
International Journal of Information Security (2021) 20:73–101
https://doi.org/10.1007/s10207-020-00494-8

REGULAR CONTRIBUT ION

Obfuscated integration of software protections

Jens Van den Broeck1 · Bart Coppens1 · Bjorn De Sutter1

Published online: 18 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
To counter man-at-the-end attacks such as reverse engineering and tampering, software is often protected with techniques that
require support modules to be linked into the application. It is well known, however, that attackers can exploit the modular
nature of applications and their protections to speed up the identification and comprehension process of the relevant code, the
assets, and the applied protections. To counter that exploitation of modularity at different levels of granularity, the boundaries
between themodules in the program need to be obfuscated.We propose to do so by combining three cross-boundary protection
techniques that thwart the disassembly process and in particular the reconstruction of functions: code layout randomization,
interprocedurally coupled opaque predicates, and code factoring with intraprocedural control flow idioms. By means of an
experimental evaluation on realistic use cases and state-of-the-art tools, we demonstrate our technique’s potency and resilience
to advanced attacks. All relevant code is publicly available online.

Keywords Man-at-the-end attacks · Control flow graph reconstruction · Reverse engineering · Resilience · Potency

1 Introduction

Software protection techniques such as code obfuscation and
remote attestation aim to mitigate man-at-the-end (MATE)
attacks that target software assets that come with confiden-
tiality and integrity requirements.

The protections typically do not aim to prevent attacks
completely. Because MATE attackers have white-box access
to the software in their laboratories, the protections aim to
raise the costs of (i) identifying successful attack vectors
in the attacker’s laboratory, and (ii) scaling up the attacks
to exploit them outside the laboratory. The protections are
in many cases best-effort rather than providing well-defined
security, and part of their protection comes from security
through obscurity. In practice, their effectiveness decreases
when attackers gain more knowledge about their inner work-
ings.

B Bjorn De Sutter
bjorn.desutter@ugent.be

Jens Van den Broeck
jens.vandenbroeck@ugent.be

Bart Coppens
bart.coppens@ugent.be

1 Department of Electronics and Information Systems, Ghent
University, Technologiepark-Zwijnaarde 126, 9052
Zwijnaarde, Belgium

To be effective, protections should provide resistance
against many of the possible methods with which they can be
overcome, worked around, bypassed, and undone [1]. Mul-
tiple protections defending against different attack methods
hence need to be layered upon each other, ideally to the point
where attackers consider the attack path of least resistance
not profitable enough to attack the software.

Advanced protections, such as code mobility [2], barrier-
slicing with server-side execution [3], remote attestation [4],
anti-debugging by self-debugging [5], and instruction set
randomization [6], are deployed by means of two forms of
adaptations to that software. First, components implementing
functionality of the protections are linked into the software.
Secondly, the original code is transformed.

To delay an attacker in overcoming protections, it is use-
ful to embed the linked-in protection components stealthily,
meaning hard to identify. For that reason, protections com-
ponents are always linked statically into native software to be
protected, whether that software is itself a main binary or a
dynamically linked library. Static linking does not offer very
strong protection, however. In experiments with both profes-
sional penetration testers and amateur hackers [1], we have
observed that once attackers identify a small part of a stati-
cally linked-in protection, they can all too easily expand their
reverse engineering to the most vulnerable program points.
Beyond static linking, a number of design obfuscations (such

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00494-8&domain=pdf
http://orcid.org/0000-0002-8373-2949

74 J. Van den Broeck et al.

as function merging, inlining, and outlining) are available to
obfuscate the design of the interfaces between the applica-
tion and the protection components, but those can only be
deployed when all source code is available. In practice, this
is not the case: Vendors of protection tools do not make the
source code of their protections available to their customers,
because of the practical security-by-obscurity reasons. There
hence exist few practical techniques to obfuscate how protec-
tion components are integrated into the software they help to
protect. While some security vendors have post-processing
tools to secure their components after they are integrated into
their customers’ software, both the inner workings of those
tools and their effectiveness are tightly protected secrets.

In this paper, we present novel techniques and combine
themwith adaptations of existing techniques to hide the loca-
tion and boundaries of software components that are linked
together, including linked-in protection components,with the
goal of hampering MATE attacks.

All our techniques are based on post-link-time binary
rewriting. It hence does not suffer from module boundaries
and separate compilation the way compile-time or source
code techniques do. It offers an additional advantage over
source-to-source code rewriting, as our techniques are not
limited to the expressiveness of the used source language(s).

Our combined techniques are (1)whole-programcode lay-
out randomization, (2) insertion of fake direct control flow
transfers between procedures, and (3) factorization of code
fragments common to multiple components without embed-
ding them in separate functions. Together, they make it much
harder for attackers and their tools to identify and structure
the relevant code and the control flow in the program. More-
over, as our evaluation will demonstrate, the combination of
techniques is resilient against a number of commonly used
and academic state-of-the-art manual and automated deob-
fuscation techniques.

This paper offers the following main contributions:

– We present new forms of code factoring to serve as mod-
ule boundary obfuscations.

– We discuss how to combine them with code layout ran-
domization and (existing) opaque predicates to resist
automated and manual attacks.

– We present an extended open-source tool chain that
implements the presented techniques.

– We analyze and evaluate the presented techniques on use
cases of real-world complexity, using popular tools in
attacker tool boxes.

This paper is structured as follows. Section 2 discusses
our attack model. Sections 4–6 discuss the three forms of
obfuscations we combine. Section 7 presents an elaborate
quantitative experimental evaluation including an extensive

sensitivity analysis, after which Sect. 8 discusses related
work and Sect. 9 draws conclusions and looks forward.

2 Attackmodel

We protect native software from man-at-the-end (MATE)
attacks. MATE attackers have full access to, and full con-
trol over, the software under attack and over the end systems
onwhich the software runs. They can use static analysis tools,
emulators, debuggers, and all kinds of other hacking tools.
The attacks are looking to break integrity and confidential-
ity requirements of assets embedded in the software, e.g., to
steal keys or IP, or to break license checks and anti-copy pro-
tections. They do so mainly by means of reverse engineering
and by tampering with the code and its execution.

MATE protections mostly aim at economically driven
attackers [7]. They are considered effective when the
provider’s cost of deploying the protections is compensated
by a resulting reduction in the loss of income due to success-
ful attacks. This reduction can result simply from delaying
attacks. The protection is maximally effective if it stops
attackers before they reach their goal, or even before they
start an attack, e.g., because the (supposed or observed)
presence of protection lowers the attackers’ perceived return-
on-investment to the extent that they give up.

MATE attackers execute an attack strategy in which they
execute a series of attack steps. The strategy is adapted on the
fly, based on the results obtained with previous attack steps.
These include the testing of hypotheses regarding assets and
protections. We refer to the literature for more information
on models of MATE attack processes on protected software
[1].

To be effective, protections deployed on software and
assets should cover as many as possible relevant attack paths,
i.e., paths that might be paths-of-least-resistance for cer-
tain attackers. It is commonly accepted that this can only
be achieved by combining many protections in a layered
fashion. The deployed protections then become assets them-
selves, which protect each other just like they protect the
original assets.

In this section, we focus on the attack processes and attack
activities that are impacted by the protections presented in
this paper. These are the essential processes of:

– identifying and structuring the code components and their
functionality at different levels of granularity and abstrac-
tion;

– identifying relevant relations between components;
– determining their features based on the relations;
– browsing through those elements to locate and identify
the relevant fragments on which to execute additional
attack steps.

123

Obfuscated integration of software protections 75

Attackers use tools, techniques, and heuristics to build
structured program representations such as control flow
graphs (CFGs), call graphs, execution traces, data-dependency
graphs, etc. of disassembled binary code. For static attack
activities, i.e., activities that do no involve executing the code,
most attackers rely on disassemblers such as IDAPro, Binary
Ninja, GHIDRA, Radare2, and DynInst to start their attacks.
The disassemblers lift the representation of the binary pro-
gram from the concrete level of bits to a more abstract level
of assembler code structured in functions, CFGs, and call
graphs.

They then build mental models of the software in which
they assignmeaning (i.e., some higher-level semantics) to the
different components (typically the functions) and derive rel-
evant features thereof. They do so in terms of all the concepts
they know as relevant from past experience [1].

This assignment process and the derivation of features
are typically an iterative process that starts from easily
identified elements such as API calls and system calls,
XOR-operations, references to strings, known patterns or fin-
gerprints of certain algorithms, etc. That leads the attacker
toward the specific components of interest, such as the data
or code he wants to lift from the software, or those parts of
protections he wants to tamper with to overcome the protec-
tions. Table 1 lists some of the relations between components
that attackers exploit.

3 Protection strategy rationale

It is clear that if we can prevent tools from correctly identi-
fying the relevant relations and structures, we can make the
attacks harder to execute. From conversations with profes-
sional reverse engineers at Dagstuhl Seminar 17281 in July
2017, we also learned that if tools present incorrect relations
and structure, this hampers attackers even more because they
then waste additional time performing activities based on
incorrect assumptions and data.

In this paper, we target the disassemblers that attackers
rely on as discussed in the attackmodel. From thefield of soft-
ware engineering,weknow that code comprehension benefits
fromwell-structuredness of the code [8,9] and a separation of
concerns, with each fragment having a single responsibility.
It then follows that attackers have a harder time compre-
hending code that does not adhere to structures and concepts
they are familiar with, or that is structured incorrectly. In
this paper, we build on the hypothesis that attackers have a
harder time handling code fragments that each individually
implement multiple parts of multiple, unrelated high-level
functions in a program, in particular when those code frag-
ments are not structured correspondingly.

Table 1 Relations between structured software components and uses
thereof by attackers

Relation
exploited by
attackers

Examples of exploitation in concrete attack

Control flow
transfers

Disassemblers such as IDA Pro deploy
recursive-descent algorithms to identify
code bytes to be disassembled and to be
partitioned into functions

Data flow
dependen-
cies

If an attacker has observed that values are
XOR’ed before they are output, he often
assumes they are being encrypted. The code
that produces the mask used in the XOR
then draws the attention of the attacker if he
is after the embedded encryption key

Spatial
proximity
of code
fragments
in code
sections

If an attacker has identified a code guard
function, e.g., because it reads from the
code sections as it hashes the code bytes, he
looks in the proximity of that function for
other functionality related to tamper
detection, such as the functions that check
the final hash value. This is based on the
assumption that related functionality is
linked into the program together

Temporal
proximity
of code
fragments
in an
execution
trace

When an attacker tampers with the code of a
program, and as a reaction the program
halts almost immediately, the attacker will
focus on the code executed right before the
halting to find the code fragment that
checks the integrity of the code

Spatial
proximity
of data
stored in
memory

When attackers know that structs on the heap
hold values with known patterns as well as
unknown values they want to steal, they
search for the known patterns to find the
locations of the values to steal

3.1 Rationale for code factoring

Concretely, consider the procedures in a program. Attackers
recognize procedures by their prologues and epilogues, and
by the fact that they are invoked through function calls. It
is a natural assumption that procedures can be invoked from
within different contexts. As long as the semantics of the
function in the multiple contexts are somewhat related, i.e.,
it performs roughly the same functionality in those contexts,
the process of assigning ameaning to the function can require
little effort.

It becomesmuch harder, however, to comprehend a code if
a function implements multiple completely unrelated func-
tionalities, depending on the context from which they are
called. This is exploited by obfuscation techniques called
function merging and fusion [7]. The fused function is then
invoked from completely unrelated contexts, to perform
completely unrelated computations, i.e., to implement very
different semantics.

123

76 J. Van den Broeck et al.

Comprehending the code becomes even harder if the code
fragment that implements those different functionalities in
different contexts is not even recognizable as such, i.e., if it
does not look like a procedure in the first place. In software
obfuscation, it is also a well-known technique to hide calls,
returns, epilogues and prologues by replacing their standard
assembler idioms by alternative instruction sequences with
the same semantics butwith different looks [10]. This thwarts
disassemblers that do not recognize the replacements, and it
slows down human reverse engineers.

The obfuscations proposed in this work explicitly build
on this observation about the challenges that human attack-
ers facewhen they try to attack and reverse engineer software.
The obfuscations do so by factoring out code (outlining code)
from unrelated contexts without putting the factored code in
separate procedures, instead using control flow idioms typi-
cally used for intraprocedural transfers.

Not only humans are challenged when facing such fac-
tored out code fragments. Automated attack steps, such as
de-obfuscating transformations and data flow analysis on
which attackers rely, are also hampered.

First, it is well known that many data flow analyses
returnmore precise resultswhen their sensitivity is improved.
Higher sensitivity, e.g., in the form of flow sensitivity,
path sensitivity, or context sensitivity comes at the cost of
rapidly increasing running times and resource consumption,
however, so attackers need to compromise between more
precision and faster analyses. While context sensitivity has
been shown to be both useful and practical in the context
of multiple whole-program binary analyses such as liveness
analysis and constant propagation [11–13], we know of no
path-sensitive variants that are practical. As context-sensitive
analyses do not consider separate contexts for factored code
fragments that do not look like procedures, they are of little
help to attackers that aim to recover the same information
they would on unprotected code.

Secondly, powerful, automated deobfuscation approaches
are available that build on the detection of quasi-invariant
behavior in obfuscated code. In essence, those techniques
iterativelyfilter out and simplify instructions that are observed
to behave quasi-invariantly (i.e., instructions that produce the
same result every time they are executed on some selected
program inputs), as well as code that does not contribute to
the software semantics (i.e., to the input–output relation the
software displays for the selected inputs). This deobfuscation
approach has been shown to succeed in undoing obfuscations
ranging from opaque predicates (with corresponding condi-
tional branches that are either always or never taken) to the
use of packers (because the unpacking of program code does
not depend on program inputs). Based on our experience
with human attackers, this form of deobfuscation is also per-
formed mentally by attackers that analyze code manually,
i.e., when attackers derive properties from program behavior

observed, e.g.,with debuggers.Although suchderivations are
often unsound, MATE attackers only care about the result,
not about soundness.

By factoring out code fragments from multiple, unrelated
contexts, we aim to prevent that the fragments and the sur-
rounding control flow behave invariantly, and hence they fall
victim to the generic deobfuscation approach.

3.2 Rationale for injecting fake edges

In addition to factoring, our strategy involves the injection
of fake control flow transfers into the binaries, i.e., transfers
that disassemblers will consider as possibly taken during a
program’s execution while they will never be taken in prac-
tice.

The reason to do so is that all disassemblers we know
deploy recursive-descent algorithms to group disassembled
code fragments into functions. In short, whenever a direct
control flow transfer (or an indirect one of which the targets
can be resolved) implemented with an idiom for intrapro-
cedural control flow is observed, the disassembler considers
the source and the target of the transfer to belong to the same
function.

By injecting fake edges with intraprocedural control flow
idioms between code from different protection components,
we want to make the disassembler group code fragments
into functions incorrectly. The effect on the produced CFGs
of functions will depend on the internal operation and code
representation of the disassembler. We observed two major
cases.

The first case consists of tools such as IDA Pro and
GHIDRA that are engineered from the ground up on the
assumption that each code fragment can only belong to one
function. These tools hence partition the identified basic
blocks into function CFGs that start at the identified function
entry points. Basic blocks are iteratively assigned to func-
tions if they are connected via intraprocedural looking CFG
edges to basic blocks already assigned to a function. This
iterative assignment is by default greedy: Once a block is
assigned to a function, the disassemblers will never move it
to another function (unless being instructed to do so by, e.g.,
by a attacker plug-in, as we will discuss later).

Basic blocks connected by fake edges can as a result be put
into the same function incorrectly. Precisely where this will
happen depends on the order in which the greedy algorithm
iterates over the basic blocks. In other words, it depends on
internal tool implementation details. In any case, the recon-
structed functions can then mistakenly contain blocks from
unrelated functions (i.e., unrelated except for the fake rela-
tion through the fake edges). As each block is only put in one
function, a block being put into the wrong function implies
that another reconstructed function misses that block. So in
IDA Pro, GHIDRA, and alikes, the reconstructed functions

123

Obfuscated integration of software protections 77

can be at the same time over-approximations and under-
approximations of the original functions.

The same effect will, by the way, also be a side-effect of
factoring, as the disassemblers will then put each factored
block in only one function. They can then put the immediate
successors of the factored blocks into that function as well,
some of which will be put in there incorrectly.

The second case is Binary Ninja, which does not make
any assumption about the number of functions to which a
code fragment can belong. Instead, when it identifies a func-
tion entry point, it adds all basic blocks to the corresponding
function for which it finds a possible (true or fake) path
through intraprocedural looking control flow transfers that
it can resolve. This includes all direct transfers, but also indi-
rect transfers of which it can resolve the potential targets.
In Binary Ninja, the injection of direct, fake, intraprocedural
looking edges can then only lead to reconstructed functions
becoming more over-approximations of the original func-
tions. (Obviously, because of unresolved indirect transfers,
the reconstructed functions can still be under-approximations
at the same time, but that is orthogonal to our work.)

Also for Binary Ninja, factoring will have a similar effect
on functions being over-approximated, because all succes-
sors of all factored block dispatchers of which Binary Ninja
can resolve the potential targets will be put in all functions
to which the factored blocks are added.

In conclusion, both classes of disassemblers can be
thwarted to some extent by injecting fake edges and by code
factoring. They can then produce incorrect CFGs that mix
parts of the original protection components, thus hiding their
boundaries from attackers, and thusmaking their deployment
more stealthy.

3.3 Rationale for code layout randomization

Asdiscussed above, our strategy involves confusing attackers
and the tools by factoring out originally unrelated fragments
and by injecting fake edges such that code fragments origi-
nally belong to different protection combines get mixed up,
and such that code fragments play multiple roles to further
add to the confusion.

Injecting edges by itself will not be enough, however.
Manipulating CFGs by adding edges only mixes up the log-
ical structure of the software, not the spatial structure. To
avoid that attackers can undo the mix-up by relying on spa-
tial structure, we will combine fake edges and factoring with
a spatial transformation consisting of code layout random-
ization. So at the top level, our approach consists of three
transformations, which we discuss in more detail in the next
three sections.

Finally, we concede that both the attack model discussed
in the previous section and our strategy to hinder attacks are
fuzzy rather than well-defined. To the best of our knowledge,

in the domain of practical software protection against MATE
attacks, there is no alternative, however.

4 Code layout randomization

Attack heuristics include spatial proximity. Each source code
file typically contains code fragments that are closely related.
Software libraries to link programs against are also structured
along related functionality.

Compilers and linkers typically do not mix the binary
code generated for different functions in a source code file.
Whole function bodies are typically placed one after another
in the text sections of object files, and text sections of object
files are placed one after the other in linked applications or
libraries, in which they are largely grouped by the archive
from which they were linked in. Unless countermeasures are
taken, related code fragments are hence more likely located
close to each other in binaries. Attackers hence sometimes
use proximity as a guide during their hunt for code to attack.
In other words, they sometimes browse the code linearly.

Taking countermeasures in a link-time rewriter likeDiablo
[11] is trivial, as already demonstrated in the context of soft-
ware diversification [14]. Mixing unrelated code can be done
at any level of granularity, because all code is represented in
one big CFG [11], from which binary code in virtually any
(randomized) order can be generated.

The level of granularity at which the code layout is ran-
domized has to be considered carefully. At the coarsest
level, we can simply leave function bodies intact, but ran-
domize their order throughout a whole program or library,
as previously proposed to prevent memory exploits [15].
This already breaks proximity assumptions regarding the
archive and compilation unit levels. By mixing protection
and application functionality, we can already improve the
stealthiness of protection components. For example, identi-
fying one function as one code guard computation then no
longer automatically leads the attacker to the related func-
tionality in related functions.

We can also randomize the order of instructions and basic
blocks, and mix instructions from all function bodies. How-
ever, because of the used recursive-descent disassembler
heuristics, such fine-grained code layout randomization by
itself does not hamper the partitioning or grouping of code
into functions by disassemblers as discussed before. More-
over, the extra branches and possibly worse instruction cache
behavior following from fine-grained layout randomization
can severely impact performance. When applied in isolation,
fine-grained randomization below the function level is there-
fore costly but hardly useful.

When the randomization is combined with obfuscations
that break the recursive-descent strategy of the disassembler,
more fine-grained randomization can still be useful, however.

123

78 J. Van den Broeck et al.

In that case, splitting up function bodies and placing the parts
in a randomized order prevent the tools from deploying linear
sweep strategies to make up for the then defunct recursive-
descent strategy. How to do so is precisely the aim of the fake
edge injection obfuscations discussed next.

5 Interprocedural opaque predicates

5.1 Disassembler function reconstruction thwarting

To thwart the strategy of partitioning or grouping of disas-
sembled instruction sequences into functions based on direct
control flow transfers, we have two options. First, we can
replace direct transfers with indirect ones, such as branch
functions [10], to prevent that the disassembler infers that
two code fragments relate and belong in the same function.
Note that this goal of thwarting the disassembler’s function
CFG reconstruction after bytes have already been disassem-
bled into instructions is complementary to the original goal
of branch functions, which was to thwart the disassemblers’
ability to identify the locations of instruction bytes in the
executables, which is known to be a difficult task [16].

Secondly, we can add “fake” direct transfers that trig-
ger incorrect assignments of basic blocks to functions. Such
transfers can be added easily by means of opaque predicates
and corresponding conditional branches. If we choose the
predicate of the conditional branch to opaquely evaluate to
false, implying that the branch will never be taken, we can
simply choose any point in the program as the target of the
conditional branch, thus injecting branch-taken CFG edges
between completely unrelated code fragments. If we choose
the predicate to opaquely evaluate to true, we can inject fall-
trough CFG edges between code fragments from completely
unrelated functions. This is trivial with the already existing
support for code layout randomization.

Importantly, whereas choosing the targets of the fake
edges is to be done at link time when all linked-in codes are
available, the actual injection of opaque predicates does not
necessarily need to occur at link time. Source-level obfusca-
tors or obfuscating compilers canbeused for the latter aswell.
They can typically inject more complex opaque predicates,
which are then integrated in the original code more stealthily
as they are compiled together with the original source code
as long as they can inform the link-time rewriter about the
location of the opaque predicates in the code. Obfuscating
compilers can do so by adding comments and mapping sym-
bols to the generated assembly code or object code, and
source-level obfuscators can do so by describing the loca-
tions of inserted opaque predicate code in terms of source line
numbers. By means of debug information in the object files,
a link-time rewriter can then translate the source line num-
bers to object code addresses, thus identifying the locations

where fake edges can be redirected to unrelated fragments at
link time.

FakeCFGedges confuse thedisassembler tools’CFGcon-
struction algorithms because their recursive-descent strate-
gies are implemented greedily: Starting from function entry
points (identified through symbol information or pattern
matching), they traverse the code and greedily assign tra-
versed fragments to functions. During the traversal, they treat
idioms for intraprocedural control flow, such as conditional
branches, as precisely that: intraprocedural control flow. For
unobfuscated compiled code, this works fine, because few if
any source languages feature interprocedural gotos, and stan-
dard compilers do not insert interprocedural branches (with
the rare exception of tail call optimization).

But without more complex data flow analysis or other
mechanisms to distinguish real from fake direct edges out of
conditional branches, the greedy strategies fail. Depending
on whether a basic block is first reached through a fake or
a true edge, it will be assigned to the correct or incorrect
function body. This implies that we can try to steer the tools
toward incorrect function partitioning and CFG reconstruc-
tion by inserting fake edges in a controlled manner, but it
also implies that in the case of disassemblers that put a block
in at most one function, like IDA Pro, the result of the par-
titioning will depend on the order in which basic blocks are
traversed by the tools. In that regard, we observed that tools
like IDA Pro tend to give fall-through paths precedence over
branch-taken paths.

It is important to note that tools like IDAPro offer different
views on the CFGs to human attackers on the one hand, and
to analysis tools on the other. In CFGs stored in a database
in support of plug-ins and external analysis tools, IDA Pro
stores all direct CFG edges it has discovered during the disas-
sembly process. This includes all edges from direct transfers
such as both paths out of conditional branches. This database
hence includes the mentioned fake edges, which can be con-
sidered false positives (FPs). The IDA Pro GUI, which is
typically used by humans to study code, however, does not
display all such edges. Instead, it omits such edges if they
are interprocedural according to IDA Pro, meaning that they
connect basic blocks IDA Pro has put in different functions.
So attackers manually browsing through CFGs in the tool’s
GUI do not get to see them. When fake edges are (acciden-
tally) omitted that way, we can consider them as semi-true
negatives (STNs). They are FPs in the database view, but
true negatives (TNs) in the GUI view. When true edges are
omitted as a result in the GUI, they correspond to semi-false
negatives (SFNs). They are TPs in the database, but false
negatives (FNs) in the GUI view.

SFN and STN CFG edges hamper manual code compre-
hension and code browsing activities on the GUI, as they
result in code from different components, such as protec-
tions and original application code, being presented as if it

123

Obfuscated integration of software protections 79

is part of the same functions, and code originating from the
same functions not being displayed as such.By inserting such
edges, we can contribute to a much more stealthy integration
of protection components.

5.2 Resilience against counterattacks

So far, we only discussed the potency of code layout ran-
domization and interprocedural opaque predicates to confuse
attackers and tools. Another important aspect is resilience
to attacks, because attackers can of course still deploy all
kinds of automated attacks to make up for the deficiencies
of the existing, basic CFG partitioning and grouping strate-
gies. They include static attacks such as pattern matching
[17], abstract interpretation [18], and symbolic execution
[19] to detect opaque predicates, and dynamic attacks such as
generic deobfuscation [20], synthetic code generation [21],
and fuzzing [22]. The dynamic ones are not sound, but that
typically does not hamper attackers.

A first, critical point to make is that none of the men-
tioned academic static techniques have been scientifically
validated as successfully breaking complex forms of opaque
predicates (such as the graph-based ones from Collberg et al.
[23]) on software of real-world complexity. Symbolic exe-
cution, for example, was only tested on programs of at most
two functions [19]. Abstract interpretation was only evalu-
ated on opaque predicates ofwhich the program slice (i.e., the
code computing the predicate) consisted of a tiny fragment
immediately preceding the conditional branch [18].

A second point is that some academic trace-semantics-
based techniques such as synthetic code generation [21] aim
for recovering the original semantics of short obfuscated code
fragments in traces, but not for finding fake edges. Those
edges correspond to the more generic concept of infeasible
execution paths, which by definition do not occur in traces.
Detecting the infeasibility as a form of invariant requires
comparing multiple occurrences of a fragment in a trace.
That is not in the scope of the existing synthetic code gen-
eration approach [21], but it is precisely what the so-called
generic deobfuscation technique does [20]. We come back to
the latter later in the paper.

In practice, we have observed that both pattern matching
and local symbolic execution are effective attack techniques
[1] that might be usable to counter our proposed transfor-
mations. In both cases, small slices of the predicates used in
conditional branches are then analyzed to determine whether
or not they (likely or definitely) correspond to opaque pred-
icates. Depending on the size of the software under attack
and the immediate availability of a working attack tool box,
attackers perform this analysis manually or by means of tool
plug-ins that automate the analysis. Less skilled attackers
reuse existing plug-ins as is; expert attackers can also cus-
tomize plug-ins. On small software, attackers prefer manual

analysis when they assess that the cost of setting up and cus-
tomizing the tools will not be worthwhile. As completely
manual analysis does not scale to larger software with many
predicate instances to analyze, automation is typically pre-
ferred for attacks on larger software. That automation also
often requires manual effort, however, if only because the
customization of plug-ins requires the attacker to first deter-
mine which forms of opaque predicates are useful to search
for, i.e., which code patterns to try to support.

At first sight, the attacker’s ability to perform these attacks
seems not hampered by the interprocedural nature of the
opaque predicates we propose to inject. After all, the inter-
procedural aspect only directly impacts the control flow from
the conditional branch on, not the code computing the pred-
icate leading up to the conditional branch.

However, by carefully choosing the targets of the fake
edges, we can directly impact the code slices of the opaque
predicates, or at least the perception thereof by the attacker.
We can in fact do so trivially by interrupting a slice of one
opaque predicate by means of a fake edge coming in from
another one. In the best case, this results in the assembler
mistakenly assigning the instructions computing the pred-
icate to multiple functions. In that case, the GUI will not
show all relevant instructions in one function CFG. This will
certainly hamper all manual activities of the attacker as dis-
cussed above. But even if the whole slice is assigned to the
same function and hence shown on screen with the correct
control flow between the relevant instructions, the attacker
will still to some extent be confused when the fake edge is
drawn as well.

To overcome this confusion, how small or big it may be
in practice, the attacker has to consider multiple instances of
opaque predicates together. Consider the example in Fig. 1
with predicates of contrived simplicity. Fake edges are drawn
dotted, but at first the attacker does not know they are fake. To
learn that they are truly fake, the attacker needs to consider
both fragments. In practice, we are not limited to coupling
pairs of opaque predicates mutually, we can easily couple
more in larger cycles. A local code comprehension task for
the attacker then becomes a global one; the effort needed to
undo the protection grows.

A similar reasoning holds for fully automated analyses.
Had the opaque predicates not been mutually coupled in the
example of Fig. 1, a simple constant propagation, applied
locally and iteratively with unreachable code elimination,
would have sufficed to detect them. In the coupled case,
simple constant propagation no longer suffices. Instead, a
more complex conditional constant propagation (CCP) [24]
is now required. For the example of Fig. 1, a CCP start-
ing only at the top blue block would never mark any of the
blocks in red as reachable. Binary Ninja performs a simi-
lar conditional value set analysis (VSA) on each function to
which its recursive-descent disassembler has first added all

123

80 J. Van den Broeck et al.

a = a + 1

a = 0

if (a == 0)

b = b + 1

b = 0

if (b == 0)

Fig. 1 Example of coupled opaque predicates (color figure online)

directly reachable blocks. In the example, if the top block
is a function entry point, Binary Ninja’s recursive-descent
pass first adds all blocks except the top red one to the cor-
responding function, and then performs a conditional VSA
starting at the entry block. In this simple example, the results
of the VSA would indicate that the red blocks are not reach-
able from that function entry point. An existing Binary Ninja
plug-in can then remove all red edges and blocks, and all
dotted edges from the function, eventually returning a func-
tion with only the blue blocks and blue solid edges. Together
with dead code elimination, this plug-in would hence be able
to undo the opaque predicate insertion completely on this
simple example.

In general, the (mutual) coupling of opaque predicates by
letting fake edges interrupt slices implies that path-sensitive
versions of analyses are needed. If those are applied locally,
i.e., one slice at a time, they can suffice to identify likely
opaque predicates, i.e., predicates that evaluate to constants
on some execution paths. In that case, the necessary increase
in complexity of the attack step is rather limited. If the
attacker wants to deploy a sound(ish) analysis, however,
to get a degree of certainty about the opaque predicates,
the analysis has to be performed on all mutually coupled
fragments together. This implies a considerable increase in
complexity. In the evaluation section, we will observe and
discuss how Binary Ninja’s conditional VSA and other anal-
yses fail to scale to realistically sized programs protected
with coupled opaque predicates.

In summary, we can conclude that the resilience of code
layout randomization and interprocedural opaque predicates,
i.e., the effort needed to minimize their potency, with respect
to attacks of which we know they are used in practice, is
improved by coupling them in the proposed way.

Admittedly, this security analysis is fuzzy rather thanwell-
defined. We consider a formal analysis out of reach at this
point in time, not only for the protections against MATE
attacks presented in this paper, but for most if not all MATE
protections. In Sect. 7, we will perform a quantitative eval-

uation of a prototype implementation in which we mimick
some real-life attacks.

Finally, we acknowledge that because it only injects
invariant behavior into the software, the proposed protec-
tion via mutually coupled opaque predicates and code layout
randomization does not protect in any way against dynamic
attacks such as the tracing-based generic deobfuscation.
While we deem this acceptable, as other protections can be
used to shield of dynamic attacks, such as anti-debugging,
anti-emulation, and anti-taint protections, we will still build
on the protections presented so far in the next section to also
make some dynamic attacks less effective.

6 Code factoring

To prevent that some of the stronger attacks can reconstruct
the CFGs of a program’s functions completely by identifying
fake edges that can never be executed, we need to insert con-
trol flow transfers with more than one true outgoing edge. In
line with what we discussed in Sect. 2, those true outgoing
edges should look like intraprocedural edges. In other words,
intraprocedural control flow transfer idioms should be used
in general. In order to thwart the partitioning or grouping of
code into functions, however, the edges should be interpro-
cedural, connecting code from different functions.

We canmeet these requirements by deploying control flow
flattening [25] and branch functions [10] across multiple
functions. Both control flow obfuscations can be imple-
mented with many forms of intraprocedural looking control
flow transfers such as conditional branches, switch tables,
and computed jumps. Some simple examples are depicted in
Figs. 2 and 3. However, in that case the transfers can still be
observed to be semantically irrelevant: in a program trace,
their executions will never depend on actual input values,
only on constants such as those assigned to next in Fig. 2
and param in Fig. 3. Furthermore, apart from steering con-
trol to the appropriate continuation points depending on how
they are reached, the injected code fragments then do not
contribute to the output of the program. For both reasons,
these fragments will get de-obfuscated by the approach of
Yadegari et al. [20].

To counter this, we propose to combine the mentioned
obfuscations with code factoring, as illustrated in Fig. 4.
Blocks B and E are identical in the original code. If both
of them can actually be executed in the original program,
both edges coming out of the factored block BE will be exe-
cutable in the transformed program. So the transfer at the end
of block BE will show variable behavior. Moreover, the code
in BE will be executed on data from two different contexts,
and hence also display variable behavior. Moreover, as the
original fragments B andEmattered for the original program,
we can assume the factored block BE to be semantically rele-

123

Obfuscated integration of software protections 81

Context 1+2

Context 2Context 1Context 2Context 1

B

A

C

Dispatcher
(next)

B

Next = B

A

C

E

D

G

E

Next = E

D

F
F

G Next = F

Fig. 2 Control flow flattening

Context 1+2

Context 2Context 1Context 2Context 1

A

B

Dispatcher
f-1(param)

Param = f(B)

A

B

C

D

C

D

Param = f(D)

Fig. 3 Branch function

Context 1+2

Context 2Context 1Context 2Context 1

B

A

C

BE

B2

B1

A

C

E

D

F E2

E1

D

F

dispatcher

Fig. 4 Code factoring for obfuscation

vant in the transformed program. The generic deobfuscation
approach of Yadegari et al. will therefore fail.

Code factoring is not new. Several forms have been pro-
posed in the past to compact programs [12]. Our deployment
of factoring serves the purpose of obfuscation, however,
so it differs in two significant ways from previous deploy-
ments. First, we do not factor code into new functions that
get called and end with return instructions. Instead, we use
idioms of intraprocedural control flow, such as conditional
branches, switch tables, and computed jumps. Secondly, we
do not strive for more compact code. This implies that we

can transform non-identical code fragments to make them
identical, even when that involves prepending or appending
extra instructions to the original fragments that move values
between registers.

With these different requirements, we developed a signif-
icantly different code factoring technique. The most relevant
aspects are a fast preliminary identification of potential frag-
ments to be factored, the identification of actual factoring
candidates, the order in which those are selected for trans-
formation, the preparation of the selected ones, and the actual
factoring transformations themselves.

6.1 Potential factoring candidates

To factor code, identical code fragments need to be iden-
tified or created. Existing factoring techniques [11,26,27]
pre-partition code fragments using fingerprints. The finger-
printing functions are simple and strike a balance between
recall and precision. They are defined such that code frag-
ments that are “similar enough” to be likely candidates for
factoring are mapped onto the same fingerprint. Much more
complex and time-consuming precise checks of factoring
pre-conditions, which also analyze the fragments’ surround-
ings, are only performed on sets of fragmentswithin the same
partition, i.e., with the same fingerprint.

In existing code factoring techniques focussing on com-
paction, “similar enough” is defined as “nearly identical,” i.e.,
having identical instruction schedules, and (almost) identical
register allocations. The underlying assumption is that less
similar fragments might well be factorable, but likely glue
code will have to be injected around them before they can
be factored, which will likely undo the compaction gains.
Furthermore, to further limit the search space by focusing
on worthwhile cases, existing techniques typically consider
fragments consisting of one or more basic blocks, such as
whole single basic blocks, single-entry CFG subgraphs of
multiple blocks, and whole functions/methods [12,28–31].
An underlying assumption is that it is much less likely to find
nearly identical, worthwhile fragments inside single basic
blocks if the containing blocks are not nearly identical as a
whole.

For our obfuscation purpose, the size of the glue code is
only a secondary concern. We hence have to strike a balance
differently. We opted to do so by not factoring fragments
consisting of one or more whole basic blocks. Instead, we
focus on slices (as defined by Horwitz [32]) and instruction
sequences that are limited to, i.e., originate from within, sin-
gle basic blocks. We only consider slices and sequences that
exclude control flow transfer instructions.

The slices we consider as candidates for factoring are
directed acyclic graphs (DAGs) with a single sink node. The
DAGs’ nodes are instructions, and their edges are data depen-
dencies. Instructions can definemultiple slices, ranging from

123

82 J. Van den Broeck et al.

the single-instruction slice consisting of only the instruction
itself, to the largest possible incoming data-dependencyDAG
within the instruction’s basic block. Besides in the slices they
define themselves, instructions can also show up in the slices
defined on instructions further down in their basic blocks.
The sequences we consider are sequences of instructions in
the order in which they occur in the basic blocks. All sub-
sequences of the instruction sequence constituting the block
are considered. In the remainder of this paper, we use the
term fragments to denote both slice and sequences. They are
treated mostly identically in our factoring approach.

The only point where their treatment differs is in the
computation of fingerprints. For sequences, we iterate over
the instructions in their order in the original program. For
slices, we iterate over the instructions in a canonical order
that abstracts from the precise order in which the instruc-
tions occur in the program. This canonicalization is useful
because nodes in a DAG are only partially ordered, and com-
pilers generate different instruction orders for the sameDAGs
depending on the other instructions mixed in between them.

The fingerprints consist of the concatenation of at most
four instructions’ opcode (e.g.,ADD,MOV,. . .), their operand
types (e.g., two registers, one register and an immediate,. . .)
and some of their flags (e.g., pre- or post-indexed). We found
that including only four instructions in the fingerprint strikes
a good balance between precision, recall, and memory con-
sumption.

It can also be useful to consider the hotness of code frag-
ments, i.e., their contribution to the total execution time of a
program as determined with profiling. Excluding the hottest
fragments helps to reduce the performance overhead.

6.2 Actual factoring candidates

Being nearly identical does not suffice for actual factor-
ing. For sets of nearly identical fragments, we also need
(i) to extract the fragments from their basic blocks; (ii) to
make fragments truly identical by reallocating registers and
by replacing non-identical immediate operands by constants
stored in registers; (iii) to add a dispatcher to “return” from
the factored fragment and to feed that dispatcher with the
necessary inputs at each “call site.” The latter two result in
increased register pressure. Our binary rewriter does not con-
vert the higher-level executable code to a higher-level IR.
Hence, we need to transform the code and handle the regis-
ter pressure locally. Concretely, this means we have to inject
glue code in the form of register transfer instructions such
as move, copy, swap, and spills to memory around the frag-
ments. Foremost, we need to check whether we can actually
perform the required rewriting within the capabilities (avail-
able transformations and analysis precision) of the link-time
rewriter. As different dispatchers comewith slightly different

requirements, we also need to check which dispatchers can
be used for which sets.

Figures 5, 6 and 7 illustrate the required transformations
with 32-b ARMv8 code. The selected slices are marked in
bold in Fig. 5. They have been rescheduled into separate
blocks in Fig. 6. To enable the factoring already applied in
Fig. 7, the differences in immediate operands and register
allocations have been overcome by inserting a number of
move-and-swap operations in blocks 1b, 2a, and 2b. The dis-
patcher in block 3b is a simple conditional branch. In the
first instruction of block 2a, the controlling register r9 is set
to zero, to control and enable the execution path 2a–3a–3b–
2b. For controlling and enabling the path 1a–1b–3a–3b–1c,
register r9 does not need to be set to a specific value. Instead,
the fact that r9 is used as a base address in the store pre-
ceding slice 1 is relied upon: As user applications have no
data mapped onto the lowest page in virtual memory, we
can assume that r9 will be nonzero in the code following the
store. This assumption is optional and can easily omitted in
scenarios where it would not hold, such as kernel code.

To test whether sufficient glue code can be generated
to make a fragment set actually factorable, we use a bi-
directional, context-sensitive interprocedural liveness anal-
ysis [33]. To identify already available constants as input to
dispatchers, we perform a flow-sensitive, context-sensitive
(k-depth with k = 1) constant propagation analysis [34]. On
top, we developed a simple flow-sensitive, context-sensitive
(k-depth with k = 1), bi-directional, interprocedural nonzero
analysis that tracks which registers hold values that are def-
initely nonzero. As these data flow analyses operate at the
level of executable code, where useful alias information is
sparse [35], they only analyze data in registers.

The constant analysis and the nonzero analysis allow us
to reuse values that already have semantic relevance in the
original program to control the dispatcher. If, for some fac-
tored fragment, this is the case for more than one of the
contexts from which the factored fragment was extracted,
the dispatcher is then controlled by semantically relevant
data originating from more than one execution context. The
invariants that held in those original contexts in isolation
likely do not hold in the merged context after factoring. We
conjecture that this makes code comprehension harder. It
also ensures that deobfuscation techniques based on (quasi-
)invariants will not work on the factored code.

In the example, slice 2’s registerswere renamed to those of
slice 1. In many cases, candidate sets consist of more than 2
slices. Trying out all possible register renamings to select the
best one would increase the code analysis time significantly,
so instead we use a simple heuristic to select one of the slices
as reference slice to which the others are renamed. This sim-
ple heuristic in practice also favors more likely successful
renamings over less likely successful ones. In slice 1 of the
example, the value loaded into r5 by the second load is live-

123

Obfuscated integration of software protections 83

STR r4, [r9, #0x4]
LDR r4, [r13, #0x48]
ADD r7, r7, #0x8
LDR r5, [r13, #0x28]
CMP r7, r4
ADD r12, r5, #0x8
STR r12, [r13, #0x28]
MOV r7, r5
BNE (…)

LDR r7, [r13, #0x88]
LDR r8, [r13, #0x70]
CMP r12, r7
ADD r8, r8, #0x1
STR r8, [r13, #0x70]
BGE (…)

1
2

Fig. 5 Factoring candidate slices in bold in their respective basic blocks

ADD r7, r7, #0x8
CMP r7, r4
MOV r7, r5
BNE (…)

CMP r12, r7
BGE (…)

LDR r4, [r13, #0x48]
LDR r5, [r13, #0x28]
ADD r12, r5, #0x8
STR r12, [r13, #0x28]

LDR r7, [r13, #0x88]
LDR r8, [r13, #0x70]
ADD r8, r8, #0x1
STR r8, [r13, #0x70]

1a 2a

1b 2b

STR r4, [r9, #0x4]

Fig. 6 Split factoring candidate slices

out. In slice 2, the value loaded into r8 by the corresponding
load is overwritten by the add. So an allocation like that of
slice 2 cannot replace that of slice 1. In our simple heuris-
tic, we count the number of different registers occurring in
the original fragments, and we pick the one with the highest
number as reference fragment. In case the heuristic does not
favor one fragment over the others, and when (optional) pro-
filing information is available, we pick the fragment with the
highest execution count as reference fragment. While these
simple heuristics are clearly not optimal, they provide a good
balance between analysis time, performance and size over-
head, and success ratio of the transformations.

6.3 Selection order

Instructions can be present in multiple factoring candidate
sets, but each instruction can only be factored once. Fur-
thermore, factoring a set of fragments changes the data flow
properties in the surrounding code, e.g., by making previ-
ously dead registers containing nonzero or constant data live,
so one factoring can impact the potential of another candidate
one. The order in which we select and apply actual factorings
is therefore important.

The selection order also needs to strike a balance between
the level of protection and obfuscation speed. The former

ADD r7, r7, #0x8
CMP r7, r4
MOV r7, r5
BNE (…)

CMP r12, r7
BGE (…)

CMP r9, #0x0
BEQ (2b)

MOV r9, #0x0
MOV r14, #0x70
MOV r11, #0x1
MOV r10, #0x88
MOV r7, r12
B (…)

SWAP r7, r4
SWAP r8, r12
SWAP r12, r4

LDR r4, [r13, r10]
LDR r5, [r13, r14]
ADD r12, r5, r11
STR r12, [r13, r14]

MOV r14, #0x28
MOV r11, #0x8
MOV r10, #0x48
B (…)

1c

2c

1b

2a

2b

3a

STR r4, [r9, #0x4]1a

3b

Fig. 7 Factored slices (color figure online)

requires a global optimization and decision process that
considers all potential candidate sets. However, that would
require too much computation time. The potential candidate
sets can be very large, up to hundreds of fragments, espe-
cially for small fragments of one or two instructions. The
larger subsets thereof are typically not actual factoring can-
didates because our local register renaming technique is not
powerful enough to overcome the differences in data flow
properties of all the fragments surroundings. For smaller can-
didate subsets, the renaming is much more likely to succeed.
Our approach hence starts from small candidate sets, that we
expand as much as possible, i.e., as long as the estimated
protection value increases.

6.3.1 Priority function

To order and compare candidate sets in terms of protection
value, we need to consider measurable features (i.e., met-
rics) that contribute to the potency, resilience, and stealth of
factoring them. We propose the following ones:

1. the fragment size as their number of instructions;
2. the numbers of archives, object files, and functions from

which the fragments come;
3. the numbers of archives, object files, and functions in

which fragments were observed to be executed for at

123

84 J. Van den Broeck et al.

least one input, as determined by (optionally) profiling
or fuzzing;

4. the possible dispatchers, and, if applicable, the already
available constants or nonzero values.

The first metric prioritizes larger code fragments over
smaller ones. We conjecture this is useful because factor-
ing larger fragments results in more semantics being merged
from different contexts, thus increasing the potency of a fac-
toring transformation. It can also be useful for stealth, as it
allows for better mixing of the injected dispatcher code with
the factored code. Finally, it can contribute to the resilience
against certain attacks. For example, undoing a factoring
transformation by statically rewriting the code is more dif-
ficult when more instructions need to be re-inserted in the
contexts from which they were factored.

The second metric, which actually consists of three
metrics, contributes to potency. Assigning higher value to
factorings of unrelated fragments originating from multi-
ple object archives, object files, or functions, allows us to
prioritize candidate sets that break proximity-based attack
heuristics and that obfuscate component boundaries.

The third metric, again a set of three metrics, relates to
resilience against dynamic attacks that build on observations
of executions of the software under attack. These metrics
allow us to prioritize candidate sets of which the effect of
factoring them on the reconstructed CFGs cannot be undone
by omitting edges and nodes that the attacker cannot trigger
during dynamic attacks and by then simplifying the remain-
ing code, as is done in the generic deobfuscation attack by
Yadegari et al. [20].

The fourthmetric allows to consider the potency, resilience,
and stealth of the different types of dispatchers: Some
are harder to analyze but not very stealthy (e.g., dynamic
switch dispatchers); others are stealthy in the sense that they
resemble already occurring fragments in the original pro-
grams (e.g., conditional jumps). Some are more resilient to
automatic deobfuscation, others are less so. The different
dispatchers are discussed in Sect. 6.4.

The metrics can be combined in a priority function in var-
ious ways: in weighted sums, in decision trees, etc. They
can also be combined with profile information to give lower
priority to fragments on frequently executed code paths to
minimize the performance impact of the factorings. The def-
inition of the best priority function is out of the scope of
this paper. Importantly, a user of our protection tool chain
can customize it depending on his use case at hand, taking
into account the security requirements of the software assets
at hand (confidentiality, integrity,. . .), a risk assessment of
different attack scenarios, and the performance budget.

6.3.2 Selection and actual factoring

Our factoring algorithm consists of two phases.
At the start of the selection phase, we perform the already

mentioned data flow analyses. Then a list of initial factoring
candidates is assembled, ordered by their protection value.
This list includes sets of fragments that are actual factoring
candidates in the untransformed program. In other words, the
data flow properties of the original program meet the neces-
sary pre-conditions to apply the factoring transformations.
No factorings are applied yet, however.

To decide on the initial candidate sets to add to the list in
the selection phase, we implemented an iterative algorithm
that is applied to each of the potential candidate sets. For each
such set, the algorithm starts by marking pairs of fragments
that can be factored, i.e., pairs for which register renaming
can be performed and at least one dispatcher can be gener-
ated. Using the priority function to sort all possible pairs in
terms of protection value, we select the best starting pair as
the seed set. Next, we iteratively try to expand the seed set.
In each iteration, we add the one fragment from the potential
candidate set that results in the biggest increase in protec-
tion value. This continues as long as the protection value
increases. The final expanded set is then added to the list of
actual factoring candidates, in which we also keep track of
the possible dispatchers, available constants or nonzero val-
ues, and other useful information to steer the dispatcher. The
fragments in the expanded set are removed from the potential
candidate set, and the whole process is repeated with other
seeds until no sufficiently valuable seed sets can be found
anymore.

In the factoring phase, we iterate over the ordered list
of actual factoring candidate sets in decreasing priority. We
factor each set if the necessary pre-conditions have not been
invalidated by a previously applied factoring. Our prototype
implementation can be configured on how to choose spe-
cific dispatchers from the available ones for each factoring,
such as randomly or giving priority to specific forms. After
each factoring, we update data flow information by means of
incremental versions of the mentioned analyses to propagate
the impact of the performed factoring on available registers,
constants, and nonzero values to the necessary program loca-
tions.

6.4 Dispatchers

Many different dispatchers can be designed. We developed
support for four types.

6.4.1 Conditional jump dispatcher

For sets of two fragments, a simple conditional branch can
serve as dispatcher, as in Fig. 7. A branch condition like

123

Obfuscated integration of software protections 85

equal-to-zero can be steered with a zero, and an unknown
nonzero value that already has a semantic role in the original
program. If no constants or nonzero values are available at
the program locations of the original fragments, glue code is
injected to produce them, possibly in an obfuscated manner
and hoisted in the code such that a local static analysis does
not suffice to detect it. We will come back to this in Sect. 6.5.
Moreover, there is no need to keep it in a register, it can also
be stored in memory. All kinds of schemes can be imagined
that opaquely produce or load specific constant values or
other values, always negative or always positive values, etc.

These dispatchers offer the major advantage that disas-
semblers like IDA Pro and Binary Ninja will recognize them
as intraprocedural control flow, and thus we can rely on them
to steer the disassemblers toward incorrect partitioning and
grouping of code into functions.

In terms of pre-conditions, it is important to note that
this type of dispatcher sets the processor’s status flags. If
those were live-out in the original fragments, it means the
status bits have to be saved somehow, either in registers or
by spilling them to memory. Saving and spilling status flags
is rarely done in compiler-generated code, however, so when
it occurs, it makes the code immediately suspicious in the
eyes of attackers. For that reason, we opted not to use this
type of dispatcher when the status flags are live-out in any of
the involved fragments. Whether or not this is the best choice
under all circumstances admittedly is open for debate.

For sets of more fragments, trees of multiple conditional
branches can be used, but our prototype implementation is
currently limited to single branches that are fed data (zeroes
and nonzero values) directly through registers.

6.4.2 Indirect branch dispatcher

For larger fragment sets, we can use branch-to-register dis-
patchers, similar to the branch functions of Linn et al. [10].
In the simplest implementation, the exact addresses of the
destination blocks are produced in the glue code preceding
the extracted fragments, but less manifest schemes can easily
be constructed.

Very simple schemes in which addresses are produced
directly and locally, i.e., in glue code immediately preceding
the transfer to the factored fragment, are not resilient to even
relatively simple static analysis. For example, IDA Pro out-
of-the-box identifies directly produced addresses during its
recursive disassembly process and continues disassembling
at those addresses. If the bytes at those addresses correspond
to valid instruction encodings, IDAPro adds the code at those
addresses to CFGs, albeit in separate functions to which it
does not create edges from the dispatcher. Complex schemes
in which addresses are computed right before the branch-to-
register instruction can be made completely resilient against
static analysis and even the generic deobfuscation of Debray

et al., but they comewith the disadvantage that they are not at
all stealthy. For example, it happens pretty rarely that values
are XOR-ed before serving as a branch target, so schemes
based on XOR-ing can be targeted with pattern matchers.

Unlike conditional jump dispatchers, IDA Pro does not
add outgoing edges to this type of dispatcher. So while it
can be used to prevent the tool from constructing complete
function CFGs out of the box, it cannot, by itself, steer IDA
Pro toward incorrectCFGs that incorporate basic blocks from
multiple, unrelated functions. As wewill discuss in Sect. 6.5,
we can combine this type of dispatcherwith other obfuscation
constructs to reach exactly that.

In our prototype obfuscator, we only implemented support
for schemes with direct address production in a dead register
in the glue code preceding the factored fragments.

6.4.3 Static switch table dispatcher

Whereas computed jumps occur rarely in compiled C and
C++ code, indirect jumps via table look-ups occur regularly,
because switch statements are typically compiled into such
look-ups. Two variations exist: address tables and branch
tables. In the former, the address of the case to be executed
is loaded from a table and jumped to, in the latter a com-
puted jump is performed into a table of branches, which then
forwards control to the case to be executed. Before the look-
up, a bounds check is often performed. If it fails, control is
transferred to the default case.

Table-based dispatchersmimicking switch dispatchers are
therefore more stealthy than branch-function-like dispatch-
ers.With this type of dispatcher, the glue code before factored
fragments passes indexes to the dispatcher. These can again
be produced directly or in some obfuscated way, and either
locally or hoisted. Indexes can also be derived from known
constants already in registers in the original code upon entry
to the factored fragment.

The tables can be inflated with fake target addresses or
jumps to fake targets. Tools like IDA Pro and Binary Ninja
handle many patterns of switch table implementations and
implicitly assume that the dispatchers implement intrapro-
cedural transfers, so by implementing this dispatcher in a
suitable pattern, they can be steered toward creating many
fake edges that result in incorrect CFG partitioning and
grouping. Disassemblers will typically also use the bounds
check to determine the size of the table, so by inserting a fake
bounds check, they can be fooled also in that regard.

In our prototype tool, we implemented support for both
forms of tables. The tool inserts (fake) bounds checks if the
condition registers are available. If not, there simply is no
bounds check inserted. In that case, tools like IDA Pro typi-
cally do not analyze the switch statement and the table, and
simply do not add outgoing edges at all.

123

86 J. Van den Broeck et al.

Finally, we need to note that whereas look-up-based indi-
rect control flow transfers aremore stealthy than computation-
based indirect transfers, their use for factoring can still lack
stealthiness, in particular for large fragment sets. This is
of course the case because in non-obfuscated and hence
well-structured code, switch statements typically have a low
fan-in. Our factored fragments, however, have a fan-in equal
to their (true) fan-out. High fan-ins are suspicious in the eyes
of attackers.

The strength of this formof factoring therefore has to come
from its improved potency and resilience. The potency can
be improved by combining this factoring with other obfus-
cations, as we will discuss in Sect. 6.5.

6.4.4 Dynamic switch table dispatcher

To improve both the potency of look-up-based dispatchers
and their resilience against static analyses, we propose to
make the look-up tables dynamic rather than static.

In compiled code, there is a static one-to-one mapping
of dispatchers to tables. We are not bound by this restriction,
however, and can let dispatchers dynamically switch between
multiple tables. To that extent, we designed and implemented
what we call dynamic switch tables. Given a set of global
data tables, one such dispatcher may address any of these
tables during the execution of the program. The key idea is
to separate data table selection from its usage, both spatially
and temporally. We do this by introducing the so-called table
selection points in theCFG: locationswherewe insert a small
instruction sequence to select one of the global data tables.
We store the base address of the selected data table in a global
variable used by the dispatcher. By separating the selection
and use of the tables, a single dynamic switch table dispatcher
may address different global data tables at different times
during a single run.

Figure 8 shows the example factoring of two fragments
B and E. The end result is shown on the right: three table
selection points, the factored block BE, a dynamic switch
table dispatcher, its global variable (x), and data tables T1,
T2 and T3. The glue code with the transfers to the fac-
tored block only contains instructions to produce the switch
indices for each control flow path (m for fragment A and
n for fragment B). The location where x gets assigned a
new value does not really matter; the distance between the
dispatcher and the table selection points can be arbitrarily
large. Using a reachability analysis, the obfuscator deter-
mines which table selections reach which assignments of
switch indices. In the example, selections of T1 and T2 reach
the point where the index is set to m. This leads to the con-
straint that T1[m]=T2[m]=C. The tables need to be filled in
respecting all such constraints. Similar to static switch tables,
we can also add false entries (e.g., at index m in table T2) to
confuse the attacker and his tools.

CODE

B

A

C

BE

index=m

A

C

E

D

F

index=n

D

F

Dispatcher
x[index]

x T1 x T2
x T3

... ...

DATA

m:
...
F

T3:

...

n:
...
C

T2:

D

n:
...
C
...

T1:
x:

...
m:

Fig. 8 Transformation with dynamic switch tables

Compared to static switch table dispatchers, dynamic table
dispatchers increase the complexity by introducing an extra
layer of indirection, which known static analysis cannot
resolve, in particular when multiple obfuscations get com-
bined, as will be discussed in Sect. 6.5. We also observed
that these dispatchers mislead IDA Pro into constructing
incomplete CFGs, because it is incapable of analyzing them
properly. Consequently, the recursive-descent disassembler
does not always disassemble all the instructions in the binary
and associations between (sometimes large) portions of code
are lost. The potency and resilience of this dispatcher are thus
high. By contrast, this dispatcher is not stealthy: An attacker
may find it strange that a dispatcher exists with no detected
outgoing control flow. Given the high potency and resilience,
we believe this lack of stealthiness does not completely void
its usefulness.

The pre-conditions for this dispatcher are identical to the
ones for traditional switch-based dispatchers, with the addi-
tional requirement that one extra register needs to be available
to store a temporary value in.

6.5 Integration with other protections

Apotentialweakpoint of the factoring is that the computation
of the values controlling the dispatchers (such as the index
into a table, or a zero constant) is done in a linear control flow
path leading up to the transfers to the factored code. We can
fall back to all kinds of existing obfuscations to obfuscate
this calculation, but the level of obfuscation is limited by the
performance budget.

Complementary, e.g., to light-weight obfuscation, we can
increase the potency and resilience of the proposed tech-
niques by coupling the factorings. We can couple them with
each other as well as with the opaque predicates. In Sect. 5.2,
we already discussed how multiple opaque predicates can
be coupled by directing fake edge to points in the middle
of (other) opaque predicate computations. Likewise, we can

123

Obfuscated integration of software protections 87

also redirect fake opaque predicate edges to the middle of
instruction sequences that compute dispatcher control val-
ues. And we can choose the targets of fake entries in the
tables of switch-based dispatchers in exactly the same way
to obfuscate opaque predicate computations as well as dis-
patcher controller computations. That way, we turn the static
analysis and deobfuscation of opaque predicates and factor-
ing into one global hurdle for attackers.

7 Experimental evaluation

With our experimental evaluation, we aim at providing (par-
tial) answers to the following research questions.

1. Are the proposed transformations easy to apply? In other
words, are there enough relevant fragments to be found in
real programs towhichwe can apply the transformations.

2. To what extent do the proposed transformations ham-
per an attacker that wants to reverse engineer protected
programs? In other words, what is the potency of the
proposed transformations?

3. Howeasy is it undo or circumvent the protection achieved
by the transformations? In other words, what is their
resilience against a number of feasible counterattacks.

4. What is the cost of applying the transformations in terms
of overhead?

5. To what extent are the results dependent on the precise
configuration of our tools.

In the following sections, we try to answer these questions
to some extent by reporting on experiments we conducted.
We do so by analyzing the effect that a prototype implemen-
tation has on a number of popular tools in attacker tool boxes
when that prototype is deployed on benchmarks that are rep-
resentative enough of real-world programs. At the end, we
also draw some lessons from our experimentation.

7.1 Prototype implementation

We implemented the proposed techniques in the ASPIRE
Compiler Tool Chain (ACTC) [36], which can composemul-
tiple protections through source-to-source and binary code
rewriting. All proposed techniques are implemented in Dia-
blo [11], theACTC’s link-timebinary code rewriter. The code
is available as open source at https://github.com/csl-ugent/
diablo/tree/oisp.

Our prototype has limitations. The binary rewriter does
not support trees of conditional branch dispatchers, and lacks
global register allocation and the option to spill and free sta-
tus registers. Furthermore, the currently supported opaque
predicates are limited to algebraic ones. More complex ones
can be supported by combining theACTC’s source-to-source

rewriting to inject complex predicates (e.g., graph-based ones
[7] or predicates resilient to symbolic execution [37]) with
binary rewriting to let fake edges cross component bound-
aries. Finally, the rewriter lacks support for C++ exception
handling.

7.2 Benchmarks

We have validated correctness on all C and C++ programs
from the SPEC CPU2006 benchmark suite [38] (excluding
453.povray and 471.omnetpp that depend on excep-
tion handling) and on two industrial use cases from the
ASPIRE research project [39]. Whereas the SPEC programs
are stand-alone Linux binaries, the industrial use cases are
dynamically linked Android libraries that are loaded into
third-party applications. Nagravision contributed the first use
case, a Digital Rights Management (DRM) plug-in that is
loaded into the Android DRM and mediaserver daemon pro-
cesses. SafeNet contributed the second use case, a software
licensemanager (SLM) that is loaded into theAndroidDalvik
engine. Those daemons and engines are complex third-party
multi-threaded processes that load and unload the libraries
frequently. They hence stress-test our prototype.

The ASPIRE project deployed and validated the many
ACTC-supported protections on those two use cases to mit-
igate attacks on the assets embedded in them, in line with
the assets’ security requirements as formulated by the secu-
rity experts of the companies that contributed them [40].
As part of these protections, numerous archives are linked
into the libraries. The protected use cases thus form per-
fect candidates to evaluate the proposedmethods for stealthy,
obfuscated integration of components proposed in this paper.
Table 2 lists the deployed protections, and the number of
components linked into the libraries thereto. In addition, we
consider the SLM use case to consist of three components
itself (the manager and linked-in open-source crypto and
math libraries) and the DRM case of two components (the
manager and some linked-in libgcc.a functionality). From
the overall instruction count numbers in Table 2, it is clear
that our use cases are not microbenchmarks, but applications
and libraries of real-world complexity.

By contrast, the ACTC does not deploy additional pro-
tection on the SPEC benchmarks, as those embed no
security-sensitive assets. Still, three of those benchmarks
have their source code split over multiple directories:
436.cactusADM, 445.gobmk, and 454.calculix.
By treating each directory as a separate archive, we can still
evaluate our techniques on them. Figure 9 plots the relative
sizes of the benchmarks’ components on the x-axis; the y-axis
is the code coverage in the different components obtained
when we profiled the benchmarks on our training inputs.
These data enable the interpretation of measurement results
below.

123

https://github.com/csl-ugent/diablo/tree/oisp
https://github.com/csl-ugent/diablo/tree/oisp

88 J. Van den Broeck et al.

Table 2 Number of components in the benchmarks

SLM DRM 436 445 454

Number of archives constituting benchmark (• in Fig. 9) 3 2 17 7 5

ACTC protection archives linked into benchmark (◦ in Fig. 9)

Call stack checks No support components linked-in 0 0 N/A

Code mobility Libwebsockets, libcurl, libssl, libcrypto, implementation 5 5

Anti-debugging Minidebugger 1 1

Code guards Implementation and guards 1 1

Custom bytecode interpreter Application-specific VM implementation 1 N/A

Overall component (=archive) count 11 9 17 7 5

Overall instruction count without our obfuscations 276k 255k 99k 152k 366k

0

20

40

60

80

100

% of original program

%
ex

ec
ut

ed

(a) 436.cactusADM (36.46%)

0

10

20

30

40

50

60

70

% of original program

%
ex

ec
ut

ed

(b) 445.gobmk (61.03%)

0

20

40

60

80

100

0 5 10 15 20 25 0 10 20 30 40 50 60 0 10 20 30 40 50 60

% of original program

%
ex

ec
ut

ed
(c) 454.calculix (12.28%)

0

20

40

60

80

100

% of original program

%
ex

ec
ut

ed

(d) SLM (10.17%)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

% of original program

%
ex

ec
ut

ed

(e) DRM (8.08%)

Fig. 9 Relative archive sizes and their individual coverage in the benchmarks, plus overall coverage per benchmark

7.3 Applicability

First, we analyze the applicability of the different transforma-
tions. Code layout randomization is applicable everywhere
trivially. Opaque predicates and related conditional branches
can also be inserted almost everywhere easily. In our pro-
totype obfuscator, the user can specify the probability with
which an opaque predicate is injected into each basic block.

A pseudo-random process then chooses blocks and opaque
predicate constructs accordingly.

By contrast, the proposed factoring techniques are not
applicable trivially: factorable fragments need to be avail-
able, preferably over component boundaries. So first, we
measured the applicability of factoring. Figure 10 shows
the fraction of the original instructions that get factored
in five cases: when all four types of dispatchers (indirect
branches, switches, switcheswith dynamic tables, and condi-

123

Obfuscated integration of software protections 89

tional jumps) are mixed with some randomization, and when
each of those four is deployed in isolation. In each bar, the
colored segments in the stack mark the number of different
archives from which the slices/sequences factored together
originate. The lowest segment corresponds to instructions
that are factored from within only one archive. The second
to instructions that are factored from within two archives,
etc. It is clear that a considerable fraction of all instructions
gets factored. It is also clear that the amounts of instructions
factored from within multiple archives clearly correlate with
the number of available archives and with the uniformity
with which the application is partitioned into archives. Fig-
ure 11 similarly shows that many instructions are factored
from within multiple object files, at least for dispatchers that
support slice sets with more than two slices. Also at that level
of granularity, and hence also at the still lower levels of indi-
vidual functions and code contexts, the factoring approach is
hence capable of obfuscating component boundaries.

In the context of dynamic attacks such as generic deobfus-
cation that focus on covered instructions with quasi-invariant
behavior, it is also useful to know how many of the factored
instructions were originally covered (i.e., executed) in one
or more contexts. To that extent, Fig. 12 shows the distri-
butions of the factored instructions in terms of the number
of the covered slices/sequences from which they were fac-
tored. Each segment marks the fraction of all instructions
that got factored in a set of slices/sequences, where the num-
ber of slices/sequences covered in the original program is
indicated by the color of the segment. This means that the
lowest segment corresponds to the instructions that got fac-
tored in a set of which no slice/sequence is covered in the
original program. The next segment to instructions that got
factored in a set in which one slice/sequence is covered, etc.
The observed distributions are in line with the data in Fig. 9:
When few instructions are covered in the first place, even
fewer get factored from within one or more covered con-
texts.

Figure 13 shows similar data, but rather than consider-
ing all instructions, it only considers the covered instructions
in the protected program, i.e., the instructions targeted by
dynamic attacks. From the overall height of the bars, it is
obvious that significant parts of the covered instructions are
factored. Moreover, the vast majority of the factored cov-
ered instructions are factored frommultiple covered contexts.
This implies that in the protected program, most of the fac-
tored fragments are executed on data from two contexts. This
implies that the injected dispatchers for the vast majority of
the covered and factored slices do not display quasi-invariant
behavior.

Figure 14 presents a further dissection of the factoring
applicability, for the SLM benchmark. The heatmap displays
the relations between the number of factored fragments in the
protected program (color), the sizes of the factored fragments

(first x-axis), the number of archives from which they are
factored (second x-axis), and the number of archives inwhich
the factored fragments were covered (y-axis).

As to be expected, the number of factored shorter frag-
ments is significantly larger than that for longer ones. Second,
the longer factored fragments all come from within a sin-
gle archive. From further examination, we actually observed
that the exceptionally long fragments originate from loop-
unrolled code.

It is also clear that the most interesting factorizations, i.e.,
those from multiple contexts executed in multiple archives,
are relatively rare, and involve only rather short sequences.
This clearly indicates that there are practical limitations to
the level of protection that our techniques can provide. Still,
the colored cells in the upper right corner show that even
if attackers completely neglect all uncovered control flow
edges and code fragments, some dispatchers that are exe-
cuted in more than one direction will keep hampering their
reconstruction of the original program. In future work, we
will investigate techniques to generate more and larger fac-
torizable fragments by transforming code fragments rather
than simply selecting existing ones like we do now.

7.4 Potency

To estimate the potency of the presented obfuscations, i.e.,
the extent to which they confuse human attackers, we per-
formed three measurements on binaries protected with our
Diablo-based tool. For these experiments, we configured the
tool as follows. For factoring, we enable all dispatchers (with
switch tables filled with 30% fake entries) and only factor
fragments of at least 2 instructions but with no other restric-
tions, e.g., regarding hotness. We insert opaque predicates
and corresponding conditional branches into 20% of ran-
domly selected basic blocks, making the fall-through edge
the fake edge whenever possible. After code layout random-
ization,we redirect fake edges throughout the binary to create
cycles of four coupled obfuscations as discussed in Sect. 5.2.

7.4.1 Theoretical interconnectedness

First, we measure the extent to which the code of different
components has become interconnected by intraprocedural-
looking edges. For each instruction,we count fromhowmany
function entry points those instructions are reachable through
intraprocedural control flow idioms only (i.e., through direct
branches, fall throughs, switches, and from call sites to their
corresponding return addresses). We then count from how
many archives, objects, and functions those entry points orig-
inate. This metric thus measures the number of different
components to which an attacker or his tools can poten-
tially assign each instruction, and fromwhich he has to make
a choice to reconstruct the CFGs correctly. For the SLM

123

90 J. Van den Broeck et al.

436.cactusADM 445.gobmk 454.calculix DRM SLM

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p
0.0

0.1

0.2

0.3

0.4

0.5
8
7
6
5
4
3
2
1

15
14
13
12
11
10
9

Fig. 10 Fraction of all instructions that get factored from within the indicated number of archives

436.cactusADM 445.gobmk 454.calculix DRM SLM

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p
0.0

0.1

0.2

0.3

0.4

0.5
10
9
8
7
6
5
4
3
2
1

20
19
18
17
16
15
14
13
12
11

Fig. 11 Fraction of all instructions that get factored from within the indicated number of object files

436.cactusADM 445.gobmk 454.calculix DRM SLM

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p
0.0

0.1

0.2

0.3

0.4

0.5

10
9
8
7
6
5
4
3
2
1
0

20
19
18
17
16
15
14
13
12
11

Fig. 12 Fraction of all instructions that get factored from within the indicated number of covered slices/sequences (irrespective of additional
uncovered slices/sequences)

436.cactusADM 445.gobmk 454.calculix DRM SLM

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p

m
ixe
d

in
d.
ju
m
p

sw
itc
h

dy
n.
sw
itc
h

co
nd
. j
um

p
0.0

0.1

0.2

0.3

0.4

0.5

10
9
8
7
6
5
4
3
2
1

20
19
18
17
16
15
14
13
12
11

Fig. 13 Fraction of covered instructions that get factored from within the indicated number of covered slices/sequences (irrespective of additional
uncovered slices/sequences)

123

Obfuscated integration of software protections 91

0
1
2
3
4
5
6
7

32 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 27 29 32 39 71 2 3 4 5 6 7 9 2 3 2 3 5 2 3 2 3 2
7

3 2
8

3 2
9

co
ve

re
d
ar
ch

iv
es

1 2 3 4 5 6
2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 24 25 29 30 31 32 34 35 38 48 52 55 74 80 86 93 98

99 10
7

11
7

13
0

13
6

14
4

14
5

15
3

15
5

15
7

16
8

17
5

17
9

19
3

19
5

22
6

22
7

24
4

37
5

43
9

45
1

55
5

56
3

76
3

80
5

10
85

11
34

12
78

15
85

18
05

19
09

41
25

61
10

75
92

Fig. 14 Heatmap dissecting the applicability of factoring on the SLM benchmark, showing the number of fragments (color) of size (minor, top
X-axis) in sets covering (major, bottom X-axis) archives versus the number of covered archives (Y-axis) in that set (color figure online)

benchmark, Fig. 15 shows the results. For other benchmarks,
the results are similar. Before factoring, most code is reach-
able from a single function entry point, as one expects for
code written in C. The few exceptions mainly originate from
manually written and optimized assembly functions in the
linked-in crypto library. After factoring, the vast majority of
the code is reachable from within a vast number of function
entry points that originate from a large number of different
object files, and from all archives. The reason is that a large
part of the code ends up in one big intraprocedurally strongly
connected component in the combined CFGs of the program.
So at least in theory, our transformations succeed in obfus-
cating the boundaries between components at the three levels
of granularity.

7.4.2 IDA Pro

Secondly, we measure a practically oriented metric in the
form of the amount of incorrect information that the popular
reverse engineering tool IDA Pro (version 6.8.150428, 32-b)
presents to the user due to the obfuscations. Concretely, we
measure the fraction of fake CFG edges that IDA Pro stores
in its database and/or shows in its GUI, as well as the fraction
of true CFG edges that IDA Pro does not store and/or show.
The former are FP rates, and the latter are FN rates.

It should be noted that IDA Pro is not designed for
reverse engineering obfuscated binaries. In particular, it is
not designed to handle basic blocks that are reachable via
intraprocedural control flow idioms from multiple function
entry points. It simply assigns basic blocks to functions based
on the order in which the recursive-descent assembler visits
them, not based on heuristics that take into account the effects
of our transformations. IDA Pro can easily be augmented by
an attacker, however, as it exports the constructed CFGs in a

database that attacker scripts can manipulate. In other words,
a skilled attacker can easily override and extend the disas-
sembler and function reconstruction heuristics of IDA Pro.

To mimic skilled attackers, we experimented with vari-
ous algorithms to maximize the amount of code in a binary
that IDA Pro actually disassembles, as well as with various
heuristics that repartition the disassembled code fragments
(i.e., basic blocks) into functions such that the reconstructed
functions better resemble the actual functions. We observed
that many similar algorithms yielded very similar results, so
the exact implementation details do not matter, as long as
they incorporate three main ideas. First, one should try to
put all identified code in functions, even if that code was not
identified as being reachable by the original IDA Pro. This
is the case, e.g., for code fragments that are only reachable
through switch tables that IDA Pro cannot analyze precisely.
Secondly, for such code fragments as well as for code frag-
ments that the original IDAPro already did put into functions,
one should determine the function to which the fragment is
most connected through incoming and outgoing intraproce-
durally looking CFG edges in the IDA Pro database, and
then put the fragment in that function. Finally, for determin-
ing the function towhich a fragment is most connected and in
which it hence belongs, one should assign different weights
to different types of edges. Most importantly, edges originat-
ing from indirect control flow transfers such as those used
to implement switches should have lower weights that other
direct control flow edges. In addition, if the attacker knows
somehow that the fake edges in opaque predicates are mostly
fall-through edges or mostly taken edges, he can assign dif-
ferent weights to those types of conditional branch edges
as well. Our code implementing these heuristics is available
online at https://github.com/csl-ugent/oisp.

123

https://github.com/csl-ugent/oisp

92 J. Van den Broeck et al.

10
.5

99
.7

0.
6

0.
2

0.
2

0.
0

0.
1

0.
0

0.
4

0.
0

0.
2

0.
0

0.
1

0.
0

87
.9

0.
0

0
20
40
60
80

100

archives

in
st
ru

ct
io
ns

(%
)

9.
1

90
.6

1.
27.
7

0.
2

0.
6

0.
4

0.
5

0.
1

0.
4

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

87
.9

0.
0

0
20
40
60
80

100

object files

in
st
ru

ct
io
ns

(%
)

8.
2

86
.6

1.
59.
4

0.
5

2.
5

0.
3

0.
5

0.
2

0.
7

0.
2

0.
1

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

0.
1

0.
0

87
.7

0.
0

0.
1

0.
0

0
20
40
60
80

100

1 2 3 4 5 6 7 11 1 2 3 4 5 6 9 16 17 18 21 22 26 42 670

1 2 3 4 5 6 7 8 9 10 16 17 19 21 23 28 44 2725 2726

functions

in
st
ru

ct
io
ns

(%
)

Fig. 15 Instructions reachable from function entry points in different numbers of archives/object files/functions, before (left bars) and after (right
bars) factoring (SLM)

Table 3 Potency metrics for SLM without the protections proposed in this paper

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

FN 1.8k 24 618 753 1.8k 1.2k 1.1k 916 0 45 48 916 871 868

FNR 3% 0% 1% 1% 3% 2% 2% 1% 0% 0% 0% 1% 1% 1%

Pairs of fragments split by factorization CFG edges Instructions

Total Wrong Correct Total True Fake Drawn in GUI Total Functionless

0 0 (0%) 0 (0%) 67.2k 67.2k (100%) 0 (0%) 65.3k (97%) 281.8k 4.0k (1%)

Tables 3, 4 and 5 present the results for the SLM bench-
mark. Similar results for the other benchmarks are available
in a technical report [41]. The top part of each table shows the
aforementioned FP and FN rates of correctly or incorrectly
handled CFG edges. The bottom parts additionally present
the total amounts of edges and instructions in the binaries
to ease the interpretation of the false rates, where we also
mention how many edges are drawn in the GUI. The overall
counts and corresponding false rates are further refined into
6 partially overlapping categories xy, with x being either I
(Inter) or i (intra), and y being A (archive), O (object file), or
F (function). The category IA, for example, is that of edges
froma block originating fromone archive to a fragment origi-
nating from another archive, i.e., interarchive, while category
iO is that of edges between two blocks originating from the
same object file. Furthermore, we present separate numbers
for the edges that IDA Pro stores in its database because it
has detected them in the code, and the ones it shows in the
GUI because it considers them to be intraprocedural edges,

meaning that it has correctly or incorrectly put the source and
sink nodes of the edges in the same functions.

Table 3 shows that for the unprotected program, IDA Pro
does a pretty good job in detecting the true edges. There are
no fake edges of course, and most code is put into functions.
Exceptions are rare, and mostly related to manually written
and optimized assembly functions in the linked-in crypto
library that feature interprocedural jumps.

Table 4 shows that IDA Pro out-of-the-box performs
poorly on a protected program. In the GUI, it draws about
74% of the fake edges (75–76% for other benchmarks), of
which more than half connect blocks from different archives.
Furthermore, the GUI does not draw 56% of the true edges
(53–56% for other benchmarks). As a result of the obfusca-
tion, IDA Pro also gave up on about 28% of the identified
instructions (23–31% for the other benchmarks), and simply
did not put that code in any function. Obviously, this also
contributes to the FN rates.

123

Obfuscated integration of software protections 93

Table 4 Potency metrics for a fully protected SLM with IDA Pro out-of-the-box

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

FP 16.5k 9.6k 12.5k 12.6k 6.9k 4.0k 3.9k 20.0k 11.8k 16.0k 16.0k 8.2k 4.0k 3.9k

FPR 74% 43% 57% 57% 31% 18% 18% 90% 53% 72% 72% 37% 18% 18%

FN 101.4k 24 622 760 101.3k 100.7k 100.6k 63.2k 9 131 165 63.2k 63.1k 63.0k

FNR 56% 0% 0% 0% 56% 55% 55% 35% 0% 0% 0% 35% 35% 35%

Pairs of fragments split by factorization CFG edges Instructions

Total Wrong Correct Total True Fake Drawn in GUI Total Functionless

28.4k 26.6k (94%) 1.7k (6%) 204.4k 182.2k (89%) 22.2k (11%) 97.4k (48%) 772.3k 213.6k (28%)

Table 5 Potency metrics for a fully protected SLM with attacker-improved IDA Pro

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

FP 17.1k 10.0k 13.0k 13.0k 7.1k 4.1k 4.0k 21.2k 12.6k 17.0k 17.1k 8.6k 4.2k 4.1k

FPR 77% 45% 59% 59% 32% 18% 18% 96% 57% 77% 77% 39% 19% 18%

FN 74.5k 16 492 588 74.5k 74.0k 73.9k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 41% 0% 0% 0% 41% 41% 41% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization CFG edges Instructions

Total Wrong Correct Total True Fake Drawn in GUI Total Functionless

28.4k 24.1k (85%) 4.3k (15%) 204.5k 182.3k (89%) 22.2k (11%) 124.9k (61%) 772.4k 122 (0%)

Notice how these total numbers are comparable for dif-
ferent benchmarks, despite their different constitution. This
is of course due to the fact that the totals do not depend
on the number of archives or object files making up the pro-
grams. For the intra- and interarchive FPs, the rates varymore
fromone benchmark to another, but they are still comparable.
For example, the GUI IA FPR with IDA Pro out-of-the-box
ranges from 39 to 55%. All numbers are available in the tech-
nical report [41]. This relatively small variation implies that
the obtained potency ports rather well from one benchmark
to another, which is of course beneficial for users of tools
that implement the obfuscations, as it will limit the need to
retune the tool configuration for each benchmark.

At first sight, it might seem strange that there are also
intrafunction GUI FPs, since we never purposely inject fake
intrafunction edges. Those FPs are a side-effect, however, as
they correspond to the never executed fall-through paths of
injected switch dispatchers, which are intrafunction in our
prototype.

Table 5 shows that an attacker-improved IDA Pro puts
almost all code into functions. The FP rates go up as a result,
and the FN rates drop significantly. Different versions of the
repartitioning algorithm never got significantly better results
than the ones reported here. Without more advanced data
flow analysis or other attacks to identify fake edges, those

edges simply confused the disassembler’s code partitioning
strategies. The proposed protections thus display a significant
amount of practically relevant potency.

The above results and in particular the FNs are to some
extent inherent to IDA Pro, which can put each basic block
in only one function. For the example of Fig. 7, at least one
of the incoming edges of block 3a and one of the outgoing
edges of block 3b inherently become FNs. So additionally,
wemeasure howmany (source, sink) pairs of code fragments
that were split apart by factorization (e.g., pairs (1a,1b) and
(2a,2b) in Fig. 6) are correctly put in the same function by
IDA Pro. The results are presented in the bottom left parts of
the tables. Most importantly, the results in Table 5 indicate
that even with the repartitioning heuristics, the vast majority
(85%, 85–88% for the other benchmarks) of related block
pairs are not put in the same function. There are two rea-
sons. First, when the factoring is applied as frequently as we
applied it, many non-factored fragments end up in between
two factored fragments, and thus are no longer connected
directly to any non-factored fragment. Secondly, even if we
drop the frequency of factoring to a low number (such as
1% of all factorizable cases), the number only drops to about
82%. It remains that high because of the negative impact of
the opaque predicate insertion on IDA Pro’s performance.
When no opaque predicates are inserted at all, and very little

123

94 J. Van den Broeck et al.

Table 6 Binary Ninja results for three benchmarks. For each benchmark, the static number of instructions in the original benchmark and the number
in the protected one are presented next to the benchmark name

Original binary, default config Protected binary, default config Protected, large config

CF B BA FU CF B BA FU CF B

bzip2 (10,671 ins original, 28,448 ins obfuscated)

Analysis time (s) 0.03 0.03 0.30 1.06 10 380 1511 1497 9.86 379.89

Memory consumption (B) 85M 86M 129M 204M 135M 1.5G 11G 11G 135M 1.5G

% of instructions in CFGs 51% 0% 100% 102% 686% 667% 3902% 3964% 686% 667%

% of individual instructions identified 32% 0% 100% 100% 36% 34% 70% 70% 36% 34%

436.cactusADM (98,549 ins original, 313,375 ins obfuscated)

Analysis time (s) 0.05 0.09 4.17 20.11 224 220 Failed Failed 4802 Failed

Memory consumption (B) 87M 97M 277M 737M 2.5G 2.5G 2.5G

% of instructions in CFGs 3% 3% 118% 109% 3172% 3171% 3171%

% of individual instructions identified 2% 2% 100% 100 % 25% 25% 25%

SLM (282,411 ins original, 905,217 ins obfuscated)

Analysis time (s) 0.33 0.66 10.56 65.43 1758 1954 Failed Failed 26,999 Failed

Memory consumption (B) 109M 150M 450M 1G 13G 13G 14G

% of instructions in CFGs 6% 5% 103% 100% 6541% 6488% 6540%

% of individual instructions identified 6% 5% 100% 100 % 21% 21% 21%

factoring is performed, the number still does not drop below
49% (51–59% for the other benchmarks). The reason is that
at about half of the points where factorization can be applied,
the points before and after the factorized fragments are only
connected via one direct control flow path, which then gets
interrupted because of the factoring. More detailed results
are available in our technical report [41].

We can conclude that unless IDA Pro gets the capability
of putting blocks in more than one function, which by the
design of its APIs seems like a rather fundamental and hence
hard to change underlying principle of its implementation,
the proposed factoring obfuscation has a strong potency.

7.4.3 Binary Ninja

Finally, we measured how well Binary Ninja (version
1.2.1954-dev, build ID af67f758) performs on our obfus-
cated binaries. This experiment is particularly interesting
because Binary Ninja differs from IDA Pro precisely in the
above aspect of putting blocks in multiple functions. More
precisely, it adds all identified code fragments that are reach-
able from an identified function entry point through direct
control flow transfers to the corresponding function’s CFG.
The theoretical results discussed in Sect. 7.4.1 hint that this
will result in an explosion of the CFGs, and that is indeed
what we observe in practice: In obfuscated binaries, most
basic blocks that Binary Ninja identifies are part of the sin-
gle strongly connected component that makes up the vast
majority of the code and that is reachable from almost all
function entry points. So Binary Ninja puts duplicates of
those basic blocks in all the corresponding function CFGs.

Those functions hence become too big for themore advanced
data flow analyses in Binary Ninja. At the same time, a large
fraction of the code is not identified as actual code, because it
is only reachable through switch-based dispatchers of which
Binary Ninja can resolve few if any targets. How many tar-
gets (and hence code that becomes reachable through those
targets) it can detect depends on the type of dispatcher and
the complexity of the analyses that are enabled and are able
to execute in Binary Ninja, i.e., that scale up to the size of
the exploded functions. As its most complex analyses only
succeed on really small obfuscated benchmarks, we added
the tiny benchmark program of bzip2 to our benchmark set,
simply to confirm that Binary Ninja can handle at least such
small benchmarks.

We experimented with the four available global analy-
sis modes (CF: control flow, B: basic, BA: basic analysis,
FU: full analysis, in order of increasing complexity), and
initially used the default configuration parameter for analyz-
able function size, which prevents that badly scaling analyses
are not run on overly large functions to avoid out-of-memory
crashes and other issues. We also experiment with higher
parameter values, in particular values large enough to cover
the large function CFGs resulting from including all blocks
in the strongly connected component created by our obfus-
cations. Table 6 presents the most interesting results.

On bzip2, all Binary Ninja analyses can run to comple-
tion with the default parameter. Even though the obfuscated
version is “only” about three times as big as the original
program, Binary Ninja requires three orders of magnitude
more time for analyzing the obfuscated version, and the
more complex analyses require 2 orders of magnitude more

123

Obfuscated integration of software protections 95

memory. This is a first clear indication that our obfuscations
stress Binary Ninja’s scalability. The third line with results
for bzip2 (and for the other benchmarks) shows how many
instructions Binary Ninja included in all of its function CFGs
combined (i.e., including duplicates when instructions are
added to more than one function), relative to the number
of instructions that really belong in the CFGs according to
the ground truth. It can be seen that Binary Ninja’s repre-
sentation of the functions in the program is indeed blown
up heavily, by a factor of 7 when only simple analyses and
disassembler heuristic are used, and by a factor 39 when the
more complex ones are used. This blow-up occurs despite the
fact that Binary Ninja identified only about 35% and 70%,
respectively, of the static instructions in the binary as code
(as the result of unresolved dispatchers). We conclude that
in its simplest modes, Binary Ninja is only able to identify
2/3 of the code as such, and already inflates its CFGs of the
code fragments by an order ofmagnitude.With itsmore com-
plex modes, it can identify an additional 1/3 of the code as
such, but results in another order of magnitude more CFG
inflation. So whatever combination of analyses is enabled in
Binary Ninja, a reverse engineer is significantly hampered
by our obfuscation. Quantifying this effect by counting false
rates as we did for IDA Pro is meaningless here, as each true
and fake edge can (and typically) now occurmultiple times in
Binary Ninja’s internal database representation, as apparent
from the already presented CFG inflation results.

On 436.cactusADM, our smallest true benchmark, all but
the simplest Binary Ninja analyses fail to scale to the inflated
functionCFGs.When themore complex analyses are run, the
tool crashes as it goes out of memory (on a machine with 64
GB of RAM) or as it tries to write out the huge database
representing its IR of the program. The simpler modes fail
to produce useful results as well, as they only identify about
one-fourth of the code as such, but already inflate the CFGs
with close to a factor 32. Deploying the simpler modes with a
larger analyzable function configuration did not help, it only
results in longer running times. Even if we only tried to run
the more complex analyses on single inflated functions, the
memory usage slowly increases while the analysis outruns
our 24-h time limit. Similar results are observed for the larger
benchmark SLM, only with worse results and much longer
running times.

As for the simpler analyses CF and B modes in Binary
Ninja, the fractions of the code identified as code in the three
original binaries actually already indicate that those modes
are next to useless because an attacker cannot rely on them
to identify the relevant code.

In summary, none of the analysis modes in Binary Ninja
succeeds in producing truly useful results for a reverse engi-
neer of our protected binaries. In particular for non-trivial
benchmarks, Binary Ninja seems to be completely defeated
by our protections.

7.4.4 GHIDRA

While we lack the time and resources to conduct as extensive
experiments with the recently released GHIDRA (version
9.1, build DEV 2019-Dec-02) reverse engineering tool suite
as we did with IDA Pro and Binary Ninja, we did perform
some preliminary experiments with it. GHIDRAbehaves to a
large degree similar to IDA Pro, in the sense that it puts each
instruction in atmost one function. Like in IDAPro, this leads
to false-positive edges and false-negative edges in the GUI
showing the functions. Studying somemicrobenchmarks, we
observed that GHIDRA’s ability to resolve dispatcher targets
differs somewhat, and also that is less aggressive in combin-
ing connected basic blocks to functions: Compared to IDA
Pro, GHIDRA puts many more basic blocks from the pro-
tected binaries in separate functions.

GHIDRA’s analyses are terribly slow. On non-trivial
benchmarks, including bzip2 and the real benchmarks used in
this program, we observed that the default analyses consume
too much time to be practically useful. Even on the pro-
tected bzip2, the default analyses do not yield results for the
first 24 h. Without those analyses, GHIDRA only produces
a sequential listing of disassembled instructions similar to
what can be obtained with the basic GNU binutils tool obj-
dump.

Our overall first impression is therefore that attackers
using GHIDRA are therefore at least as hampered by our
proposed protections as attackers using IDA Pro. In future
work, we plan to analyze which particular analyses fail to
scale, and why.

7.5 Resilience

To evaluate the resilience of the presented obfuscation, we
analyze to what extent some attack techniques observed in
empirical research [1] and described in the literature [20]
can bypass or undo the protections. Obviously, we can-
not claim that the protections provide complete protection
against attackers with unlimited resources and time. But we
can demonstrate that at least some common attack strategies
do not overcome the protection trivially.

7.5.1 Pattern matching attack in IDA Pro

First, we consider an attacker that can resolve opaque pred-
icate computations when he observes their complete pattern
in the code, either because he is good at recognizing them
manually, or because he has a pattern matcher. We con-
sider the attacker strong enough to identify opaque predicate
computations even if they are mixed with other instructions,
including (direct) control flow transfers. He is hence knowl-
edgeable, but he is also prudent: If he only observes part
of an opaque predicate computation or observes that only

123

96 J. Van den Broeck et al.

Table 7 Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (soundish DB attack)

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

FP 16.4k 9.5k 12.3k 12.3k 6.9k 4.1k 4.0k 21.1k 12.6k 17.0k 17.0k 8.5k 4.2k 4.1k

FPR 74% 43% 55% 56% 31% 18% 18% 95% 57% 77% 77% 39% 19% 18%

FN 73.4k 13 459 544 73.4k 73.0k 72.9k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization CFG edges Instructions Opaque predicates

Total Wrong Correct Total True Fake Drawn in GUI Total Functionless Total Resolved

28.4k 24.0k (85%) 4.3k (15%) 204.5k 182.3k (89%) 22.2k (11%) 125.2k (61%) 772.4k 122 (0%) 13.3k 29 (0%)

Table 8 Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (unsound GUI attack)

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

FP 14.9k 8.3k 10.9k 11.0k 6.6k 4.0k 4.0k 18.2k 10.3k 14.1k 14.2k 7.9k 4.1k 4.0k

FPR 67% 38% 49% 49% 30% 18% 18% 82% 46% 64% 64% 36% 18% 18%

FN 73.0k 13 448 526 73.0k 72.6k 72.5k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization CFG edges Instructions Opaque predicates

Total Wrong Correct Total True Fake Drawn in GUI Total Functionless Total Resolved

28.4k 24.0k (85%) 4.4k (15%) 204.5k 182.3k (89%) 22.2k (11%) 124.2k (61%) 772.4k 122 (0%) 13.3k 3.0k (22%)

part of the computation is guaranteed to be executed lead-
ing up to the conditional branch, he does not guess that it
will be an opaque predicate with a certain outcome. In the
empirical experiments reported by Ceccato et al. [1], attack-
ers described how they manually eliminated the identified
fake edges and how they could implement simple pattern
matchers to automate that attack task.

To assess how far such an attacker might get in the worst
case, we implemented a script that iteratively removes all
fake edges of opaque predicates that such an attacker can
resolve. The script does not need to detect the patterns of
the opaque predicate computations itself, instead it gets the
necessary information from the ground-truth logs produced
by our obfuscator.

We developed two versions of the script. A first one mim-
icks an automated attack that considers the information in
IDAPro’s database. So it observes all edges and all code iden-
tified by IDA Pro. We refer to this attack as the “soundish”
attack, because it considers all available code and control
flow. As IDA Pro might have missed some code and edges,
it is not completely sound, but it is the closest to sound an
automated tool based on IDA Pro disassembler results can
get.

The second version of the scriptmimicks amanual, human
attack that considers only the information displayed in the

IDA Pro GUI. This attack is on the one hand weaker because
it does not resolve opaque predicates of which IDA Pro put
parts of the computations in two or more different functions,
as those parts are then not shown to the attacker together. On
the other hand, this attack is stronger in cases in which IDA
Pro has put all the predicate computations in the same func-
tion, but in which it does not draw a fake edge that arrives
into themiddle of the computations, i.e., in which such a fake
edge is a GUI TN. So this attacker will miss some opportuni-
ties, but he will also remove fake edges because other (fake)
edges remain invisible to him. We refer to this attack as the
“unsound” attack, because the attacker chooses to neglect
information readily available in the IDA Pro database that
an attacker trying to be sound would not have neglected. As
each deleted fake edge can result in opportunities to improve
the partitioning of the code into functions, the scripts also
execute the repartitioning algorithm discussed in the previ-
ous paragraph to potentially improve IDA Pro’s performance
after every deletion of a fake edge.

The results for the soundish attack are shown in Table 7;
those for the unsound attack are shown in Table 8. To indicate
to which extent the modeled attacker was able to resolve
the opaque predicates, we report the number of inserted and
resolved opaque predicates in the bottom right parts of the
tables.

123

Obfuscated integration of software protections 97

436.cactusADM 445.gobmk 454.calculix DRM SLM

0.00

0.25

0.50

0.75

1.00

not covered quasi-invariant variable

Fig. 16 Variability of dispatcher execution paths

With the soundish attack, almost no (0–1% for the other
benchmarks) opaquepredicates canbe resolved.This demon-
strates the effectiveness of the strategy to couple opaque
predicates.

With the unsound attack, about 22% (20–22% for the other
benchmarks) of the opaque predicates can be resolved. In this
scenario, a relatively large drop of about 10% (9–11% for
the other benchmarks) for the number of drawn fake edges
in the GUI is observed. Still, about 67% of the fake edges
remain. This is due to the coupling of opaque predicates in
cycles, as discussed in Sect. 5.2 and because of the addition
of fake entries in the switch tables of the dispatchers. Here,
too, the number of true edges that do not get drawn remains
high. While the attack has therefore weakened the confusion
created by our obfuscations in the eyes of the attacker, he has
not been able to remove it completely.

7.5.2 Generic deobfuscation

Regarding the resilience against the automated, generic deob-
fuscation technique of Yadegari et al. [20], we already noted
in Sect. 7.3 that the majority of covered dispatchers does not
display quasi-invariant behavior. Figure 16 shows the frac-
tions of the dispatchers that are not covered (i.e., not executed
for our training inputs), feature quasi-invariant behavior
(i.e., “return” to only one “return site”), and show variable
behavior (i.e., “return” to multiple “return sites”). Note the
correlationwith the overall coverage numbers in Fig. 9.Obvi-
ously, if only a small percentage of the code is covered, and
factoring is done on both covered and uncovered slices, only a
small percentage of the dispatchers will be covered, let alone
display variable behavior. Of those covered, between 39%
(DRM) and 83% (445.gobmk) have variable behavior, and
will hence not be simplified by the quasi-invariance based
generic deobfuscation.

7.5.3 Binary Ninja’s conditional value set analysis

Finally, we studied the theoretical capabilities of Binary
Ninja’s conditional VSA as already introduced in Sect. 5.2
to reduce the size of the huge function CFGs it constructs.
As discussed in Sect. 7.4.3, the current implementation of

this analysis does not scale to realistically sized protected
binaries, sowe instead studied this capability onmicrobench-
marks such that we can assess the potential of the analysis
in case it would be reimplemented to improve its scalability
over its current quadratic complexity. This is the complex-
ity of almost all dataflow analyses currently implemented in
Binary Ninja, as their developers told us at the time of this
writing.

When we ran Binary Ninja on microbenchmarks, we ini-
tially discovered that its VSA is pretty powerful. In fact,
the analysis could resolve many of the opaque predicates
that our initial prototype inserted, thus omitting many fake
edges. It was also able to resolve many factored code frag-
ments, in the sense that when a copy of the factored fragment
is inserted into a function’s CFG, the VSA would correctly
detect which targets of the dispatcher belong in that function
andwhich do not. For the opaque predicates, the reasonswere
their simple nature, as the ones implemented in our prototype
initially included only simple algebraic predicates (such as
x2 − x mod 2 = 0) that were computed entirely in processor
registers, starting from live register values from the original
program. If the VSA was able to determine that those input
registers (accidentally) held values from a limited set, it was
also able to determine that opaque predicate could only evalu-
ate to one value. Our obfuscator relied onmuch less advanced
data flow analyses than Binary Ninja’s VSA to pick the input
registers for the inserted opaque predicate operations, so that
accidental scenario occurred relatively frequently. Similarly,
within each function the VSA was often able to determine
the precise set of controller values that were being fed to the
dispatcher of a factored block. This was again the result of
our implementation being overly simplistic, as illustrated in
the sample in Fig. 7. In the context of the red function frag-
ment, the VSA identifies that controller register r9 can only
hold the value 0, while in many contexts similar to that of
the blue function fragment, the VSA was able to determine
that r9 could only hold a limited set of pointer values, and is
hence always nonzero.

In short, our initial prototype implementation was some-
what vulnerable to BinaryNinja, in particular when deployed
on really small programs where the lack of scalability of
Binary Ninja’s analyses is not a problem for an attacker. This
would also imply that our protections would be vulnerable
if they are only deployed on a small part of a program, e.g.,
in case only a small part contains sensitive assets to be pro-
tected.

Fortunately, our initial vulnerability was easy enough to
fix. In general, it suffices to make the inserted computations
more complex than what the analyses can handle. As data
flow analyses are always limited in precision to remain use-
able (i.e., have acceptable running times), injecting enough
complexity in the code to thwart the analyses is always pos-
sible in theory. Of course, in practice the amount of required

123

98 J. Van den Broeck et al.

complexity can come with a significant price in terms of
additional overhead that needs to be injected, but with Binary
Ninja, that was not necessary. From theBinaryNinja authors,
we learned that its data flow analyses do not propagate any
information throughwritable global datamemory. So by sim-
ply adding a minimal number of memory indirections to the
opaque predicate computations and to the code that sets con-
troller values of dispatchers, we were able to completely
mitigate the VSA of Binary Ninja. For example, to mitigate
the analysis of the example in Fig. 7, it sufficed to replace
the first move in the red glue code by a load operation that
loaded the value 0 into r9 from an array stored in the muta-
ble statically allocated data section. In the blue fragment, it
sufficed to insert the same load of that value 0 from the same
array, and to insert an addition that adds that 0 to the existing
nonzero value in r9. As the VSA does not know that a zero is
loaded in both cases, its analyses completely fail. Now while
this may look like an overly simplistic remediation from our
side, the general principle is that any scalable data flow anal-
ysis will have weaknesses, and that it suffices to exploit those
in the remediation.

In the end, our simple fix sufficed to make the more com-
plex analyses inBinaryNinja fail completely, both in terms of
making it not produce good results, and in terms of requiring
all to long running times on all, but the tiniest programs.

7.6 Overhead

Obfuscating transformations always come with performance
and code size overhead. The performance penalty can be
limited by using profile information to stay clear from the
hottest code. As we only proposed a new way to redirect
fake edges of opaque predicates, rather than introduce new
ones which require new code sequences to be injected, we
do not evaluate the performance penalty of opaque predicate
insertion. Instead, we focus on the proposed factoring tech-
nique, which can involve the insertion of considerable glue
code, and which is hence expected to have a major impact on
performance and code size. Those impacts are summarized
in Fig. 17. Solid lines represent run time overhead, dashed
lines code size overhead. More detailed results and descrip-
tions of the experiments are available in a technical report
[41]. The measured run times are averages of 5 runs. For
the SPEC benchmarks, we used slightly altered reference
inputs to reduce run times on the (relatively slow) developer
boards; for the SLM benchmark, we used a custom input; for
the DRM benchmark, we have no run time measurement as
this is an interactive application. Each pair of dashed/solid
lines on the chart corresponds to one benchmark. The dif-
ferent points denote different amounts of factoring, guided
by profile information. To collect profile information, (stan-
dard) training inputs were used that in each case differ from
the measurement inputs. The measured versions range from

0

100

200

300

400

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

65
k

Number of factored fragments

O
ve

rh
ea

d
(%

)

436.cactusADM 445.gobmk 454.calculix SLM

Fig. 17 Overhead versus factored code fragments

no covered code being factored (lower left points) to all code
being factored (upper right points). In between, gradually
more, hotter code (i.e., more frequently executed code) gets
factored. It is clear that the overheads can become very large
if the transformation is deployed blindly, but also that the
overheads, in particular the performance overhead can be
easily reduced by excluding the hottest fragments from the
factorization. To what extent a certain reduction limits the
practical effectiveness of the protection of course depends
on the software at hand. In any case, excluding all covered
code cannot result in factored code dispatchers with vari-
able behavior. So clearly one should be willing to accept
some performance overhead. We do not consider this a big
problem: All MATE protections inherently come with some
overhead. Note that for the code size, the smallest over-
heads are still rather large because we only excluded the
executed code. If program size ismore important than perfor-
mance, a better strategy would be to exclude non-executed
fragments. Then much smaller size overheads can still be
obtained.

7.7 Sensitivity analysis

The opaque predicate insertion and factoring can be config-
ured in many ways: the mixture of fake fall-through and fake
branch-taken edges, amounts of fake edges in switch tables,
use of different dispatchers, frequency of deployment, exe-
cution frequency threshold, priority function, cycle size of
coupled protections and dispatchers, etc. A quantitative sen-
sitivity analysis can be found in our technical report [41].
Some major qualitative results are that:

123

Obfuscated integration of software protections 99

– the false rates rise with more fake fall-through edges;
– the FN rates increase with increasing cycle size until
cycles of size 4. After that, the false-negative rates stabi-
lize;

– the FP rates decrease with increasing cycle size.

7.8 Lessons learned

Throughout our experiments, we learned quite some use-
ful lessons. The first is that it is really hard to come up
with meaningful metrics to approximate the impact of pro-
tections on an attacker. Moreover, all metrics that we could
come up with to reflect the impact of the protections depend
heavily on the considered attacker tools and on how those
tools model and handle the code of a program. Such met-
rics therefore have an ad-hoc nature that makes it difficult
to compare the strengths of the protection against different
tools, or to come up with a unified methodology to evalu-
ate the defensive and offensive strengths of protections and
attacker tools, respectively. Finally, the proprietary nature of
the disassemblers with which we performed the most exten-
sive experiments, and which to the best of our knowledge
are the most popular in practice, makes it hard to understand
why certain implementations of protections work better than
others, or to predict the outcomes of potential changes to
those protections. That proprietary, closed nature also makes
it hard to evaluate custom attacks on newly proposed protec-
tion schemes, like ours, because it limits the ways in which
existing analysis and heuristics (that have been tuned for
unprotected binaries) can be tweaked to perform better on
the obfuscated versions.

8 Related work

8.1 Code factoring

Existing work on code factoring focused mainly on com-
paction, i.e., the removal of duplicate code to make binaries
smaller. Production tool chains already include optimization
passes to factor identical procedures:Microsoft’s Visual C++
compiler [28],GNUGCC[42,43],Gold [44] andLLVM[45].
In academic research, Debray et al. [12], De Sutter et al.
[29] and Von Koch et al. [30] have developed code factoring
techniques to factor almost identical code on the basic block
level (the former two) and the procedural level (the latter
two). Computation time is reduced by defining a fingerprint
for each basic block and/or procedure, and small differences
between procedures are compensated for by parameterizing
the factored code. Debray et al. and De Sutter et al. mitigated
differences between basic blocks by using an ad-hoc regis-
ter renaming algorithm and by canonicalising the instruction
schedule. This was not an issue for Von Koch et al. because

LLVM IR was used. Recently, Rocha et al. [31] used a DNA
sequence alignment algorithm from bioinformatics to iden-
tify factoring candidates and to compensate for differences
between them. Similar to the work by Von Koch et al., they
only support factoring on the procedural level but, as they
implemented their techniqueonLLVMIR, they are not bound
by register allocation schemes.

Inspired by the existing implementations, we factor
(sub)blocks for obfuscation rather than compaction. Thus,
we can give up on code size overhead to factor more code.
Our technique is orthogonal and complementary to whole
function merging, which by definition does not obfuscate
function boundaries. Importantly, we rely only on intrapro-
cedural control flow idioms rather than calls and returns.

8.2 Obfuscations

Many obfuscation transformations exist, each with its own
strengths and weaknesses, as surveyed by Schrittwieser et al.
[46]. Collberg et al. [47] categorized obfuscation techniques
into layout (e.g., code layout randomization), control flow
and data transformations.One example of control flowobfus-
cations is opaque predicates. These can range from simple
[48] to complex [49]. While easy to implement, the simple
ones are not resilient against modern attacks such as sym-
bolic or concolic execution [19]. Recently, some alternatives
were proposed to counter these advanced attacks. The range
dividers of Banescu et al. [37] introduce additional feasible
codepaths, exploding the analysis complexity. Thebi-opaque
predicates of Xu et al. [50] exploit the NP-hard problem
of resolving symbolic memory. Zobernig et al. researched a
technique to make opaque predicates indistinguishable from
the program’s predicates by hashing the calculation of each
(opaque) predicate [51,52]. Attackers need to invert the hash
function to prove the opaqueness of a predicate, a process
that is known to be impossible but for brute-forcing. Our use
of opaque predicates in this paper is orthogonal to mentioned
work, as our work focuses on choosing the target of the fake
edge, which needs to be done whatever the kind of compu-
tation is used to implement the opaque predicate that steers
the conditional branch.

Another example of control flow obfuscations is branch
functions [10], which replace direct with indirect branches
to thwart code identification heuristics. Control flow flat-
tening [25] is another obfuscation, which replaces direct
with dispatcher-based control flow.Our factoring dispatchers
resemble these obfuscations, but focus on thwarting function
repartitioning heuristics, as we aim for attackers to identify
fake intercomponent control flow paths to confuse them even
more and to hide the boundaries of components, rather than
to obfuscate the components’ internals themselves. Asghar
et al. propose another way to obfuscate the control flow of a
program by removing conditional branches [53]. Contrary to

123

100 J. Van den Broeck et al.

other techniques, they avoid the insertion of additional cal-
culations but instead build on the increased complexity of the
linearized calculations.

Obfuscations can be inserted at source level [54], by com-
pilers [55] or by binary code rewriters [11]. As we want to
hide the boundaries of linked-in components, we obviously
opted for a post-link-time rewriter.

9 Conclusions and future work

We presented a novel technique to apply code factoring
across component boundaries with intraprocedural control
flow idioms. We combined our technique with existing
opaque predicates with which we also inject fake direct con-
trol flow across component boundaries, andwith fine-grained
code layout randomization. In our extensive evaluation with
IDA Pro, a commonly used, state-of-the-art reverse engi-
neering tool, we demonstrated that our techniques thwart
IDA Pro’s disassembler and CFG reconstruction heuristics
and that a program protected with our technique is more
resilient to some known attacks. For GHIDRA, another
reverse engineering tool, preliminary experiments yielded
similar results. For a third disassembler, Binary Ninja, which
is built on very different principles, another extensive evalu-
ation demonstrated that the tool becomes mostly useless on
our obfuscated programs.Wecan conclude that our technique
increases the potency and resilience of protected applications
against modern reverse engineering attacks.

In future research, approaches to generate more similar,
and thus factorable code fragments can be investigated, rather
that only identifying existing ones. Another research path
can be the use of machine learning techniques to steer the
insertion of fake control flow, so that attack tools are more
purposively thwarted rather than stochastically. Furthermore,
more experimentation with the open-source tool GHIDRA
can be useful to assess the potential of custom attacks and
disassembler heuristics specifically tuned to the features of
our protected programs.

Funding This research was funded by the Agency for Innovation by
Science and Technology in Flanders (IWT) (Grant Number 141758).
Part of this research was conducted in the EU FP7 project ASPIRE,
which has received funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under Grant Agreement Number
609734. Part of the research was also funded by the Cybersecurity Ini-
tiative Flanders from the Flemish Government. Part of this research was
also funded by the Fund for Scientific Research - Flanders (FWO) as
part of project grant 3G0E2318.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Ceccato, M., Tonella, P., Basile, C., Falcarin, P., Torchiano, M.,
Coppens, B., De Sutter, B.: Understanding the behaviour of hackers
while performing attack tasks in a professional setting and in a
public challenge. Empir. Softw. Eng. 24(1), 240–286 (2019)

2. Cabutto, A., Falcarin, P., Abrath, B., Coppens, B., De Sutter, B.:
Software protection with code mobility. In: Proceedings of the 2nd
ACM Workshop on Moving Target Defense, pp. 95–103 (2015)

3. Ceccato, M., Dalla Preda, M., Nagra, J., Collberg, C., Tonella,
P.: Barrier slicing for remote software trusting. In: 7th IEEE
International Working Conference on Source Code Analysis and
Manipulation, pp. 27–36 (2007)

4. Viticchié, A., Basile, C., Avancini, A., Ceccato, M., Abrath, B.,
Coppens, B.: Reactive attestation: Automatic detection and reac-
tion to software tampering attacks. In: Proceedings of the 2016
ACM Workshop on Software PROtection, pp. 73–84 (2016)

5. Abrath, B., Coppens, B., Volckaert, S., Wijnant, J., De Sutter, B.:
Tightly-coupled self-debugging software protection. In: Proceed-
ings of the 6th Workshop on Software Security, Protection, and
Reverse Engineering, p. 7 (2016)

6. Ghosh, S., Hiser, J.D., Davidson, J.W.: A secure and robust
approach to software tamper resistance. In: Proceedings of the
International Workshop on Information Hiding, pp. 33–47 (2010)

7. Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Pear-
son Education, London (2009)

8. Wang, Y.: Cognitive complexity of software and its measurement.
In: 2006 5th IEEE International Conference onCognitive Informat-
ics, vol. 1, pp. 226–235 (2006). https://doi.org/10.1109/COGINF.
2006.365701

9. Woodward,M.R., Hennell,M.A., Hedley, D.: Ameasure of control
flow complexity in program text. IEEETrans. Softw. Eng. 5(1), 45–
50 (1979)

10. Linn, C., Debray, S.: Obfuscation of executable code to improve
resistance to static disassembly. In: Proceedings of the 10th ACM
Conference on Computer and Communications Security, pp. 290–
299 (2003)

11. VanPut, L.,Chanet,D.,DeBus,B.,DeSutter,B.,DeBosschere,K.:
Diablo: a reliable, retargetable and extensible link-time rewriting
framework. In: Proceedings of the 5th IEEE International Sympo-
sium on Signal Processing and Information Technology, 2005, pp.
7–12 (2005)

12. Debray, S.K., Evans, W., Muth, R., De Sutter, B.: Compiler tech-
niques for code compaction. ACM Trans. Program. Lang. Syst.
(TOPLAS) 22(2), 378–415 (2000)

13. Muchnick, S., et al.: Advanced Compiler Design Implementation.
Morgan Kaufmann, Burlington (1997)

14. Coppens, B., De Sutter, B.,Maebe, J.: Feedback-driven binary code
diversification. ACM Trans. Arch. Code Optim. (TACO) 9(4), 24
(2013)

15. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space lay-
out permutation (ASLP): towards fine-grained randomization of
commodity software. In: Proceedings of 22nd Annual Computer
Security Applications Conference, pp. 339–348 (2006)

16. Meng, X., Miller, B.P.: Binary code is not easy. In: Proceedings of
the 25th International Symposium on Software Testing and Anal-
ysis, pp. 24–35 (2016)

17. Ngo,M.N., Tan,H.B.K.:Detecting large number of infeasible paths
through recognizing their patterns. In: Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and

123

https://doi.org/10.1109/COGINF.2006.365701
https://doi.org/10.1109/COGINF.2006.365701

Obfuscated integration of software protections 101

the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 215–224 (2007)

18. Dalla Preda, M., Madou, M., De Bosschere, K., Giacobazzi, R.:
Opaque predicates detection by abstract interpretation. In: Inter-
national Conference on Algebraic Methodology and Software
Technology, pp. 81–95 (2006)

19. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code.
In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 732–744 (2015)

20. Yadegari, B., Johannesmeyer, B.,Whitely, B.,Debray, S.:Ageneric
approach to automatic deobfuscation of executable code. In: IEEE
Symposium on Security and Privacy, pp. 674–691 (2015)

21. Blazytko, T., Contag, M., Aschermann, C., Holz, T.: Syntia: Syn-
thesizing the semantics of obfuscated code. In: Proceedings of the
26th USENIX Conference on Security Symposium, pp. 643–659
(2017)

22. Madou, M.: Application security through program bfuscation. Phd
thesis, Ghent University (2007)

23. Collberg, C.S., Thomborson, C.D., Low, D.: Manufacturing cheap,
resilient, and stealthy opaque constructs. In: POPL (1998)

24. Wegman, M.N., Zadeck, F.K.: Constant propagation with condi-
tional branches. ACM Trans. Program. Lang. Syst. (TOPLAS)
13(2), 181–210 (1991)

25. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resis-
tance: obstructing static analysis of programs. Technical Report,
Technical Report CS-2000-12, University of Virginia (2000)

26. Debray, S., Evans, W., Muth, R.: Compiler techniques for code
compression. In: Workshop on Compiler Support for System Soft-
ware, pp. 117–123 (1999)

27. De Sutter, B., De Bus, B., De Bosschere, K.: Sifting out the mud:
low level C++ code reuse. ACM SIGPLAN Not. 37, 275–291
(2002)

28. /OPT (Optimizations)—Microsoft Docs (2018). https://docs.
microsoft.com/en-us/cpp/build/reference/opt-optimizations?
view=vs-2019. Accessed 17 Apr 2019

29. De Sutter, B., De Bus, B., De Bosschere, K.: Sifting out the mud:
low level C++ code reuse. In: Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), vol. 37, pp. 275–291
(2002)

30. Edler von Koch, T.J., Franke, B., Bhandarkar, P., Dasgupta, A.:
Exploiting function similarity for code size reduction. ACM SIG-
PLAN Not. 49(5), 85–94 (2014)

31. Rocha, R.C., Petoumenos, P., Wang, Z., Cole, M., Leather, H.:
Function merging by sequence alignment. In: Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation
and Optimization, pp. 149–163 (2019)

32. Tip, F.: A survey of program slicing techniques. J. Program. Lang.
3(3), 121–189 (1995)

33. De Sutter, B., De Bus, B., De Bosschere, K.: Bidirectional liveness
analysis, or how less than half of the alpha’s registers are used. J.
Syst. Arch. 52(10), 535–548 (2006)

34. Debray, S.K., Evans, W., Muth, R., De Sutter, B.: Compiler tech-
niques for code compaction. ACM Trans. Program. Lang. Syst.
22(2), 378–415 (2000)

35. Debray, S., Muth, R., Weippert, M.: Alias analysis of executable
code. In: Proceedings of ACM POPL, pp. 12–24 (1998)

36. Basile, C.: D5.11 ASPIRE framework report. Techreport,
POLITO (2016). https://aspire-fp7.eu/sites/default/files/D5.11-
ASPIRE-Framework-Report.pdf. Accessed 17 Sept 2018

37. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner,
A.: Code obfuscation against symbolic execution attacks. In: Pro-
ceedings of the 32nd Annual Conference on Computer Security
Applications, pp. 189–200 (2016)

38. Standard Performance Evaluation Corporation: SPEC CPU 2006
(2018). https://www.spec.org/cpu2006/

39. Home—Aspire-FP7 (2018). https://aspire-fp7.eu/
40. De Sutter, B.: D1.06 ASPIRE validation. Techreport, Ghent

University (2016). https://aspire-fp7.eu/sites/default/files/D1.06-
ASPIRE-Validation-v1.01.pdf. Accessed 6 May 2019

41. Van den Broeck, J., Coppens, B., De Sutter, B.: Extended report
on the obfuscated integration of software protections (2019).
arXiv:1907.01445

42. Liška, M.: Optimizing large applications (2014). arXiv preprint
arXiv:1403.6997

43. mliska: [PATCH 3/5] IPA ICF pass (2014). https://gcc.gnu.org/ml/
gcc-patches/2014-06/msg01246.html. Accessed 17 Apr 2019

44. Tallam, S., Coutant, C., Taylor, I.L., Li, X.D., Demetriou, C.: Safe
ICF: pointer safe and unwinding aware identical code folding in
gold. In: GCC Developers Summit (2010)

45. Ueyama, R.: Elf: implement ICF (2016). https://reviews.llvm.org/
rL261912. Accessed 17 Apr 2019

46. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G.,
Weippl, E.: Protecting software through obfuscation: can it keep
pace with progress in code analysis? ACMComput. Surv. (CSUR)
49(1), 4 (2016)

47. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscat-
ing transformations. Technical Report. Department of Computer
Science, The University of Auckland, New Zealand (1997)

48. Myles, G., Collberg, C.: Software watermarking via opaque pred-
icates: implementation, analysis, and attacks. Electron. Commer.
Res. 6(2), 155–171 (2006)

49. Majumdar, A., Thomborson, C.: Manufacturing opaque predicates
in distributed systems for code obfuscation. In: Proceedings of the
29th Australasian Computer Science Conference, vol. 48, pp. 187–
196 (2006)

50. Xu, H., Zhou, Y., Kang, Y., Tu, F., Lyu,M.:Manufacturing resilient
bi-opaque predicates against symbolic execution. In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pp. 666–677 (2018). https://doi.org/10.
1109/DSN.2018.00073

51. Zobernig, L., Galbraith, S.D., Russello, G.: Indistinguishable pred-
icates: a new tool for obfuscation. IACRCryptol. ePrintArch.2017,
787 (2017)

52. Zobernig, L., Galbraith, S.D., Russello, G.: When are opaque
predicates useful? In: 2019 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), pp. 168–175. IEEE
(2019)

53. Asghar, M.R., Galbraith, S.D., Russello, G.: Obfuscation through
simplicity (2016). https://www.math.auckland.ac.nz/~sgal018/
simplicity.pdf. Accessed 24 June 2019

54. Collberg, C., Martin, S., Myers, J., Zimmerman, B.: The tigress
diversifying c virtualizer (2015). http://tigress.cs.arizona.edu/.
Accessed 17 Apr 2019

55. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-
LLVM—software protection for the masses. In: Wyseur, B. (ed.)
Proceedings of the IEEE/ACM1st InternationalWorkshop on Soft-
ware Protection, SPRO’15, Firenze, Italy,May 19th, 2015, pp. 3–9.
IEEE (2015). https://doi.org/10.1109/SPRO.2015.10

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://docs.microsoft.com/en-us/cpp/build/reference/opt-optimizations?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/opt-optimizations?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/opt-optimizations?view=vs-2019
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
https://www.spec.org/cpu2006/
https://aspire-fp7.eu/
https://aspire-fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf
https://aspire-fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf
http://arxiv.org/abs/1907.01445
http://arxiv.org/abs/1403.6997
https://gcc.gnu.org/ml/gcc-patches/2014-06/msg01246.html
https://gcc.gnu.org/ml/gcc-patches/2014-06/msg01246.html
https://reviews.llvm.org/rL261912
https://reviews.llvm.org/rL261912
https://doi.org/10.1109/DSN.2018.00073
https://doi.org/10.1109/DSN.2018.00073
https://www.math.auckland.ac.nz/~sgal018/simplicity.pdf
https://www.math.auckland.ac.nz/~sgal018/simplicity.pdf
http://tigress.cs.arizona.edu/
https://doi.org/10.1109/SPRO.2015.10

	Obfuscated integration of software protections
	Abstract
	1 Introduction
	2 Attack model
	3 Protection strategy rationale
	3.1 Rationale for code factoring
	3.2 Rationale for injecting fake edges
	3.3 Rationale for code layout randomization

	4 Code layout randomization
	5 Interprocedural opaque predicates
	5.1 Disassembler function reconstruction thwarting
	5.2 Resilience against counterattacks

	6 Code factoring
	6.1 Potential factoring candidates
	6.2 Actual factoring candidates
	6.3 Selection order
	6.3.1 Priority function
	6.3.2 Selection and actual factoring

	6.4 Dispatchers
	6.4.1 Conditional jump dispatcher
	6.4.2 Indirect branch dispatcher
	6.4.3 Static switch table dispatcher
	6.4.4 Dynamic switch table dispatcher

	6.5 Integration with other protections

	7 Experimental evaluation
	7.1 Prototype implementation
	7.2 Benchmarks
	7.3 Applicability
	7.4 Potency
	7.4.1 Theoretical interconnectedness
	7.4.2 IDA Pro
	7.4.3 Binary Ninja
	7.4.4 GHIDRA

	7.5 Resilience
	7.5.1 Pattern matching attack in IDA Pro
	7.5.2 Generic deobfuscation
	7.5.3 Binary Ninja's conditional value set analysis

	7.6 Overhead
	7.7 Sensitivity analysis
	7.8 Lessons learned

	8 Related work
	8.1 Code factoring
	8.2 Obfuscations

	9 Conclusions and future work
	References

