
International Journal of Information Security (2020) 19:323–341
https://doi.org/10.1007/s10207-019-00465-8

SPEC IAL ISSUE PAPER

Chaintegrity: blockchain-enabled large-scale e-voting systemwith
robustness and universal verifiability

Shufan Zhang1 · Lili Wang1,2 · Hu Xiong1

Published online: 3 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Blockchain-enabled voting (BEV) systems have emerged as the next generation of modern electronic voting (e-voting)
systems, because the immutable property of the blockchain has made itself a perfect distributed ballot box. Further, recent
investigations have utilized the smart contract to build a decentralized autonomous voting application over blockchain. We
identify nine critical desiderata, such as scalability, verifiability, and robustness, that a BEV system can and should achieve.
However, we find that existing BEV systems violate at least one of the nine desiderata. In light of this deficiency, we propose
a novel BEV system, named Chaintegrity, that fulfills all the specified desiderata. In addition, to make our system more
cost-effective, we also propose a hybrid data structure which combines the counting Bloom filter and the Merkle hash tree
for fast authentication. To enhance robustness, we as well introduce the code-voting technique as a component in our system.
Our empirical results also show that our system achieves high efficiency and enjoys low computational and communication
overhead.

Keywords E-voting protocol · Robustness · Large scale · Universal verifiability · Blockchain · Smart contract

1 Introduction

Advances in information and communication technology
(ICT) over the decades have broken geographical hindrance,
allowing voters to make democratic decisions remotely and
ubiquitously via the Internet. This manner, called remote
electronic voting (REV), has brought convenience to both
the voters and the election managers, helping to reduce the
human cost. But at the same time, it is no news these days to
hear remote absentee ballot tampering in a voter fraud inci-
dent. Some latest examples are the ballot tampering scandal
in the 2019 North Carolina elections [55] and the server wip-
ing in the 2017 Georgia elections [6], just to name a few.
As recent studies [3,33] revealed, the vulnerabilities of the
centralized ballot storage in REV systems are exploited to

B Hu Xiong
xionghu.uestc@gmail.com

1 School of Information and Software Engineering, University
of Electronic Science and Technology of China, Chengdu,
China

2 School of Network Security, Chengdu University of
Technology, Chengdu, China

rig elections, and this may arouse among the voters the crisis
of confidence in the authorities.

The advent of the blockchain technology is widely
expected to solve this problemand disrupt both the traditional
in-person voting and the modern electronic voting (e-voting)
approaches [24,39]. Blockchain, as the backbone technol-
ogy of Nakamoto’s Bitcoin system [32], is an immutable and
transparent ledger distributed on the peer-to-peer network. It
deploys the consensus algorithm [34] to address the incon-
sistency problem1 in the distributed systems. Any changes
in the data stored on one distributed node will immediately
be detected by other nodes in the network. In the context of
REV, this property promises unalterable ballot storage, pro-
vides a clear record of the vote cast, and makes blockchain a
perfect ballot box to eliminate potential voter fraud.

The application of blockchain in REV is gaining momen-
tum. This has entrenched a line of researches these years—
blockchain-enabled voting (BEV) systems. Some prominent
works also employ smart contract [69], the self-executed
on-chain scripts, to build decentralized autonomous vot-
ing applications, which can decrease the human factors as

1 It is also known as the double-spend problem, in terms of cryptocur-
rency and fintech.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-019-00465-8&domain=pdf

324 S. Zhang et al.

many as possible. In this paper, we revisit the state-of-the-art
investigations on BEV systems but surprisedly find that no
common set of system requirements have yet arrived.What’s
more, some works claimed to achieve the properties which
are impractical on blockchain. This motivates us to start a
second glance upon the properties that a BEV system can
and should satisfy. We also propose a novel system to fulfill
all the proposed requirements. Specifically, the prime tech-
nical contributions in this paper are as follows:

1. We formulate the current problem in large-scale remote
voting and explain the failure of existing blockchain-
enabled voting systemsof simultaneously satisfying cost-
efficacy, verifiable, and robustness. For the first time in
the literature, we identify the maximum set of properties
that the large-scale blockchain voting can achieve, and
particularly prove the impossibility of receipt-freeness
in blockchain voting.

2. To cope with the existing problem, we propose Chainte-
grity—a novel, clear, and robust system to meet all the
requirements, which exploits the blind signature scheme
and the distributed homomorphic encryption scheme, tai-
lors and adapts them for large-scale elections. To make
our voting system more cost-friendly, we also propose
a hybrid approach which combines the counting bloom
filter and Merkle hash tree to break the bottleneck. The
bloom filter and the Merkle hash tree are widely used in
the blockchain and its applications, but they are not orig-
inally designed for the e-voting system. We discuss their
usage in distributed blockchain-enabled e-voting system
and analyze the trade-off between the efficiency promo-
tion and the tolerable false positive rate. Apart from this,
we also discuss the problem in real-world deployment
and introduce the code-voting technique as a component
to provide dispute resolution functions.

3. We prove that our system fulfills all the requirements that
a blockchain-enabled large-scale voting system should
achieve. We also use the experimental results to analyze
the efficiency of our system. The experiments and evalu-
ation demonstrate the cost-effectiveness of Chaintegrity
in practice.

1.1 Related works

Initial attempts on designing e-voting protocols over block-
chain spawned cryptocurrency incentive systems. Inspired
by a lottery protocol [10], Zhao and Chan [71] proposed a
protocol for Bitcoin voting, which allows n funded voters
to vote for one of two candidates by transferring Bitcoin. In
their work, ballots are concealed by random numbers which
are generated distributedly. Voters commit in an off-chain
manner to both the masked ballot and the random number
and then reveal their commitments over Bitcoin. However,

their protocol provides no real anonymity for voters, due
to the pseudonymity nature of Bitcoin, and is restricted by
approval elections (single “Yes/No” voting type). These two
drawbacks are, respectively, improved in [56,57]. In [56],
Takabatake et al. proposed the utilization of Zerocoin, a
laundering extension that provides anonymity for Bitcoin, to
construct voting systems. And in [57], Tian et al. proved that
Bitcoin voting is not restricted to the binary type by exploit-
ing Zhao and Chan’s protocol [71] as a subroutine. Other
monetary incentive e-voting systems, like [7,11], utilize dif-
ferent cryptographic primitives such as anonymous Kerberos
and Circle Shuffle in their constructions, which has enriched
and extended the properties (e.g., end-to-end verifiability and
efficiency) of blockchain voting.

As a common feature of monetary incentive e-voting sys-
tems, honest voters will get refunded or rewarded while
the malicious ones are penalized, when an election is over.
Though seems reasonable, this mechanism in fact encour-
ages deviation behaviors and results in lower voter turnout.
The reasons are split into two halves. On the first half, vot-
ers may not pay the huge transaction fee2 in advance for a
potential reward. On the other, with promised higher bene-
fits from vote-buyers, voters are more likely to undertake the
financial penalty. Furthermore, due to the huge financial cost,
monetary incentive systems are impractical for large-scale
national elections [36]. Hence some e-voting systems turn
to regard blockchain as an immutable and transparent ballot
box [39]. In former times, verifiable voting systems [53] rely
on complicated cryptographic constructions, while nowa-
days, blockchain may disrupt this limitation [36]. Chaieb
et al. [16] and Pawlak et al. [50] independently argued that
blockchain can and should be used to achieve universal verifi-
ability and transparent auditability in e-voting systems. Some
commercial startups, like TIVI [58], FollowMyVote [30] and
Agora [2], also launch their BEV projects and implement
the blockchain as a public ballot box. They claim that their
systems are scalable, anonymous, verifiable and publicly
accessible. However, lack of concrete system constructions
in their technical documents and white papers makes it hard
to evaluate whether or not their systems achieve commensu-
rate properties as claimed.

With the development in blockchain technology, smart
contract [27] takes theBEVa step further. Smart contracts are
digital contracts that the clauses are enforced autonomously,
which can be utilized to hold elections without the arbitration
of a trusted administrator. Based onOpenVoteNetwork [35],
McCorry et al. [41] proposed a boardroom (i.e., small scale)
self-tallying e-voting protocol, which is implemented as a
smart contract on Ethereum blockchain. Though provides

2 So far, the highest transaction fee is up to 55.16 USD, which
is reached at the end of 2017: https://bitinfocharts.com/comparison/
bitcoin-transactionfees.html.

123

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 325

maximum voter privacy, their e-voting system is not robust
enough to defend Denial-of-Service (DoS) attack.Moreover,
as the limitation of Ethereum platform, the voting scale is
restricted to 50–60 voters. Recently, sharding-style [22,38]
and EOS-style [26] blockchains are proposed, which break
through the hindrance of low transaction rate and block gen-
eration rate. Yu et al. [67] suggested to use smart contract
to build a secure voting system with no concerns about
blockchain itself (i.e., platform-independence). Their sys-
tem, based on linkable ring signature and homomorphic
encryption, is proved to be scalable and can defend a spec-
trum of known attacks.

1.2 Roadmap

The remainder of this paper is organized as follows. InSect. 2,
we specify the large-scale e-voting problem in the context
of blockchain application and evaluate related works. In
Sect. 3, we introduce some background knowledge, such
as the blockchain, the smart contract, the blind signature,
the (distributed) homomorphic encryption and some special
encoding techniques. Section 4 presents the model of our
election system, including the participating entities, the sys-
tem overview, the trust and threat models, and the design
goals. Section 5 describes the basic framework of Chain-
tegrity, and Sect. 6 delineates some extended components
which promote the efficiency and the robustness. Section 7
analyses the security properties of Chaintegrity. The experi-
mental results are discussed in Sect. 8. Finally, we conclude
this paper in Sect. 9.

2 Problem statement

In this section, we set the large-scale e-voting problem and
propose nine key properties as evaluation criteria. We then
use them to discuss prior attempts to deal with the problem
and their failure to build such a system to satisfy theproperties
simultaneously.We also point out the failure in prior attempts
to achieve receipt-freeness via blockchain. The comparing
results motivate us to propose a novel solution.

2.1 The large-scale electronic voting problem

Consider that several candidates are chasing for one position
and a large number of voters participate in the election. The
voter can cast his/her supporting ballot for one candidate but
can only vote once. As a result, the candidate who obtains
the votes from the majority will win the competition.

Different parties have different requirements in this sce-
nario, which make the voting problem difficult. As for a
voter Alice, she wants to keep her choice secret because she
does not want anyone knows that she voted for Carol, not

her friend Bob. Alice also intends to ensure that her choice
was truthfully recorded and tallied. As for a candidate Bob,
he would expect that no partial result can be known to all
prior to the opening day, since any temporary precedence of
his competitors may attract neutral voters. As for the vot-
ing authorities or election holders, they need a cost-effective
and affordable system. As well, they need the system to be
robust and auditable so that they need not add cost to resolve
disputes.

We conclude the nine properties that a large-scale block-
chain enabled voting system should satisfy from the stated
real-world problem and the reviews of blockchain voting [4,
36] and traditional verifiable voting [53,59]. Note that, since
the properties are derived from the requirements of different
parties, some properties somewhat overlapwith others, while
some of them somewhat conflict with others. We list their
definitions as follows and use them as the evaluation criteria
to assess the prior works and our proposed system.

C1 Scalability The voting system can support a large scale
election, which requires high system concurrency and
process efficiency.

C2 Privacy-enhancement Voter’s privacy requires an ever-
lasting obfuscation in voter–vote relationship which
cannot be distinguished by external observations. Par-
ticularly, given any specific vote, it is probabilistically
impossible to find out which voter cast that vote.

C3 Universal verifiability (a.k.a. transparent auditability)
UniversalVerifiability allows the public,who evendonot
have the right to vote, can also download the transcript
of election and audit the completeness of an election.

C4 End-to-end verifiability End-to-end verifiability means a
voter can check the integrity of his/her vote in any phase
of an election, which includes cast as intended, recorded
as cast and counted as recorded.

C5 Vote-and-go A voter can go off-line after his ballot
is casted, where no further action in tallying needs
voter’s involvement. Comparedwith previous traditional
e-voting protocols [31,47] and blockchain-based voting
protocols [41], voter neither needs to trigger tallying nor
participates in whole tallying process.

C6 UnreusabilityBallots from the same legitimate voterwill
not be counted except for his/her first ballot. This prop-
erty thwarts voters’ abuses and replay attacks.

C7 Affordability The transaction fee should be affordable to
both the voters and the election holders.

C8 Fairness Fairness means the voting process is fair to
everyone, where no one can break the protocol to get
any partial results before final tallying.

C9 RobustnessA robust system can tolerate a certain degree
of failure and adversarial inputs during execution. Fur-
thermore, the robustness requires the ability of the
system to run the electionwhen confronting aminority of

123

326 S. Zhang et al.

Table 1 A comparative evaluation of blockchain enabled voting systems

Schemes Evaluation criteria Decentralisation Authentication Platform Voting type

C1 C2 C3 C4 C5 C6 C7 C8 C9

Zhao et al. [71] × × � � × � × × × No administrator Plain Bitcoin Single

Takabatake et al. [56] × � � � � � × � × Single administrator Off-chain authentication Bitcoin+Zerocoin Multiple

Bistarelli et al. [11] × � � � � � × × × AS+TDS Anonymous Kerberos Bitcoin Multiple

SHARVOT [7] × � � � � � × � × Single administrator Trusted dealer Bitcoin Multiple

FollowMyVote [30] – � � � – – – × – Not mentioned Trusted delegate BitShares Multiple

TIVI [58] � � � � � – – � – Not mentioned Not mentioned Not mentioned Single

Agora [2] � � � � � × � � × Multi-administrators Not mentioned Customized blockchain Not mentioned

VYV [16] � � � � � � × × × Single administrator Plain Ethereum Multiple

McCorry et al. [41] × � × � × � × � × No administrator Plain Ethereum Single

Yang et al. [66] × � � � × � × � × Single administrator Off-chain authentication Ethereum Multiple

Yu et al. [67] � � � � � � � × × Single administrator Ring signature Platform-independent Multiple

Our scheme � � � � � � � � � Multi-administrators Blind signature Platform-independent Multiple

�, implemented; ×, not implemented; –, no explicit information; AS, authentication server; TDS, token distribution server

dishonest election authorities. As pointed out in [53], the
misbehavior includes the rejection of tellers to decrypt
ciphertexts, failure of mix servers to operate, etc.

2.2 Evaluation of prior works

By using the above criteria (C1–C9), we evaluate the prior
works that are mentioned in Sect. 1.1. An intuitional com-
parison is presented in Table 1. In this table, we objectively
compare the achievement of the properties and other aspects
including the decentralisation degree, the authentication
manner, the used blockchain platform and the used voting
type.

Among all prior works, we notice that none of them really
satisfy robustness as specified.Most systems (e.g., [41]) can-
not defendDenial-of-Service (DoS) attacks and hence cannot
tolerate partial failure. The nearest works are Agora [2] and
Yu et al.’s [67]. However, we cannot find how Agora defends
double-vote attacks from its whitepaper. Likely, we observe
that the single tallier in Yu’s system can readily refuse to
decrypt the ciphertext-form tallying result. Thus, both Agora
and Yu’s system are not robust. And at the same time, Agora
loses unreusability, and Yu’s system violates fairness.

Another observation is that most systems cannot satisfy
affordability and scalability. These blockchain-enabled vot-
ing systems are built upon either Bitcoin or Ethereum and
need to afford a large amount of transaction fee (or gas price
in terms of Ethereum). The capability to accommodate mil-
lions of voters is also restricted by the blockchain platform
and the protocols themselves. Although researchers have
tried their best to adapt their protocols to the blockchain plat-
forms, their systems still fail to gain scalability. Rather, some
resent designs [2,16,67] leverage consortium blockchains or

EOS/sharding-style blockchains to handle the scalable prob-
lems. We follow their designs in our system.

With respect to (universal or end-to-end) verifiability, the
essential goal of introducing blockchain to e-voting, almost
all systems have achieved it. We also notice that all evaluated
systems have used different mechanisms to provide everlast-
ing privacy-enhancement for voters. An exempt is Zhao and
Chan’s lottery-based voting protocol [71]. In their protocol,
the voters need to claim for reimbursement after the election.
The evaluation result motivates us to build such a system that
satisfies all the properties. Besides, we intend to mitigate the
trust to centralized voting authorities and use a elaborative
coding approach to support multiple voting type.

2.3 On the impossibility of receipt-free blockchain
voting

Unfortunately, blockchain is not a panacea for all existing
voting systems. A stronger notion of privacy, called receipt-
freeness, which prevent a voter sells his/her vote to a potential
vote-buyer, cannot be achieved. This is partially because that,
receipt-freeness requires the authorized entity to add some
voter unknown randomness to the encrypted ballot, whereas
the smart contract cannot generate a secret random number.3

On the other hand, the untappable channels, which appear
in many receipt-free protocols, are extremely impractical in
the distributed environment. Accordingly, some prior BEV
protocols [2,16,67] are flawed.

Hence, we do not include receipt-freeness into our eval-
uation criteria. Receipt-freeness is important to large-scale

3 The smart contract is the script distributedly executed on all vali-
dation nodes. Thus, as regards the consistency of the blockchain, it is
impossible for every node privately chooses the same random number.

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 327

remote elections, whereas in some other real-world scenar-
ios [1], voters are more care about whether their preferences
are truthfully recorded and tallied. Adida [1] call these sce-
narios low-coercion elections, which are specifically held
in the settings like student government and open-source
software communities. Out of considering the features of
blockchain, we believe that a blockchain-enabled e-voting
system is more suited to these settings, and we intend to
build the system for the mentioned purposes.

3 Building blocks

In this section, we introduce the blockchain, the smart con-
tract, the blind signature, the homomorphic encryption, the
encoding and decoding approaches for thiswork. For the suc-
cinctness of description, we only review the function notions
of the blind signature and the homomorphic encryption and
leave the concrete schemes to the appendices.

3.1 Blockchain and smart contract

Nakamoto introduced blockchain as a backbone of the
Bitcoin system to solve the double-spend problem. The
blockchain is a chain of blocks ordered by time, where the
hash value of a previous block is stored in the next block.
Any changes happen in an early blockwill exert an avalanche
effect on changing hash value of all later blocks.Accordingly,
any attempts of private interpolation to an early block are
impractical. The blockchain was originally designed to store
transaction information, while its effect has gone beyond the
economic field since the introduction of the OP_RETURN
instruction inBitcoin. It allows the users to embed 40 bytes of
data in a transaction, which makes the blockchain a trusted
distributed database. The trust toward a blockchain means
that the user has confidence in the decision made by a large
proportion of nodes in the distributed system.

Without smart contract, blockchain is merely a tamper-
resistant database; smart contract extend and leverage block-
chain technology [65]. Smart contract is a family of pre-
defined protocols which are deployed on blockchain. In other
names, it is also called chaincode [5,15]. As illustrated in
Fig. 1, smart contract works like finite state machine, where
preset status and rule codes are encapsulated. When a trig-
ger condition is met, smart contract examines the inside and
outside rules, executes to respond according to the coming
request. The handled responses (usually in form of sta-
tus/value pairs) are finally written into blockchain.

3.2 Digital signature and blind signature

The digital signature is used to verify the authenticity of
messages. Then the concept of blind signatures was firstly

Block

Smart Contract

Status

Value

Preset trigger
condition Preset

response rules

Block

Block

Block

Fig. 1 The working principal of the smart contract

introduced by Chaum [17]. As a special digital signature, the
content of the message is blinded before it is signed.

Blind signature is widely used for anonymous authenti-
cation [60,61] and in applications such as electronic voting
and electronic cash/payment systems [51] since it provides
an efficient approach to protect users’ privacy [62,63]. Dif-
ferent from normal signature schemes, user and signer are
separated in blind signature schemes. By adopting blind sig-
nature, user can obtain a wanted signature from the signer
without leaking any knowledge of the message to be signed.
The blind signature consists of following algorithms, and the
details are described in “Appendix A.2.”

– Key generation (skB,pkB) ← BlindGen(1k) where k is
the security parameter of the system. This function gener-
ates the signer’s secret key skB and corresponding public
key pkB.

– Blind m′ ← Blind(m, r ,pkB) takes the message m, the
blind factor r and the signer’s public key skB as the input,
outputs the blind message m′.

– Sign d ← BlindSignskB(m
′). This function signs the blind

message m′ with the signer’s secret key skB, generating
the signature of the blind message d.

– Unblind y ← Unblind(d, r) takes the signature of the
blind message d and blind factor r as the input, outputs
the message’s signature y.

– Verification 1/0 ← BlindVerfpkB(y,m). This function
inputs the message m, the message’s signature y and the
signer’s public key skB, returns 1 if y is the signer’s sig-
nature of message m, 0 otherwise.

3.3 Homomorphic encryption and threshold Paillier
encryption

Homomorphic encryption allows calculations on ciphertexts
to generate the encrypted result, and the decrypted result
matches the result of the operations just like they had been
executed on the plaintexts. As a common partially homo-
morphic cryptosystem, the Paillier encryption provides the
additive homomorphic property. Let � denotes the mes-
sage, and homomorphic property holds Enc(�1) ·Enc(�2) =

123

328 S. Zhang et al.

Enc(�1+�2), which make it possible to calculate the encryp-
tion of Σ

ρ
i=1�i without exposing plaintexts.

Threshold Paillier encryption allows multiple parties to
share the secret together. Secret can only be decrypted ifmore
than the threshold number of parties agree to decrypt. The
Threshold Paillier encryption consists of several following
algorithms, and the details are described in “Appendix B.”

– Key generation ({skPa1 , skPa2 , . . . , skPan},pkPa) ←
PaillierGen(1k) where k is the security parameter of the
system. This function generates the user’s secret key
{skPa1 , skPa2 , . . . , skPan} and corresponding public key
pkPa.

– Encryption C ← EncpkPa(�) where � is the plaintext of
the ballot result, which holds � ∈ Zn . And C denotes the
ciphertext, which is encrypted with pkPa.

– Decryption Ci ← DecskPai (C) where skPai is a share of
the secret key. And each party execute this function to
get the partial decryption Ci .

– Combination � ← CompkPa(
∏

). This function combine
at least t +1 partial decryption

∏ = {C1,C2, . . . ,Ct+1}
and decrypt the ballot result as �.

– Non-interactive zero-knowledge proof of membership
{v j , e j , u j } j∈P ← PoKmem(C, L)whereC is the cipher-
text, and L is the set of plaintext. This function generates
a transcript {v j , e j , u j } j∈P to prove that the correspond-
ing plaintext of C lies in the set L .

– Non-interactive zero-knowledge proof of correctness
of partial decryption(R1, R2, e′, z) ← PoKcor(C,Ci)

where C is the ciphertext, and Ci is the partial decryp-
tion. This function generates a transcript (R1, R2, e′, z)
to prove that Ci is the partial decryption of ciphertext C .

3.4 The counting Bloom filter and theMerkle hash
tree

The counting Bloom filter [29] is a special variation of the
Bloom filter. It is an efficient probabilistic data structure
which supports membership queries with low temporal and
spacial overheads.As shown inFig. 2, a countingBloomfilter
cBF for the set S supports the following 4 types of functions.

– Initiation This algorithm takes as input two integers
m, k ∈ N . It samples k different hash functions
H1, H2, . . . , Hk , where each Hi : S → {0, 1}m . It then
produces a vector T with m entries and sets the content
of each entry a counter whose initial value is set to 0.

– Insertion Given the family of the hash functions H1, H2,

. . . , Hk , the vector T and an element e ∈ S, if we denote
T [i] as the content of the ith entry of T , this algorithm
updates the vector T by auto-increasing T [Hi (e)] :=
T [Hi (e)] + 1 for all i ∈ {1, 2, . . . , k}.

Delete Element 3

Query:

Delete: Return Negative Return Positive Return False Positive

Insert:

0000 0000 0000 0000 … 00000000

0010 0001 0011 0001 … 00010000

0010 0001 0011 0001 … 00010000

0010 0001 0010 0000 … 00000000

0000

0001

0001

0001

Initiate:

1 2 3

4 2 5

1 2 3

Fig. 2 The working principal of the counting Bloom filter

– QueryGiven the family of thehash functions H1, H2, . . . ,

Hk , the vector T and an element e, the algorithm returns
true if all T [Hi (e)] > 0 for i ∈ {1, 2, . . . , k}; otherwise,
it returns false.

– Deletion Given the family of the hash functions H1, H2,

. . . , Hk , the vector T and an element e ∈ S, the algorithm
delete e from the set S by auto-decreasing T [Hi (e)] :=
T [Hi (e)] − 1 for all i ∈ {1, 2, . . . , k}.

From Fig. 2, we can observe that the Bloom filter may
yield false positive. Given the length of the set S, i.e., n, and
the number of the entries m, the minimum false positive rate
is achieved as R f = 2−k when k = m

n ln 2 [44].
The Merkle hash tree was first introduced to provide

secure authentication using hash functions. As shown in
Fig. 3, it’s a tree of hashes. The value of leaf nodes is the
hash value of the corresponding data node, and every non-
leaf node is the hash value of its child nodes’ conjunction.
For instance, supposewe have a one-way hash function H(·).
Then we can compute the value of four leaf nodes by hi =
H(ni), (i = 1, 2, 3, 4). The value of an internal node has
h5 = H(H(n1)||H(n2)) and h6 = H(H(n3)||H(n4)). Sim-
ilarly, root node of this tree is computed by r1 = H(h5||h6).

3.5 Candidate encoding and result decoding

Candidate encoding A set of candidates, which are denoted
by Lc = {C1,C2, . . . ,Cm}, campaign to obtain more votes
and compete to win the election. In order to achieving faster
tallying process, every candidate’s real-world identity is
encoded into a digital representation. Inspired by previous
work [21,37], we implement the encoding approach as fol-
lows.

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 329

Message 1 Message 2 Message 3 Message 4

ℎ1 = (1) ℎ2 = (2) ℎ3 = (3) ℎ4 = (4)

ℎ5 = (ℎ1||ℎ2) ℎ6 = (ℎ3||ℎ4)

1 = (ℎ5||ℎ6)

ℎ5

ℎ1 ℎ2

ℎ6

ℎ3 ℎ4

1 2 3 4

1

Fig. 3 An example of Merkle hash tree

Assuming the total amount of legitimate voters is |Lv|,
each candidate cannot obtain more than |Lv| votes. If we
denote t j as the amount of votes that candidate j obtains,
for ∀ j ∈ {1, 2, 3, . . . , |Lc|}, t j < |Lv| is always satisfied.
Let � be an integer larger than |Lv|, possibly where � =
|Lv| + 1, the j th candidate will be encoded as � j−1. For
example, the first candidate is encoded as �0 = 1, and the last
candidate is encoded as �|Lc|−1. Then voters choice ranges
from {1, �, �2, . . . , �|Lc|−1}. As noted in [21], to ensure the
correctness of final tally, the parameters are chosen to satisfy
�|Lc| < q, where q is the order of plaintext space of the
encryption algorithm.

Result decoding Due to the additive homomorphic property
of Paillier encryption scheme, the final tally result R is in
form of R = t1 + t2� + t3�2 + · · · + t|Lc|�|Lc|−1. We define
a kind of right shift function Shift(·), where on calling it, the
operand will be right shift � position once. This function can
be regarded by multiplying the inverse element of � to the
operand. For example, Shift(�n) = �n�−1 = �n−1. In system
implementation, to achieve better performance, the number
2 is always chosen to be the basis of �, where Shift(·) can
be directly conducted with right shift instruction on CPU
registers.

To decode the tally result, we first apply Extended
Euclidean algorithm to compute R1 and t1, where R =
R1� + t1. Then we put the retrieved R1 into the defined
right shift function to compute R′ = Shift(R1) = t2 +
t3�1 + t4�2 + · · · + t|Lc|�|Lc|−2. By recursively applying
Extended Euclidean algorithm and calling right shift func-
tion, we finally get R, R1, R2, . . . , R|Lc|−1 and correspond-
ingly t1, t2, t3, . . . , t|Lc|. Respectively, t1, t2, t3, . . . , t|Lc| are
the amount of votes toward each candidate.

4 Systemmodel and overview

With the help of diagrams (see Figs. 4, 5), we describe in this
section the responsibility of involved entities and provide an

overview of Chaintegrity. Beyond that, we define the trust
and threat models of Chaintegrity, and explain our design
goals.

4.1 Involved entities

As illustrated in Fig. 5, there exists 4 entities in our voting
system.Respectively, they are the voters, the election holders,
the auditing group and the smart contract.

E1 Voter A set of legitimate voters are authorized to vote for
their preferred candidates with independent judgments.
We assume that all voters hold a long-term public/secret
key pair (pkV, skV) that represents their identities.

E2 Election holders As the system administrator, election
holders are to organize or control the voting process
by initializing the system parameters and triggering dif-
ferent phases of an election. To make our system more
robust and to defend possible collusion, we assume that
n election holders exist in our voting system. These n
election holders share a pair of public/secret key pair
(“Appendix B.2”). Under this threshold manner, unless
at least t election holders are corrupted, malicious adver-
saries can ruin the voting result.

E3 Auditing group An auditing group is an expert panel
of auditors who act in the public interest. By check-
ing out all published information, auditing group offers
professional opinions on the properness and soundness
of elections. To ensure the justness of auditing process,
auditors are appointed by different interested parties.

E4 Smart contract As the autonomous on-chain code, smart
contract will be triggered if the information, which is
about to write into a block, includes voter’s registra-
tion identity (in Preparation and Registration phase), or
signatures of encrypted ballot (in Tallying and Opening
phase).

A special role named smart contract administrator also
exists in real-world implementation. With responsibilities to
initialize and terminate smart contract, it is always played by
an authorized account on blockchain platform (as Ethereum
or Hyperledger Fabric). The concrete responsibility of smart
contract administrator is slightly different among blockchain
platforms. Thus, we will not delve deeper into this role.

As the backbone of our election system, Blockchain not
only is the runtime host for smart contract, the tamper-
resistant bulletin board for verification and auditing, but also
provides a low-lever broadcast communication channel [64]
for the above involved entities. With the help of blockchain,
our election system is more robust and scalable.

123

330 S. Zhang et al.

Smart Contract
Verification

VOTING PROCESS RESULT
BROADCAST

PUBLIC
SUPERVISION

System Setup

INITIALIZATION

Voter Preparation
and Registration Ballot Casting

Ballot Tallying
and Opening

Election
Auditing

Voting Timeline in Our Election System

Fig. 4 Six stages exist in our election system

Voter's operation Smart Contract

B
lockchain

Auditing Group

Generate ballot Blind the ballot
Sign the
message

Validate
voter

Blindly sign the
message

Anonymous
unblind ballot

Jointly open
the result

Verify the blind
signature

Compute the
tally

Election
Holders

Ballots

Final
Result

Download the voting
transcript

Check out the whole
process

Fig. 5 High-level description: the interactions during the voting process

4.2 System overview

A typical election in our system, as depicted in Fig. 4,
includes six distinct stages: Smart Contract Verification,
System Setup, Voter Preparation and Registration, Ballot
Casting, Ballot Tallying, andOpening andElectionAuditing.
These six stages are executed chronologically, and triggered
autonomously by smart contract. Note that, in a sequence
of elections (e.g., multi-level proxy voting), the Smart Con-
tract Verification stage and the System Setup stage are only
required to execute once. That is to say, the pair public/secret
keys of voters and election holders can be reused in different
elections.

The communication flowdiagram (see Fig. 5) comprehen-
sively shows the last four stages of our system. To describe
what a voter experiences in our election system, we take

Alice, a legitimate voter, as an example. Alice only need to
interact with the system in stages of Preparation, Registration
and Ballot Casting. In Preparation and Registration stage, the
voter prepares a ballot and asks for an authorization (registra-
tion). And in Ballot Casting stage, voter casts the authorized
ballot to the blockchain. After the Ballot Casting phase is
over, the system (smart contract) tallies the ballots and pub-
lishes the result very efficiently. Since all valid information
will be recorded on blockchain immutably, Alice can check
the status of her registration request and ballot at any time.
Considering those non-technical users (i.e., laymen in digital
field), a group of auditors are chosen out in Election Auditing
stage to arbitrate the properness of the election.

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 331

4.3 Trust and threat models

Weassume thatmost of the validation nodes are semi-trusted.
That is, the smart contracts will execute honestly, and the
blockchain will not equivocate on what is stored; however,
the validation nodesmay be curious about the voters’ privacy.
Besides, we make the following assumptions:

– The election holders are all semi-trusted. The election
holders cannot be compromised and help adversaries to
alter voter choices.4

– Our systemwill not suffer from high coercion risk. Stated
differently, we assume that our system is always used in
low-coercion elections.

– There exist anonymous communication channels (e.g.,
the onion router, TOR) so that the voters can be free from
IP trace attacks.

As for the threatmodel, we consider that an computational
bounded adversary can launch the following attacks:

– Replay attack The adversary may record the previous
ballot and fraudulently replay it to the smart contract.

– (Distributed)Denial-of-Service (DoS/DDoS)Attack This
attack could be either a voter-targeted one or system-
targeted one. For the voter-targeted attack, the adversary
may block the communication between the target voter
and the blockchain; for the other one, the adversary may
flood the smart contract with superfluous requests (e.g.,
registration requests) and disable the normal system func-
tions.

– Man-in-the-middle attack [19] The adversary captures
and tampers the transmitting message, and then re-
transmits it to the smart contract.

– Sybil attack [72] The adversary may either attempt to
impersonate a legitimate voter to vote or a validation node
to attack the blockchain.

4.4 Design goals

To build a system which can be deployed in large-scale elec-
tions, our blockchain-enabled voting system should satisfy
all the requirements proposed in Sect. 2.1. Apart from this,
the system should be secure enough to defend all attacks
mentioned above. Also, the system needs to achieve better
cost-effectiveness. If we denote n as the total number of the
voters, the computational cost of the system should be sub-
linear in n, [i.e., o(n)] and the communication cost of the
system should be linear in n [i.e., O(n)].

4 This assumption is mitigated in Sect. 6.3.

5 Basic e-voting system

In this section,wedescribe the construction of our blockchain
enabled e-voting system and discuss in detail the experience
of a voter in a single election contest; extension to multi-
contest is trivial. Besides, without loss of generality, we use
function notions instead of concrete expression of crypto-
graphic primitives to describe our e-voting system. As for
themathematical constructions of these primitives, interested
readers may refer to appendices.

5.1 Prologue of an election

Although this stage seems to be tedious and trivial, a veri-
fication of smart contract itself is important and necessary.
Considering that the smart contract could be tampered by
adversaries and run on malicious validation nodes, a digital
fingerprint (a.k.a. file checksums) need to be enclosed with
smart contracts and verified by blockchain platform. This
verification is carried out in twopossible scenarios: at the pro-
logue of an election and when new validation nodes join in.

5.2 System setup

This stage involves the following steps:

Step S1 Election holders jointly generate the global parame-
ter of Paillier cryptosystem paramPaillier and upload
to blockchain. They also jointly generate, and
upload the public key pkPaE of Paillier encryption
scheme. The corresponding secret key is split to n
parts and each part is held by one election holder
(“Appendix B.2”).

Step S2 Smart contract administrator runs the setup function
of blind signature scheme, and uploads the global
parameter paramBlind to blockchain. From then on,
the election is executed autonomously andmanaged
by smart contract.

Step S3 Each election holder generates a pair public/secret
key (skBi ,pkBi) ← BlindGen(1k), and uploads the
public key pkBi to the blockchain.

Step S4 One election holder (chosen by cryptographic sor-
tition) uploads the information of election candi-
dates, which is comprised of their manifesto and
encoded identity. Other election holders witness
and verify this procedure.

Step S5 Similar as Step S4, a set of encoded identity, with
corresponding public key certificate, of legitimate
voters is also uploaded to blockchain.

123

332 S. Zhang et al.

5.3 Voter preparation and registration

A voter, say Alice, first has to use her identity to sign in the
voting system. She prepares her ballot and registers in as
follows:

Step P1 Alice creates a new account on blockchain. In this
phase, she uses this account to interact with smart
contract via blockchain.

Step P2 Alice reads the manifestos of each candidate with
care, and finds the encoded identity, �i , of her pre-
ferred candidate on blockchain. Then she completes
the ballot xi = EncpkPaE (�

i).
Step P3 Alice randomly chooses ri ∈ Zq and blinds the

ballot with it mi = Blind(xi , ri).
Step P4 Alice signs the messagemi with her secret key si =

Signi(mi), and sends {mi , si , IDi } to blockchain.
Note that, Alice’s signature is generated by normal
digital signature scheme.

On receiving Alice’s registration request, smart contract
operates as follows:

Step R1 Smart contract checks whether or not Alice has
applied the registration. This step can be either
executed locally or on blockchain. In the local
execution manner, smart contract searches for the
identity label locally. If Alice is marked as “reg-
istered,” smart contract rejects Alice’s registration;
otherwise, it continues the process.5

Step R2 Smart contract verifies that whether or not Alice is
in the set of legitimate voters. If not, smart contract
abolishes Alice’s registration; otherwise, it obtains
Alice’s public key from the public key certificate.
Note that, the membership query and the public key
query are both executed on blockchain.

Step R3 Smart contract uses Alice’s public key to check
whether or not si is a valid (normal) signature of
mi . If the check fails, smart contract aborts Alice’s
registration.

Step R4 Smart contract then sendsAlice’smessagemi to one
of the election holders (chosen by cryptographic
sortition) via blockchain.

Step R5 The chosen election holder blindly signs on Alice’s
message mi as di = BlindSignskBi

(mi), and sends
it to smart contract.

Step R6 Smart contract marks Alice as “registered” locally
and sends di to Alice via blockchain.

5 Another possible detection on Alice’s registration trail is the trans-
action which smart contract sends back to Alice (in Step R6). This
approach is executed on blockchain.

Note that, to confirm that the information is not erasable,
Alice needs to wait for 6 block’s generation after the block
which writes her registration information appears. This pro-
cess can be conducted by a background program running on
Alice’s device.As theworst case, she need towitness the gen-
eration of 12 blocks (6 for recoding her request and another
6 for recoding smart contract’s answer).

5.4 Ballot casting

After the registration of all voters, Alice receives the signa-
ture of smart contract and performs the following operations:

Step C1 Alice creates a new account on blockchain. In this
phase, she uses this account to interact with smart
contract via blockchain.

Step C2 Alice retrieves the desired signature yi of ballot xi
by unblinding di with the previously chosen ran-
domness ri . She computes yi = Unblind(di , ri).

Step C3 Alice generates a non-interactive proof of knowl-
edge {v j , e j , u j } j∈P = PoKmem(xi , Lc) to prove
that the plaintext behind ballot xi is a member of
encoded candidates.

Step C4 Alice publishes the ballot/signature pair {xi , yi } to
the blockchain. It will be accepted after the tran-
script of proof of knowledge {v j , e j , u j } j∈P is
validated.

5.5 Ballot tallying and opening

For each oncoming block with ballot/signature pair {xi , yi },
the following operations are conducted:

Step T1 Smart contract verifies the ballot/signature pair
{xi , yi } by calling BlindVerf pkBi

(yi , xi). If the sig-
nature is valid, smart contract finds the related block
by using block id, and computes the sum of all bal-
lots in this block xBid = Σk

i=1(xi). Otherwise, this
ballot/signature pair will be neglected.

After all ballots are collected, smart contract will publish
the final encrypted result xall = Σ

numBlock
i=1 (xBid) with a tag

“waiting for opening” to the blockchain.

Step O1 Election holders jointly open6 the result when the
Opening Day is triggered. They open the tallying
result by gathering at least t + 1 shared partial

6 The partial decryption and combination algorithms refer to Appendix
B.2. It is also noteworthy that a zero-knowledge proof (R1, R2, e′, z) ←
PoKcor (C,Ci) generated by each election holder is published to ensure
the correctness of the partial decryption.

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 333

decryption Ci = DecskPai (C) and running the com-
bination algorithm R = CompkPa(

∏
), which holds

∏ = {C1,C2, . . . ,Ct+1}. The result R is published
to blockchain.

Step O2 AfterR is computed, the voting result, t1, t2, t3, . . . ,
t|Lc|, for each candidate, �0, �1, �2, . . . , �|Lc|−1, can
be easily obtained, since R is a number to the radix
� (see Sect. 3.5 for details).

5.6 Election auditing

This is an optional phase to explicitly show how univer-
sal verifiability is achieved. Without this phase, verification
and auditing can also be conducted privately and implicitly.
Since the communication process is completely recorded and
unerasable, everyone can publicly verify the validity of tal-
lying and make sure the integrity of voting process. For an
individual voter, say skeptical Bob, he confirms during the
election process that, 6 blocks are generated after his mes-
sages being writing into a block. Through all his interaction
records with smart contract and blockchain, Bob can ver-
ify that he casts as intended, the vote is recorded as cast
and counted as recorded. Furthermore, an auditing group is
chosen to arbitrate controversial elections. By checking the
equivalence of the number of ballots and registered voters,
and the correctness of the tallying result by decrypting all
encrypted ballots, the auditing group can verify and audit the
voting process.

6 Extended components

To promote efficiency and robustness, we additionally dis-
cuss some components for optimizations and the problems
which developers will meet in real-world scenarios. These
problems are typical and common in traditional e-voting sys-
tems. And we discuss the solutions as system components in
the context of blockchain voting.

6.1 Components for fast authentication

Common techniques for anonymous authentication include
the ring signature based schemes and the blind signature
schemes. In a ring signature-based scheme, the user needs
to include a ring of public keys, hide his/her own public key
behind it, generate a signature and send to the system. The
system only has to verify whether the ring signature is valid.
If valid, this implies the public key of the user is among the
included ones. Compared with ring signature based schemes,
the blind signature-based scheme, as what we described in
Sect. 5, requires the system to ensure before issuing the sig-

nature that the applicant (i.e., the user) is in the set of the
legitimate users.

Unfortunately, as pointed out in [67], searching for a
specific transaction and finding out the block with a given
transaction are two of the most time-consuming part on the
blockchain. Accordingly, the Step R1 and the Step R2 in our
voting systemwill produce large time overhead. If we denote
the number of legitimate users as n, the basic authentica-
tion algorithm achieves linear time complexity, i.e., O(n). To
accelerate the authentication process, an intuitive approach
is to load the information of all legitimate voters into the
memory. But this will produce large space overhead. Here
we propose a hybrid approach to optimize the performance
of our system. This approach combines the counting Bloom
filter7 [29] and theMerkle hash tree proof [43] to achieve the
o(logn) complexity.

Nowwe describe the usage of the hybrid data structure. As
illustrated inFig. 6,webuild this data structure as follows.We
first compute the maximum number |S|max of the elements
that the counting Bloom filter can support with respect to the
given false positive rate R f and the maximum vector length
m of the filter. To support as many elements as possible and
to remain the minimal false positive rate, we compute |S|max

as follows:

|S|max = − m

ln R f
(ln 2)2. (1)

This is derived from the fact that theminimal false positive
rate R f = 2−k is achieved when k = m

n ln 2 [44]. With
|S|max, we can compute theMerkle hash tree depth d which is
the smallest integer, s.t. |S|max2d ≥ n where n is the number
of supported voters in the system.

Then we can initiate the proposed data structure. We cal-
culate the leaf nodes of the Merkle tree as the hash value of
the concatenation of the voter’s identity and his/her public
key, i.e., h(IDi‖pki). The value of other tree nodes are cal-
culated as the hash value of the concatenation of its child
nodes. As the example in Fig. 6, we calculate all the Merkle
trees and we denote by r1, r2, . . . rn the value of the roots.
Then we assign the collection of the value of the roots to the
counting Bloom filter S ← {r1, r2, . . . rn}. Then we choose
k hash functions and initiate the counting Bloom filter using
the method in Sect. 3.4.

Next we describe the registration process. Take Fig. 6 as
an example. A voter, e.g., with the identity ID3 , needs to
send the information {ID3,pk3, h4, h9,m, s} to the system,
where s is the signature of m under the corresponding secret
key sk3. Then the system calculates the value of the root
node r ′

1 by using {ID3,pk3, h4, h9}. The system next checks
whether or not the calculated r ′

1 is in the set of root node

7 In practice, the Cuckoo filters can be regarded as the substitutes of the
counting Bloomfilters. As for the comparison, onemay consult [14,28].

123

334 S. Zhang et al.

0001 0000 0010 0000 0000 0001 …0001

ℎ1 = (1)

{ 2|| 2}

ℎ3 = (3) ℎ4 = (4)

ℎ9 = (ℎ1||ℎ2) ℎ10 = (ℎ3||ℎ4)

1 = (ℎ9||ℎ10)

ℎ2 = (2)

{ 1|| 1} { 3|| 3} { 4|| 4}

ℎ5 = (5)

{ 6|| 6}

ℎ7 = (7) ℎ8 = (8)

ℎ11 = (ℎ5||ℎ6) ℎ12 = (ℎ7||ℎ8)

2 = (ℎ11||ℎ12)

ℎ6 = (6)

{ 5|| 5} { 7|| 7} { 8|| 8}

0000 0001

ℎ9

ℎ1 ℎ2

ℎ10

ℎ3 ℎ4

1 2 3 4

1

ℎ11

ℎ5 ℎ6

ℎ12

ℎ7 ℎ8

5 6 7 8

2

Fig. 6 An example of the hybrid data structure for fast authentication

values S. If the check passes, the system use the pk3 to verify
the authenticity of the signature. If the signature is also valid,
the system accepts the registration. Finally, to avoid double
registration, the system prunes the Merkle tree and updates
the counting Bloom filter.

The proposed mechanism can achieve very fast authenti-
cation with a extremely low false positive rate. For example,
given the false positive rate R f = 2−80 and the maxi-
mum vector length m = 2MB, the |S|max is calculated as
|S|max = − m

ln R f
(ln 2)2 ≈ 43, 719. With the depth d = 5

of the Merkle tree, the system can achieve fast authentica-
tion among millions of the voters. The time complexity of
the proposed mechanism is sub-logarithmic, i.e., o(log n),
since it is the combination of the Bloom filter (constant time
algorithm, i.e., O(1)) and the Merkle tree [logarithmic time
algorithm, i.e., O(log n)].

6.2 Components for cryptographic sortition

We have mentioned the cryptographic sortition in both Step
S4 andR4. In our system, sortition helps to decidewhich elec-
tion holder is chosen to upload the election information to the
blockchain and is responsible for signing a voter’s registra-
tion. Cryptographic sortition makes our system more fair, as
long as the algorithm itself cannot be affected by any entities.
However, it is difficult to generate an agreed random num-
ber in the distributed blockchain setting. One popular way is
to use an Oracle [40]. It is a centralized blockchain service
provider which accesses outside source and publishes the
acquired data on the blockchain to trigger a smart contract.
Using an Oracle seems to be efficient and pragmatic, while it
breaks the decentralized principal of blockchain and makes
our trust model more complicated. Hence, we suggest to uti-

lize block hash, timestamp, or some public information with
high entropy as the seed for random number generation [13].
This approach is more robust, and it can be implemented as a
smart contract [52] autonomously running on the blockchain.

6.3 Toward end-to-end integrity and robustness

Although Chaintegrity is robust in theory, the real-world
deployment may spoil all our efforts. Here is one of the
reasons—considering human usability, voters need a mobile
application or a computer program to execute operations
like ballot casting; however, voters may probably obtain the
wrong information from their devices [18]. This is mainly
caused by two threats: the adversaries may tamper with the
client program to display the disguised successful message
on voters’ devices, and they may use Malware to alter voter
choices.

The countermeasures to resist software tampering attack is
not complicated. The voting client first needs to be reviewed
by the auditing group, and then uploaded to the interplanetary
file system (IPFS) [9] which is a peer-to-peer distributed file
system as an auxiliary of a blockchain. The integrity of the
software is guaranteed by the file fingerprint—a mechanism
embedded in IPFS.

To prevent adversaries from altering voter choices, we
introduce code-voting technique [68] as a component of our
system. By adopting this primitive, the voter and the auditing
group share secret authentication codes, and the voter needs
one more round of interaction with the auditing group in the
ballot casting phase. The codes are pre-allocated to the voter
by mail service and are secret to election holders or other
third parties. In the interaction, the voter exchanges the codes
with the auditing group until he/she ensure no adversaries

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 335

can falsify his/her preferred candidate choice, and finally
he/she sends a lock-in code to fix the record. Code-voting
brings three additional benefits to our system. First, it weak-
ens the trust to the election holders and the voting client
software. Furthermore, it makes our system robust against
voter-targeted DoS attacks. Besides, it provides the authen-
tication codes which can be regarded as the voter-verified
paper audit trail [42] to achieve end-to-end integrity and to
resolve disputes.

7 Security analysis

In this section, we analyze the security of our system by
using the aforementioned evaluation criteria. We discuss the
typical attacks and the corresponding defence policies. Then
we prove the robustness of our system based on the analysis.

7.1 Analysis of evaluation criteria

Here we use the first eight evaluation criteria to assess
our proposed system Chaintegrity and leave the analysis of
robustness in Sect. 7.3.

Scalability The computational and communication cost of
Chaintegrity are respectively sub-linear and linear in the
number of voters n, i.e., the o(n) and O(n). This means that
our system achieves scalability. The details are discussed in
Sect. 8.

Privacy-enhancement The privacy in our system derives
from: (a) blind signature makes it impossible to link voter’s
identity with his/her messages on blockchain; (b) all ballots
of the voters are aggregated by the homomorphic prop-
erty of threshold Paillier encryption; (c) voter uses different
accounts in different phases; (d) some additional anony-
mous communication tools can be utilized to defend IP-trace
attacks.

Universal verifiability and end-to-end verifiability The
property universal verifiabilitymeans any observer can deter-
mine whether the election is held faithfully. Chaintegrity
abstracts an external role, called the auditing group, to per-
form the auditing process. As described in Sect. 5.6, the
auditing group can verify the completeness of the election
executed via Chaintegrity.

Rather, the end-to-end verifiability requires the system
to allow the voters to verify that he/she casts as intended,
the vote is recorded as cast and counted as recorded. The
inherent feature of blockchain makes sure that the vote is
recorded as cast and counted as recorded. The voters can use
the block index and the transaction index to verify this. The
cast-as-intended sub-property is guaranteed by integrating

code-voting technique in our system. In Sect. 6.3, we have
discussed this procedure.

Vote-and-go In Chaintegrity, the voters have no further
operations after they ensure that their ballots are recorded on
blockchain. This feature matches the requirement of vote-
and-go.

Unreusability Repeated ballot/signature pair can be intu-
itively detected on blockchain and will only be counted
once. To cast more than one accepted ballot, voter has to
send two identical ballot/signature pair. In registration pro-
cess, he/she can only get one official signature with his/her
identity. Accordingly, he/she need to forge another valid bal-
lot/signature pair, which contradicts to the unforgeability
property of the blind signature scheme.

Affordability Chaintegrity does not utilize any cryptocur-
rency incentives. Election holders need not to pay for the
rewards. By applying consortium blockchain, the transaction
fees are as well largely reduced or eliminated.

Fairness Ballots are tallied and opened after the termina-
tion of Ballot Casting phase, and they are encrypted under
the public key of threshold Paillier encryption system. To
decrypt the partial result in advance, there must exists at least
t + 1 corrupted election holders. However, this violates our
assumptions.

7.2 Typical attacks and defence

We list four typical attacks that are common in the e-voting
systems and the distributed setting. At the same time, we
discuss our defence strategies. This is not a exhaustive list,
but reflects our design rationale.

Replay attack As a form of attack over network commu-
nication channel, replay attack is conducted by either the
originator or adversaries to abuse system source [20]. Replay
attack can be regarded as a specialMan-in-the-Middle attack.
In the context of election system, malicious voter and adver-
saries attempt to vote more than once by replaying the
valid ballot/signature pair. However, by adopting double vot-
ing detection strategy (a.k.a. unreusability), our system can
always defend this type of attack.

(Distributed) Denial-of-Service (DoS/DDoS) attack DoS/D-
DoS attack is commonly conducted in centralized election
systems. By disrupting centralized voting service or tally-
ing process, the election result may be inaccurate to reflect
popular preference. Even worse, in some decentralized elec-
tions as [35,41], DoS/DDoS attacks, whose target is (even

123

336 S. Zhang et al.

one) legitimate voter, can cause fatal errors and processes-
crashing in final tallying. Our system will not suffer from
outage, unless all blockchain validation nodes are corrupted.
As for the voter-targetedDoS attack,we discuss the defensive
policy as an extension in Sect. 6.3.

Man-in-the-middle attack In public communication envi-
ronment,man-in-the-middle attack describes the process that
attacker relays and alters the communication between two
parities (voter and system, in the context of e-voting). In the
model of blockchain voting, every votingmessage is checked
or signed before written into a block. If attackers forge on
signatures or flip the transmitted message, it will not pass
the validation of smart contract. On the perspective of voter,
he/she will can never know the reason that his/her message
is not written into blockchain is caused by network failure or
interpolation. But he/she can simply resend his/her message
after timeout, unless it appears on blockchain.

Sybil attack Sybil attack [25] is a well-known attack in
peer-to-peer network or decentralized architecture, where
attackers disrupt the network by creating a large number of
pseudonymous (accounts) to gain a overwhelm advantage
over normal users. Sybil attack could influence blockchain
network itself and distributed applications. Permissioned
blockchain copes this problemwith an authenticationmecha-
nismwhen new validation node joining in, while permission-
less blockchain suggests different Sybil-resistant approaches
such as mining and cryptographic sortition. Above the
blockchain platform, our distributed election system also
maintains strong resistance to Sybil attack. As guaranteed by
voter authentication, only legitimate voters can get the right
to cast their vote. As protected by unforgeability of blind sig-
nature, only authenticated ballots will be tallied. Hence Sybil
attackers cannot use pseudonymous to ruin our election sys-
tem.

7.3 Robustness analysis

To prove the robustness of the system, we first should prove
the resilience of Chaintegrity to defend the typical attacks,
which is presented in Sect. 7.2. Then we need to prove the
partial failure tolerance and adversarial input resistance of
Chaintegrity. Chaintegrity is built upon blockchain which
eliminates the centralized sever. As long as most validation
nodes execute truthfully, Chaintegrity will remain normal-
ity. With regards the resistance to the adversarial input, the
requests which are not matched with the preset rules in the
smart contract will simply be discarded. Conclusively, we
have to prove the ability of the system to run the election
when confronting a minority of dishonest election author-
ities. Dishonesty of the election holders may lead to two
circumstances—the rejection to decrypt the tallying result

Table 2 Time consumption of cryptosystems

Cryptosystems Algorithms Notation Time (ms)

Paillier Encryption TPa_Enc 0.001299

Decryption TPa_Dec 0.000384

Addition TPa_Add 1.49557e−05

Schnorr Signature TSch_Sig 0.054979

Verification TSch_Vfy 0.109590

Okamoto–Schnorr Blind TBlind 1.23500e−06

Signature TBlind_Sign 1.23500e−06

Unblind TUnblind 0.017206

Verification TBlind_Verf 0.107307

and the deception of providing wrong information to the vot-
ers. The first circumstance will not effect Chaintegrity, due to
the threshold property andour assumptions.As for the second
one, the code-voting component in Chaintegrity can provide
an effective protection. Hence we proved the robustness of
the system.

8 Performance evaluation

In this section, we discuss the efficiency of the proposed
voting scheme. The performance analysis is based on the
computational cost of three main processing steps, which
are Voter Preparation and Registration, Ballot Casting and
Ballot Tallying and Opening.

To clearly describe the computational efficiency, we
implemented the experiment using the gmpy2 python mod-
ule and deployed our system on a computer equipped with
an Intel Core i7-7700 processor with a speed of 3.6GHz and
a memory of 8GB. In our scheme, we used the 1024-bit
keys for the Paillier cryptosystem and the blind signature.
All the computational time of our employed cryptographic
processes was enumerated in Table 2. Then we analyze the
efficiency performance in each phase from the perspective of
voter experience and system concurrency.

8.1 Voter preparation and registration performance

From the perspective of voter, in one round of preparation and
registration, voter needs to generate a ciphertext of his/her
preferred candidate, blind the ballot and make a signature to
prove his/her identity. Thus, we use Tvoter to denote the time
spent of a voter during this step. This variable is presented as
the equation bellow. We substitute the concrete time bench-
mark from Table 2 into the equation, and get a proximate
platform-dependent time spent.

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 337

Tprep = TPa_Enc + TBlind + TSch_Sig

= 0.056279235 (ms).
(2)

In this phase, we assumed that there are n votes. Treg
denotes the time consumption of smart contract and election
holder, while the time consumption of the search algorithm
is not included. Then Treg can be presented as the following
equation.

Treg = (TSch_Vfy + TBlind_Sign) × n

= 0.109591235 × n (ms).
(3)

8.2 Ballot casting performance

In this phase, only voters are involved. TPoK denotes the time
spent on generation of the membership Proof of Knowledge.
Then we use the Tballot to denote the ballot time that a voter
spent, which can be presented as:

Tballot = TUnblind + TPoK

= 0.017206 + TPoK (ms).
(4)

8.3 Ballot tallying and opening performance

System efficiency can be measured in two dimensions: the
voter experience and the concurrency of smart contract. In the
blockchain-based systems, voter needs to wait the generation
of six blocks to confirm that his/her ballot is not be tampered.
Then, the Ttally is used to denote the total time spent tallying
and opening the result, which is presented as:

Ttally = TBlind_Verf × n + TPa_Add × n + TPa_Dec

= 0.1073219557 × n + 0.000384 (ms).
(5)

8.4 Overall performance

Suppose there are n voters involved, and s denotes the length
of one voter’s communication overhead in our system. Then
we can compute the communication cost of one ballot as
O(s × n). The number of voters is much larger than the
number of one voter’s communication cost, which is n
 s.
Therefore the communication cost of our system can be
regarded as linearwith the number of voters. Theupper bound
of the proposed voting system’s communication complexity
can be expressed as O(n), which leads to a cost-effective sys-
tem. The efficiency analysis shows that the proposed system
is suitable for the large-scale voting situations.

9 Conclusion and future work

In this paper, we have proposed a new blockchain enabled
voting system, Chaintegrity, for large-scale elections that
fulfills cost-effectiveness, verifiability, robustness and other
properties. The system is deployed as smart contracts execut-
ing on the blockchain. Some cryptographic primitives, such
as blind signature and threshold Paillier encryption, are tai-
lored and adapted in Chaintegrity to backup such properties.
Further, we introduced some extended components to make
Chaintegrity more efficient and robust. A hybrid component
that combines the counting Bloom filter and the Merkle hash
tree is also proposed to achieve fast authentication.

Despite this advance, further investigation into the other
electoral systems via blockchain is a direction for future
work. Chaintegrity, with other existing blockchain enabled
voting systems, focuses on plurality electoral systems. Other
types of electoral systems, like quadratic voting [49] and
statement voting [70], are becoming hot topics in this field.
Hence it could be an intriguing open problem to discuss the
implementation of these systems via blockchain.

Acknowledgements We thank the anonymous reviewers for their
invaluable comments and suggestions. This work was supported in part
by the 13th Five-Year Plan of National Cryptography Development
Fund for Cryptographic Theory of China under Grant MMJJ20170204,
in part by the Fundamental Research Funds for the Central Universities
under Grant ZYGX2016J091, the Guangxi Colleges and Universities
Key Laboratory of Cloud Computing and Complex Systems, and in part
by the Natural Science Foundation of China under Grants U1401257,
61472064, and 61602096, Sichuan Science and Technology Project
under Grant 2018KZ007.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Appendix A: Digital signature

Appendix A.1: Schnorr signature

In this signature scheme [54], p and q are primes, which
q|p − 1, q � 2140, p � 2512. An integer t = O(|p|) (e.g.,
t ≥ 20), and let g be a generator of a multiplicative subgroup
of Z p with order q. m is the message to be signed. Let s
denotes the Signer’s private key, which is a random number
chosen by the Signer in {1, 2, . . . , q}. And v denotes the
Signer’s corresponding public key, which is the number v =
g−s mod p.

Common input: G, Zq , public key (p, q, g, t, v),H :
G × Zq → Z2t .

123

338 S. Zhang et al.

Signer’s private input: s ∈ Zq .
Sign Phase. The Signer:

- Chooses a random number k ∈R Z∗
q .

- Computes r = gk , e = H (r ,m) and y = se +
k mod q.

Then the (e, y) is the Signer’s signature of message m.
Verification Phase. The Verifier:

- Computes x = gyve mod q

- Checks if e
?= H (x,m).

Appendix A.2: Okamoto–Schnorr blind signature

In practice, we use the Okamoto–Schnorr blind signature
[46]. In this blind signature scheme, all the parameters are
the same as the Schnorr Signature above. And the details of
this blind signature scheme are as follow:

Common input: G, Zq , public key (p, q, g, t, v),H :
G × Zq → Z2t .
Signer’s private input: s ∈ Zq .
User’s private input: m.
Commit Phase. The Signer:

- Picks a random number r ∈ Zq .
- Computes x = gr mod p.
- Sends x to the User.

Blind Phase. The User:

- Picks two random numbers d, u ∈ Zq .
- Computes x∗ = guv−d x mod p, e∗ = H (x∗,m),
e = e∗ + d mod q.

- Sends e to the Signer.

Sign Phase. The Signer:

- Computes y = r + es mod q.
- Sends y to the User.

Unblind Phase. The User:

- Computes y∗ = y + u mod q.

Then the (x∗, e∗, y∗) is the Signer’s signature of mes-
sage m.

Verification Phase. The Verifier:

- Computes e∗′ = H (x∗,m).

- Checks if x∗ = gy
∗
ve

∗′
and e∗′ = e∗.

Remark The Okamoto–Schnorr blind signature requires
one more round, i.e., the commit phase, than the original
blind signature. In the adaptation to our scheme, all election
holders generate such a commitment to the legitimate voters
and allocate to them in advance. In the authentication pro-
cess, the voter triggers the sortition smart contract to choose
one specific election holder. Then the voter selects the cor-
responding commitment to blind the ballot and then sends
the blinded message to the smart contract. Other steps will
follow the protocol described in the main part of our paper.

Appendix B: Homomorphic encryption

Appendix B.1: Paillier encryption

In our system, we use the Paillier encryption scheme [48]
to achieve homomorphic encryption, and the details of this
scheme are as follow.

In this encryption scheme, choose two prime numbers p
and q, which gcd(p, q −1) = gcd(p−1, q) = 1. Then λ =
lcm(p−1, q−1) and N = p ·q. Define L(b) = b−1

N , where
b ∈ Z∗

N2 . Choose a random element g, where g ∈ Z∗
N2 .

Compute μ = (L(gλ mod N 2))−1 mod N . The public key
is (N , g) and the secret key is (λ, μ, p, q). Then let � ∈ ZN

be the plaintext. To encrypt the plaintext, select a random
number r ∈ Z∗

N and compute the ciphertext C = g�r N mod
N 2. To decrypt the ciphertext, compute � = (L(Cλ mod
N 2) · μ) mod N .
Additive Homomorphic Property

For anyonewhohas the public key and the different cipher-
texts c1 = g�1r N1 mod N 2 and c2 = g�2r N2 mod N 2 of
plaintexts �1 and �2 from different users, the encryption of
�1+�2 is easy to generate by c1 ·c2 = g�1+�2r N1 r N2 mod N 2.

For ρ users, the encryption ofΣρ
i=1�i can be generated by

Π
ρ
i=1ci = Π

ρ
i=1g

�i r Ni mod N 2. To decrypt the ciphertext,
compute

Σ
ρ
i=1�i = (L((Π

ρ
i=1ci)

λ mod N 2) · μ) mod N .

Appendix B.2: Threshold version of Paillier
encryption

Suppose there are n parties sharing the secret together. And
if there are fewer than t +1 valid partial decryption shares of

123

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 339

the parties, the ciphertext cannot be decrypted. The parties
execute the distributedRSAmodulus generation protocol and
the key generation algorithm in [12,45].

After the algorithm is successfully executed, the public
key (N , g) is published with an agreed global parame-
ter θ which is used to combine partial ciphertexts. Each
party Pi gets a share of secret key which is the polynomial
f (i). Also, Pi generates and distributes a verification key
V Ki = vΔ f (i) mod N 2 where v ∈R QN2 . The verification
key is used to proof the correctness of partial decryption
(see “Appendix B.3”).

Let � be the plaintext, and the ciphertext is generated by
C = g�r N mod N 2. Then, the following steps can be per-
formed by any t + 1 parties to decrypt the message:

1. DecryptionEach party Pi generates and shares the partial
decryption Ci = C2Δ f (i) mod N 2 where Δ = n!.

2. Combination Define L(u) = u−1
N , λS

x,i = Πi ′∈S\{i} x−i ′
i−i ′

and μi = Δ × λS
0,i ∈ Z. And the message can be recov-

ered through

� = L(Πi∈SC2μi
i mod N 2) × 1

−4Δ2θ
mod N .

Appendix B.3: Zero-knowledge proofs

Non-interactive zero-knowledge proof of membership [8]
In this section, an efficient non-interactive proof of knowl-

edge scheme is described as follows. If Alice has a ciphertext
c of the message m which is in a set of n plaintext. She can
use this scheme to prove that the ciphertext c is from one of
n plaintext in a set.

Let N be the RSA modulus of Paillier encryption system.
Define γ = {�1, �2, . . . , �ρ} as the set of ρ encoded candi-
dates. Let P denote the set of n messages and C denote the
ciphertext. And g is the public key in the Paillier encryption
scheme. Furthermore, we define that a ÷ b equals the quo-
tient in the division of a by b. In this proof, the Prover and
the Verifier are involved.

Common input: N , γ = {�1, �2, . . . , �ρ}, P , C , g,
H ′ : Z∗

N2 → {0, 1}k(k ≥ 80).
Prover’s private input: r ∈ Z∗

N .
Proof Phase. The Prover:

- Choose a random number κ ∈ Z∗
N .

- Choose ρ − 1 random numbers {e j } j �=i ∈ ZN , and
ρ − 1 random numbers {v j } j �=i ∈ Z∗

N .
- Compute ui = κN mod N 2.
- Compute {u j = vN

j (g� j /C)e j mod N 2} j �=i .

- Calculate the hash value e = H ′(Σ j u j).
- Let ei = e − ∑

j �=i e j mod N

- Calculate vi = κ · rei · g(e−Σ j �=i e j)÷N mod N
- Send {v j , e j , u j } j∈P to the Verifier.

Verification Phase. The Verifier:

- Calculate the hash value e = H ′(Σ j u j).
- Check if e = H ′(Σ j u j) and vN

j =
u j (C/g� j)e j mod N 2 for each j ∈ P .

Non-interactive zero-knowledge proof of correctness of
partial decryption [23]

In this section, a non-interactive zero-knowledge proof
of correctness of partial decryption scheme is described as
follows. If Alice decrypts the ciphertext c to get the partial
decryption message ci . She can use this scheme to prove that
the partial decryption message ci is decrypted correctly with
her partial private key.

The party Pi takes f (i), v, V Ki = vΔ f (i), C ∈ ZN2 as
input, and the partial decryption Ci = C2Δ f (i) mod N 2 is
generated. Then the zero-knowledge proof protocol is exe-
cuted to prove the equality that f (i) = logC4Δ(Ci)

2 =
logvΔ V Ki . The steps of this non-interactive proof are as
follows:

Common input: v, V Ki , C , Ci , H ′′ : {0, 1}∗ →
{0, 1}k(k ≥ 80).
Party’s private input: f (i).
The Parties:

- Choose a random number r ∈R [0, 22kT], where
T is the upper bound of f (i) and k is the security
parameter which holds k ≥ 80.

- Generate R1 = vΔr mod N 2 and R2 = C4Δr mod
N 2.

- Send R1 and R2 to the verifier.
- Choose e′ = H ′′(C,Ci , v, V Ki , R1, R2) and send
e′ to Pi .

- Generate z = r + e′ f (i) in Z and send z to the
verifier.

The Verifier:

- Checks if vΔz ≡ R1(V Ki)
e′
mod N 2 and C4Δz ≡

R2C2e′
i mod N 2.

123

340 S. Zhang et al.

References

1. Adida,B.:Helios:web-basedopen-audit voting. In:USENIXSecu-
rity Symposium, vol. 17, pp. 335–348 (2008)

2. Agora: Bringing voting systems into the digital age. https://www.
agora.vote/. Accessed 30 March 2019

3. Alvarez, R.M., Levin, I., Li, Y.: Fraud, convenience, and e-voting:
how voting experience shapes opinions about voting technology. J.
Inf. Technol. Polit. 15(2), 94–105 (2018)

4. Alves, J., Pinto, A.: On the use of the blockchain technology in
electronic voting systems. In: International Symposium on Ambi-
ent Intelligence, pp. 323–330. Springer, Berlin (2018)

5. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,
K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich,
Y., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys
Conference, p. 30. ACM (2018)

6. Bajak, F.: Apnewsbreak: Georgia election server wiped after suit
filed. https://apnews.com/877ee1015f1c43f1965f63538b035d3f.
Accessed 30 March 2019

7. Bartolucci, S., Bernat, P., Joseph, D.: Sharvot: secret share-based
voting on the blockchain. In: Proceedings of the 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain, pp. 30–34. ACM (2018)

8. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.:
Practical multi-candidate election system. In: Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed
Computing, pp. 274–283. ACM (2001)

9. Benet, J.: IPFS-content addressed, versioned, P2P file system.
arXiv preprint arXiv:1407.3561 (2014)

10. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair pro-
tocols. In: Annual Cryptology Conference, pp. 421–439. Springer,
Berlin (2014)

11. Bistarelli, S., Mantilacci, M., Santancini, P., Santini, F.: An end-
to-end voting-system based on Bitcoin. In: Proceedings of the
Symposium on Applied Computing, pp. 1836–1841. ACM, New
York (2017)

12. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys.
In: Annual International Cryptology Conference, pp. 425–439.
Springer, Berlin (1997)

13. Bonneau, J., Clark, J., Goldfeder, S.: On Bitcoin as a public ran-
domness source. IACR Cryptology ePrint Archive 2015, p. 1015
(2015)

14. Breslow, A.D., Jayasena, N.S.: Morton filters: faster, space-
efficient cuckoo filters via biasing, compression, and decoupled
logical sparsity. Proc. VLDB Endow. 11(9), 1041–1055 (2018)

15. Cachin, C.: Architecture of the hyperledger blockchain fabric.
In: Workshop on Distributed Cryptocurrencies and Consensus
Ledgers, vol. 310 (2016)

16. Chaieb, M., Yousfi, S., Lafourcade, P., Robbana, R.: Verify-your-
vote: a verifiable blockchain-based online voting protocol. In:
European, Mediterranean, and Middle Eastern Conference on
Information Systems, pp. 16–30. Springer, Berlin (2018)

17. Chaum, D.: Blind signatures for untraceable payments. In:
Advances in Cryptology, pp. 199–203. Springer, Berlin (1983)

18. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S.,
Sherman, A., Vora, P.: Scantegrity: end-to-end voter-verifiable
optical-scan voting. IEEE Secur. Priv. 6(3), 40–46 (2008)

19. Chen, C.M., Wang, K.H., Yeh, K.H., Xiang, B., Wu, T.Y.: Attacks
and solutions on a three-party password-based authenticated key
exchange protocol for wireless communications. J. Ambient Intell.
Human. Comput. 10(8), 3133–3142 (2018)

20. Chen, C.M., Xiang, B., Liu, Y., Wang, K.H.: A secure authentica-
tion protocol for internet of vehicles. IEEEAccess 7, 12047–12057
(2019)

21. Chow, S.S., Liu, J.K., Wong, D.S.: Robust receipt-free election
system with ballot secrecy and verifiability. In: NDSS, vol. 8, pp.
81–94 (2008)

22. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba,
A., Miller, A., Saxena, P., Shi, E., Sirer, E.G., et al.: On scaling
decentralized blockchains. In: International Conference on Finan-
cial Cryptography andData Security, pp. 106–125. Springer, Berlin
(2016)

23. Damgård, I., Koprowski, M.: Practical threshold RSA signatures
without a trusted dealer. In: International Conference on the The-
ory and Applications of Cryptographic Techniques, pp. 152–165.
Springer, Berlin (2001)

24. DeMuro, J.: Here are the 10 sectors that blockchain will dis-
rupt forever. https://www.techradar.com/news/here-are-the-10-
sectors-that-blockchain-will-disrupt-forever. Accessed 30 March
2019

25. Douceur, J.R.: The Sybil attack. In: International Workshop on
Peer-to-Peer Systems, pp. 251–260. Springer, Berlin (2002)

26. EOSIO: EOS.IO technical white paper v2. https://github.com/
EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.
Accessed 30 March 2019

27. Ethereum: A next-generation smart contract and decentral-
ized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper. Accessed 30 March 2019

28. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.:
Cuckoo filter: practically better than bloom. In: Proceedings of
the 10th ACM International on Conference on Emerging Network-
ing Experiments and Technologies, pp. 75–88. ACM, New York
(2014)

29. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Trans.
Netw. 8(3), 281–293 (2000)

30. FollowMyVote: The online voting platform of the future. https://
followmyvote.com/. Accessed 30 March 2019

31. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting
scheme for large scale elections. In: International Workshop on the
Theory and Application of Cryptographic Techniques, pp. 244–
251. Springer, Berlin (1992)

32. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone proto-
col: analysis and applications. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pp.
281–310. Springer, Berlin (2015)

33. Gibson, J.P., Krimmer, R., Teague, V., Pomares, J.: A review of
e-voting: the past, present and future. Ann. Telecommun. 71(7–8),
279–286 (2016)

34. Gramoli, V.: From blockchain consensus back to byzantine con-
sensus. In: Future Generation Computer Systems (2017)

35. Hao, F., Ryan, P.Y., Zieliński, P.: Anonymous voting by two-round
public discussion. IET Inf. Secur. 4(2), 62–67 (2010)

36. Heiberg, S., Kubjas, I., Siim, J., Willemson, J.: On trade-offs of
applying block chains for electronic voting bulletin boards. In: E-
Vote-ID 2018, p. 259 (2018)

37. Jiang, Q., Huang, X., Zhang, N., Zhang, K., Ma, X., Ma, J.:
Shake to communicate: secure handshake acceleration-based pair-
ing mechanism for wrist worn devices. IEEE Internet Things J.
6(3), 5618–5630 (2019)

38. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E.,
Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via
sharding. In: 2018 IEEE Symposium on Security and Privacy (SP),
pp. 583–598. IEEE (2018)

39. Kshetri, N., Voas, J.: Blockchain-enabled e-voting. IEEE Softw.
35(4), 95–99 (2018)

40. Ltd., O.: Oraclize documentation. https://docs.oraclize.it/.
Accessed 30 March 2019

41. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for
boardroom voting with maximum voter privacy. In: International

123

https://www.agora.vote/
https://www.agora.vote/
https://apnews.com/877ee1015f1c43f1965f63538b035d3f
http://arxiv.org/abs/1407.3561
https://www.techradar.com/news/here-are-the-10-sectors-that-blockchain-will-disrupt-forever
https://www.techradar.com/news/here-are-the-10-sectors-that-blockchain-will-disrupt-forever
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://followmyvote.com/
https://followmyvote.com/
https://docs.oraclize.it/

Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal… 341

Conference on Financial Cryptography andData Security, pp. 357–
375. Springer, Berlin (2017)

42. Mercuri, R.T.: On auditing audit trails. Commun. ACM 46(1), 17–
20 (2003)

43. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980
IEEE Symposium on Security and Privacy, pp. 122–122. IEEE
(1980)

44. Mitzenmacher, M.: Compressed bloom filters. IEEE/ACM Trans.
Netw. 10(5), 604–612 (2002)

45. Nishide, T., Sakurai, K.: Distributed Paillier cryptosystem without
trusted dealer. In: International Workshop on Information Security
Applications. pp. 44–60. Springer, Berlin (2010)

46. Okamoto, T.: Provably secure and practical identification schemes
and corresponding signature schemes. In: Annual International
Cryptology Conference, pp. 31–53. Springer, Berlin (1992)

47. Okamoto, T.: Receipt-free electronic voting schemes for large scale
elections. In: International Workshop on Security Protocols, pp.
25–35. Springer, Berlin (1997)

48. Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. In: International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 223–238. Springer,
Berlin (1999)

49. Park, S., Rivest, R.L.: Towards secure quadratic voting. Public
Choice 172(1–2), 151–175 (2017)

50. Pawlak, M., Guziur, J., Poniszewska-Marańda, A.: Voting process
with blockchain technology: auditable blockchain voting system.
In: International Conference on Intelligent Networking and Col-
laborative Systems, pp. 233–244. Springer, Berlin (2018)

51. Qin, Z., Sun, J., Wahaballa, A., Zheng, W., Xiong, H., Qin, Z.:
A secure and privacy-preserving mobile wallet with outsourced
verification in cloud computing. Comput. Stand. Interfaces 54, 55–
60 (2017)

52. RANDAO: RANDAO: a DAO working as RNG of Ethereum.
https://github.com/randao/randao/blob/master/README.md.
Accessed 30 March 2019

53. Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à
voter: a voter-verifiable voting system. IEEE Trans. Inf. Forensics
Secur. 4(4), 662–673 (2009)

54. Schnorr, C.P.: Efficient signature generation by smart cards. J.
Cryptol. 4(3), 161–174 (1991)

55. Scott, D.: North Carolina elections board orders new house elec-
tion after ballot tampering scandal. https://www.vox.com/policy-
and-politics/2019/2/21/18231981/north-carolina-election-fraud-
new-nc-9-election. Accessed 30 March 2019

56. Takabatake, Y., Kotani, D., Okabe, Y.: An anonymous distributed
electronic voting system using Zerocoin (2016)

57. Tian, H., Fu, L., He, J.: A simpler Bitcoin voting protocol. In:
International Conference on Information Security and Cryptology,
pp. 81–98. Springer, Berlin (2017)

58. TIVI: TIVI powered by smartmatic and cybernetica—tivi.io.
https://tivi.io/. Accessed 30 March 2019

59. Wang, K.H., Mondal, S.K., Chan, K., Xie, X.: A review of contem-
porary e-voting: requirements, technology, systems and usability.
Data Sci. Pattern Recogn. 1(1), 31–47 (2017)

60. Xiong, H.: Cost-effective scalable and anonymous certificateless
remote authentication protocol. IEEE Trans. Inf. Forensics Secur.
9(12), 2327–2339 (2014)

61. Xiong, H., Qin, Z.: Revocable and scalable certificateless remote
authentication protocol with anonymity for wireless body area net-
works. IEEE Trans. Inf. Forensics Secur. 10(7), 1442–1455 (2015)

62. Xiong, H., Mei, Q., Zhao, Y.: Efficient and provably secure cer-
tificateless parallel key-insulated signature without pairing for
IIoT environments. IEEE Syst. J. (2018). https://doi.org/10.1109/
JSYST.2018.2890126

63. Xiong, H., Zhang, H., Sun, J.: Attribute-based privacy-preserving
data sharing for dynamic groups in cloud computing. IEEE Syst.
J. (2018). https://doi.org/10.1109/JSYST.2018.2865221

64. Xiong, H., Zhao, Y., Peng, L., Zhang, H., Yeh, K.H.: Partially
policy-hidden attribute-based broadcast encryption with secure
delegation in edge computing. Future Gener. Comput. Syst. 97,
453–461 (2019)

65. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain Technology
Overview. Technical report, National Institute of Standards and
Technology (2018)

66. Yang, X., Yi, X., Nepal, S., Han, F.: Decentralized voting: a self-
tallying voting system using a smart contract on the Ethereum
blockchain. In: International Conference onWeb Information Sys-
tems Engineering, pp. 18–35. Springer, Berlin (2018)

67. Yu, B., Liu, J.K., Sakzad, A., Nepal, S., Steinfeld, R., Rimba, P.,
Au, M.H.: Platform-independent secure blockchain-based voting
system. In: International Conference on Information Security, pp.
369–386. Springer, Berlin (2018)

68. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora,
P.L.: Remotegrity: design and use of an end-to-end verifiable
remote voting system. In: International Conference on Applied
Cryptography andNetwork Security, pp. 441–457. Springer, Berlin
(2013)

69. Zhang, H., Deng, E., Zhu, H., Cao, Z.: Smart contract for secure
billing in ride-hailing service via blockchain. Peer-to-Peer Netw.
Appl. 12(5), 1346–1357 (2019)

70. Zhang, B., Zhou, H.S.: Statement voting. In: Financial Cryptogra-
phy and Data Security 2019 (2018)

71. Zhao, Z., Chan, T.H.H.: How to vote privately using Bitcoin.
In: International Conference on Information and Communications
Security, pp. 82–96. Springer, Berlin (2015)

72. Zheng, H., Xue, M., Lu, H., Hao, S., Zhu, H., Liang, X., Ross,
K.W.: Smoke Screener or Straight Shooter: Detecting Elite Sybil
Attacks in User-Review Social Networks, NDSS (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://github.com/randao/randao/blob/master/README.md
https://www.vox.com/policy-and-politics/2019/2/21/18231981/north-carolina-election-fraud-new-nc-9-election
https://www.vox.com/policy-and-politics/2019/2/21/18231981/north-carolina-election-fraud-new-nc-9-election
https://www.vox.com/policy-and-politics/2019/2/21/18231981/north-carolina-election-fraud-new-nc-9-election
https://tivi.io/
https://doi.org/10.1109/JSYST.2018.2890126
https://doi.org/10.1109/JSYST.2018.2890126
https://doi.org/10.1109/JSYST.2018.2865221

	Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universal verifiability
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Roadmap

	2 Problem statement
	2.1 The large-scale electronic voting problem
	2.2 Evaluation of prior works
	2.3 On the impossibility of receipt-free blockchain voting

	3 Building blocks
	3.1 Blockchain and smart contract
	3.2 Digital signature and blind signature
	3.3 Homomorphic encryption and threshold Paillier encryption
	3.4 The counting Bloom filter and the Merkle hash tree
	3.5 Candidate encoding and result decoding

	4 System model and overview
	4.1 Involved entities
	4.2 System overview
	4.3 Trust and threat models
	4.4 Design goals

	5 Basic e-voting system
	5.1 Prologue of an election
	5.2 System setup
	5.3 Voter preparation and registration
	5.4 Ballot casting
	5.5 Ballot tallying and opening
	5.6 Election auditing

	6 Extended components
	6.1 Components for fast authentication
	6.2 Components for cryptographic sortition
	6.3 Toward end-to-end integrity and robustness

	7 Security analysis
	7.1 Analysis of evaluation criteria
	7.2 Typical attacks and defence
	7.3 Robustness analysis

	8 Performance evaluation
	8.1 Voter preparation and registration performance
	8.2 Ballot casting performance
	8.3 Ballot tallying and opening performance
	8.4 Overall performance

	9 Conclusion and future work
	Acknowledgements
	Appendix A: Digital signature
	Appendix A.1: Schnorr signature
	Appendix A.2: Okamoto–Schnorr blind signature

	Appendix B: Homomorphic encryption
	Appendix B.1: Paillier encryption
	Appendix B.2: Threshold version of Paillier encryption
	Appendix B.3: Zero-knowledge proofs

	References

