locally installed and coupled with a local intru-
sion detection system. The proposed scheme is based on the 
use of homomorphic encryption, and the role of the trusted 
third party is to commit the required processing while hav-
ing access to encrypted data only. To preserve the privacy 
of the participating organizations, the homomorphic encryp-
tion algorithm Paillier [25], which enables the processing 
of encrypted data, has been employed. Specifically, all the 
participating nodes encrypt their alerts and submit those to 
the trusted third-party server. The latter conducts the cluster-
ing, without decrypting the data, and returns the resulting 
clusters’ information to the nodes, in encrypted form. Each 
node’s data are not exposed to the trusted third party or any 

other node, and all nodes get to know the clustering results. 
There is an initial step, during which the third party calcu-
lates a distance metric for all possible alerts’ pairs. Conse-
quently, it commits an iterative procedure for forming the 
clusters of alerts. The result of this procedure is clusters of 
similar alerts at an inter-organizational level. At the end of 
the procedure, the private information of organizations is not 
revealed nor to other organizations or the trusted third party. 
The trusted third party gets access only to encrypted data, 
while the organization’s nodes are not able to infer private 
data from other organizations.

The rest of the paper is structured as follows : Sect. 2 
discusses the related work, Sect. 3 describes the main con-
cept or the proposed approach, Sect. 4 presents prerequisite 
methods, Sect. 5 presents the architecture of the proposed 
system, Sect. 6 analyzes its implementation, Sect. 7 presents 
the experiments conducted along with the corresponding 
results and finally Sect. 8 discusses the main conclusions 
of the paper.

2 � Related work

There has been a lot of work on collaborative intrusion 
detection systems. Previous research efforts have shown that 
collaborative intrusion detection systems among multiple 
partners can be more effective than a single such system 
installed on the premises of a single organization. Recent 
research efforts have either highlighted the requirement for 
collaborative systems or have even proposed such archi-
tectures. We present a literature review of such efforts in 
this Section. Section 2.1 presents the applications of col-
laborative intrusion detection on different domains, Sect. 2.2 
discusses why privacy protection is significant in such 
schemes and Sect. 2.3 enumerates the recent approaches in 
privacy-preserving collaborative intrusion detection. Finally, 
Sect. 2.4 discusses the proposed system regarding related 
work.

2.1 � Collaborative intrusion detection

The requirement for moving on from single installations 
of intrusion detection agents to networks of collaborating 
agents installed in different networks has emerged in dif-
ferent domains such as cloud computing, multiple devices 
networks or detection of large-scale attacks.

Tan and Nagar discussed intrusion detection in cloud 
computing context [33] and concluded that an enhance-
ment to the security of cloud systems through collaborative 
intrusion detection is necessary. They propose a cooperative 
intrusion detection system characterized by fast detection, 
minimal false positive rates, scalability, self-adaption to 
changes in the cloud computing environment and resistance 
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to compromise. The primary components of the proposed 
architecture are cooperative agents and a central coordinator. 
While the system they propose seems interesting, they do not 
thoroughly analyze it, so their contribution is limited. Liang 
and Ge moved further by presenting a collaborative mul-
tilevel intrusion detection system for cloud computing, to 
achieve more accurate and effective protection in cloud envi-
ronments [20]. They deploy the intrusion detection system as 
a lightweight service through a noncentralized architecture 
between different cloud providers. Specifically, detectors are 
offered as a service, and machine learning methods are used 
to create detection rules. Authors also designed a mecha-
nism to exchange alerts between cloud systems and to share 
knowledge about attacks. Their experimental results have 
shown that their system enhances security when network 
attacks occur. Dermott, Shi and Kifayat developed a cloud 
intrusion detection method for collaborative intrusion detec-
tion to be used in a federated cloud environment [8]. They 
base the proposed approach upon the distribution of respon-
sibilities to set up a more resilient system. The main enti-
ties of the system are the cloud broker which offers security 
services to the rest, the monitoring nodes that act locally in 
each installation, the local coordinator that manages all local 
monitoring nodes and the global coordinator which all local 
coordinators refer to. They used the Dempster–Shafer theory 
to capture the findings of all monitoring nodes and to make 
the final decision about an attack. The aim of the system 
is to enable collaboration among cloud service providers, 
through a security as a service paradigm, in order for them 
to be more secure against different cloud threats.

Andreolini, Colajanni and Marchetti introduced a new 
category of attacks where an attacker breaks down the mali-
cious load in such a way that the most capable intrusion 
detection systems can detect no part of it [1]. Sending dif-
ferent parts of the payload from different networks enables 
the attackers to avoid being detected. They then proposed an 
original detection solution and implemented it as an exten-
sion of the Snort system that enables mobile network oper-
ators to collaboratively detect such attacks. The proposed 
scheme allows sharing of internal state information among 
multiple NIDSs deployed in different networks or network 
segments. They base the implementation on a lightweight 
agent and a set of plug-ins handling different protocols; thus, 
it is characterized by great flexibility in terms of deploy-
ment. Their experimental results confirmed the effectiveness 
of the proposed solution for various protocols at a negligi-
ble cost in terms of performance. Morais and Cavalli pro-
posed a distributed intrusion detection systems architecture 
for wireless mesh networks [23]. In such self-organized 
and self-configured networks, the nodes need to trust each 
other since a node depends on intermediate nodes to reach 
other nodes. Authors detect real-time attacks by analyzing 
traffic and creating corresponding communication flows. 

A distributed intrusion detection engine (DIDE) applies 
restrictions to these flows, while a cooperative consensus 
mechanism (CCM) performs bad behavior measurements to 
identify the source of the intrusions. The system was imple-
mented on a virtual mesh network platform, and experimen-
tal results have shown that it detects message-based attacks 
with high accuracy and low resources requirements. Hong 
and Liu studied the use of collaborative intrusion detection 
on a network of smart electronic devices [14]. They have 
had a significant contribution regarding the actual integra-
tion of intrusion detection systems with electronic devices, 
as they have designed and implemented the integrated 
devices. These devices can monitor and detect abnormal 
network behavior. They also can work with other neighbor-
ing devices to make accurate decisions and detect the ori-
gins of attacks. Because of having the intrusion detection 
system implemented on the hardware layer of the devices, 
their approach can provide reliable, fault-free and very effi-
cient intrusion detection functionality. In their experiments, 
a common embedded system was used to measure the pro-
posed system’s performance for a power supply network. 
The results showed that the network of electronic devices 
worked accurately and efficiently.

Large-scale attacks detection has also been proposed 
as a domain for collaborative intrusion detection applica-
tion by Zhou [39]. They propose a scalable decentralized 
framework which provides a platform for sharing suspicious 
evidence between participants to detect large-scale attacks 
at an early stage. Each local node periodically sends evi-
dence collected from its own sub-network to the large-scale 
intrusion detection service, and it is notified if the evidence 
has been confirmed as a potential attack. All suspicious evi-
dence is exchanged anonymously. Authors state that if there 
is sufficient geographical diversity among the participants, 
then their system can detect stealthy port-scans or worm 
outbreaks at an early stage. The same authors [40] proposed 
a multidimensional alert clustering algorithm for extracting 
important patterns from alerts. They used a two-phase corre-
lation algorithm that first clusters the alerts locally into each 
IDS and then reports significant alert patterns to a common 
IDS correlation network. Through a probabilistic approach, 
they decide when a pattern at the local level is important 
enough, to use it at the network level. Their experiments 
have shown that this approach can achieve a significant 
reduction in the number of false alerts. On the same concept, 
Francois and others have presented a collaborative system 
that detects flooding DDoS attacks at the Internet service 
provider (ISP) level before those reach the victim host [11]. 
The authors propose a distributed architecture composed of 
multiple ISPs who collaborate by computing and exchang-
ing belief scores on potential attacks. The calculation of the 
threat score is based on the overall traffic bandwidth directed 
to the customer compared to the maximum bandwidth it 
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supports. The results obtained through experiments show 
that the proposed system is much more capable of single 
installations of intrusion detection systems in different ISPs 
regarding detecting flooding attacks.

2.2 � Requirement for privacy

Jin et al. [16] studied the required compromise between 
privacy and utility, when using a collaborative intrusion 
detection system, through a game theoretic approach. They 
proposed a two-level game with one leader and multiple 
followers. According to their theoretical analysis, it is pos-
sible to model the expected behavior of the attacker and the 
intrusion detection system, and to produce a utility–privacy 
curve. In addition, Nash equilibrium was proven and an 
asynchronous dynamic algorithm was proposed to calcu-
late the best collaborative strategies for intrusion detection 
systems. Finally, through a simulation, they tried to validate 
their analysis.

The team of Li and Meng [19] created a trust model for 
intrusion detection systems’ networks. They used machine 
learning techniques to automate assessing trust. Specifically, 
they tried to enable intrusion detection systems to automati-
cally decide if they should trust other systems or not. For 
evaluation, they compared the performance of three differ-
ent supervised classifiers, while they also tested their trust 
model under different attack scenarios. Their experimental 
results showed that it is very important to have increased 
trust between nodes in such networks and a misbehaving 
node may create large issues for other participants. The pro-
posed trust model can enhance the accuracy of detection of 
malicious nodes.

2.3 � Privacy‑preserving approaches

While it is commonly accepted that global collaborative 
intrusion detection systems can enhance results obtained 
by local systems, it is not possible to overlook the privacy 
implications of such schemes. There are references in the 
literature which are focused on providing privacy-preserving 
methodologies for collaborative intrusion detection but most 
of it is work in progress or methods that solve too specific 
problems.

Multiple approaches are still in the early stages or lack 
robust technical implementation. Dara and Muralidhara [6] 
presented the landscape of privacy-preserving collabora-
tive intrusion detection in a position paper and discussed 
potential architectures. Zhang et al. [38] proposed a secure 
multiparty computation method to conduct PCA upon data 
collected from different organizations. Finally, Benali and 
others presented ideas on privacy-preserving methods to ena-
ble the network manager to collect information on the state 
of the network from different nodes and react to abnormal 

situations [4]. Authors in [9] presented an approach that is 
based on storing homomorphically encrypted alerts of dif-
ferent intrusion detection systems on a common infrastruc-
ture and then provided the means for checking the similarity 
between a pair of alerts. While there is no concrete technical 
presentation of the solution, the method used is interesting 
and could be used as the basis for more mature solutions.

In other cases, more advanced research efforts focus on 
more specific problems of the domain. Vasilomanolakis and 
Krugl analyzed the need to move from the traditionally iso-
lated intrusion detection systems to a large and distributed 
IDS (CIDS) [35]. They presented a new CIDS approach, 
which is able to share alarms only on tracking sensors that 
may communicate with each other. In addition, when data 
are being distributed, they argue that the system ensures that 
the data are protected. Authors in [36, 37] proposed a fog-
based privacy-preserving approach for distributed signature-
based intrusion detection, where they focus on offloading 
the procedure of conducting signature matching calcula-
tions to cloud-based infrastructure. To protect data privacy, 
they have used Rabin fingerprint algorithm to conduct the 
required calculations and to prevent the cloud provider from 
getting access to sensitive data of the installation.

2.4 � Our contribution

The review of the relevant literature clarifies that using col-
laborative intrusion detection structures can bring a signifi-
cant efficiency improvement regarding traditional systems. 
Despite the plethora of published work in the domain, few 
researchers are dealing with privacy leakage in such col-
laborative systems. Data collected by intrusion detection 
systems contain sensitive personal information of both the 
protected organization and the individuals using its services. 
Exchanging traffic data or the outcome of any kind of pro-
cessing of such data violates privacy of anyone related to the 
corresponding traffic flows.

In the present paper, we present one of the first research 
efforts to develop a complete system, which will enable mul-
tiple collaborating intrusion detection systems to unify their 
results in a privacy-preserving way. The presented workflow 
allows for a privacy preserving clustering procedure that 
will end up with clusters of similar alerts between different 
organizations, without though leaking any private data of 
their users.

3 � Concept

In this and in the subsequent sections, the proposed system 
is thoroughly described. In the current section, we give the 
general concept of the system, we present specific examples 
for its use and we briefly describe its functionality. The main 
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underlying mathematical concepts are discussed in Sect. 4, 
and the detailed description of the system’s architecture and 
workflow are presented in Sect. 5.

Current cyber-security landscape is characterized by 
large-scale attacks during which similar events take place 
at the same time in different networks or systems. These 
may either relate to different instances of the same attack 
executed by the same or different attackers against multiple 
targets or be part of a single distributed attack (e.g., distrib-
uted denial of service attack).

For such cyber-security attacks, the combination of 
detected events on different networks or organizations could 
improve the detection accuracy or the assessment of the 
attacks’ severity. An example could be a distributed attack 
such as the distributed denial of service attempts. Recently, 
Mirai [17] botnet attacks have created significant problems 
globally, as attackers took control of many IoT devices and 
used those to execute a large-scale denial of service attacks. 
The combination of the IDSs findings for each one of the 
networks to which the infected devices belonged would 
enable the timely detection of the attack and would allow to 
perform more efficient mitigation measures. Apart from that, 
there are attacks that, because of a recently disclosed vulner-
ability or the release of new tooling, tend to happen concur-
rently against different targets across over one organization. 
Such an example is recent ransomware attacks [10], where 
the release of such tools triggered a series of similar attack 
attempts against different organizations. In such cases, a col-
laborative clustering approach would enable the formation 
of clusters, representative of the magnitude of the problem. 
This would reveal the volume of attack attempts and would 
help to better protect uninfected installations.

The main concept in this paper is the combination of the 
results got locally at different organizations through their 
network IDS, which can produce useful information about 
such attacks and enable the faster and more effective appli-
cation of mitigation measures. By clustering of alerts pro-
duced by different organizations, the produced result will be 
clusters that comprise similar alerts produced by resembling 
activity in different networks. A distributed attack or mul-
tiple executions of the same attack against different targets 
will produce a single cluster that will be informative about 
the ongoing activity.

To commit intrusion detection alerts clustering, the most 
significant alerts’ features that could reflect the similarity 
between alerts of different organizations have been selected. 
Features of alerts that are not significant or related to the 
local installation (e.g., network interface) have not been 
included as they are irrelevant to the global clustering pro-
cedure. Specifically, the features that have been used are:

–	 External IP address Each IDS alert holds the source 
and destination IP address of the IP packet that has 

triggered the alert. One of the two that is external to the 
network of the organization (IP of the host potentially 
committing the attack) is used as the first alert feature.

–	 Alert signature In signature-based IDSs, each alert is 
characterized by a signature id which corresponds to 
the specific signature (rule), upon which the alert has 
been triggered. Signatures are attack specific, and each 
one corresponds to a single attack.

–	 Alert class Each alert also carries a class feature which 
corresponds to the generic attack type the specific alert 
belongs to. Such classes correspond to broad catego-
ries of attacks such as attempted administrator privi-
lege gain, attempted denial of service, detection of a 
network scan or access to a potentially vulnerable web 
application.

–	 Time stamp Each alert holds a time stamp which corre-
sponds to the exact time of the packet that has triggered 
the alert. This is very useful for correlating events that 
happen concurrently in different networks, as different 
parts of a large scale attack.

We use the aforementioned features, to compute a distance 
metric between pairs of alerts that is directly related to their 
similarity. Upon this distance metric, the proposed method 
creates clusters of similar alerts that can reveal informa-
tion about attacks that affect over one organization at the 
same time. While bringing together on a single host, the 
features for each alert of each organization would enable the 
execution of any clustering algorithm and it would also raise 
significant privacy concerns. The alerts are related to the 
network traffic of the organization and could reveal sensitive 
information about its users.

To overcome such concerns, an alternative approach, 
based on homomorphic encryption, has been chosen. Homo-
morphic encryption enables the processing of encrypted data 
and the production of encrypted results. Fully homomorphic 
encryption techniques offer more flexibility regarding the 
processing allowed, but are not yet efficient enough, to be 
used in large-scale computations. Partially homomorphic 
encryption algorithms impose restrictions on the calcula-
tions that can be carried on encrypted data, but are more 
efficient. Paillier encryption algorithm has been chosen as 
it offers a good balance between calculations feasibility and 
processing efficiency.

There is a trusted third-party server that functions as the 
main point for the procedure, while there is a client at each 
organization, which is coupled with a local IDS. Each cli-
ent of the system (installed at each organization) gathers 
alerts produced locally for a specific time window. Clients 
share a common pair of Paillier encryption keys. They 
encrypt all the data they send to the server through the use 
of this key pair. Only encrypted data are sent to the server 
and any processing that happens there is on encrypted data. 
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Consequently, the trusted third-party server commits the 
clustering procedure for the global set of encrypted alerts.

The process comprises an initial phase which is the cal-
culation of the encrypted distance between every pair of 
alerts and an iterative execution of the K-medoids clustering 
algorithm. K-medoids is a variation of K-means algorithm, 
where the center of each cluster is always one of the existing 
data points. This variation minimizes the distance calcula-
tion requirements, as all distances that may be required dur-
ing the process have been already calculated in the initial 
phase of our protocol.

Because of the limitations for the processing that can be 
carried out on encrypted data, as those will be analyzed in 
Sect. 4.2, there are specific points in the workflow at which 
the server cannot conduct the required calculations. In such 
cases, the server randomly picks a client, sends the input 
data (in encrypted form) to it and asks for the result. The 
client decrypts the data, commits the required processing, 
encrypts the result and sends that back to the server.

At the end of the procedure, encrypted information about 
the formed clusters is sent to the clients from the server. The 
clients can decrypt this information by using the shared Pail-
lier keys’ pair. This procedure is then repeated for the alerts 
gathered during the subsequent time window.

The following sections present the proposed method, and 
specifically, Sect. 4 discusses both K-medoids algorithm and 
Paillier encryption algorithm. Section 5 presents the high-
level design behind the proposed approach, and Sect. 6 con-
tains all the implementation details.

4 � Prerequisites

4.1 � K‑medoids

The K-medoids algorithm is a clustering algorithm that 
combines both K-means and medoidshift algorithms [30]. 
K-means and K-medoids algorithms are very similar as they 
both break down the set of data points into groups and then 
try to minimize the distance between the points belonging to 
each group and its center, by shifting points among groups. 
The main difference between the two algorithms is that 
K-medoids selects existing data points (medoids) as clusters’ 
centers, while k-means calculates an optimal center point for 
each cluster. Additionally, K-medoids typically uses Manhat-
tan distance, while k-means uses Euclidean distance.

K-medoids uses only distances between existing points, 
without generating new center points at each iteration. This 
characteristic makes K-medoids an appropriate choice for 
the proposed scheme, as it enables the calculation of dis-
tances for all pairs of points in advance. Then, during the 
iterative K-medoids rounds, the algorithm uses these precal-
culated distances and skips distance calculations.

The main steps of the algorithm are:

–	 Arbitrary selection of k points as the initial clusters’ cent-
ers (medoids) of the individual clusters.

–	 The procedure, with the following individual steps, is 
then repeated:

–	 Each one of the points is associated with the cluster 
represented by the nearest medoid

–	 For each medoid oj and for each object orandom 
belonging to this:

•	 Calculate the total cost S of the oj exchange with 
orandom

•	 If S < 0 replace oj with orandom

–	 The iterative process is completed when there is no 
change regarding the previous rounds.

4.2 � Paillier

Paillier cryptosystem [25] is a probabilistic asymmetric public 
key cryptographic algorithm. It is characterized by an addi-
tive homomorphic property, so given the public key and two 
encrypted numbers e1 and e2, one can calculate the encrypted 
result of their addition e1 + e2, with no decryption taking 
place. Key generation for Paillier algorithm is based on ran-
domly choosing two large prime numbers p and q.

4.2.1 � Encryption: decryption

Encryption procedure is characterized by a probabilistic 
property, as in order to encrypt a plain message m the for-
mula is :

where g is part of the public key and r is randomly selected, 
0 ≤ r < n

The decryption of ciphertext c is conducted by the for-
mula :

where � and � are parts of the private key and L(x) = x−1

n
.

4.2.2 � Homomorphic properties

The most notable features of the Paillier cryptosystem is the 
homomorphic properties it is characterized by and its nonde-
terministic encryption function. The encryption function is 
additionally homomorphic, and the following three proper-
ties enable partial processing of encrypted data :

(1)c = gm ⋅ rn mod n2

(2)e = L(c� mod n2) ⋅ � mod n
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–	 Homomorphic addition of encrypted values
	   It is possible to add two encrypted numbers, by calcu-

lating the product of the two corresponding ciphertexts. 
The result can then be decrypted into the sum of the 
respective plaintexts. 

–	 Homomorphic addition of an encrypted value and a non 
encrypted value

	   It is possible to add an encrypted number with a 
nonencrypted one. The product of a ciphertext and the 
g-based exponential of the nonencrypted number can 
then be decrypted into the sum of the plaintext and the 
nonencrypted number. 

–	 Homomorphic multiplication of an encrypted value and 
a nonencrypted value

	   It is possible to multiply an encrypted number by a 
nonencrypted one. If ciphertext is raised in the power of 
a nonencrypted number, then the result will be decrypted 
in the product of the plaintext and the nonencrypted num-
ber. 

–	 Homomorphic opposite of an encrypted value Addition-
ally, it is possible to calculate the encrypted opposite of 
an encrypted number. Because of the structure of Paillier 
algorithm, this can happen by calculating the multiplica-
tive inverse of the encrypted number with respect to n2 . 
This property can be used to conduct subtraction between 
two encrypted numbers. 

On the other hand, Paillier algorithm is partially homomor-
phic as given two ciphertexts, there is no way to calculate 
the encryption of the product of the corresponding plain-
texts, without knowing the private key. Additionally, there 
is no way to make a comparison of two encrypted values and 
decide which one of the two is larger than the other. These 
are the main limitations of the algorithm with respect to the 
proposed method requirements. As we will analyze it in sub-
sequent sections, it has been chosen to outsource infeasible 
calculations to clients, while the privacy of the values is still 
protected by obfuscation. The mechanism to achieve this is 
described in Sect. 5.5.

Finally, another interesting feature of the algorithm is 
the nondeterministic encryption. The integer r used during 
encryption is randomly selected, and that results into dif-
ferent ciphertexts produced by successive encryptions of 
the same plaintext. This property is important as it prevents 

(3)D(E(e1, r1) ⋅ E(e2, r2)modn2) = e1 + e2modn

(4)D(E(e1, r1) ⋅ g
e2modn2) = e1 + e2modn

(5)D(E(e1, r1)
e2modn2) = e1e2modn

(6)D(E(e)−1modn2) = −emodn

anyone who has access to the ciphertexts of two identical 
plaintexts, to perceive this equality.

We have chosen the Paillier encryption algorithm for the 
system proposed in the present paper, as it enables for cal-
culations required for alerts clustering to be done while the 
alerts’ data remain in encrypted form. To give an example 
for that, we assume that the data fields of two distinct alerts 
that belong to two different parties (organizations) have been 
encrypted with the same Paillier public key. As it will be 
further analyzed, in Sect. 5.2, the distance of the two alerts 
(inversely proportional to the their similarity) is calculated 
as a function of the values of the alert’s data fields.

Calculating the aforementioned distance would require 
one of the two parties to send the fields of the alert to the 
other which could then decrypt the received data and carry 
on the required calculations. That would directly violate 
the data privacy for the first party. An alternative option 
because of the homomorphic properties of Paillier algo-
rithm would be to have a third party that does not possess 
the corresponding Paillier private key but only the public 
one. In that case, and given that the two parties have share 
the encrypted alerts’ data with the third party, the latter can 
proceed with the calculation of the distance of the alerts by 
using the properties of Eqs. 3, 4, 5 and 6. The feasible cal-
culations are not unlimited, but by structuring the distance 
calculation formula appropriately it is feasible to conduct the 
required calculations with minimum data privacy loss. Thus, 
Paillier algorithm can be one of the main building blocks of 
a privacy-preserving alert clustering algorithm.

5 � System design

5.1 � Architecture

The proposed system enables multiple organizations to col-
laborate on processing the alerts produced by their intrusion 
detection systems, to make more meaningful conclusions out 
of those alerts. Specifically, the organizations can perform 
alerts’ clustering at an inter-organization level and produce 
global clusters that correspond to events that affect over 
one of them at the same time. The system comprises two 
subsystems, the client subsystem that is installed at every 
participating organization and the server subsystem that is 
installed at a trusted third party. These subsystems collabo-
rate, to commit the inter-organization clustering of the alerts.

The clients and the server commit the clustering for the 
alerts produced by the local IDSs for a given time window. 
When this procedure ends, it is repeated for the alerts of the 
next time window. The approach periodically produces the 
clusters of alerts of all organizations for the current time 
window. The size of the time window tw is configurable and 
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is related to the volume of alerts (which is on average pro-
portional to the volume of traffic) of the organizations.

Each one of the client subsystems is tightly coupled with 
a locally installed IDS. At the end of time windows, a client 
subsystem initially reads the alerts produced by the IDS and 
extracts the four main features for each alert, as described 
in Sect. 3, External IP address, Signature, Class and Time 
stamp. It then encrypts the values of these features by using 
the Paillier algorithm, and the resulting encrypted data are 
fed to the server, as a vector of four elements, to be used as 
input for the global clustering procedure. Throughout this 
procedure, the clients support the server, as some of the 
required operations are not feasible on the encrypted alert 
data. Finally, encrypted information about the produced clus-
ters is returned to the clients, where it can be decrypted, in 
order for each participating organization to get access to it.

The main processing, regarding alerts’ clustering, is exe-
cuted on the server subsystem, which is installed at a trusted 
third party. It receives the four encrypted features for each 
alert from the clients, and it executes the K-medoids cluster-
ing algorithm on them. Most of the required operations can be 
executed on the encrypted data. Whenever an operation is not 
feasible, because of the encryption, the server requests sup-
port from a randomly selected client, to conduct it. The result 
of the global procedure is encrypted information about the 
formed alerts’ clusters, which is then returned to the clients.

The general architecture of the system is depicted in 
Fig. 1, while we give a more detailed description of the pro-
cedure through the rest of Sect. 5.

5.2 � Distance between alerts

The main metric used to conduct the clustering is the dis-
tance between alerts. The more similar two alerts are, the 
less their distance is. So similar alerts eventually end up in 

the same clusters. The distance between two alerts is cal-
culated upon four distance coefficients, based on the four 
features presented in Sect. 3.

Specifically, the IP addresses distance coefficient provides 
the information on the similarity of two IP addresses. The 
least significant byte of the IP addresses is more important 
concerning the IPs comparison, and then the other bytes 
from last to first follow. Thus, a formula that takes into 
account the bytes in reverse order is required. The signature 
and class fields are categorical fields, and only an equality 
(or nonequality) relationship can be justified for their values. 
Thus, a simple comparison of values for these two features 
suffices for the distance calculation. The timestamp field is 
an integer field, and the distance between two values can 
be calculated by subtracting those. The subtraction and the 
calculation of the absolute value of the result would well 
indicate the similarity of two timestamp values. The calcula-
tion for each one of the four distance coefficients is presented 
in the next Subsections.

5.2.1 � External IP distance coefficient

The first distance coefficient dIP is decided upon the external 
IP of each alert. Each client extracts from the IP fields of the 
alert the IP address that does not belong to the network of 
the protected organization, denoted as IPext . This practically 
is the IP address of the external malicious attacker and may 
appear in either source or destination IP fields of the alert.

The coefficient is calculated according to the four bytes 
of the IP address. If the external IP addresses of alert ai are 
IPi

ext
∶ xi

4
.xi
3
.xi
2
.xi
1
 , then the distance of IP addresses is

(7)
dip(ai, aj) = 23 ∗ |xi

4
− x

j

4
| + 22 ∗ |xi

3
− x

j

3
|

+ 21 ∗ |xi
2
− x

j

2
| + 20 ∗ |xi

1
− x

j

1
|

Fig. 1   General architecture of the system
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It is obvious that the four bytes of the IP addresses are taken 
into account with different weights. The IP distance coef-
ficient is an integer in the range [0, dipmax] , and according to 
Eq. 7, dipmax = 3850.

5.2.2 � Alert signature distance coefficient

The second coefficient is calculated upon the alert signature 
(or alert id). This is an integer number that corresponds to 
the attack detected and is denoted as alertsig . The signature 
distance coefficient dsig between two alerts is a binary value 
that is equal to one if the two alerts share the same signature, 
while it is zero otherwise.

Signature distance coefficient is an integer in the range 
[0, 1].

5.2.3 � Alert class distance coefficient

Alerts, besides their signature, are also characterized by a 
more general class attribute, which denotes a more general 
attack type. Alerts with different signatures can belong to 
the same attack type. The class distance coefficient dclass 
between two alerts is a binary value equal to one if the two 
alerts share the same class, or zero otherwise.

Alert class distance coefficient is an integer in the range 
[0, 1].

5.2.4 � Alert time distance coefficient

The last distance coefficient is related to the time stamp of 
alerts, and more specifically to the difference of time stamps 
of the alerts to be compared. The time difference metric is 
upper bounded by the time window width tw.

Time distance coefficient is an integer in the range [0, tw].

5.2.5 � Distance calculation

The distance between two alerts ai, aj is denoted as d(ai, aj) 
and is calculated as a combination of the four distance coef-
ficients. It has to be noted that all coefficients are represented 
by integer values and thus it is feasible to use those within 
Paillier algorithm calculations. In order for all coefficients to 

(8)dsig(ai, aj) =

{
1 if ai

sig
= a

j

sig

0 otherwise

(9)dclass(ai, aj) =

{
1 if ai

class
= a

j

class

0 otherwise

(10)dtime(ai, aj) = |ai
time

− a
j

time
|

be equally taken into account when calculating the final dis-
tance, a normalization step is required. The range for coef-
ficients’ values differs significantly as it has been analyzed 
in the previous subsections. Normalization factors are used 
to make all coefficients equivalent.

The normalization factors are dependent to the maximum 
value for each coefficient. Specifically, the normalization 
factor for signature coefficient is the product of the maxi-
mum values of all other three coefficients, as depicted in 
Eqs. 11 and 12. Similarly, a normalization factor is prede-
fined for each coefficient and shared among clients:

Finally, after the four coefficients have been normalized, the 
final distance can be calculated according to Eq. 13:

5.3 � Clients

All the client subsystems share a common pair of Paillier 
keys. The private key of this pair shall not be available to 
the server entity. Clients gather alerts produced by the local 
IDSs for a time interval, which depends on the volume of 
traffic and is predecided among all partners. As soon as these 
alerts are produced for a specific time window, the client 
subsystems commit two tasks:

–	 They encrypt the four alerts fields with the common Pail-
lier public key

–	 They calculate the distances between the locally pro-
duced alerts and encrypt the distances with the common 
Paillier public key. The formula for calculating distance 
between two alerts is a function of the four main features 
of the two alerts, and it is analyzed in Sect. 5.2.

Clients send to the server the list of encrypted features of 
alerts, produced locally, along with the two-dimensional 
matrix (upper triangle) that contains the encrypted distances 
between these alerts.

As soon as all clients have sent their input, they become 
available to support the server. Server carries on with the 
clustering procedure on the encrypted data. This procedure 
is further analyzed in Sect. 6. Whenever the server needs to 
commit an unfeasible operation on a set of encrypted values, 
it randomly selects a client to send the values to, in order for 
the operation to be committed. The selected client decrypts 

(11)dsig
n

= dsig ∗ nf sig

(12)nf sig = dip
m
∗ dclass

m
∗ dtime

m

(13)
d(ai, aj) = dsig

n
(ai, aj) + dip

n
(ai, aj)

+ dclass
n

(ai, aj) + dtime
n

(ai, aj)
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the values with the common Paillier private key, commits 
the operation, encrypts the result with the common Paillier 
public key and returns it to the server. Specific measures are 
taken to protect data privacy, as it is analyzed in Sect. 5.5.

Finally, when the clustering is finalized, clients receive 
the resulting clusters’ information from the server and 
decrypt it by using the common Paillier private key.

5.4 � Server

At the end of each time interval, the server waits for all 
clients to send their input, four encrypted features of their 
alerts, along with the encrypted distances of all pairs formed 
between their alerts. As soon as the server receives all 
inputs, it calculates the distances between alerts of different 
clients. When these are calculated, the server builds a matrix 
with the distances of all the alerts’ pairs irrespective of their 
origin and starts executing the K-medoids algorithm.

The server makes use of the Paillier algorithm’s homo-
morphic properties, to commit additions between encrypted 
values and additions and multiplications between an 
encrypted value and a non-encrypted one. Whenever the 
server needs to commit any other operation, it requests sup-
port from a randomly selected client, as it has been stated in 
the previous section. This approach practically overcomes the 
limitations of partially homomorphic encryption, but has an 
efficiency cost and may cause a minimal loss of privacy. We 
further discuss the implications of this approach in Sect. 7.

5.5 � Auxiliary client calculations

As it has been stated, clients proceed with the calculations 
that the server is not able to commit, due to data being 
encrypted on its side. As it is described in Sect. 4.2, Paillier 
is a partially homomorphic encryption algorithm, so specific 
operations are feasible on encrypted data. All such operations 
happen on the server side. There are some cases, though, 
when the calculations that have to be conducted are not feasi-
ble while the data are encrypted. For such cases, clients offer 
auxiliary functionality to the server. The server obfuscates 
the input values, in a way that this obfuscation is reversible 
on the server side, and sends the data to a random client. The 
client decrypts the input data, commits the required calcula-
tions, encrypts the result and sends it back to the server.

The different auxiliary calculations offered from the cli-
ents to the server are:

5.5.1 � Multiplication

Multiplication of encrypted values is impossible under the 
homomorphic properties of Paillier algorithm, so when such 
a calculation is required, the server uses a client.

Let us assume that the server needs to multiply two values 
x and y. Before sending those to the client, it adds to both of 
them random values rx, ry where rx, ry > 0 . This is feasible, 
as server needs to add an encrypted with a nonencrypted 
value, which can happen as described in Eq. 4 in Sect. 4.2.

The client then decrypts the values, calculates the prod-
uct (x + rx) ∗ (y + ry) , encrypts the result and returns it to 
the server, without being able to know the actual values of 
x and y. Finally, the server uses the returned value, which 
is the encrypted (x + rx) ∗ (y + ry) product, to calculate the 
encrypted x ∗ y product, as shown in Eq. 14.

The server has received (x + rx)(y + ry) from the 
client in encrypted form, while it can calculate 
(rx ∗ y + ry ∗ x + rx ∗ ry) according to Paillier homomor-
phic properties.

It is possible to calculate both the product and the sum 
of a nonencrypted value with an encrypted one, as it is 
analyzed in Eqs. 4, 5 in Sect. 4.2. Server holds x and y in 
encrypted form, while it also holds rx and ry in nonencrypted 
form. According to the third Paillier homomorphic property, 
the server can calculate the encrypted values of rx ∗ y and 
ry ∗ y , while it can straightly multiply rx and ry to calculate 
rx ∗ ry in nonencrypted form. Finally, the encrypted ver-
sion of (rx ∗ y + ry ∗ x + rx ∗ ry) element can be calculated 
according to the first and the second homomorphic proper-
ties of the Paillier algorithm (Eqs. 3, 4).

The server holds an encrypted version of 
(x + rx) ∗ (y + ry) received by the client and an encrypted 
version of (rx ∗ y + ry ∗ x + rx ∗ ry) element that has been 
locally calculated. Finally, the encrypted product x ∗ y is 
calculated by conducting the subtraction on the right side 
of Eq. 14. This operation is feasible even if both elements 
are encrypted, because of the first and the fourth properties 
of Paillier algorithm (Eqs. 3, 6).

5.5.2 � Comparison

Clients are also required to conduct some processing, when 
server needs to compare values. As it will be analyzed in 
Sect. 6, the server needs to find the minimum value out of 
a set of values, while zero values may be required to be 
excluded. Let us suppose that the server needs to find the 
minimum element out of a set [x1, x2,… xn] of encrypted 
values. The client multiplies the elements with a random 
highly composite value r, r > 0 [24] and randomly scram-
bles the order of the elements to obfuscate the data sent to 
the client. The multiplication is feasible as the server can 
multiply encrypted values [x1, x2,… xn] by a nonencrypted 
one (value of r), according to Eq. 5. The server also keeps in 
memory the changes in the order of the elements, to revert 

(14)x ∗ y = (x + rx)(y + ry) − (rx ∗ y + ry ∗ x + rx ∗ ry)
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the obfuscation at the end of the procedure. The server then 
sends the obfuscated set to the client.

The client decrypts all values of the set and finds the 
position of the minimum element (potentially without taking 
into account the zero valued elements). The multiplication 
by the r value does not alter the ordering of the elements, 
but just obfuscates their real values. Zero-valued elements 
retain the same value even after the multiplication by r. The 
client sets the value in the selected position of the set equal 
to one, while it sets the value in all other positions equal to 
zero. The client encrypts the elements of the produced set 
and returns it to the server.

The server conducts the reverse of the initial scrambling 
of order and ends up with a set of encrypted values, all of 
which are zero, except the one that corresponds to the posi-
tion of the minimum element of the initial set. It has to be 
noted that due to the probabilistic property of the Paillier 
algorithm, the encrypted versions of all zero-valued ele-
ments have different values, so it is impossible for the server 
to learn anything about the result.

5.5.3 � Absolute value

If the server needs to calculate the absolute value |z| of 
an encrypted integer number z, which is bounded as 
z ∈ [−zm, zm] , it also has to communicate with a randomly 
selected client. The server initially calculates both (z + a) ∗ b 
and (−z + a) ∗ b , where a is a random integer, with a > zm 
and b is a random highly composite integer. This is feasible 
as the server can add or multiply an encrypted number to 
a nonencrypted one, according to Eqs. 4, 5 of Sect. 4.2. It 
then sends both (z + a) ∗ b and (−z + a) ∗ b , to the client, in 
random order and in encrypted form

The client decrypts the two received values and answers 
which one of the two is the largest one. If (z + a) ∗ b is larg-
est then |z| = z , otherwise |z| = −z . The client does not know 
the values of the random variables a, b, nor the ordering, so 
it cannot make any guess about the number, the absolute 
value of which needs to be calculated.

5.6 � Workflow

The workflow for a specific time window is described in 
this section. K-medoids algorithm operates with a prede-
fined clusters’ number, so the server initially defines this 
number as k (number of clusters). This parameter is decided 
by the server and is related to both the required granular-
ity of results and the available processing resources. A 
higher value for the number of clusters would produce more 
detailed information about ongoing attacks, while it would 
require more calculations.

5.6.1 � Clients send data to server

In the first step of the procedure, clients send initial data to 
the server. Each client shares the four features of the alerts 
the local IDS has observed during the previous time window. 
These data are encrypted using Paillier algorithm before 
being sent to the server. The server is required to calculate 
the distances for all pairs of alerts sent from clients.

Distance calculation is a demanding operation in terms of 
resources. To make the procedure more efficient, each client 
calculates the distances for the pairs of alerts that have been 
produced locally, as required features are available in non-
encrypted form. The calculated distances are also encrypted 
and sent to the server. This will save the server from a signif-
icant amount of operations. Specifically for n clients, which 
individually hold approximately mc alerts, the total number 
of distances to be calculated is calctot:

The number of calculations that can be carried out locally 
at the clients is calcloc :

The ratio of these estimated calculations is :

Thus, for a relatively small number of clients n and numer-
ous alerts per client mc (which is the most common case), 
this ratio tends to be equal to 1

n
 , which is a significant per-

centage of the calculations.
After the first step is finalized, the server holds the alerts 

of all clients in encrypted form. Additionally, it holds all the 
distances between alerts that have been produced in the same 
client, also in encrypted form.

5.6.2 � Server calculates the rest of the distances

The second step of the workflow is the calculation of all 
distances between pairs of alerts that have been produced 
at different clients. The calculation of the distances must be 
carried out in the server, while the alerts’ features remain 
encrypted. As it has been noted in Sect. 4.2, Paillier algo-
rithm is characterized by specific homomorphic properties 
that enable committing additions between two encrypted 
values and both multiplications and additions between one 
encrypted and one non encrypted value. Distance calcula-
tion demands multiplications between encrypted values at 

(15)calctot =
n ∗ mc(n ∗ mc − 1)

2

(16)calcloc = n ∗
mc(mc − 1)

2

(17)ratio =
calcloc

calctot
=

n ∗
mc(mc−1)

2

n∗mc(n∗mc−1)

2

=
mc − 1

n ∗ mc − 1
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some point, and these calculations are conducted by return-
ing the pair of encrypted values to a random client. The 
random client decrypts the values, commits the multiplica-
tion, encrypts the result and returns that to the server. The 
server then carries on with the calculation of the distance 
between the alerts. At the end of this step, the server holds 
the distances between all pairs of alerts in encrypted form.

5.6.3 � Server commits clustering

As soon as all distances are available, the clustering algo-
rithm can then be executed. As it is described in Sect. 4.1, 
K-medoids algorithm creates clusters, the centers of which 
are being selected from the points (alerts) to be clustered. 
The distance of a point (alert) from the center of a cluster 
is one of the already calculated distances between points 
(alerts) of the initial dataset. The previous step has produced 
all the required distances, so the repetitive procedure of for-
mulating the clusters does not require any additional dis-
tances to be calculated.

These distances have to be compared to conduct the 
actual clustering. Each point (alert) is assigned to the cluster, 
the center of which is the nearest to it. This means that the 
server has to conduct comparisons between encrypted dis-
tance values. Actually, the server has to pick the minimum 
from a set of encrypted values, so it requests intervention 
from a random client. The server sends a set of encrypted 
elements to the client which then picks the minimum one out 
of these values. In practice, the client returns an encrypted 
version of a set of elements (equal in size with the submitted 
set). All values of the returned set are equal to zero, except 
the one that corresponds to the same index as the minimum 
value of the set submitted by the server which is set equal 
to one.

The final step of each round ends up with the allocation of 
points (alerts) to clusters. This information is being returned 
to the server by the clients in nonencrypted format. This 
happens because the server has to check whether there has 
been any change in this allocation between any two consecu-
tive rounds, to decide that the execution of the K-medoids 
clustering algorithm has reached to an end.

Through this procedure, the server can run all the required 
rounds for the K-medoids algorithm and eventually produce 
a final allocation of the alerts to the k different clusters.

5.6.4 � Server returns the results

After the execution of the K-medoids algorithm has been 
terminated, the server can return to the clients information 
about the security events that have occurred throughout the 
network in the last time slot. According to the setup chosen, 
different amounts of information may be revealed. For exam-
ple, server may reveal to a client:

–	 only the volume of alerts in a cluster, an alert of the client 
belongs to.

–	 the IPs of the alerts in a cluster, an alert of the client 
belongs to.

–	 all data about alerts in a cluster, an alert of the client 
belongs to.

–	 all data about alerts in all clusters.

According to the information in the cluster results returned, 
there may be a limited data privacy leak between participat-
ing organizations. The amount of information being shared 
between organizations ranges according to the predefined 
scheme they have agreed to collaborate on.

For example, it can be the case that when a relatively 
large cluster involving multiple organizations comes up, then 
all organizations are notified about the size of the cluster 
and the set of external IPs that are involved in it. All organi-
zations can better defend their networks without getting to 
know what has exactly happened to other organizations or 
specific details about their networks. This is a great improve-
ment in terms of privacy compared to the case of trying to 
achieve the same result by having a node gathering all alert 
data from all organizations and conducting the clustering 
locally.

Another case would be to have a persistent cluster of 
alerts between two organizations, which could mean that 
these two may be victims of the same attack because they 
share the same vulnerability in their networks. In that case, 
more information could be revealed to the two organizations 
(e.g., the set of alert’s signatures or the set of ports), in order 
for them to understand what is the exact issue and probably 
collaborate offline to find a solution. Again this would end 
up revealing bits of information of the two organizations 
to each other, but the level of data privacy loss would be 
minimal compared to the data privacy loss when clustering 
the data on a single node.

While the scheme under which organizations share data at 
the end of the procedure is out of the context of this paper, it 
can be set in a way that the privacy loss risks are minimized.

6 � Implementation

In this section, we present a more detailed description of all 
the operations of the proposed scheme.

6.1 � Main parameters

To analyze the implementation of the proposed method, we 
present the main parameters used in advance. We assume 
that we have m alerts and that the K-medoids algorithm will 
create k clusters.
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The distances matrix DIST (mxm) is a square matrix that 
contains the distances between all m alerts. Both rows and 
columns of this matrix correspond to alerts. DIST matrix is 
symmetric as the distance between two alerts is the same 
irrespective of the order in which these two alerts are taken 
into consideration in the calculation.

The clusters’ centers matrix CC (mxk) is a matrix that 
holds the information regarding which alert is the center 
for each cluster. Each row of the matrix corresponds to an 
alert, and each column of the matrix corresponds to a cluster. 
Each column contains zeros and only one element, the one 
in the row that corresponds to the alert being the center of 
the cluster is equal to one.

The distance from clusters matrix DFC (mxk) is a matrix 
that stores the distance of each alert from each cluster. Each 
row corresponds to each alert and each column to each clus-
ter. The elements in the row are equal to the distances of 
the corresponding alert from all clusters (according to the 
column of the element).

The belong to cluster matrix BTC (mxk) is a matrix that 
stores information about to which cluster each alert belongs 
to. Each row corresponds to each one alert. Each row holds 
one element equal to one, which corresponds to the cluster 
the alert belongs to, while all other elements of the row are 
equal to zero.

The clusters groups CG matrix (mxm) is a square matrix 
that denotes which alerts are in the same cluster. Each row 
corresponds to each alert, and each column also corresponds 
to each alert. An element in this matrix is equal to one, if 
the alert that corresponds to the row and the alert that cor-
responds to the column of the element belong to the same 
cluster. Otherwise, the element’s value is zero.

The distance in groups DG matrix (mxm) is a square 
matrix that holds the distance of an alert from all other alerts 
that belong to the same cluster. Each row corresponds to 
each alert, and each column also corresponds to each alert. 
An element in this matrix is equal to the distance of the 
alerts that correspond to the row and the column of the ele-
ment if these two alerts belong to the same cluster. Other-
wise, the elements value is zero.

The center metrics vector CM (mx1) is a one-dimensional 
vector. Each element belongs to each alert and is equal to 
the sum of all distances of the specific alert from the alerts 
with which it belong to the same cluster. In practice, it is a 
metric used for updating the clusters’ centers.

where ci is the cluster to which ai belongs to.
The cluster center metric CCM (mxk) is a matrix, each col-

umn of which corresponds to each one of the clusters. Each 
element stores the calculated center metric for the alert that 
corresponds to the row of the element, regarding the specific 

(18)cmi =
∑

dist(ai, aj),∀j ∶ aj ∈ ci

cluster. The values of elements that correspond to alerts that 
do not belong to the specific column’s cluster are equal to zero.

6.2 � Calculations

Each client holds a shared pair of private and public Paillier 
keys. The keys pair is common among all clients in order for 
the procedure to be feasible, while the server does not have 
access to this information.

6.2.1 � Vectors alerts
i
 and matrices dist

i

Initially, the clients have to submit to the server all the data 
regarding their alerts along with the distances between the 
latter. Each client ci , holding mi alerts for the specific time 
window, submits to the server a vector of length mi with alerts’ 
data:

where each adj is a tuple of data relevant to the specific alert.

In Eq. 20, ai
sig

 stands for the signature of the alert. The sig-
nature of the alert is represented by a vector equal in length 
with the possible signature values. It holds zeros, and only 
the element that corresponds to the signature of the alert is 
equal to one. Similarly, ai

class
 stands for the class of the alert 

and is represented by a vector equal in length with the pos-
sible class values. All values are zero except the one that 
corresponds to the class of the alert, which is equal to one. 
Regarding time stamp, ai

time
 is an integer value that corre-

sponds to the time that the alert is produced with regards to 
the start of the examined time window. The granularity of 
this parameter (seconds/milliseconds) can be commonly 
adjusted by the clients, according to their needs. Finally, the 
x
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 variables stand for the four coefficients of the 

external IP address of the alert.
Each client constructs the vector of Eq. 19 for all the alerts 

monitored by the corresponding IDS sensor in the previous 
time window. Additionally, the client calculates the distances 
between the mi alerts and builds a square matrix of size mixmi 
denoted as disti that contains the results.

In Eq. 21, each element dij corresponds to the distance for 
alerts ai , aj , that has been calculated according to the proce-
dure defined in Sect. 5.2.
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]
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⎤⎥⎥⎥⎥⎦



360	 G. Spathoulas et al.

1 3

Clients encrypt all tuple elements in the vector of alerts 
and all distances one by one with the common Paillier public 
key and construct the encrypted versions of vector alertsi and 
matrix disti denoted as e(alerti) and e(disti) . These encrypted 
data structures are consequently sent to the server.

6.2.2 � Constructing DIST matrix

The server receives a pair of e(alerti) and e(disti) from each 
client. When all clients have sent their input, the server can 
construct the global distances matrix DIST, which holds the 
distances between all alerts of all clients. The rows and col-
umns of DIST matrix correspond to alerts in the global set. 
The ordering of these alerts is restricted as they have to be 
grouped by the client that has produced them. The alerts of a 
specific client have to appear in a continuous range regarding 
the indexing of DIST array’s rows and columns.

Partial submatrices of DIST matrix have already been cal-
culated by clients in the form of disti matrices as presented 
in Eq. 21. These submatrices are aligned along the DIST 
matrix diagonal and practically correspond to the distances 
between alerts submitted from the same client. The rest of 
the elements that correspond to pairs of alerts produced by 
different clients have to be calculated by the server. These 
calculations are conducted by using the encrypted values in 
the e(alerti) vectors submitted by clients (Eq. 19).

An example is given in Eq. 22, where it is assumed that 
two clients have submitted three alerts each. Here, the bold 
elements belong to the two distance matrices the clients have 
sent, while the rest of the elements have to be calculated by 
the server.

The server will use the already available distances between 
pairs of alerts of the same client to fill in the bold elements. 
Then, the server will calculate the distances between all 
other pairs of alerts one by one and fill in the nonbold ele-
ments. At the end of the procedure, the server will have the 
DIST matrix, as described in Sect. 6.1, in encrypted form.

Distance calculation follows what we have described in 
Sect. 5.2 and is straightforward when it is conducted by the 
client for pairs of local alerts, given that the required field 
is available in nonencrypted form. In the server’s case, the 
required data are encrypted, and the server needs to con-
duct calculations by using Paillier homomorphic properties, 
while at some points, it is required to use the auxiliary pro-
cessing offered by the clients.

(22)DIST =

⎡⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎦

If the server needs to calculate the distance between two 
alerts ai and aj , the formula of Eq. 13 is used. The server 
needs to calculate the four normalized distance coeffi-
cients. The four normalization factors are predefined and 
available in nonencrypted form. The server calculates the 
four distance coefficients in encrypted form, so the calcu-
lation of the normalized ones, as shown in Eq. 11 for sig-
nature coefficient, is feasible because of the homomorphic 
Paillier property of Eq. 5. Practically, the server calculates 
the four distance coefficients, shown in Eqs. 7, 8, 9 and 10, 
in encrypted form.

The calculation of the signature distance coefficient 
dsig(ai, aj) is conducted by multiplying the two signature 
vectors ai

sig
 , aj

sig
 element by element and then summing up 

all the elements of the resulting vector. If the two signature 
vectors are identical, then the result of the procedure is 
equal to 1; otherwise, it is equal to 0. During this proce-
dure, the server needs to make additions and multiplica-
tions between encrypted values. It is possible to commit 
the additions, because of the homomorphic Paillier prop-
erty of Eq. 3; however, to commit the multiplications, the 
server has to outsource some of the processing to the cli-
ents randomly. The clients’ auxiliary processing for mul-
tiplication, as analyzed in Sect. 5.5.1, is used.

The calculation of the class distance coefficient, 
denoted as dclass(ai, aj) , is very similar to that of the signa-
ture coefficient, as representations of class and signature 
alert attributes are identical. The same procedure used by 
the server for the signature coefficient is also used for the 
calculation of the class distance coefficient dclass(ai, aj).

Regarding the calculation of the dip(ai, aj) distance, the 
server needs to commit some subtractions which are feasi-
ble even if data are encrypted according to Sect. 4.2. Addi-
tionally, it shall decide on the absolute value of integers 
and in this case it should use clients’ auxiliary processing, 
as analyzed in Sect. 5.5.3.

Finally, regarding the time distance coefficient, denoted 
as dtime(ai, aj) , and according to Eq. 10, the server needs 
to commit a subtraction between two integers, which is 
feasible because of homophobic properties analyzed in 
Sect. 4.2, and then decide on an absolute value. For the 
latter, the server uses the absolute value auxiliary process-
ing offered by a randomly selected client.

6.2.3 � A typical K‑medoids round

After the initial step of calculating all values for the DIST 
matrix, the server can go on with the actual clustering 
procedure. This is an iterative process that executes the 
required K-medoids rounds, until the final clusters of alerts 
are formalized.
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The data used during the execution of the K-medoids 
rounds have been formed as matrices and vectors, as 
described in Sect. 6.1. This enables the server to commit 
the required calculations for all data points at once. Each 
one step of the algorithm is practically encoded as an opera-
tion on one or two matrices. For example, the step of the 
calculation of the distance of each point from the centers of 
all available clusters is encoded as a multiplication between 
matrices DIST and CC, as shown in Eq. 23. Each row of 
DIST matrix contains the distances of a single alert from 
all other alerts. Each column of CC matrix is related to a 
specific cluster and holds zeros for all elements except the 
one that corresponds to its center. The multiplication of the 
two gives a metric, which is the distance of the specific alert 
from the center of the specific cluster. The same approach 
holds for all other steps of the K-medoids algorithm which 
are conducted through the equations described in the rest of 
this section.

Beforehand, the server populates CC matrix with random 
values. In practice, the server assigns random points as cent-
ers for each cluster. It has to be noted that CC is the only 
nonencrypted matrix, as the server needs to check at the end 
of each round whether its values have changed with respect 
to the previous round.

DFC matrix
At the start of each round, the server calculates the 

DFC matrix that contains the distance of each point from 
the center of each cluster, by multiplying matrices CC and 
DIST. The DIST matrix is encrypted, while the CC array 
is not. The multiplication of the arrays requires multiplica-
tions between nonencrypted and encrypted values, which 
are feasible and additions between encrypted values, which 
are also feasible. No auxiliary client processing is required 
at this step:

Every row of the resulting DFC matrix corresponds to one 
alert and holds k values. These are the distances of the alert 
represented by the row from each one of the centers of the 
k clusters.

BTC matrix
The next step is to construct the BTC matrix from the 

DFC matrix. The BTC matrix denotes to which cluster an 
alert belongs to. The server has to find the minimum value 
in each row of the DFC matrix (excluding zeros) and set the 
corresponding value of BTC matrix equal to 1, while setting 
all other elements of the row equal to zero:

Multiple comparisons between the values of the row are 
required, and these cannot be conducted by the server, as 

(23)DFC = DIST ∗ CC

(24)btc(i0, j0) =

{
1 if dfc(i0, j0) ≤ dfc(i0, j),∀j

0 otherwise

the values are encrypted. In this point, the server makes use 
of the comparison auxiliary processing offered by clients.

CG matrix
The CG matrix is a square matrix that denotes for each 

alert ai , which other alerts belong to the same cluster with it. 
This can be easily calculated from BTC matrix by multiply-
ing it with its transpose matrix BTC⊺:

To commit this calculation, the server needs to conduct mul-
tiplications and additions between encrypted values. For the 
multiplications, it has to use clients’ multiplication auxiliary 
processing. The server can then proceed with the required 
additions, as it is described in Sect. 4.2.

DG matrix
For the next step, the server has to calculate DG matrix 

that holds the distances of alerts from all other alerts that 
belong to the same cluster. This matrix is calculated as the 
Hadamard product [7, 15] of CG and DIST. The server mul-
tiplies CG and DIST matrices, element by element.

In this step, the server needs to use the clients’ multiplica-
tion auxiliary processing to conduct the multiplications of 
encrypted elements.

CM vector
The CM vector holds one value for each alert. It corre-

sponds to the cluster center metric for this alert, with respect 
to the cluster it belongs to. In practice, for each alert, this 
metric is the sum of the distances from alerts belonging to 
the same cluster. The CM vector is calculated by summing 
up the elements of each row of the DG matrix. Only addi-
tions are required so the server can calculate the CM vector:

CCM matrix
CCM matrix holds metrics that are then used to decide 

the clusters’ centers. To construct the CCM matrix, a diag-
onal matrix of size mxm that holds the CM vector in its 
diagonal is required. The server constructs the matrix and 
then multiplies it by BTC matrix. The diag(CM) matrix can 
be built element by element by the server. For the multipli-
cation of the matrices, the server needs to use the clients’ 
multiplication auxiliary processing:

The resulting matrix CCM holds one column for each one of 
the k clusters. Each column holds metrics for all alerts of the 
cluster, and these metrics need to be compared, to choose the 
minimum value. The elements of the column that correspond 
to alerts and do not belong to the corresponding cluster are 
equal to zero.

(25)CG = BTC ∗ BTC⊺

(26)DG = CG⊙ DIST

(27)cm(i0) =
∑

(dg(i0, j)),∀j

(28)CCM = diag(CM) ∗ BTC
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CC matrix
The final step for the round is to recalculate the CC 

matrix, which holds the center point for each cluster. In order 
for this to happen, the server needs to pick the minimum 
value (excluding zeros) in each column of the CCM matrix. 
The server uses a slightly modified version of the compari-
son auxiliary processing provided by clients. Specifically, 
the returned set of values is not encrypted, in order for the 
server to construct a nonencrypted CC matrix and compare 
it with the one from the previous round.

This typical K-medoids round is repeated, until the result-
ing CC matrix is identical with that of the previous round. 
Then, the clustering algorithm has converged and the server 
can notify clients about the results.

According to the level of collaboration between the part-
ners, the amount of information returned to the clients may 
vary. The server holds encrypted alerts information in the 
format denoted in Eq. 20, along with the distribution of 
alerts into clusters. So it can notify clients only about large 
clusters, and it can send just the population of the clusters, 
the identity of clients, the alerts of which make up a cluster, 
or the actual encrypted data of the alerts in the cluster.

The workflow of the protocol is depicted in the sequence 
diagram of Fig. 2. The distinct phases of the proposed algo-
rithm (distances calculation, K-medoids rounds and cluster 
information sharing) are shown in the figure. Additionally, 
the interaction between the server and the clients is clearly 
noted for every step of the calculations.

7 � Experiments

The proposed method offers privacy-preserving clustering 
for intrusion detection alerts, but it bears an overhead in 
terms of performance. It requires multiple additional calcu-
lations, while a lot of network communication has to take 
place. To validate the proposed method, the corresponding 
implementation has been tested by using a network traffic 
dataset in a twofold approach. We have proved the validity 
of the method, as it produced the same results as the cor-
responding clustering procedure did in nonencrypted space. 
The performance of the algorithm has also been evaluated 
as both the execution time and the number of calculations 
server outsourced to clients have been measured.

7.1 � Dataset

An intrusion detection-related traffic dataset that would refer 
to multiple different networks was required to test the pro-
posed system. Ideally, the traffic of these networks should 
contain artifacts related to different instances of the same 
malicious activity or/and to similar attacks conducted in 
more than one of the networks. Because of not being able to 

find such a dataset, we have opted for employing a dataset 
that refers to the network of a single organization with over 
one subnetworks, and to manage the different subnetworks 
as different networks monitored by different IDSs. Such an 
experiment setting would provide the input for multiple cli-
ents of the proposed system that would then need to collabo-
rate, along with a trusted third-party server instance, to carry 
out the privacy-preserving clustering workflow described in 
Sects. 5 and 6. It is significant for the testing procedure to 
have as many client as possible, to stress the system and to 
have a balanced mix of normal and malicious traffic, in order 
to get a normal alerts’ rate. The criteria set for finding out an 
appropriate dataset were:

–	 Dataset released after 2010.
–	 Dataset related to at least five different networks.
–	 Dataset containing information on packet level.
–	 Dataset containing general malicious traffic (datasets for 

specific attacks were excluded)

After going through the recently released intrusion detec-
tion datasets [27], only two were found to abide with all the 
aforementioned criteria, ISCX 2012 [29] and TUIDS [12] 
datasets. Out of the two, the ISCX 2012 dataset was found 
to be better documented and more concrete. Because of that, 
it was chosen to be used to test the proposed method.

The dataset used is UNB ISCX 2012 Intrusion Detec-
tion Evaluation Data Set [29]. This dataset is based on the 
concept of profiles, containing detailed descriptions of intru-
sions, to simulate malicious traffic. It also contains benign 
traffic created by abstract distribution models for applica-
tions, protocols or lower level network entities.

The traffic it contains is related to a network of an organi-
zation with five different inside networks and a DMZ zone, 
accommodating the organization’s servers. The approach 
used to test the proposed inter-organization clustering sys-
tem was to handle the six different subnetworks as networks 
that belong to different organizations. Based on this assump-
tion, network traffic of the six networks is required to be han-
dled in a privacy-preserving way throughout the clustering 
procedure. The selected dataset provides an appropriate test 
bed for the proposed method.

Practically, the traffic has been split according to the IP 
ranges of the six different networks into six different traffic 
chunks. For each one of the different networks, a combi-
nation of a Snort [28] sensor and a client of the proposed 
system has been used. Each one of the six traffic chunks has 
been used as input for the corresponding Snort sensor. In this 
way, we have simulated a collaboration between six different 
organizations, to test the proposed system. The correlation 
between the traffic of the different networks in the dataset is 
relatively high, and thus, this makes it appropriate for testing 
a clustering method.
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7.2 � Experiment setup

Two software implementations have been developed to test 
the proposed system. We have implemented the client soft-
ware that runs at each collaborating node, gets as input the 

alerts, produced by the local intrusion detection sensor, and 
collaborates with the server. We have also implemented the 
trusted third-party server component that accepts input from 
clients and commits the clustering, while it also collaborates 
with the clients, when it is required.

Fig. 2   Sequence diagram
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For implementing the client Python 3.6 has been used, 
as it provides libraries that enable the development of 
all the required functionality. The implemented software 
needs to conduct cryptographic operations, matrix opera-
tions, and to efficiently communicate with other parties. 
Each client of the network along with the trusted third-
party client has been executed on a midlevel computer 
equipped with Intel i5-7200U processor, which consists 
of four CPU cores. This feature potentially enables the 
clients to reply to four different calculation requests at the 
same time.

We have employed multiple different use-case scenarios 
to assess the performance of the system. Specifically, the 
number of collaborating nodes has been varied from 3 to 
6, while for each one of those cases the number of alerts 
submitted from each node has been set equal to 10, 60, 30, 
90 and 120. Each simulation run corresponds to the clus-
tering procedure for a single time window where a specific 
number of nodes produce a specific number of alerts. In 
all these combinations, we have measured the time needed 
to complete the whole clustering procedure along with the 
number of operations for which the server requested for 
the interference of client nodes.

To reproduce the experiment, it is required to split the 
traffic dataset into six different parts according to the six 
sub-networks. The next step is to feed the six different 
traffic sets into a Snort installation to get the produced 
alerts. Consequently, these alerts shall be used as input to 
six different client installations that share the same Paillier 
key pair. The following procedure shall be repeated for 
each time window:

–	 Extraction of the four main features for each alert (as 
described in Sect. 3)

–	 Calculation of the distance for all alert pairs (as 
described in Sect. 5.2)

–	 Encryption of both features and distances (as described 
in Sect. 4.2)

–	 Sending of data to the server

Then, the server shall:

–	 Calculate distances for all alert pairs (as described in 
Sect. 5 and by using the auxiliary client services as 
described in Sect. 5.5)

–	 Build the matrix of distances for all alerts’ pairs (as 
described in Sect. 6.2.2)

–	 Allocate the alerts to clusters randomly.
–	 Repeat the K-medoids clustering round (as described 

in Sect. 6.2.3)
–	 Stop when the clusters remain the same for two con-

secutive rounds.

7.3 � Remote processing estimation

The proposed methodology requires additional process-
ing, to protect the privacy of the alerts submitted for inter-
organizational clustering. The main performance overhead is 
because of the requirement for the server to use remote aux-
iliary processing offered by clients, presented in Sect. 5.5, 
when processing encrypted data is not feasible. According 
to the analysis of the calculations presented in Sects. 6.2.2 
and 6.2.3, regarding the construction of the DIST matrix and 
the execution of a K-medoids round, the required remote 
calculations can be predicted. We assume that the number 
of clients is n, the number of alerts per client is mn and the 
predefined number of clusters is k. The total number of alerts 
can be calculated as m = n ∗ mn . Additionally, nsig is the 
number of different possible signature values and nclass is the 
number of different possible class values.

Initially, the server shall calculate the distance between 
every pair of m alerts, so it commits m∗(m−1)

2
 distance cal-

culations. A portion of these distances have been precal-
culated in the client sides. Specifically, each client has 
conducted mn∗(mn−1)

2
 calculations for the local alerts, so the 

actual distance calculations committed by the server are 
m∗(m−1)

2
−

mn∗(mn−1)

2
 . For each one of the distance calcula-

tions, the remote processing required is depicted in Table 1.
The construction of the DIST matrix happens only once 

in the beginning of the algorithm, so the overhead is limited. 
The remote processing required at each K-medoids round is 
related to the actual procedure of the round and is presented 
in Table 2.

The main calculation issue that is clear from Table 2 is 
that during execution of K-medoids rounds, the number of 
multiplications required is proportional to the square of total 
number of alerts m. This means that if the number of alerts 
per client increases significantly, the number of required 
multiplications will become very high and will have per-
formance implications to the system. Even if the number of 
alerts is practically bounded in a real-world scenario, there 
may be extreme cases where the system will not be able 
to cope up with the resources requirements. In such cases, 
organizations may make use of more hardware resources. 

Table 1   Remote calculations required for a single distance calculation

Multiplications Comparisons Abso-
lute 
value

Signature coefficient nsig – –
Class coefficient nclass – –
IP coefficient – – 4
Timestamp coefficient – – 1
Distance calculation nsig + nclass – 5
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Theoretically, each client can consume more that one 
requests for auxiliary calculation at the same time, if it has 
the hardware resources to process those requests in parallel.

7.4 � Results

The execution time for each scenario is shown in Figs. 3 and 4. 
The execution time consists of the time needed to calculate 
the DIST matrix and the time needed to execute the required 
K-medoids rounds. The required number of rounds has ranged 
between 3 to 5, for the experiments executed. Figures 3 and 4 
show the required time in seconds for both these steps, for all dif-
ferent combinations for number of clients and number of alerts.

Table 2   Remote calculations required for a K-medoids round

Multiplications Comparisons Abso-
lute 
value

DFC – – –
BTC – m –
CG m

2 ∗ k – –
DG m

2 – –
CM – – –
CCM m

2 ∗ k – –
CC – k –
K-medoids round m

2 ∗ (2k + 1) m + k -

Fig. 3   Time for DIST matrix calculation

Fig. 4   Average time for a single K-medoids round
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The same experiments have been repeated but with more 
hardware resources in place. The client implementation of the 
system has been revised, to process in parallel over one request 
by the server. Specifically, three additional configurations were 
tested at which the client had two, three and four threads run-
ning in parallel, to accept and process over one request for aux-
iliary processing at the same time. The total execution time 
results obtained from these experiments are depicted in Table 3.

7.5 � Performance analysis

Homomorphic encryption employment penalizes the perfor-
mance of the approach. As it is depicted in Figs. 3 and 4, and 
given the hardware used, there are specific delays in the pro-
cessing of the alerts. For processing to be sustainable in the 
long run, the execution time of the algorithm must be less 
that the time window for which the nodes collect the alerts. 
In this way, the processing of a specific time window will 
end, before the processing for the next time window begins.

For example, five nodes, each one of which produces 30 
alerts per time window, need approximately 1 second, to 
complete the clustering. This means that the alerts produc-
tion rate must be limited in order for the system to be able to 
process each time window as soon as it expires. Specifically, 
the nodes should produce at most 30 alerts per second or in 
other words the system is suitable for networks of nodes that 
produce at most 30 alerts per second.

The typical alert rate in real-world networks is relatively 
low. While it is related to the volume and the nature of traf-
fic, it is expected that it should not be greater than 1 alert 
per second. The dataset used throughout the experiments 
had an average alert rate of 0.304 alerts/s. In practice, this 
means that our system would easily process the required 
information. For a scenario of six nodes, ten clusters and 
a time window of 60 s, the total number of alerts would be 
around 120; thus, the size of the different matrices (analyzed 
in Sect. 6) would be 120 × 120, 120 × 10 or 120 × 1 . Accord-
ing to execution times shown in Figs. 4 and 3, the processing 
time would be some seconds; thus, the system would easily 
process the information produced every 60 s, with no delays.

It must be noted that the hardware used in the experiments 
has to be taken into account when assessing the execution 
time results. Organizations that produce alerts in higher rates 
must use more capable hardware to cope with the required 
processing. The proposed method is designed to be scalable 
for nodes that can use over one processing threads. For exam-
ple, if clients can concurrently execute multiple processing 
threads, the server can send to them batches of requests for 
processing of encrypted data. In this way, we can achieve 
a significant reduction in the execution time. As shown in 
Table 3, using multiple threads has a significant effect on the 
performance of the system. Using two threads speeds up the 
process by a factor of approximately 1.9, using three threads 
gives a speed up of 2.8 and using four threads gives a speed 
up of 3.7. There is a small management overhead, but for 
groups of clients that have higher traffic rates and probably 
higher alerts’ rates, the clients can use additional hardware 
resources to cope with the demand for calculations.

The proposed system is based on the network commu-
nication between the server and the clients. We have con-
ducted the experiments with all the subsystems connected 
on the same local area network. In a real-world scenario, 
each of the clients would be installed at different organi-
zations, the network connection between which would be 
more challenging. In such a scenario, it is expected to have 
larger connection delays, packet drops or even clients going 
temporarily offline. These circumstances would hinder the 
normal operation of the protocol, and the server should be 
able to overcome any issues that come up.

Irrespective of the reason behind that (network failure, 
client failure) the server may receive no answer from a cli-
ent when requesting for the auxiliary processing clients pro-
vide. In that case, and after a timeout period, the server shall 
make the same request to another client, to get the required 
results. If a client is unresponsive, the server may tempo-
rarily exclude it from the list of clients to request auxiliary 
processing from, to minimize the probability of the failure 
being repeated.

Theoretically, in a fault-free scenario, and given that the 
number of clients is n, the total number of requests is nr and 

Table 3   Total execution times for multithreaded experiments

Clients Alerts Total execution time (s)

1 thread 2 threads 3 threads 4 threads

3 10 0.058 0.030 0.021 0.016
3 30 0.529 0.275 0.192 0.146
3 60 2.121 1.103 0.772 0.586
3 90 4.776 2.484 1.738 1.319
3 120 8.495 4.418 3.092 2.346
4 10 0.087 0.045 0.032 0.024
4 30 0.788 0.410 0.287 0.218
4 60 3.158 1.642 1.149 0.872
4 90 7.112 3.699 2.588 1.964
4 120 12.648 6.578 4.603 3.493
5 10 0.118 0.061 0.043 0.033
5 30 1.069 0.556 0.389 0.295
5 60 4.285 2.228 1.559 1.183
5 90 9.648 5.018 3.511 2.664
5 120 17.156 8.922 6.244 4.738
6 10 0.152 0.079 0.055 0.042
6 30 1.376 0.716 0.501 0.380
6 60 5.510 2.866 2.005 1.522
6 90 12.404 6.451 4.514 3.426
6 120 22.058 11.472 8.028 6.092
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the average time per request is tav , the time required for the 
process to complete is :

If, for the same setup, there was a failure rate pf (requests 
to clients failed with pf probability), then the total time 
required would be :

where tt is the timeout time that the server waits before re-
dispatching a request. The increased time (with delay) with 
respect to the time required in the fault-free scenario is as 
follows :

And by making all the calculations, the delay is :

In Eq. 32, it is obvious that failure probability is the deciding 
factor for the effect to the performance of the system. For 
example, given a relatively safe timeout time value (e.g., 
tt = 10 ∗ tav ), then a failure probability of 10% (which is an 
extreme case) would end up with halving the system’s alert 
processing rate. The processing rate of the system for fault-
free scenarios is at least one magnitude higher than required 
in real-world situations. Thus, it can be conducted that the 
proposed system can withstand the delay induced by failures 
in a real-world network environment, with no issues.

7.6 � Privacy analysis

The main advantage of the proposed system is that organiza-
tions can collaboratively cluster their alerts without leaking 
the relevant data, and avoid any personal private informa-
tion disclosure, for the organization itself or for its users. To 
overcome the limitations of the Paillier algorithm, we have 
opted for involving the clients in the operation. Clients hold 
the cryptographic keys, so they can decrypt values, commit 
the required operation and encrypt the result before sending 
it back to the trusted third-party server.

By using this approach, some information of clients is 
disclosed to other clients, but this happens in a privacy-
respecting manner. As we have analyzed in Sect. 5, the 
trusted third-party server obfuscates encrypted values before 
sending those to the clients for processing.

(29)timetot =
nr ∗ tav

n

(30)timef
tot

=
nr ∗ (1 − pf)tav + nr ∗ pf ∗ (tav + tt)

n

(31)delay =
timef

tot

timetot
=

nr∗(1−pf)tav+nr∗pf∗(tav+tt)

n

nr∗tav

n

(32)delay =
tav + tt ∗ pf

tav

7.6.1 � Obfuscation of auxiliary services

Specifically, in the multiplication use case, the server sends 
values x + rx and y + ry to the client instead of x and y. It is 
impossible for the client to calculate the initial values of x 
and y as there is no restriction for rx and ry.

For the comparison use case, all values are multiplied 
by a highly composite number r, to hinder the client from 
getting to know the exact values. One minor drawback for 
this use case is that client finds out which elements are zero 
valued. The order of the elements though has been scram-
bled by the server, so the client can only conclude on the 
percentage of the zero-value elements out of all elements, 
but cannot learn to which alerts or clusters these elements 
may correspond.

Finally, regarding the absolute value use case, the client 
cannot conclude on the value of b as the submitted numbers 
have multiple divisors. Practically, the client cannot con-
clude on the value of z element that the server needs to know 
the absolute value of.

7.6.2 � Proposed approach privacy analysis

During multiplications and absolute value calculations, there 
is no privacy leakage to the processing clients. The values 
sent as input from the server are sufficiently obfuscated, and 
clients cannot conduct any useful information regarding the 
actual values. The only part of the protocol that may reveal 
information to the clients is the comparison auxiliary service 
provided by the clients to the server. This functionality is 
used during each K-medoids round in the construction of 
BTC and CC matrices. Server needs to send a vector of ele-
ments to a client, in order for the client to pick the minimum 
value. With the BTC matrix, the elements of the vector are 
the distances of a single alert regarding all the clusters’ cent-
ers (rows of DFC matrix). In the case of the CC matrix, the 
elements of the vector are calculated metrics for deciding the 
new center of a cluster (columns of CCM matrix).

The server, before sending the vector to the client, mul-
tiplies each element by a common random variable r and 
then scrambles the order of the elements. The client has to 
decrypt all values to conduct the required processing, so it 
get access to the obfuscated vector. The client can attempt 
to calculate the common factors between all elements of the 
vector and then try to conclude on the value of r. Finding the 
common divisors of all the elements is a demanding task in 
terms of resources and may end up with over one candidate 
values for parameter r. If that is successful, the client will get 
access to all the values of the vector, but without knowing 
their proper order (as the order is scrambled).

As the client does not know which is the alert to which 
the DFC row corresponds to or the cluster to which the CCM 
column corresponds to, it cannot make any conclusions on 
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the features of alerts and how those relate to the private 
information of other clients. The only thing that the process-
ing client can probably do is recognizing that two different 
requests (in two different K-medoids rounds) correspond to 
the same alert or to the same cluster, as in that case many 
of the elements should remain the same. That information 
might give knowledge to the processing client about what 
percentage of clusters has changed their centers (along with 
the set of alerts they comprise) between the two rounds. 
The probability that a client gets a vector for the same alert/
cluster over one times is relatively limited as the required 
number of rounds for K-medoids to converge is 3–5. Thus, 
in a setup with six clients, a client may never process vectors 
for the same alert/cluster for the second time. Even if that 
is the case, the information that the client gets is related the 
procedure and not to the private data of others.

To assess the probability that a client may get access 
to information regarding how a cluster evolves through 
K-medoids rounds, an experiment has been conducted. For 
fixed parameters regarding number of clients, number of 
alerts and number of clusters, the clustering procedure has 
been repeated multiple times. At each one of these iterations, 
the actual data points have been varied and the ability of 
any client to conclude upon information regarding clusters 
formation has been checked. Through this experiment, we 
have calculated the probability of such information leak-
age. The results of the procedure are depicted in Table 4. 
The table shows the probability that a random client gets 

information about how a cluster is evolving between two 
different K-medoids rounds. The private data of the clients 
remain out of reach for other clients.

From the results, it is obvious that as the number of 
clients increases, the probability that they get vectors for 
the same alert or the same cluster twice decreases. While 
there is no direct privacy leakage for clients, it seems that 
relatively larger sets of clients are safer with respect to this 
information disclosure to clients.

7.6.3 � GDPR limitations

In a real-world scenario, the application of the proposed 
method would trigger concerns regarding the fact that organ-
izations process data of other organizations. Specifically, 
under the General Data Protection Regulation (GDPR), 
this could create an important practical issue. The proposed 
approach requires organizations to process others’ data, but 
under two significant constraints:

–	 Data are anonymized; thus, an organization does not have 
any indication to which of the other organizations the 
data, being processed, belong to.

–	 Data are obfuscated; thus, even by getting access to an 
obfuscated value, the processing organization does not 
get to know to which real value it reflects.

Under the aforementioned rules, the privacy implications 
are minimized and it would be more feasible to have par-
ticipating organizations consent to the specific scheme that 
would allow others to process a part of their data. Given 
that organizations give their consent when they accept to 
become members of this collaborative intrusion detection 
consortium, there should be no GDPR issues in the long run.

8 � Conclusions and future work

The system proposed enables privacy-preserving alert clus-
tering between multiple organizations. Such alerts post-
processing may reveal important information about cyber-
attacks being conducted and set the organizations able to 
efficiently protect their networks. To comply with the real-
world requirements, the proposed system protects the pri-
vacy of the participating organizations. This comes with a 
cost, as to preserve privacy the system has to bear with a 
performance penalty. As it is shown in Sect. 7, the rate, at 
which the system can cluster alerts, depends on the hardware 
used and it is expected that participating organizations will 
use sufficient hardware resources.

It has been proven that it is possible to conduct privacy-
preserving alerts clustering between different organizations. 
Given that these organizations are willing to invest in the 

Table 4   Probability of clients concluding information about clusters

Clients Alerts/client Probability

3 10 0.19
3 30 0.27
3 60 0.22
3 90 0.26
3 120 0.26
4 10 0.22
4 30 0.18
4 60 0.20
4 90 0.23
4 120 0.16
5 10 0.13
5 30 0.13
5 60 0.10
5 90 0.11
5 120 0.19
6 10 0.08
6 30 0.04
6 60 0.06
6 90 0.05
6 120 0.09
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required hardware, according to their needs, it is possible to 
make this collaboration scheme effective and able to process 
alerts without inducing any significant overhead.

A requirement for the system to function properly is that 
all participants, the server and the clients, operate according 
to the protocol. Every participant adheres to the honest but 
curious model; thus, they send the proper values calculated 
according to the protocol. At the same time, they may try 
to get access to available private information regarding oth-
ers. The privacy of participants is protected by the proposed 
methodology, as it is analyzed in Sect. 7.6. The integrity 
of the calculations is protected by the honesty of the par-
ticipants. If a malicious client (or even a malicious server) 
attempts to destroy the calculations’ workflow, it is easy to 
do so by sending invalid data to others. Given the fact that 
data in the system are mainly encrypted, it is challenging 
to do any integrity checking, to prevent participants from 
sending invalid inputs.

Regarding future work, we intend to justify that the 
method presented is appropriate for scaling up with hard-
ware. The system implemented is going to be tested in more 
demanding conditions. We plan to test the system with 
higher traffic and alert rates, while using more capable hard-
ware. This approach will reveal any performance bottleneck 
that our approach may suffer from.

Another improvement to the approach would be to use an 
alternative encryption algorithm such as the homomorphic 
encryption scheme BGN [5] that would enable more pro-
cessing on the trusted third-party side. BGN algorithm may 
create the need for more resources in the TTP server side, 
but would significantly limit the required network commu-
nications. This would have a positive effect on both perfor-
mance and privacy protection.

Compliance with ethical standards 

Ethical approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.
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