International Journal of Information Security (2019) 18:761-785
https://doi.org/10.1007/510207-019-00434-1

REGULAR CONTRIBUTION l‘)

Check for
updates

DDoS attack detection with feature engineering and machine learning:
the framework and performance evaluation

Muhammad Aamir' - Syed Mustafa Ali Zaidi’

Published online: 11 April 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

This paper applies an organized flow of feature engineering and machine learning to detect distributed denial-of-service
(DDoS) attacks. Feature engineering has a focus to obtain the datasets of different dimensions with significant features, using
feature selection methods of backward elimination, chi2, and information gain scores. Different supervised machine learning
models are applied on the feature-engineered datasets to demonstrate the adaptability of datasets for machine learning under
optimal tuning of parameters within given sets of values. The results show that substantial feature reduction is possible to make
DDoS detection faster and optimized with minimal performance hit. The paper proposes a strategic-level framework which
incorporates the necessary elements of feature engineering and machine learning with a defined flow of experimentation.
The models are also validated with cross-validation and evaluated for area-under-curve analyses. It provides comprehensive
solutions which can be trusted to avoid the overfitting and collinearity problems of data while detecting DDoS attacks. In
the case study of DDoS datasets, K-nearest neighbors algorithm overall exhibits the best performance followed by support
vector machine, whereas low-dimensional datasets of discrete feature types perform better under the Random Forest model
as compared to high dimensions with numerical features. The accuracy scores of dataset with the lowest number of features
remain competitive with other datasets under all machine learning models, leading to a substantially reduced processing
overhead. The experiments show that approximately 68% reduction in the feature space is possible with an impact of only
about 0.03% on accuracy.

Keywords Cyber security - DDoS attacks - denial-of-service - Feature engineering - Feature selection - Machine learning -
Neural network

1 Introduction

Denial-of-service (DoS) is a cyber security problem when
a targeted attack at a resource results in its unavailability or
service degradation to the legitimate users. The resource may
be a single machine (such as a server), a group of machines
(such as a pool of dedicated servers), or even a network. If
an attacker can manage to put the accessibility of the target
resource into a state of denial for legitimate users, the DoS
attack is successful. This attack can be carried out in a num-
ber of ways and at different layers of the OSI and TCP/IP

I Muhammad Aamir
aamir.nbpit@gmail.com

Syed Mustafa Ali Zaidi

mustafainisb@gmail.com

1" Shaheed Zulfikar Ali Bhutto Institute of Science &
Technology (SZABIST), Karachi, Pakistan

models. Each kind of DoS attack has its specific technique
of execution which is driven by a number of factors such
as the software tool used to generate attack traffic, target
protocol, communication layer, the nature of victim (server,
network, endpoint), etc. The ultimate objective of the attacker
remains to put the target resource in a state of denial for the
legitimate users. Although different protection mechanisms
can be applied for critical resources to prevent such kind of
attacks, the vulnerabilities that exist in the systems are reali-
ties of computing world which are exploited by the hackers.
Table 1 highlights some types of DoS attacks mentioned
in [1] driven by different techniques, targeted for various
resources and exploiting their vulnerabilities.

The attackers often find themselves with shortage of com-
puting power needed to launch a DoS attack, specially when
massive traffic is needed to generate in a short span of time.
This need of high processing power by hackers generates a
demand of another relevant attack called distributed denial-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-019-00434-1&domain=pdf

762

M. Aamir, S. M. A. Zaidi

Table 1 Different types of DoS attacks [1]

Types of DoS attack Usual targets

Vulnerabilities exploited

Data flooding
servers

Attack on network devices
switches and firewalls

Protocol attack Protocol services

Application attack Application services

Operating system attack OS services

Network bandwidth or capacity of networks or

Network devices / hardware such as routers,

Limited network bandwidth/Limited server capacity
of processing requests

Vulnerability / bug in device software

Protocol limitations and weaknesses such as ARP
poisoning, IP spoofing and TCP SYN flooding

Application limitations and weaknesses

Vulnerability/bug in OS software

of-service (DDoS). It is a special phenomenon to carry out
DoS attack with a large amount of processing power. Inter-
estingly, the hackers do not consume their own resources to
produce this power and launch DDoS attacks. Instead, they
maliciously take control of other machines (usually owned
by the people who are unaware of this shift of control) and
use those resources to accumulate processing power and do
the damage. The owners of such taken-over resources are the
compromised victims who unknowingly contribute in attack-
ing the ultimate victim. Such machines are compromised by
exploiting vulnerabilities or bugs in their systems.

The DDoS attack is setup by staging a network of con-
nected machines. The machines are called ‘Zombies’ which
are the part of this network known as ‘Botnet.” The mecha-
nism of controlling the network is also established in which
Command & Control (C&C) is assigned to the dedicated
high-capacity resources which directly issue the instructions
on behalf of the attacker. The next layer is of ‘Handlers’
which are selected by C&C functionality to feed the com-
mands and take responses. Under each handler, there are a
number of zombies which are used to directly send attack
traffic to the target (victim). They also convey the informa-
tion about the victim to corresponding handlers, which relay
it back to the attacker via C&C function [2]. Hence, client—
server technology is employed to establish communications
in the botnet. Figure 1 shows a typical DDoS architecture.

Data flooding is the most common type of DDoS attack.
According to the statistics from akamai.com for Quarter-4
of year 2017, UDP fragmentation is the most frequent DDoS
attack vector [3]. This is a flooding technique where UDP
segments are bombarded with a frequency high enough to
exhaust the victim. Also, infrastructure layer DDoS attacks
are more in number than attacks belonging to the application
layer. All layers of the OSI and TCP/IP communication mod-
els are vulnerable to DDoS attacks [4]. Although OSI model
of seven layers is an old and traditional explanation of com-
munication layers, it is still used to convey the environmental
designs. On the other hand, TCP/IP is a transformed model
in which some OSI layers are combined to make it a compre-
hensive stack of five layers. Each layer has its own parameters

@ Springer

\ ATTACKER
\ | (with Command & Control
functionality)

Fig.1 Architecture of DDoS attack

to be considered for DDoS attack. A communication system
can be exploited by attackers with DDoS at any of the weakest
layer if not protected accordingly. Traditional DDoS attacks
are more focused toward the exploitation of physical, data
link, network and transport layers of OSI model. However,
the recent trends of DDoS attacks have shown more attempts
to exploit the application layer of OSI and TCP/IP models.
Techniques of DDoS attack detection have many
approaches including the machine learning. Machine learn-
ing is a promising approach of predicting and simulating
human behavior with computational intelligence, and it
has been successfully applied to widespread real-world
problems. For machine learning-driven detection of DDoS
attacks, the intrusion detection datasets available at public
repositories covering DDoS attacks are widely considered to
be evaluated for creating the machine learning models. In this
paper, feature engineering is practically studied on a specific
dataset having a mix of normal traffic and DDoS attacks. Fea-
ture engineering encompasses the necessary elements driven
by data science studies followed by the machine learning
applications for detection of attacks. The complete analysis
is mapped on a proposed strategic-level framework which

DDoS attack detection with feature engineering and machine learning: the framework and... 763

Intrusion Detection / Prevention

With DDoS detection / prevention Without DDoS detection / prevention

With machine learning Without machine learning

With feature engineering Without feature engineering

Fig.2 Threefold categorization of reviewed work

leads to a comprehensive approach for avoiding data related
inbuilt problems and substantially reducing the processing
overhead. The major contributions of this paper include
(1) a proposed strategic-level framework encompassing the
feature engineering and machine learning steps in a com-
prehensive manner to detect DDoS attacks, (2) designing the
framework to include optimization and validation of machine
learning models, and (3) detecting more advanced levels of
DDoS attacks, specially the application layer attacks, through
the proposed framework.

The remainder of this paper is organized as follows: Sect. 2
provides literature review and its analysis, Sect. 3 men-
tions the proposed framework along with research approach,
Sect. 4 discusses feature engineering, and Sect. 5 provides
detailed description of the experimental analysis and per-
formance evaluation. Finally, concluding remarks and future
work discussion are provided in Sect. 6.

2 Related work and analysis

The related work in the field of DDoS attack detection covers
arange of techniques which also include machine learning. In
this section, the related work is mentioned with more empha-
sis on highlighting the techniques which consider machine
learning approaches to detect DDoS attacks. In Fig. 2, a
threefold categorization scheme of the reviewed work is
mentioned. It can be seen that we have a larger domain of
intrusion detection/prevention systems in the space of cyber
defense. Then we choose the detection/prevention systems
covering DDoS attacks. The analyzed work mostly contains
the approaches equipped with machine learning, where more
emphasis is made on the techniques also covering the feature
engineering elements (underlined in Fig. 2).

For machine learning-driven approaches, the intrusion
detection datasets available at public repositories have been
the key element of related research where one or more

datasets are analyzed against the proposed methods and clas-
sification models for detection accuracy and other metrics.
In Table 2, some common benchmark datasets are mentioned
with overview.

2.1 Literature review

Gao et al. [13] provide a protocol-independent approach
to detect DDoS attacks driven by the reflection approach.
Five features are determined which can be used for machine
learning-based detection of DRDoS (distributed reflection
denial-of-service) attack in protocol-independent manner.
The features include number of packets (in a time unit without
TCP or UDP header), packet size sent to the target, total num-
ber of packets sent to the target, difference of packet numbers
sent from and to the target in unit time, and maximum number
of packets sent in unit time. Naive Bayes machine learning
method with feature selection is used in [14]. Detection of
DDoS attacks is presented with machine learning approach
using naive Bayes-driven classification where CAIDA’07
dataset is used with eight features in consideration. The step
by step statistical formulae of naive Bayes method are applied
to calculate the probabilities of attack and make detections. In
[15], a framework of critical feature identification for botnet
traffic is proposed with the name of classification of network
information flow analysis (CONIFA). The traffic is generated
and analyzed with a botnet toolkit called Zeus. Initially, nine
features are shortlisted for traffic analysis using correlation-
based feature selection (CFS) algorithm.

For a comparison with the common methods of fea-
ture selection based on statistical significance, a proposed
method is presented in [16] which combines the DoS fea-
tures with Consistency-based Subset Evaluation (CSE) to
select an improved subset of features from the given DoS
dataset. The CSE method measures inconsistency among
feature values and provides the inconsistency ratio for pat-
terns of feature subsets. In [17], 16 features are considered to
be the most decisive from CAIDA’07 dataset. An ensemble
method of feature selection is proposed where scores of sta-
tistical significance including information gain, chi-square,
gain ratio, SVM, correlation ranking, reliefF, and symmet-
rical uncertainty ranking filter are considered in a way that
the average of individual scores are taken as threshold for
each feature to allow or stop entering the shortlisted fea-
ture set. In the work of Khan et al. [18], the use of entropy
along with granular computing technique for feature selec-
tion in DoS attack identification is presented. For each of the
seven features considered from NSL-KDD’09 dataset with
fifty instances in total, entropy is calculated and then a weight
value is assigned to each feature considering the anomaly
count.

@ Springer

764

M. Aamir, S. M. A. Zaidi

Table 2 Intrusion detection

Dataset
datasets

Overview

KDD’99 Cup

CAIDA’07

CAIDA’08

NSL-KDD’09

There are 41 features of samples that represent both legitimate and attack traffic. The
attacks are categorized into four classes, i.e., denial-of-service (DoS), probing,
remote-to-local (R2L) intrusions, and user-to-remote (U2R) intrusions [5]

This dataset represents anonymized traces of one-hour DDoS attack traffic recorded
on August 04, 2007. The one-hour traffic is split in 5-minute files. The attack
mainly contains flooding traffic of SYN, ICMP, and HTTP. This dataset is more
skewed toward DDoS attack as most of the legitimate content was removed after
capturing the traffic [6]

It represents the legitimate and attack traces monitored at Equinix (datacenters of
Chicago and San Jose). The traces at Chicago and San Jose were taken on March
19, 2008 and July 17, 2008, respectively [7]

This is a refined version of KDD’99 dataset where duplicate records are removed
from both training and test data. The number of records are also reduced (125,973
training records and 22,544 test records) while keeping the same number of
features [8]

ISOT’10

This dataset is a combination of malicious and non-malicious datasets created by

Information Security and Object Technology (ISOT) research at University of
Victoria [9]. The decentralized botnet data for malicious traffic was extracted from
Honeynet project [10], and non-malicious traffic was extracted from Ericsson
Research Laboratory and Lawrence Berkeley National Lab

ISCX’12

It represents the traffic from real-world physical test environment generating the

network traffic while containing centralized botnets. The dataset has 19 features
and 196,032 records with 19.11% of the traffic belonging to DDoS attacks [11]

UNSW-NB15

This dataset was created at the University of New South Wales in 2015. It has 49

features and nearly 257,700 records in total that cover nine different types of
modern attacks. The new patterns of normal traffic were also identified and labeled.
There are 16,353 records which belong to denial-of-service attacks [12]

In [19] with two datasets, i.e., [SOT and ISCX, a wrap-
per method! is deployed to select different sets of features
through greedy search using genetic algorithm and then eval-
uate those features with C4.5 algorithm. The features giving
better detection rate with C4.5 are prioritized. In a virtual
cloud environment discussed in [20], detection of a simulated
SYN flood attack is analyzed with different machine learn-
ing models after feature selection of TCP/IP header-related
information. After the phases of preprocessing and feature
extraction, an intersection process is introduced for feature
selection which provides an optimal feature set after taking
the common features provided by ReliefF, information gain
(IG), and gain ratio (GR) calculations. Li et al. [21] imple-
ment learning vector quantization (LVQ) technique of neural
network on the simulated traffic. Like self-organizing maps
(SOM) produce cluster boundaries in unsupervised learn-
ing, LVQ does the same under supervised learning where
class boundaries are produced according to the training data.
Through multiple iterations, the closely related neurons come
together and are assigned the same class boundary. The
neurons exhibiting more close properties decide the overall

I The wrapper method applies a regressor on the identified feature
and validates its significance with accuracies of regression. Another
approach is the filter method which directly selects the features based
on statistical scores without any validation approach of regression.

@ Springer

class of the group, thus implementing the winner-takes-it-all
model for the output.

In [22], authors believe that the strength of a DDoS attack
can be determined with ANN against variations in entropy
of the network traffic. In [23], it is presented that the num-
ber of zombies behind a DDoS attack can be predicted with
ANN against variations in entropy of the network traffic.
In [24], three different techniques of machine learning are
applied to detect malicious botnet traffic. A clustering method
is used to initially form clusters with six features (manual
feature extraction) and then a label (malicious or botnet) is
assigned to each cluster based on network flow observations
of time windows. Lu et al. [25] discuss the identification of
Command & Control (C&C) session establishment through
machine learning on relevant features before the launch of
DDoS attack. In this study, a 55-dimension feature vector of
network traffic is analyzed to detect C&C sessions with Ran-
dom Forest algorithm of machine learning. A comparison is
also presented with naive Bayes and support vector machine
algorithms.

Zekri et al. [26] discuss DDoS attack detection in cloud
environment with machine learning algorithms. In this
research, a simple set of 5 features is analyzed with C4.5
decision tree algorithm working on the splitting criterion of
gain ratio. The detection module is also supplemented with

DDoS attack detection with feature engineering and machine learning: the framework and... 765

signature-based detection for improved outcomes. Two other
methods, i.e., naive Bayes and K-means are also evaluated
for comparison purpose. In [27], deep learning implemen-
tation of recurrent neural network (RNN) is discussed to
identify DDoS attacks, which is named as DeepDefense.
RNN is quite a useful technique to identify patterns in time
series predictions. It works on short-term memory cells by
default, but the memory term can be increased by using a
type of RNN called long-short-term memory (LSTM) which
ensures correlation among several time steps in the series.
In this study, 20 network traffic features are sampled from
ISCX’12 dataset to analyze the performance of designed
architecture having bidirectional RNN. With 64 neurons
in each cell having nonlinear activation function of hyper-
bolic tangent, the output transfer function is configured to
be Sigmoid. The design also includes convolutional neural
network (CNN) layers before RNN layers in the architecture
with activation function of Rectified Linear Unit (ReLU).
For accelerating the training process, RNN layers are also
attached to batch normalization layers. In [28], the authors
simulate modern types of DDoS attack such as DDoS via
SQL injection (SIDDOS) and HTTP flooding in addition to
traditional Smurf and UDP flooding attacks. Both SIDDOS
and HTTP flooding are application layer attacks which have
drawn more attention of cyber security researchers for mit-
igation in recent years. A multiclass dataset of 1,048,575
instances, simulated with NS2 network simulator, is used to
detect different types of DDoS attacks, i.e., SIDDOS, HTTP
flood, UDP flood, and Smurf.

In Table 3, the related work analysis is provided with
respective approaches and observations.

2.2 Research gap

Following conclusions are drawn from the literature review
to identify research gap and plan our proposed work for three-
fold contribution such that:

(a) It is obvious that even after a number of research
attempts to detect DDoS attacks with machine learning
approaches, where a few of them also consider feature
engineering, we are short of a strategic-level framework
to apply such approaches in a systematic manner so that
the comprehensive evaluation may be possible to avoid
generally inbuilt problems of machine-mined data such
as collinearity, multicollinearity and duplication. Also,
there is a need of incorporating all the important require-
ments of data science-driven approaches while applying
the machine learning models. Simply executing a model
with default parameters may not serve the purpose but
introduce the elements of overfitting.

(b) Combining the feature engineering and machine learning
methods along with optimizations in a single framework

is also an important contribution of the proposed work.
In fact, considering them together is required for all-
inclusive experimentation and trusted outcomes.

(c) Traditional datasets used in most of the papers are
not effective in recent times because attackers are now
focusing more toward advanced levels of DDoS attacks,
specially the application layer attacks. New techniques
need to be practically evaluated on a dataset having
advanced level of attacks such as SQL-based DDoS
attacks and HTTP flooding.

3 Proposed framework and research
approach

3.1 Strategic-level framework

Machine learning strategies followed by the feature engineer-
ing and data science best practices can be used in a productive
manner to get the best detection in a given DDoS dataset.
In this research, a strategic framework is proposed which
encompasses a thorough treatment of features followed by
the machine learning improvements. It emphasizes that the
machine learning results must deal with the problem of over-
fitting. The proposed framework is given in Fig. 3.

The proposed strategy ensures that a systematic treatment
of features is made according to the type and structure of
data. The details of such a treatment applied to the stud-
ied dataset of DDoS attacks are presented in Sect. 4. This
approach can be generalized in a way that any kind of cyber
intrusion including DDoS attack may be considered for the
application of proposed strategy so that all the inbuilt issues
of data such as skewness, collinearity and multicollinearity
may be addressed for subsequent phases of machine learning.
Another important aspect to be considered inside the feature
engineering module is dealing with the missing values. This
issue can be addressed by different means including imputa-
tion where the missing data may be replaced with average,
maximum, or minimum values. If the missing values are high
in proportion as compared to the assigned values, it is often
required to eliminate the feature altogether. Therefore, based
on the proportion of missing values contained by a feature in
the dataset, the respective treatment may be executed within
Feature Elimination or Feature Adjustment steps of the fea-
ture engineering module in proposed framework. After the
feature selection step is completed inside the feature engi-
neering module of proposed framework, one or more datasets
are ready with reduced sets of features to be analyzed with
machine learning algorithms. In Fig. 3, five machine learn-
ing algorithms used in this paper are mentioned. However,
Machine Learning module of the proposed framework is
not limited to those five algorithms. Any machine learning
algorithm, i.e., supervised, unsupervised, or semi-supervised

@ Springer

766

M. Aamir, S. M. A. Zaidi

Table 3 Related work analysis

References

Approach

Observations

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Five datasets were created and SVM classification was
applied

Five features of low information gain scores were
eliminated one-by-one to observe the accuracy results

The proposed framework was applied to identify three
features each for two different sets of classifiers called
lenient classifier and strict classifier

Based on the proposed method, 17 features were
selected out of the total features of NSL-KDD’09
dataset. The neural classifier called extreme learning
machine (ELM) was used for comparing the accuracy
and detection time metrics

For classification task, four different machine learning
algorithms were analyzed including NB, RBF, RF, and
MLP-BP classifiers.

The feature having more weight over the threshold level
was suggested to be prioritized in the classification
stage

Evaluations were performed on different kinds of
botnets such as centralized, decentralized and a mix of
both. Nineteen features were considered for making
the initial vector of features to input for GA. Then
different subsets of those features provided by the
search algorithm were evaluated using C4.5 algorithm

The initial set contained 40 features out of which 25
top-listed by each of the ReliefF, IG, and GR (three
different lists) were input to the intersection process.
The intersection process shortlisted the features that
appeared in top 25 features of all three lists

The authors tested a dataset of server traffic with LVQ
neural network for two classes, i.e., attack and
non-attack. The same dataset was also used to test
backpropagation (BP) neural network for comparison
at a later stage

The authors tested a model with dataset of variable
entropy where the strengths of attack were already
calculated and known

The authors trained a model with entropy variations
where 10 to 100 zombies were simulated with an
increment of 5 at each step while keeping the total
strength of attack constant at 25 Mbps

The training was performed with Gaussian NB classifier.
Neural network (NN) method was also used with
larger dataset and added features. The stability in
performance was recorded at 40 neurons of hidden
layer at a learning rate of 0.0001. Another method of
recurrent neural network (RNN) was used to perform
automatic extraction of features

The traffic was generated on ports 80 (HTTP protocol)
and 6667 (IRC protocol) with normal and C&C
session data

In some experiment runs, 100% accuracy was recorded but
with limited set of experimentation

Accuracy increased with the reduction of features from 97%
(eight features) to 99.5% (three features, i.e., elimination
of five features based on information gain score)

The strict classifier showed higher precision and f-measure
scores than the lenient classifier

The proposed method outclassed all other techniques but
two (chi-square and gain ratio) with an accuracy of 91.7%

MLP-BP method improved its detection accuracy from
92.2% (before applying the proposed technique) to 98.3%
(after applying the proposed technique)

The highest weight value of 0.2175 among the seven
considered features was shown by the ‘Count’ feature

The highest detection rate of 99.58% was shown by RBot
botnet against a specific combination of features. For the
evaluation of general features, the highest detection rate of
99.46% was exhibited by ISOT dataset against a specific
combination of features

12 features were selected to be included in the optimal
feature set. The analysis on machine learning algorithms
indicated that the highest accuracy rate of 99.995% was
given by J48 algorithm

The results showed better average accuracy in case of LVQ
as compared to BP which were 99.7% and 89.9%,
respectively

On the analysis with increasing number of neurons in the
processing layer of a two-layered feed forward ANN, they
obtained improved accuracy with less error

The output of ANN with BP algorithm showed promising
results. It was also analyzed that with the increasing size
of the network, accuracy improved and the errors were
further reduced

The comparative study of those techniques revealed that NN
method had the best f1-score of 88.97%, whereas RNN
had the highest precision of 95.41%

The results showed that RF had the highest detection rate
and lowest false positive rate when compared with NB
and SVM

@ Springer

DDoS attack detection with feature engineering and machine learning: the framework and...

Table 3 continued

References

Approach

Observations

[26]

(27]

(28]

The attack traffic was simulated with Hping3 tool. For
signature-based detection, the open source IDS called
Snort was used

Four different types of RNN including LSTM and
3LSTM were analyzed and compared to each other,
whereas a certain setting of RNN parameters was also
compared with the Random Forest (RF) classifier

The machine learning algorithms used for detection
included naive Bayes (NB), Random Forest (RF), and
ANN MLP (multilayer perceptron)

C4.5 had the highest accuracy (98.8%), the lowest detection
time in seconds (0.58 s) and the least false positives (02)

when compared with NB and K-means

The highest accuracy was 98.41% and the lowest error rate
was 1.59% (both were exhibited by 3LSTM for one of the
two datasets). For comparison with RF, LSTM had better
accuracy (97.6%), error rate (2.4%), and f1-score (97.6%)

The ANN MLP-driven analysis provided the highest

accuracy of 98.63%, whereas the accuracy scores of RF

and NB were 98.02% and 96.91%, respectively

Feature engineering

Dataset

Distributed Denial of Service (DDoS)

Domain knowledge, duplication, multicollinearity

Feature Elimination

Backward elimination, forward selection,

Feature Adjustment
Label encoding for ordinal features / One-hot encoding
nd removal of dummy variables for categorical features

Feature Selection

statistical scores

Feature Normalization
Continuous features: Standard scaling, min-max scaling

Machine learning improvements and analyses

Machine Learning
KNN, NB, SVM, RF, ANN

Optimization
Number of neighbors, kernel trick,
decision trees, ANN layers

Validation

K-fold cross validation

=== Evaluation
Accuracy, false positives, error
P ROC to avoid accuracy paradox

Fig.3 Strategic-level framework for DDoS attack detection

can be used for analysis. Here, the emphasis is made on

supervised algorithms due to the nature of given datasets of

DDoS classification problem where the target classes (Nor-
mal/DDoS) are available.

3.2 Research approach

The application layer DDoS attacks are more difficult to
detect as compared to network or transport layer attacks as

@ Springer

768

M. Aamir, S. M. A. Zaidi

the obvious anomalies are not existent when the application
layer is exploited for an attack. The application layer attack
establishes complete and legitimate connections between the
attacker and victim. Hence the detection of such attacks
at infrastructure layer is not easy [29]. The attackers also
hide DDoS attacks behind the rate of traffic. When slow-
rate DDoS attacks are in action, it is not easy to detect the
upcoming impact as the anomaly in traffic goes unseen [30].
According to the study conducted by Jonker et al. in [31]
for the previous 2 years, the most targeted victims of DoS
attacks are the web servers. The study reveals that about 3%
of the web servers on average containing .com, .org and .net
domain addresses were targeted for denial-of-service attacks
on daily basis.

DDoS attackers employ various strategies for selection of
zombies and creation of botnet [32]. For countermeasures of
DDoS attacks, the research community is aggressively using
machine learning techniques for DDoS detection at all layers
of OSI and TCP/IP models [4]. Still, it is needed to have a
strategic framework which defines the critical steps to fol-
low while applying machine learning techniques for DDoS
detection. The framework needs to express the modules of
critical feature engineering and machine learning require-
ments in a systematic flow so that the detection accuracies
may be presented with a confidence of ignoring the compo-
nents of overfitting and collinearity. With this approach, the
competitive scores of detection accuracy may be achievable.
Although detection accuracies are expected to be hitin a neg-
ative manner against aggressive data engineering methods
and feature selection, the accuracy scores can be presented
for reliable detections with effective machine learning mod-
els.

4 Feature engineering

The dataset used as a case study in this paper is contributed
by Alkasassbeh et al. [28] and is publicly available for anal-
ysis?. It is selected for analysis in this paper due to the
consideration of recent kinds of DDoS attacks (application
layer attacks) which are reflected by the traffic features in
this dataset. Further, having a newer dataset of year 2015
is a better choice for analysis than the older datasets like
KDD, CAIDA, NSL-KDD, ISOT, and ISCX. This is NS2
simulated dataset which contains five target classes namely
SIDDOS (Structured Query Language Denial of Service),
HTTP flood, UDP flood, Smurf, and Normal. First four
classes represent the corresponding DDoS attacks while the
last one explains the legitimate traffic. The dataset contains

2 https://www.researchgate.net/publication/292945336_Detecting_
Distributed_Denial_of_Service_Attacks_Using_Data_Mining_
Techniques

@ Springer

1,048,575 instances out of which 108,927 are DDoS attacks.
Although the original dataset has differentiated classes of
SIDDOS, HTTP flood, UDP flood, and Smurf in addition
to the normal traffic, the analysis in this paper is only
focused on differentiating normal and DDoS (irrespective
of the type of DDoS) traffic. Therefore, only two classes are
considered in this paper while the normal class is labeled
as ‘Normal’ and any type of DDoS class is labeled as
‘DDoS.’

The dataset in [28] has 27 features in the default state (this
dataset is mentioned as ‘DS’ in the remainder of this paper).
The features, their types and explanation are given in Table 4.
Data redundancy is observed in the fields ‘pkt_size’ (feature
no. 7) and ‘pkt_avg_size’ (feature no. 21) which represent
the same characteristic of traffic flow. A careful analysis of
these two features explains that they possess the same val-
ues in respective records. Figure 4 verifies this observation
showing a perfect linear correlation between ‘pkt_size’ and
‘pkt_avg_size’ features. A feature that directly establishes
the value of another feature in the dataset must be excluded
in order to avoid the collinearity trap. Hence in this research,
dedicated efforts are made in data preprocessing phase to
avoid the redundancies and environment-specific features for
a more general approach to establish the proposed strategy
for DDoS attack detection.

4.1 Data preprocessing

‘DS’ is a large dataset with 1,048,575 records out of which
108,927 represent the attack instances. It indicates that
10.388% of the dataset corresponds to DDoS class while
the remaining belongs to normal class. It shows that ‘DS’ is
skewed toward the normal class where the majority of records
belong to normal traffic. This is, however, an actual repre-
sentation of real-world data where majority of the recorded
events corresponds to the legitimate traffic. Class imbalance
is a well-known problem in data science studies. In such a
case as we see for ‘DS, undersampling is an option [27]
where 939,648 normal instances can be randomly filtered
and chosen to avoid the data skewness and obtain a bal-
anced dataset. There are various methods of undersampling
and oversampling to address the problem of class imbalance
[33]. However in this research, none of the methods is used
and the complete dataset of 1,048,575 records is analyzed
with the existing ratio of class imbalance for two reasons.
One reason is the fact that valuable information can be lost
against undersampling when a large portion of normal traf-
fic is eliminated. The second reason is that the mentioned
ratio of class imbalance which is roughly 1:9 (10% DDoS
traffic and 90% normal traffic) is still acceptable for machine
learning analyses and detection of attacks [34]. Moreover, the
internal mechanisms of machine learning algorithms such as

https://www.researchgate.net/publication/292945336_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques
https://www.researchgate.net/publication/292945336_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques
https://www.researchgate.net/publication/292945336_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques

DDoS attack detection with feature engineering and machine learning: the framework and... 769

Table 4 Explanation of features in DS

Feature No. Feature name (code in this paper) Type Explanation

1 Source address (src_addr) Numeric Source IP address of the packet

2 Destination address (dest_addr) Numeric Destination IP address of the packet

3 Packet ID (pkt_id) Numeric Unique ID of packet

4 From node (frm_node) Numeric Node number from which the packet is generated

5 To Node (to_node) Numeric Node number for which the packet is destined

6 Packet Type (pkt_type) Text Type of packet in the underlying protocol

7 Packet Size (pkt_size) Numeric Size of the packet in bytes

8 Flags (flgs) Text Indication of the ‘On’ status of flags

9 FID (fid) Numeric Flow ID to which the packet belongs

10 Sequence number (seq_no) Numeric Sequence number in the underlying TCP segment

11 Number of packets (num_pkts) Numeric Number of packets in the flow

12 Number of bytes (num_bytes) Numeric Number of bytes in the flow

13 Name FROM (node_name_frm) Text Source node name (type and number)

14 Name TO (node_name_to) Text Destination node name (type and number)

15 Packet IN (pkt_in) Numeric ‘In’ time of packet in simulation

16 Packet OUT (pkt_out) Numeric ‘Out’ time of packet in simulation

17 Packet R (pkt_r) Numeric Time when packet is recorded in simulation event

18 Node delay (pkt_delay_node) Numeric Delay the packet experiences at target node

19 Packet rate (pkt_rate) Numeric Packet arrival rate at target node

20 Byte rate (byte_rate) Numeric Byte rate of traffic at target node

21 Packet avg size (pkt_avg_size) Numeric Average size of packet in traffic flow

22 Utilization (util) Numeric Average packet utilization

23 Packet delay (pkt_delay) Numeric Average packet delay in traffic flow

24 Time sent (pkt_sent_time) Numeric Time when packet is sent

25 Time received (pkt_recd_time) Numeric Time when packet is received

26 First sent (frst_pkt_sent) Numeric Size of first packet sent in the flow

27 Last received (last_pkt_recd) Numeric Size of last packet received in the flow

Correlation between ‘pkt_size’ and ‘pkt_avg_size’ 4.1.1 Feature elimination and adjustment
0000 After it is decided that all instances of ‘DS’ are retained for
53000 machine learning-driven analyses to detect DDoS attacks, the

g feature elimination based on domain knowledge is executed
ZA o0 at this stage. Domain knowledge here emphasizes on the fact
) 30000 that a person belonging to the real-world environment of the
- o underlying problem represented by a dataset can provide the

0 10000 20000 30000 40000 50000 60000
pkt_size

Fig. 4 Correlation between ‘pkt_size’ and ‘pkt_avg_size’ features in
DS

bagging, boosting, and kernel tricks are also helpful to avoid
overfitting and misclassification that may arise due to class
imbalance in a dataset [35].

best judgment on the features whether they should be con-
sidered in the dataset or be eliminated. There can be several
reasons behind these types of decisions such as insignificance
of a feature due to technological change or advancement,
inappropriateness of a feature due to specific environmental
or business need, and collinearity or multicollinearity obser-
vations and duplication. For one or more such reasons, 15
features of ‘DS’ are removed under domain knowledge.

In the above scenario, some important-looking features
such as IP addresses are also removed from the dataset. It
is emphasized in this research to distinguish two types of

@ Springer

770

M. Aamir, S. M. A. Zaidi

Table5 Treatment of

Treatment

F T
categorical variables for feature cature Ipe
adjustment pkt_type Categorical

node_type_frm Categorical

node_type_to Categorical

Four possible values under this feature are ‘ack,” ‘cbr, ‘ping,” and
‘tep.” ‘LabelEncoder’ in Python is used to assign code from 0 to 3 to
each of the four feature values. ‘OneHotEncoder’ is used to
transform this feature to four different variables in ‘DS’

‘OneHotEncoder’ is used to extract six different features in ‘DS, i.e.,
‘From_Endpoint,” ‘From_Router,” ‘From_Server,” ‘From_Switch,’
‘From_Webserver,” and ‘From_Webcache.’ In order to avoid dummy
variable trap, the variable ‘From_Webcache’ is eliminated as it
provides the least number of 1°s

‘OneHotEncoder’ is used to extract six different features in ‘DS, i.e.,
“To_Endpoint,” “To_Router,” “To_Server,” ‘“To_Switch,’
‘To_Webserver,” and ‘To_Webcache.’ In order to avoid dummy
variable trap, the variable ‘“To_Webserver’ is eliminated as it
provides the least number of 1’s

features known as flow-level features and packet-level fea-
tures [36]. Flow-level features express the behavioral and
packet sizing characteristics. The packet-level features con-
vey the information related to packet signatures in the form of
address or foot printing characteristics. The emphasis in this
research remains on the flow-level features, thus removing
several packet-level features including the environment-
specific addressing information. Moreover, node_name_frm
and node_name_to features are transformed into the new
labels of ‘Node Type From’ (node_type_frm) and ‘Node
Type To’ (node_type_to) where the combinations of node
type and numbers are replaced with only the type of node
such as ‘from endpoint,” ‘from switch,” ‘to router,” and ‘to
server.” Also, the seq_no feature is brought in accordance
with the pkt_type feature (categorical data having values of
‘ping,” ‘cbr,” ‘ack,” and ‘tcp’) where ping and cbr traffic have
no sequence number (represented as O in seq_no feature)
while ack and tcp traffic have sequence numbers (at least
1 in seq_no feature). The consideration of flow-level fea-
tures while avoiding one or more aspects of packet-level
features is also presented in other research efforts [19,37]. In
[37], only four features are used, i.e., small packets, packet
ratio, initial packet length, and bot response packet ratio.
Three classification techniques, i.e., Ada boost with J48,
naive Bayes, and SVM are applied where data are taken
from multiple sources for the mining of traffic flow features
to detect botnet-driven flows. The highest accuracy (detec-
tion rate) of 99.14% and lowest false positive rate of 4.81%
are obtained with NB classifier. It shows that even a smaller
number of features with flow-level approach and possible
generalization (no dependency on addressing, protocol, and
identifiers) can be the most contributing factor in detecting
DDoS attacks. The protocol-independent features are also
sought by researchers to introduce generic approach of flow
characteristics [13].

@ Springer

After the removal of 15 features from ‘DS’ and transfor-
mation of a couple of features with relabeled feature names as
described above, the existing feature set of ‘DS’ contains 12
features. Out of them, three categorical features are treated
with one hot encoding to extract new variables in ‘DS’ as
mentioned in Table 5.

4.1.2 Data normalization and full dataset ‘DS00_Full’

Normalization is required to bring the numerical data at com-
mon scale so that the feature values in high numerical digits
may not overwhelm lower values in mathematical calcula-
tions of machine learning algorithms. Min—-max scaling is
one of the most commonly used normalization technique
in which the values are scaled between two given numbers.
The most common practice is scaling between 0 and 1 (both
inclusive). The formula of min—-max normalization is given
in Eq. (1), where n; is the normalized value of x; which is
the ith item in a set of values ranging from xpx (maximum
number) to Xpjn (Minimum number).

n; = Xi — Xmin (1
Xmax — Xmin

In ‘DS, 13 variables extracted from categorical data do not
need normalization. Hence, the remaining nine numeric fea-
tures are normalized. After dealing with categorical features,
elimination of the mentioned variables, and normalization
of numeric features, the dataset ‘DS’ is transformed to
‘DSO00_Full” which is one of the datasets for machine learn-
ing analyses in this paper. The full and preprocessed dataset,
i.e., ‘DSO0_Full” with new features is shown in Table 6. It
shows that ‘DS00_Full’ is a dataset with 22 features, whereas
the 23rd column is for traffic class which is the dependent
variable for machine learning classification.

DDoS attack detection with feature engineering and machine learning: the framework and... 771

Table 6 Features of

“DS00_Full’ dataset after Feature identifier Feature name (Code) Data type

preprocessing fi Acknowledgment (ack) Categorical
b Constant bit rate (cbr) Categorical
bE) Transmission control protocol (tcp) Categorical
fa From_Endpoint (frm_endpt) Categorical
fs From_Router (frm_rtr) Categorical
fe From_Server (frm_svr) Categorical
f1 From_Switch (frm_swtch) Categorical
13 From_Webserver (frm_wbsvr) Categorical
fo To_Endpoint (to_endpt) Categorical
fio To_Router (to_rtr) Categorical
fi To_Server (to_svr) Categorical
fi2 To_Switch (to_swtch) Categorical
f13 To_Webcache (to_wbcache) Categorical
f1a Sequence number (seq_no) Numeric (Continuous)
fis Number of packets (num_pkts) Numeric (Continuous)
fi6 Packet delay at node (pkt_delay_node) Numeric (Continuous)
fi7 Packet rate (pkt_rate) Numeric (Continuous)
f1s Packet average size (pkt_avg_size) Numeric (Continuous)
f19 Utilization (util) Numeric (Continuous)
20 Packet delay (pkt_delay) Numeric (Continuous)
2 First packet sent (frst_pkt_sent) Numeric (Continuous)
f2 Last packet received (last_pkt_recd) Numeric (Continuous)
Class Traffic_Class (Normal / DDoS) Binary classification

4.2 Feature selection
4.2.1 Backward elimination

The p-value under ¢-statistic test determines whether two
given datasets are different from each other with respect to
their mean and distribution (spread). While mean is the aver-
age value, the spread is expressed in the calculations via
standard deviation. The value of z-test score ‘#* with two
datasets D and D; can be determined using Eq. (2).

X] — X2
= 2)
51 52
T

In Eq. (2), x1 and x> are mean values3, s; and s, are
standard deviations, and n1 and n; are sample sizes of distri-
butions D and D5, respectively. In ¢-test of the given nature,
the probability (p-value) is calculated to decide if an estab-
lished null hypothesis can be rejected. The p-value conveys
overlapping probability and identifies the area under curve

3 The data curves are supposed to be normal distributions where sample
size > 30. As the population mean is not known and we are only dealing
with samples, the z-statistic test is applied

which overlaps for the given distributions. The null hypoth-
esis H, and alternate hypothesis H, are established in the
following manner:

H,: D and D, are not different (x; = x3)

H,: Dy and D; are different (x1 # x2)

The analysis of p-value scores is driven by #-statistic test
of independence as given in Eq. (2). This test is performed
during backward elimination process of the feature selection
approach. The backward elimination process is defined in
Algorithm 1. With each iteration, the least significant fea-
ture is eliminated until we get all the variables under p-value
of significance level, i.e., 5%. The tool used for backward
elimination in this paper is statsmodels.formula.api class in
Python. This is a wrapper method of determining the feature
significance where a regressor is used in each iteration to
verify the significance under p-value score. Finally, as con-
veyed by the p-value scores, the least significant 6 features
are eliminated (remaining ones are mentioned in Table 7).
The features are eliminated from the feature set contained by
‘DS00_Full” and eventually the second dataset ‘DS01_PVal’
is obtained. It shows that ‘DS01_PVal’ is a dataset with 16
significant features, whereas the 17th column is for traffic
class which is the dependent variable for machine learning
classification.

@ Springer

772

M. Aamir, S. M. A. Zaidi

Algorithm 1 Backward Elimination

STEP 1: Select a significance level to hold a variable in the model (e.g. SL = 0.05)
STEP 2: Fit the model with all possible variable / feature / predictor settings

STEP 3: Check the feature with the highest p-value (P):
If P > SL, go to STEP 4
Else, go to STEP 6

STEP 4: Eliminate the feature

STEP 5: Fit the model without the eliminated feature in STEP 4 : Go to STEP 3

STEP 6: Finish

Table 7 Chi2 scores of top 7 features selected for ‘DS02_Chi2’ dataset

Feature code Chi2 score

frm_rtr 1.26599751e-001
frm_swtch 1.72871063e-001
to_rtr 8.52500552e-001
to_swtch 4.79414901e-001
to_wbcache 1.77466406e-036
pkt_delay 6.67282288e-014
util 2.01429316e-012

4.2.2 Chi-square test

The Chi-square (Chi2) test of independence for two datasets
with categorical values is applied to measure whether the
given datasets are different from each other with respect to
their observed values in relation to the expected outcomes.
Chi2 score is given as:

OC — EC)?
% Z()

- EC)

N

InEq. (3), 2 is Chi2 score, ‘N’ is the total number of data
instances (number of cells in ‘m x n’ table), ‘OC’ refers to the
observed count (count of a specific condition or expression
which is observed), and ‘EC’ is the expected count (count of
a specific condition or expression which is expected based on
the probability calculated from sample). The test considers
both input and target values to be categorical. For continuous
data inputs, it creates a sliding window where upper and
lower bounds are applied for each slice to virtually label it
with a single categorical value. The probability is driven by
individual probabilities of events provided that the events are
independent as given below:

P(A AND B) = P(A) %« P(B) 4

In Eq. (4), ‘P’ refers to the probability where ‘A’ and ‘B’
are two independent events. If C| and C; are two different
datasets under Chi2 test of independence, the null hypothesis
‘H,’ and alternative hypothesis ‘H,’ may be established as
follows: H,: C| and C, are not different
H,: C| and C; are different

@ Springer

The analysis of Chi2 test of independence is an approach
given in Eq. (3). This test is performed to select the top scor-
ing significant features. The threshold of number of features
to be selected from ‘DSO0_Full’ to obtain another dataset
‘DS02_Chi2’ is seven. This value is selected due to observa-
tions from related work that around one-third of the total
population of features is taken when feature selection is
considered against such kinds of statistical tests [38]. As
‘DS00_Full” contains 22 features, its approximate one-third
are taken for machine learning analyses (Top seven features
exhibiting Chi2 scores mentioned in Table 7). It shows that
‘DS02_Chi2’ is a dataset with 7 significant features, whereas
the 8th column is for traffic class which is the dependent vari-
able for machine learning classification.

4.2.3 Information gain test

The term ‘Entropy’ is the degree of disorder in a dataset.
Hence the information component is highly variable across
a range of instances when the entropy is high. The entropy
‘H(d)’ is given by Eq. (5) where ‘p;’ is the probability of
information component in the vector ‘d’ and ‘N’ is total
number of information values that the vector ‘d’ contains.

N
H(d) ==Y pilog, pi 5)
i=1

On the other hand, values showing low variability across
arange of instances provide the higher information gain. The
information gain ‘IG(Y|X)’ is calculated as:

IG(Y |X) = H(Y) — HY | X) (©6)

In Eq. (6), ‘IG(Y|X)’ is the information gain of ‘Y’ pro-
vided ‘X’ is given. H (Y) is the entropy of ‘Y’ and ‘H (Y| X)’
is the entropy of ‘Y’ given the entropy of ‘X.’ In this way,
the information gain score can be calculated for a dataset
feature against the target class provided the information gain
and entropy of the target variable are known. Features can be
ranked according to the information gain scores where the
features with high information gain have more significance
to classify the target variable. Like Chi2, information gain
method of determining the feature significance is also a filter

DDoS attack detection with feature engineering and machine learning: the framework and...

773

Table 8 Information gain scores of top 7 features selected for
‘DS03_IG’ dataset

Feature code 1G score

num_pkts 0.49285465
pkt_delay_node 0.32598071
pkt_rate 0.49442932
pkt_avg_size 0.46417012
util 0.49539816
pkt_delay 0.49385436
last_pkt_recd 0.49404499

method which directly selects the features based on infor-
mation gain scores without any involvement of a regressor.
The analysis of information gain test is an approach given in
Eq. (6). The threshold of number of features to be selected
from ‘DSO00_Full’ to obtain another dataset ‘DS03_IG’ is
seven for the same reason described above for Chi2 test
in Sect. 4.2.2 (Top seven features with respective informa-
tion gain scores are mentioned in Table 8). It shows that
‘DS03_IG’ is a dataset with 7 significant features, whereas
the 8th column is for traffic class which is the dependent
variable for machine learning classification.

Table 9 presents the significant features against each
dataset used for machine learning analyses in this paper.

5 Performance evaluation with machine
learning

The datasets prepared for machine learning experiments in
the previous section are used to derive various machine learn-
ing models and subsequent performance evaluation. Five
algorithms of supervised machine learning used in this paper
are K-nearest neighbors (KNN), naive Bayes (NB), support
vector machine (SVM), random forest (RF), and artificial
neural network (ANN). It is demonstrated that the machine
learning coupled with feature engineering can be an effective
approach to detect DDoS attacks. In the performance evalu-
ation phase, area under curve (AUC) scores are compared in

two ways. First it is observed how a specific machine learn-
ing algorithm behaves for different datasets, and secondly
it is analyzed how a particular dataset carrying significant
features is effective to be used by different machine learning
algorithms in terms of optimized AUC scores.

5.1 Machine learning models
5.1.1 K-nearest neighbors

K-nearest neighbors (KNN) is a classification algorithm that
detects the class of a new point in the system with respect
to its distance from the nearest existing points. The existing
points (already present in the system) are determined via
some distance metric. The most common distance metric is
Euclidean Distance given in Eq. (7).

d(a,b) = /(a1 — b1)? + (a3 — by)? 7

Euclidean distance is a distance measure of straight line
between two points in a vector space. In Eq. (7), ‘d(a, b)’
is Euclidean distance between two points ‘a’ and ‘b’ where
(ay,az) and (b1,b>) are coordinates of the respective points in
two-dimensional space. The number of existing points in the
system to qualify as neighbors of the new point is an initially
set count indicated as ‘K.’ Thus the algorithm is named as
K-nearest neighbors [39].

5.1.2 Naive Bayes

Naive bayes (NB) [40] is a statistical classifier based on con-
ditional probability shown in Eq. (8).

P(x)P
P(xly) = % ®)

It explains that the probability of occurrence of an event
‘x’ given the event ‘y’ (denoted as ‘P(x|y)’) is equal to
the overall probability of ‘x’ (denoted as ‘P(x)’) times the
probability of ‘y’ given ‘x’ (denoted as ‘P (y|x)’) divided by
the overall probability of ‘y’ (denoted as ‘P (y)’). For exam-
ple, if a server is analyzed for DDoS infection provided it

Table9 Datasets with

Significant features

L. Dataset Method to determine significance
significant features after feature
engineering DS00_Full
data preprocessing
DS01_PVal Backward elimination
DS02_Chi2 Chi-square
DSO03_IG Information gain

Domain knowledge based elimination and

f1s f2 35 fas f5, foo f2, S35 fo fr05 fi1,
f12, f13, fias f1s, fies [175 f185 f19,
20, f21, f2

f1. f2. f3. fo. f1. fo fr0. f1a, fis. fie.
f17. f18. f19, f20. f21. f22

f5. f1, fro. f12, f13. fies f19
f1s, fie. f17. f18, f19. f20. f22

@ Springer

774

M. Aamir, S. M. A. Zaidi

Hyperplane

Support Vectors .

Fig.5 SVM depiction in two-dimensional space

receives inbound traffic with SYN signals, it may be denoted
by Eq. (9).

P (ddos|syn) = P(ddosz))fs(ysr?)n o ©)

5.1.3 Support vector machine

Support vector machine (SVM) is a popular classifier for
data in high-dimensional space, i.e., data with large number
of features. The idea is to find optimal hyperplanes and sep-
arate each dimension in a way that the margin between the
closest points across hyperplanes is maximized. The clos-
est points lying on separation boundaries are called support
vectors. The idea is depicted in Fig. 5 for a two-dimensional
space. SVM is a complex approach due to multidimensional
computations [41].

5.1.4 Random forest

Random forest (RF) is another popular classifier under super-
vised learning. One of the ideas behind RF is the concept of
bagging which emphasizes on the fact that a single classi-
fier may not produce an effective machine learning model
for a number of reasons such as data imbalance, overfitting
or parameterization errors, etc. Therefore, a combined result
which is formed by taking individual outputs from a num-
ber of models can increase detection accuracy of machine
learning model. In bagging approach, the results from indi-
vidual classifiers are analyzed independently from each other.
Another approach, called boosting, emphasizes on impact-
ing the results based on the outcomes of other classifiers.
The RF model is commonly applied with bagging approach
where individual models are represented by decision trees
[42]. Usually in the RF method, a dataset ‘D’ of ‘n’ samples
is splitinto ‘S’ random subsets, each having a sample size of
‘r’ where r < n. The value of ‘S’ is a configurable parameter
in RF implementation.

@ Springer

5.1.5 Artificial neural network

Artificial neural network (ANN) is inspired by the human
brain which works on interconnection of neurons (called
synapses) and their learning methodology. The synapses are
not real connections between neurons, but they only pass the
signals virtually. In ANN, interconnected layers are intro-
duced in a cascaded manner. The interconnections also have
associated weights which are adjusted during the learning
process and hence the bonding of interconnections grows up
with updated weights [43]. A simple artificial neural network
consists of input, hidden and output layers. The signals pass
on from input layer to hidden layers (multiple hidden layers
may exist), and then, finally to the output layer. This mech-
anism is known as feed forwarding. The weights are usually
initialized with low and random values. Measuring the out-
put after each epoch*, the error between detected values and
actual target values of training data is calculated according to
a specified cost function. The error is backpropagated from
the output layer to hidden layers and then back to input layer.
This mechanism is known as backpropagation.

A common implementation of activation function in ANN
for hidden layers is rectified linear unit (ReLU) function [44]
which is given in Eq. (10), where ‘ f (x)’ is a function of input
variable ‘x.” The equation shows that output of ReLU is ‘x’
for ‘x > 0 and zero for ‘x < 0.

S (x) = max(0, x) (10)

The output layer of ANN for binary classification prob-
lems is configured with the sigmoid activation function given
in Eq. (11), where ‘ f (x)’ is a function of input variable ‘x.’

1
— 11
fO) == (11)
There are different cost functions available to calculate
error and update weights in ANN. The most common cost
function is given in Eq. (12), where ‘C’ is calculated error,
‘yp’ is detected output, and ‘y’ is actual output.

1 2
C=5 Gp=v (12)
5.2 Improvements and analyses

Machine learning improvements and analyses module of the
proposed strategic framework is a key element to validate the
machine learning results and avoid possible overfitting and

4 Epoch is a round of completion when all the records of a dataset have
been fed to the neural network. If epoch No. 1 is just completed, all the
records will again be fed in epoch No. 2 and so on. It is not necessary
that all the records are fed simultaneously or sequentially in one batch
for an epoch. This part is driven by the batch size parameter which is
configurable for ANN.

DDoS attack detection with feature engineering and machine learning: the framework and... 775

misleading accuracies. The details of steps inside machine
learning improvements and analyses module are provided
below:

5.2.1 Optimization

Machine learning algorithms are usually not the best fitting
models in default state. There can be a number of tunable
parameters to calibrate and adjust according to the algorithm
used. It is usually done with ‘trial and error’ where different
parameters or their combinations are checked to minimize the
detection errors. Classification accuracy is a common metric
of determining the effectiveness of an algorithm, i.e., higher
accuracy leads to a better combination of parameters. For
example, the number of neighbors that decide the class of
a new data point is a configurable parameter of KNN algo-
rithm. Hence an optimized value of ‘K’ can be sought to find
the improved accuracy and less error rate. Kernel trick can
be used for optimization in SVM models where radial basis
function (RBF) is commonly deployed to obtain detections of
nonlinear datasets. In ANN model, different number of hid-
den layers can be tested to observe if the accuracy improves
or the error decreases.

5.2.2 Validation

Machine learning results in terms of accuracy and error rate
on a specific formation of training and testing datasets may
invite the overfitting problem. It can be a case where the
training dataset is formed in such a way that all the features
reflect in the same manner also in the test dataset. In such
a case, accuracy readings can be so high due to the overfit-
ting of training data. It can therefore lead to a false sense of
the model’s effectiveness. To avoid this overfitting problem
and trust the machine learning accuracy results, k-fold cross-
validation is commonly used. In this technique, the train-test
split is made in a randomized manner for ‘k” number of times
where ‘k’ different splits of the whole dataset are created
in each round. There are ‘k — 1’ splits of data for training
and one split for testing. With each round, the testing split
is changed and an accuracy score is measured. It validates
that the applied configuration of parameters does not lead to
overfitting if the change in accuracies remains within a short
range of values.

5.2.3 Evaluation

The evaluation step is the lastitem in proposed strategy where
different accuracy scores as well as the readings of other
selected metrics can be compared to determine the best con-
figuration approach for a machine learning model to obtain
the best outcome. An important aspect of evaluation is to
avoid the accuracy paradox which leads to a wrong sense of

model’s accuracy by classifying the results only in one class
for all data instances. It provides zero values for false posi-
tive and true negative readings but can still show high levels
of accuracy. To avoid this paradox, a receiver operating char-
acteristic (ROC) graph is plotted between true positive and
false positive readings where the area under curve (AUC)
provides the true accuracy of model’s classification.

The flow inside machine learning improvements and anal-
yses module in Fig. 3 explains that the post machine learning
steps of optimization, validation and evaluation can be exe-
cuted in a repeatable and iterative manner. The repetition of
steps can be decided by observing the values whether they
fall within predetermined threshold ranges. The thresholds
and resulting actions are expressed in Algorithm 2.

5.3 Experimental results

The experiments are conducted under specified flow. Each
dataset is input to a particular machine learning model
one-by-one and then analysis is made under different set-
tings for optimal response. Algorithm 3 represents the flow
of experimental analysis. The experiments with feature
sets under consideration are performed using scikit-learn
machine learning library of Python programming language
[45]. Different classes pertaining to KNN, NB, SVM, and
RF are imported to use and create objects for learning and
detection. 70% of the data is used for training, whereas
remaining 30% is used for testing. The split of 70:30 is one
of the common techniques of analysis [21]. However, other
splits are also used such as 60:40 [34]. It means that out of
1,048,575 dataset instances, 734,002 are randomly selected
for training and 314,573 are used for testing & validation.
The classification accuracy and other metrics on test data
are used to determine the effectiveness of applied model.
For ANN-based machine learning experiments, TensorFlow
library is used with Python language to program neural net-
work objects [46].

5.3.1 Results with KNN

The experiment with KNN model involves optimizing the
‘K’ value for different algorithm runs while working on the
individual feature sets (DS00_Full, DSO1_PVal, DS02_Chi2,
DS03_IG). It is observed that with the default value of
5 neighbors (K=5), the accuracy scores of DSO00_Full,
DSO01_PVal,DS02_Chi2, and DS03_IG are 92.95%, 93.08%,
91.59%, and 93.36%, respectively, which show that the accu-
racy persists with a very low impact even with 7 features of
DS02_Chi2 and DS03_IG versus 22 features of DS00_Full.
However, the default parameter of 5 neighbors is not an opti-
mal value in all cases. Each dataset is studied for different
K -values ranging from 1 to 50 against the average error
rate. It is observed that the optimal K-values are 10, 8, 4,

@ Springer

776 M. Aamir, S. M. A. Zaidi

Algorithm 2 Threshold actions for optimization, validation and evaluation steps

A. Optimization: Trial and error by configuring different combinations of tunable parameters under the specified machine learning algorithm to
obtain optimized accuracy Acc,),, and compare with default accuracy Accgef.
a. Threshold Action:
If (Accopr > Accger) AND (Accyp > 85%)
Accyp; is accepted
Else If (Accypr < Accger) AND (Accyer > 85%)

Accger is accepted

Else
Repeat A if no decision of accept\reject

B. Validation: Apply k-fold cross validation to obtain a set of accuracies Accyy, std is the standard deviation of Acc,y; and m is the mean of
Accy.
b. Threshold Action:
If (std < 5%) AND m is 2% of Acc,, (or Accy,y if selected in ‘a’)
Accopr OR Accyer (whichever is selected in ‘a’) is validated
Else
Repeat B OR Repeat (A AND B) if no decision of accept\reject

C. Evaluation: Evaluate metrics. Plot Receiver Operating Characteristic (ROC) to obtain Area Under Curve (AUC) and compare with selected
accuracy (Accop, or Accger). AUCyey is the area (accuracy reading) of default model and AUC,,, is the area (accuracy reading) of optimized
model.
c. Threshold Action:
If (AUC,p; > AUCger) AND (AUC,p; > 85%)
AUC,,; is true accuracy
Else If (AUC,p; < AUCg.r) AND (AUCy.r > 85%)
AUC,y is true accuracy
Else
Repeat C OR Repeat (B AND C) OR Repeat (A AND B AND
C) if no decision of accept\reject

D. Finish

Algorithm 3 Flow of experimental analysis

For each machine learning model (KNN, NB, SVM, RF, ANN): Do
For each dataset in the experiment: Do
Input the dataset to machine learning model
Run the experiment with default parameter settings
Repeat with different settings for optimal response

and 6 for datasets DS00_Full, DSO1_PVal, DS02_Chi2, and °
DSO03_IG, respectively. For example, examining K -values an
against error rates for dataset DSOO_Full is shown in Fig. 6.

The optimal K-value here is 10 as it shows the least rate of ato

error. Table 10 shows machine learning results obtained with
default and optimized parameter settings of given values for
each dataset under KNN algorithm.

009

Error Rate

008

5.3.2 Results with NB 2

The experiment with NB algorithm involves comparing the
model’s performance between two classifiers namely multi- 0 © » » © »
nomial and Gaussian. The multinomial classifier detects e

output on the basis of counts of an incident’s occurrence.
Hence, it assumes that all input features represent discrete
data. On the other hand, the Gaussian classifier is a better fit

Fig.6 K-value versus Error rate of ‘DS00_Full’ dataset

for continuous data under normal distribution. While com-
paring accuracy scores, the overall performance of Gaussian

@ Springer

classifier is found to give optimized results under configu-
rations of naive Bayes machine learning. Accuracy obtained

DDoS attack detection with feature engineering and machine learning: the framework and... 777
Table 10 Results of KNN machine learning

Dataset (State of analysis) K -value False positives False negatives True positives True negatives Accuracy (%) Error
DS00_Full (Default) 5 1976 20,192 154,700 137,705 92.9530 0.0705
DS00_Full (Optimized) 10 29 20,390 156,647 137,507 93.5090 0.0649
DSO01_PVal (Default) 5 1547 20,225 155,129 137,672 93.0789 0.0692
DS01_PVal (Optimized) 8 62 20,390 156,614 137,507 93.4985 0.0650
DS02_Chi2 (Default) 5 6761 19,697 149,915 138,200 91.5892 0.0841
DS02_Chi2 (Optimized) 4 29 20,489 156,680 137,375 93.4775 0.0652
DS03_IG (Default) 5 590 20,291 156,086 137,606 93.3621 0.0664
DS03_IG (Optimized) 6 29 20,456 156,680 137,408 93.4880 0.0651
Table 11 Results of NB machine learning

Dataset (State of analysis) Classifier False positives ~ False negatives True positives True negatives ~ Accuracy (%) Error
DSO00_Full (Default) Multinomial NB 62 26,396 156,614 131501 91.5892 0.0841
DS00_Full (Optimized) Gaussian NB 1019 20,258 155,657 137,639 93.2362 0.0676
DSO01_PVal (Default) Multinomial NB 62 26,594 156,614 131,303 91.5263 0.0847
DS01_PVal (Optimized) Gaussian NB 1085 20,291 155,591 137,606 93.2048 0.0680
DS02_Chi2 (Default) Multinomial NB 43,160 82,562 113,516 75,335 60.0341 0.3997
DS02_Chi2 (Optimized) Gaussian NB 1316 39,233 155,360 118,664 87.1098 0.1289
DS03_IG (Default) Multinomial NB 1811 24,581 154,865 133316 91.6102 0.0839
DS03_IG (Optimized) Gaussian NB 2834 20,126 153,842 137,771 92.7012 0.0730

for dataset ‘DS02_Chi2’ with default classifier (Multinomi-
alNB) is less than 85% (threshold criterion of acceptance
under Algorithm 2); hence, this paper discourages Multino-
mialNB classifier for ‘DS02_Chi2’ dataset under naive Bayes
machine learning. However, NB-based machine learning
model for ‘DS02_Chi2’ dataset is possible to obtain for given
data of DDoS problem with optimized classifier (‘Gaus-
sianNB’) as it provides accuracy score of 87.1098%. Table 11
shows machine learning results obtained with default and
given optimized parameter settings for each dataset under
naive Bayes algorithm.

5.3.3 Results with SVM

SVM is a very powerful method of detections in high-
dimensional space. In this analysis, different combinations
of SVM-related parameters are used to find the optimal
response. Under two different kernel functions?, i.e., ‘Radial
Basis Function (RBF)’ and ‘Sigmoid,” four different values
of each of the ‘C’ parameter (SVM’s penalty parameter)
and y (the kernel coefficient) are applied. The values of ‘C’
and ‘y’ parameters examined are (C = 1, 10, 100, 1000)
and (y = 1,0.1,0.01, 0.001). To automate the process of
obtaining the best combination of these parameters, the grid

> Making a change in kernel according to the underlying data is termed
as ‘kernel trick.’

search technique is used in Python. For all tested cases, ‘RBF’
remains the dominant kernel while some changed ‘C’ and ‘y’
values are observed for optimal responses specially in low-
dimensional space of ‘DS02_Chi2’ and ‘DS03_IG’ datasets.
The value y = auto is default state of SVC object in Python.
The term ‘auto’ represents a value equal to 1/ n where ‘n’
is the number of input features in a given dataset. Moreover,
the penalty parameter ‘C’ takes a decreasing trajectory while
the kernel coefficient () increases with reduced number of
features. Table 12 shows machine learning results obtained
with default and given optimized parameter settings for each
dataset under SVM algorithm.

5.3.4 Results with RF

RF is another powerful method of detections via ensemble
approach where a number of decision trees vote for the final
output. In this analysis, different combinations of RF-related
parameters are used to find the optimal response. Under
two different decision tree output criteria, i.e., ‘Gini impu-
rity’ and ‘Entropy,” four different values of ‘n_estimators’
parameter (no. of decision trees behind RF’s final out-
put) are applied. The values of ‘n_estimators’ parameter
examined are (n_estimators = 10, 100, 500, 1000). To auto-
mate the process of obtaining the best combination of these
parameters, the grid search technique is used. For all tested
cases, ‘Entropy’ remains the dominant criterion for opti-

@ Springer

778

M. Aamir, S. M. A. Zaidi

Table 12 Results of SVM machine learning

Dataset (State of analysis) C, y, kernel False positives ~ False negatives ~ True positives True negatives ~ Accuracy (%) Error
DS00_Full (Default) 1, auto, RBF 227 20,357 156,449 137,540 93.4565 0.0654
DS00_Full (Optimized) 1000, 0.1, RBF 29 20,423 156,680 137,441 93.4985 0.0650
DS01_PVal (Default) 1, auto, RBF 1448 20,192 155,228 137,705 93.1208 0.0688
DS01_PVal (Optimized) 1000, 0.1, RBF 29 20,423 156,680 137,441 93.4985 0.0650
DS02_Chi2 (Default) 1, auto, RBF 29,762 16,298 126,914 141,599 85.3579 0.1464
DS02_Chi2 (Optimized) 100, 1, RBF 128 22,865 156,548 135,032 92.6907 0.0731
DS03_IG (Default) 1, auto, RBF 1514 20,291 155,162 137,606 93.0684 0.0693
DS03_IG (Optimized) 10, 1, RBF 29 20,423 156,680 137,441 93.4985 0.0650
Table 13 Results of RF machine learning

Dataset (State of analysis) Decision criterion, False positives False negatives True positives True negatives Accuracy (%) Error

No. of estimators

DS00_Full (Default) Gini, 10 9632 19,301 147,044 138,596 90.8025 0.0920
DS00_Full (Optimized) Entropy, 100 9038 19,235 147,638 138,662 91.0123 0.0899
DS01_PVal (Default) Gini, 10 8774 19,268 147,902 138,629 91.0857 0.0891
DSO01_PVal (Optimized) ~ Entropy, 500 8774 19,235 147,902 138,662 91.0962 0.0890
DS02_Chi2 (Default) Gini, 10 1118 20,291 155,558 137,606 93.1943 0.0681
DS02_Chi2 (Optimized) Gini, 10 986 20,324 155,690 137,573 93.2257 0.0677
DS03_IG (Default) Gini, 10 1448 20,159 155,228 137,738 93.1313 0.0687
DS03_IG (Optimized) Entropy, 100 1547 19,961 155,129 137,936 93.1628 0.0684

mal response except low-dimensional space of ‘DS02_Chi2’
dataset where a larger share of discrete variables shows that
‘Gini impurity’ is suitable for such kind of features. The
default decision criterion ‘Gini impurity’ is a method used by
CART (Classification and Regression Tree) algorithm [47]
of decision tree classification®. It is a measure of misclassifi-
cation frequency an element of the dataset may receive. Gini
impurity of an element with a label ‘j’ can be computed by
the sum of probability p; of label ‘j’ being selected times
the probability of mistake in categorizing that element. Equa-
tion (13) gives the derived computation of gini impurity.

N
Igini =1 — pr (13)
j=1

In Eq. (13), Igny is the gini impurity calculated for a set
of elements having ‘N’ classes where j € {1,2,..., N}.
Table 13 shows machine learning results obtained with
default and given optimized parameter settings for each
dataset under RF algorithm.

© CART is one of the decision tree algorithms. There is a bunch of
others including ID3, C4.5, MARS (multivariate adaptive regression
splines) etc.

@ Springer

5.3.5 Results with ANN

The experiments with ANN include numerous examinations
under various settings. After careful examination and calibra-
tion, it is found that two hidden layers can be used for optimal
response of the network with feature sets under considera-
tion. Therefore, the comparisons are made for artificial neural
networks of one versus two hidden layers for each dataset.
Examinations also reveal that for both types of network
settings (default and optimized), a well-calibrated combi-
nation of number of epochs and batch size can be 500 and
10,000 respectively. Under such configurations, behavior of
one hidden layer versus two hidden layers is analyzed using
ReL U (rectified linear unit) activation function mentioned in
Eq. (10). The output of ReLU function is O for input 0 or less;
otherwise, the output is same as input for positive values. The
number of neurons in first hidden layer is configured to be
d/2 where ‘d’ is the number of input connections from previ-
ous (input) layer. For the only hidden layer in case of default
ANN or first hidden layer in case of optimized ANN, the hid-
den neurons are configured to be 11 and 8 for ‘DS00_Full’
and ‘DSO1_PVal’ as they have 22 and 16 input features,
respectively. For ‘DS02_Chi2’ and ‘DS03_IG’ datasets, the
neurons at first hidden layer are 4 as they both have 7 fea-
tures at input layer (half of 7 is 3.5, so it is decided to take 4

DDoS attack detection with feature engineering and machine learning: the framework and...

779

Table 14 Results of ANN machine learning

Dataset (State of analysis) Hidden layer,

No. of neurons

False positives

False negatives

True positives True negatives Accuracy (%) Error

DS00_Full (Default) Layerl, 11 95 20,390 156,581 137,507 93.4880 0.0651
DSO00_Full (Optimized) Layerl, 11 Layer2, 11 29 20,423 156,680 137,441 93.4985 0.0650
DS01_PVal (Default) Layerl, 8 491 20,357 156,185 137,540 93.3726 0.0663
DSO01_PVal (Optimized) Layerl, 8 Layer2, 8 29 20,489 156,680 137,375 93.4775 0.0652
DS02_Chi2 (Default) Layerl, 4 9533 22,898 147,143 134,999 89.6905 0.1031
DS02_Chi2 (Optimized) Layerl, 4 Layer2, 4 491 27,980 156,185 129,917 90.9493 0.0905
DSO03_IG (Default) Layerl, 4 1481 20,456 155,195 137,441 93.0264 0.0697
DSO03_IG (Optimized) Layerl, 4 Layer2, 4 722 20,423 155,954 137,474 93.2782 0.0672
Feed forward
e e o

Input Neurons *
22

Hidden Layer 1

A
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
!
'

Nz

Input Layer

Interface between input layer and first hidden lazer

s Output Neuron
™ 1

Hidden Layer 2

Output Layer

Interface between last hidden layer and output layer

Backpropagation

Fig.7 ANN architecture for optimized analysis of ‘DS00_Full’ dataset

neurons at the hidden layer). On the other hand, the second
hidden layer in case of optimized ANN for all datasets con-
tains the same number of neurons as the first hidden layer.
These values are driven by careful testing in experimentation
phase. For ANN model, the default and optimized configura-
tions of hidden layers and respective number of neurons for
datasets are applied using ‘Keras’ machine learning library
with “TensorFlow’ in background. The output layer is con-
figured with ‘Sigmoid’ activation for binary classification of
‘Normal’ and ‘DDoS’ classes. ‘Adam’ optimizer governs the
gradient descent, and loss function of ‘binary_crossentropy’
establishes the criterion of finding cost while calculating
accuracies. The initial weights in the network are assigned
‘uniform’ values. Table 14 shows machine learning results
obtained with default and optimized parameter settings of
given values for each dataset under ANN algorithm. Fig-
ure 7 depicts the architecture of ANN for optimized analysis
of DS00_Full dataset which gives the highest accuracy men-
tioned in Table 14.

5.4 k-fold cross-validation

The experimental results are obtained after k-fold cross-
validation, a technique commonly used to ascertain the
accuracy results of machine learning algorithms. In order
to avoid overfitting and validate the right parameter tuning
of an algorithm, k-fold cross-validation is configured with 10
splits (k = 10) and an accuracy score is measured for each of
the 10 rounds with different test data each time. In this paper,
the ranges are defined as thresholds expressed in Algorithm 2
(point ‘b’). An example is taken for the dataset ‘DS00_Full’
where optimized accuracy is 93.5090% under KNN algo-
rithm with ten neighbors. For 10-fold cross-validation, we
get 10 accuracies in return. These accuracies are compared
with the accuracy value of 0.935090, and it is found that the
standard deviation is just 0.65%, whereas the mean accuracy
is just 0.29% above the initially obtained value of 0.935090.
Both these conditions fulfill the criteria given in Algorithm 2;
hence, the accuracy score of 0.935090 is validated. The stan-

@ Springer

780

M. Aamir, S. M. A. Zaidi

dard deviation of more than 5% may indicate that the initially
obtained accuracy is the result of one-time incidental for-
mation of over-fitted training data because high deviations
in accuracies would be observed in validation phase. Also,
the mean value of accuracies more or less than 2% of ini-
tially obtained accuracy may indicate that the validation
phase formulates training splits significantly different from
the split used in initially trained environment. It signifies the
importance of validation phase in the proposed framework
of Fig. 3. If the criteria mentioned in Algorithm 2 (point ‘b’)
is not fulfilled, the steps of optimization and validation are
repeated to check if there is a possibility to meet the criteria
of Algorithm 2. Otherwise, machine learning algorithm is
discouraged for the given dataset and related problem.

5.5 AUC analyses and discussion with comparisons

The evaluation step of proposed framework in Fig. 3 involves
evaluating the accuracies in terms of area under curve (AUC)
with receiver operating characteristic (ROC). It helps avoid
the accuracy paradox, a term which refers to a fact that confu-
sion matrix can provide values of true and false classifications
atasingle operating point [48]. This condition leads to a para-
dox where the given accuracy value may not be valid for other
operating points or changes in the model’s performance. To
avoid accuracy paradox, the ROC graph is plotted between
true positive and false positive rates and AUC statistic pro-
vides real accuracy of the model for varying rates. In order
to make this evaluation acceptable for the proposed frame-
work, AUC accuracies must follow the accuracies calculated
via confusion matrices. If the criteria mentioned in Algo-
rithm 2 (point ‘c’) of evaluation is not fulfilled, the steps of
optimization and validation are repeated to check if it is pos-
sible to meet the criteria of Algorithm 2. Otherwise, machine
learning algorithm is discouraged for the given dataset and
related problem. For comparisons of results, the AUC scores
are compared in two ways. First it is observed how a specific
machine learning algorithm performs for different datasets
(Sect. 5.5.1), and secondly it is analyzed how a particular
dataset carrying significant features is effective to be used
by different algorithms in terms of optimized AUC scores
(Sect. 5.5.2).

5.5.1 Comparison of machine learning algorithms across
datasets

Figures 8, 9, 10, 11 and 12 show AUC scores of var-
ious machine learning algorithms for different datasets
analyzed in this research. It is observed that ‘DS00_Full’
dataset shows the highest accuracy scores for all machine
learning algorithms except RF model. The AUC scores of
‘DSO00_Full’ dataset for KNN, NB, SVM, and ANN models
are 93.5318%, 93.2577%,93.5319%, and 93.5319%, respec-

@ Springer

W ——
;. —
08 |
2
& I
o 06|
2 |
= I
w
o |
Q g4l
o I
2 I
L I DS00_Full = 0.935318
02 : -8~ DS01_PVal = 0935213
| ~#- DS02_Chi2 = 0.935110
I DS03_IG = 0.935214
a0 ¥
00 02 04 06 a8 10

False Positive Rate

Fig.8 AUC analyses of ROC curves for KNN machine learning model
across different datasets

1 e e ey -
o § e

2 '

& I

o 061

2 !

= !

[72]

o I

a o4 !

) [

2 [

= [DS00_Full = 0.932577
02 ! -8~ DS01_PVal = 0.932262

~4- DS02_Chi2 = 0.871545
DS03_IG = 0.927203
00 *
00 02 04 06 08 10

False Positive Rate

Fig.9 AUC analyses of ROC curves for NB machine learning model
across different datasets

10 e e e e e ——
| il
08
3
<
© 06
=2
=
[72]
o
Q o4
[}
=
L= DS00_Full = 0.935319
02 =&~ DS01_PVal = 0.935319
- DS02_Chi2 = 0.927165
o DS03_IG = 0.935319
0o ¥
00 02 04 06 08 10

False Positive Rate

Fig.10 AUC analyses of ROC curves for SVM machine learning model
across different datasets

tively. However, in SVM model, two other datasets, i.e.,
‘DSO01_PVal’ and ‘DS03_IG’ exhibit the same AUC score.
On the other hand, in RF model, the highest score is shown
by ‘DS02_Chi2’ dataset (93.2473%) followed by ‘DS03_IG’
(93.1832%). The overall highest score, i.e., 93.5319% is

DDoS attack detection with feature engineering and machine learning: the framework and... 781

L ———
rT
08 | |}
|
] [|,
[y
' !
o 06 11
2 I
= I
8 i
Q g4 1
o 1
2]
L 1 DS00_Full = 0.910226
02 ,' =& DS01_PVal =0.911069
1 =&~ DS02_Chi2 = 0.932473
I .- DS03_IG = 0.931832
00 *
00 02 04 06 08 10

False Positive Rate

Fig. 11 AUC analyses of ROC curves for RF machine learning model
across different datasets

10 e pE———
08 "7

1}

2

3]

14

© 06

2

=

2]

3

Q o4

[}

=

= DS00_Full = 0.935319
02 -8~ DSO01_PVal =0.935110

-4 DS02_Chi2 = 0.909810
e DS03_IG = 0.933002

00 *

00 02 04 06 08 10
False Positive Rate

Fig.12 AUC analyses of ROC curves for ANN machine learning model
across different datasets

observed for ‘DS00_Full’ dataset with SVM and ANN algo-
rithms, and also for datasets ‘DS01_PVal’ and ‘DS03_IG’
with SVM algorithm. KNN algorithm exhibits the best per-
formance overall as its AUC scores for all datasets remain
above 93%. The scores show that with an approximate differ-
ence of only 0.03% in accuracies, the possible reduction in the
feature set is about 68%, i.e., 22 features of ‘DS00_Full’ ver-
sus 7 features each of ‘DS02_Chi2’ and ‘DS03_IG’ having
minimal performance hit. It is followed by SVM algorithm
where the model is able to retain high scores of accurate
detections while moving from a large dataset in terms of
features (‘DSO0_Full’ with 22 features) to a smaller one
(‘DS03_IG’ with 7 features). However, low-dimensional
datasets, i.e., ‘DS02_Chi2’ and ‘DS03_IG’ are better dealt
by RF model as compared to high-dimensional datasets, i.e.,
‘DSO00_Full’ and ‘DS01_PVal.” The NB model’s Multinomi-
alNB classifier is discouraged for chi-squared-driven dataset
of significant features. This model does not fit well the data of
discrete features even with the optimized GaussianNB clas-
sifier; however, it performs well for another dataset of the

same number of features when more continuous data is car-
ried by the features (AUC score: 87.1545% for ‘DS02_Chi2’
vs. 92.7203% for ‘DS03_IG’). A machine learning model’s
accuracy is heavily dependent on the type of feature values,
i.e., discrete or continuous. It is observed that a model’s accu-
racy is affected as soon as it jumps from ‘DS01_PVal’ dataset
(16 features with more continuous data) to ‘DS02_Chi2’ (7
features with more discrete data) but tries to regain better per-
formance when applied to the ‘DS03_IG’ dataset (7 features
with more continuous data) without a change in dimension-
ality. This fact is obvious from Figs. 9, 10 and 11. In fact,
‘DS03_IG’ is the most promising dataset as its AUC scores
remain competitive with other datasets under all machine
learning models while having the least dimensionality, i.e.,
7 input features. The reason of this competitive performance
even with a small number of features is the fact that all fea-
tures of ‘DS03_IG’ dataset are not only the most significant
but also continuous variables.

5.5.2 Comparison of datasets across machine learning
algorithms

Figures 13, 14, 15 and 16 show AUC scores across various
machine learning algorithms exhibited by different datasets
analyzed in this research. Feature engineering is an important
aspect of proposed strategic framework and applying it aims
to select the most significant variables among the available
features. As a result, the datasets are produced with reduced
number of features. This reduction does not only provide
a list of feature significance related to the problem under
consideration but also helps applying the machine learn-
ing with reduced processing overhead. However, elimination
of insignificant features from a dataset can still produce a
degraded performance which is mostly acceptable due to
slight decrease in accuracies. Still there are features which
negatively impact the detection, and their elimination can
produce enhanced performance of machine learning algo-
rithms. From Figs. 13, 14, 15 and 16, it is observed that the
dataset ‘DSO0_Full’ exhibits the best detection accuracy in
terms of AUC scores with SVM and ANN machine learning
models (AUC score: 93.5319%). Although a comparatively
high number of features introduces more processing over-
head for algorithms, the relevance of features still play its
role toward improved accuracy scores.

The dataset ‘DS01_PVal’ also shows the best AUC score
with SVM machine learning model (AUC score: 93.5319%).
It shows that under the SVM model, dataset ‘DS01_PVal’
has similar detection accuracy as compared to ‘DS00_Full’
dataset but with reduced number of features (22 vs. 16 input
variables). It shows that six (6) most insignificant features
are eliminated from dataset ‘DS01_PVal’ while keeping sim-
ilar level of information for accurate detections by machine
learning algorithms. It is helpful for the algorithms to process

@ Springer

M. Aamir, S. M. A. Zaidi

782
10— 1O e B By L S ey
P o
08 1 08 1
! 1
o 1 2 1
©]
g] v 1
o 06! o 06 1
> I > 1
= 1 = 1
7] | 2 .
1 a
Q o4 ! 04 :
) I
2 I KNN - 0.935318 E 1 KNN — 0.935214
- | - NB - 0032577 : - NB - 00927203
02 : - SVM-0.935319 a2z 4 - SVM--0.935319
I RF - 0.910226 RF --0.931832
! ANN - 0.935319 P ANN - 0.933002
00 ¥ oo |
00 02 04 06 08 10 0o 02 04 06 08 10

False Positive Rate

Fig. 13 AUC analyses of ROC curves for ‘DS00_Full’ dataset across
different machine learning algorithms

10 =
B
1
08 1
1
2 1
o 1
14
o 06 1
2 I
= I
8 1
Q g4 |
) I
2 | KNN - 0.935213
L I -8 NB - 00932262
02 : -4~ SVM--0.935319
| RF - 0.911069
(¥ ANN - 0.935110
00 *
0.0 02 04 06 08 1.0

False Positive Rate

Fig. 14 AUC analyses of ROC curves for ‘DS01_PVal’ dataset across
different machine learning algorithms

10 E—
E====-- _——_—”—_
08 | ——
i
L]
2
& |
o 061
>]
= 1
3 I
Q og !
o]
2 ‘ KNN - 0.935110
L 5 -8~ NB - 0871545
02 o’ - SVM-- 00927165
: RF -- 0.932473
: ANN - 0.909810
00 ¥
00 02 04 06 o8 10

False Positive Rate

Fig. 15 AUC analyses of ROC curves for ‘DS02_Chi2’ dataset across
different machine learning algorithms

same information with reduced processing overhead. AUC
scores shown by ‘DSO1_PVal’ dataset are also close to the
best score under KNN and ANN models, while the perfor-
mance is still promising under NB and RF models too.

@ Springer

False Positive Rate

Fig. 16 AUC analyses of ROC curves for ‘DS03_IG’ dataset across
different machine learning algorithms

The dataset ‘DS02_Chi2’ has 5 discrete feature types out
of 7 total features. This has made the ‘DS02_Chi2’ dataset
different in terms of AUC scores obtained with various
machine learning algorithms as shown in Fig. 15. The best
AUC score of the dataset is 93.5110% obtained with KNN
algorithm followed by the score of 93.2473% shown with RF
model. In fact, the RF model shows its best detection score
for the dataset ‘DS02_Chi2.” The low-dimensional datasets
in this research are better dealt by the RF model as compared
to high-dimensional datasets. It also indicates that the RF
model is better to implement when the considerable amount
of data in a dataset is contained by the features of discrete
data types. While SVM and ANN models also show compet-
itive AUC scores of 92.7165% and 90.9810%, respectively,
the NB model with GaussianNB classifier has the least score
of 87.1545%.

‘DS03_IG’ is the most promising dataset with AUC scores
of more than 93% under four of the five machine learn-
ing algorithms, i.e., KNN, SVM, RF, and ANN. Although
‘DS00_Full” and ‘DS01_PVal’ also exhibit the same level of
detections, but a considerable amount of feature reduction in
‘DS03_IG’ makes it a winner among the others. Hence, this
study not only highlights the importance of information gain
criterion for feature significance, it also shows how similar
detection scores as compared to high-dimensional data are
possible with nearly one-third of the processing overhead.
The best AUC score for ‘DS03_IG’ is obtained with SVM
model (93.5319%) followed by KNN model (93.5214%).
The ANN, RF, and NB algorithms also produce competitive
detection accuracies (93.3002%, 93.1832%, and 92.7203%,
respectively). All of the seven variables with continuous data
in ‘DS03_IG’ represent flow-level features of network traffic.
It highlights the feature engineering efforts of this research
including the elimination of features with domain knowledge
where the flow-level features are given more importance over
packet-level features.

DDoS attack detection with feature engineering and machine learning: the framework and... 783

4
=~ @
R
5 \
5%
< /
B o v
:
S @
a
e
g 89 Dataset
o @ DS00_Full
E @ DSO1_PVal
DS02_Chi2
- DS03_IG
KNN NB SVM RF ANN
ML Model
Fig. 17 Optimized AUC scores of datasets
13 ML Model
® KN
12 NB
= SVM
S 4 RF
2 ANN
T 1
—
£
T
c
>
£ 8
7
.
DSO00_Full DSO1_PVal DS02_Chi2 DS03_IG
Dataset

Fig. 18 Error rates of datasets with optimized settings
5.5.3 Comparison for overall performance

Figures 17 and 18 show that KNN turns out to be the best
algorithm in experimental analyses of this research followed
by SVM, whereas ‘DS03_IG’ is the most promising dataset.
Figure 17 reveals that all datasets provide AUC scores of
more than 93% only with the KNN machine learning algo-
rithm. SVM and ANN are also competitive models where
only ‘DS02_Chi2’ dataset has below 93% AUC scores. How-
ever, SVM model is still better than ANN in terms of AUC
scores. The dataset ‘DS03_IG’ tries to maintain high accu-
racy across various machine learning models. In Fig. 18, itis
shown that minimum errors are observed with KNN model
across various datasets whereas SVM has also low errors
except ‘DS02_Chi2’ dataset. On the other hand, the dataset
‘DS03_IG’ also tries to maintain low errors across different
machine learning algorithms.

5.5.4 Comparison with related work approaches

In Table 15, a comparison of this work is provided with
other related works mentioned in Sect. 2. It is observed that

the detection accuracy of this work is competitive to other
approaches. In addition to this, our work offers more elements
of trustin DDoS attack detections by following the strategy to
avoid generally inbuilt problems of machine-mined data such
as collinearity, multicollinearity and duplication. It proposes
a strategic framework to encompass a thorough treatment of
features followed by the machine learning improvements.

6 Conclusion and future work

In this paper, the problem of DDoS attacks is addressed with
a proposed strategic-level framework to improve machine
learning approach of DDoS detection and mitigation. Appli-
cation layer DDoS attacks are more difficult to detect with tra-
ditional solutions as they appear legitimate at the underlying
layers. The proposed framework in this research includes two
major components, i.e., Feature engineering and Machine
learning with improvements and analyses. Both feature engi-
neering and machine learning are applied on a given DDoS
dataset, and it is emphasized that a strategic framework can
apply feature engineering and machine learning in a com-
prehensive manner to detect DDoS attacks while avoiding
the overfitting and collinearity. Fifteen features are initially
removed with feature elimination under domain knowledge
and flow-level features are prioritized over packet-level fea-
tures. First, a dataset of 22 features is obtained which is called
‘DSO0_Full’ in this paper. From ‘DSO00_Full, three more
datasets, i.e., ‘DSO1_PVal, ‘DS02_Chi2,” and ‘DS03_IG’
are extracted by applying the feature selection methods of p-
value (¢-statistic test), Chi2, and information gain with 16, 7,
and 7 features, respectively. Five supervised machine learn-
ing algorithms, i.e., K-nearest neighbors (KNN), naive Bayes
(NB), support vector machines (SVM), random forest (RF),
and artificial neural network (ANN) are applied on the four
datasets to detect DDoS attacks. The classification metrics
include accuracy, true\false positives, true\false negatives,
and error. Each machine learning model is first applied with
default parameters and then with optimized parameter set-
tings for given sets of values to obtain the optimal response.
After k-fold cross-validation with k = 10, the analysis is
made with area under curve (AUC) calculations of receiver
operating characteristic (ROC) curve to evaluate optimized
accuracies. ‘DS00_Full’ dataset shows the highest accuracy
scores for all machine learning algorithms except RF model.
The highest AUC score of ‘DS00_Full’ dataset is 93.5319%
for SVM and ANN models. The KNN algorithm exhibits
the best performance overall followed by SVM algorithm,
whereas low-dimensional data is better analyzed by the RF
algorithm. The NB model’s multinomial classifier is discour-
aged for analysis of chi-squared-driven dataset due to the
reason that model’s accuracy remains below the threshold
of acceptance as per the criterion set in this research. How-

@ Springer

784

M. Aamir, S. M. A. Zaidi

Table 15 Comparison with related works

References Classification Accuracy Strengths Limitations
[28] ANN (multilayer perceptron) 98.63% Use of other classifiers, i.e., NB and RF Significant need of data
for comparison preprocessing and cleansing to
avoid collinearity
[17] ANN (multilayer perceptron) 98.30% Ensemble method of feature selection, Longer process of feature selection
and use of other classifiers due to various techniques for
ensemble
This work KNN algorithm (showing the 93.51% Supervised learning with various Tedious data preprocessing to
highest accuracy under classifiers (KNN, NB, SVM, RF, and obtain significant features
optimized analysis) ANN) under proposed strategic-level
framework, and focused efforts to avoid
overfitting and obtain significant
features through feature engineering
[16] DDoS Characteristic Features 91.70% Extraction of relevant consistent features It can be outperformed by simple
and Consistency based Subset and less computation time statistical methods of feature
Evaluation selection
[24] Neural network 89.38% Automatic feature extraction with RNN, Stability at higher calibration, i.e.,

and large dataset for analysis with ANN

40 neurons

ever, the NB model can still be used with Gaussian classifier
to get optimized accuracy. ‘DS03_IG’ is the most promis-
ing dataset as its AUC scores remain competitive with other
datasets under all machine learning experiments. A small set
of features of this dataset also makes it a good choice for
substantial reduction in the processing overhead.

In future, more experiments may be conducted to include
diversity of the machine learning algorithms, e.g., super-
vised, unsupervised, and semi-supervised models across
multiple DDoS-related datasets. Also, the feature selection
is a wide open research area and we believe that hybrid meth-
ods of feature selection using various approaches of statistical
tools and meta heuristics such as random search or genetic
algorithm can be the most effective way of feature selection
for DDoS attack detections.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Mitrokotsa, A., Douligeris, C.: Denial of Service Attacks, Network
Security: Current Status and Future Directions, pp. 117-134. Wiley,
Hoboken (2006)

2. Zhang, L., Yu, S., Wu, D., Watters, P.: A survey on latest botnet
attack and defense. In: 10th International Conference on Trust,
Security and Privacy in Computing and Communications (Trust-
Com), IEEE, pp. 53-60 (2011)

@ Springer

10.

11.

12.

13.

14.

15.

16.

. KDD Cup

. State of the Internet Security—Q4 2017, Report from Akamai, 4(4),

(2018)

. Nagesh, K., Sumathy, R., Devakumar, P., Sathiyamurthy, K.: A

survey on denial of service attacks and preclusions. In: International
conference on informatics and analytics, p. 118 (2016)

1999 Dataset. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

. CAIDA DDoS Attack 2007 Dataset. http://www.caida.org/data/

passive/ddos-20070804_dataset.xml

. CAIDA Anonymized Internet Traces 2008 Dataset. http://www.

caida.org/data/passive/passive_2008_dataset.xml

. Tavallaece, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed

analysis of the KDD CUP 99 data set. In: Symposium on Computa-
tional Intelligence for Security and Defense Applications (CISDA),
IEEE, pp. 1-6 (2009)

. ISOT Botnet Dataset. https://www.uvic.ca/engineering/ece/isot/

datasets/index.php

The Honeynet Project. http://www.honeynet.org/chapters/france
Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 31(3), 357-374 (2012)
Moustafa, N., Slay, J.: UNSW-NBI15: a comprehensive data set
for network intrusion detection systems (UNSW-NB15 network
data set). In: Military Communications and Information Systems
Conference (MilCIS), pp. 1-6 (2015)

Gao, Y., Feng, Y., Kawamoto, J., Sakurai, K.: A machine learning
based approach for detecting DRDoS attacks and its performance
evaluation. In: 11th Asia Joint Conference on Information Security
(AsialCIS), pp. 80-86 (2016)

Singh, N.A., Singh, K.J., De, T.: Distributed denial of service attack
detection using Naive Bayes classifier through info gain feature
selection. In: International Conference on Informatics and Analyt-
ics, p. 54 (2016)

Azab, A., Alazab, M., Aiash, M.: Machine learning based botnet
identification traffic. In: Trustcom/BigDataSE/I SPA, 1IEEE, pp.
1788-1794 (2016)

Yusof, A.R., Udzir, N.I., Selamat, A., Hamdan, H., Abdullah, M.T.:
Adaptive feature selection for denial of services (DoS) attack. In:
IEEE Conference on Application, Information and Network Secu-
rity (AINS), IEEE, pp. 81-84 (2017)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml
https://www.uvic.ca/engineering/ece/isot/datasets/index.php
https://www.uvic.ca/engineering/ece/isot/datasets/index.php
http://www.honeynet.org/chapters/france

DDoS attack detection with feature engineering and machine learning: the framework and...

785

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Singh, K.J., De, T.: Efficient classification of DDoS attacks using an
ensemble feature selection algorithm. J. Intell. Syst (2017). https:/
doi.org/10.1515/jisys-2017-0472

Khan, S., Gani, A., Wahab, A.W.A., Singh, P.K.: Feature selection
of Denial-of-Service attacks using entropy and granular computing.
Arab. J. Sci. Eng. 43(2), 499-508 (2018)

Alejandre, F.V., Corts, N.C., Anaya, E.A.: Feature selection to
detect botnets using machine learning algorithms. In: Interna-
tional Conference on Electronics, Communications and Computers
(CONIELECOMP), pp. 1-7 (2017)

Al-Hawawreh, M.S.: SYN flood attack detection in cloud envi-
ronment based on TCP/IP header statistical features. In: 8th
International Conference on Information Technology (ICIT), pp.
236-243 (2017)

Li, J., Liu, Y., Gu, L.: DDoS attack detection based on neural
network. In: 2nd International Symposium on Aware Computing
(ISAC), pp. 196-199 (2010)

Agrawal, PK., Gupta, B.B., Jain, S., Pattanshetti, M.K.: Estimat-
ing Strength of a DDoS Attack in Real Time Using ANN Based
Scheme, Computer Networks and Intelligent Computing, pp. 301-
310. Springer, Berlin (2011)

Gupta, B.B., Joshi, R.C., Misra, M., Jain, A., Juyal, S., Prabhakar,
R., Singh, A K.: Predicting Number of Zombies in a DDoS Attack
Using ANN Based Scheme, Information Technology and Mobile
Communication, pp. 117-122. Springer, Berlin (2011)

Bansal, A., Mahapatra, S.: A comparative analysis of machine
learning techniques for botnet detection. In: 10th International Con-
ference on Security of Information and Networks, pp. 91-98 (2017)
Lu, L., Feng, Y., Sakurai, K.: C&C session detection using random
forest. In: 11th International Conference on Ubiquitous Informa-
tion Management and Communication, p. 34 (2017)

Zekri, M., El Kafhali, S., Aboutabit, N., Saadi, Y.: DDoS attack
detection using machine learning techniques in cloud computing
environments. In: 3rd International Conference of Cloud Comput-
ing Technologies and Applications (CloudTech), pp. 1-7 (2017)
Yuan, X., Li, C., Li, X.: DeepDefense: identifying DDoS attack via
deep learning. In: International Conference on Smart Computing
(SMARTCOMP), IEEE, pp. 1-8 (2017)

Alkasassbeh, M., Al-Naymat, G., Hassanat, A.B., Almseidin, M.:
Detecting distributed denial of service attacks using data mining
techniques. Int. J. Adv. Comput. Sci. Appl. 7(1), 436-445 (2016)
Singh, K., Singh, P, Kumar, K.: Application layer HTTP-GET
flood DDoS attacks: research landscape and challenges. Comput.
Secur. 65, 344-372 (2017)

Tripathi, N., Hubballi, N.: Slow rate denial of service attacks
against HTTP/2 and detection. Comput. Secur. 72,255-272 (2018)
Jonker, M., King, A., Krupp, J., Rossow, C., Sperotto, A., Dainotti,
A.:Millions of targets under attack: a macroscopic characterization
of the DoS ecosystem. In: Internet Measurement Conference, pp.
100-113 (2017)

Aamir, M., Zaidi, M.A.: A survey on DDoS attack and defense
strategies: from traditional schemes to current techniques. Inter-
discip. Inf. Sci. 19(2), 173-200 (2013)

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Shakeel, F., Sabhitha, A.S., Sharma, S.: Exploratory review on class
imbalance problem: an overview. In: 8th International Conference
on Computing, Communication and Networking Technologies
(ICCCNT), pp. 1-8 (2017)

Idhammad, M., Afdel, K., Belouch, M.: Semi-supervised machine
learning approach for DDoS detection. Appl. Intell. 48, 1-16
(2018)

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H.,
Bing, G.: Learning from class-imbalanced data: review of methods
and applications. Expert Syst. Appl. 73, 220-239 (2017)

Miller, S., Busby-Earle, C.: The role of machine learning in botnet
detection. In: 11th International Conference for Internet Technol-
ogy and Secured Transactions (ICITST), pp. 359-364 (2016)
Kirubavathi, G., Anitha, R.: Botnet detection via mining of traffic
flow characteristics. Comput. Electr. Eng. 50, 91-101 (2016)
Osanaiye, O., Choo, K.-K.R., Dlodlo, M.: Analysing feature selec-
tion and classification techniques for DDoS detection in cloud. In:
Proceedings of Southern Africa Telecommunication (2016)
Larose, D.T., Larose, C.D.: k-Nearest neighbor algorithm. Discov-
ering Knowledge in Data: an Introduction to Data Mining, 2nd edn,
pp. 149-164. John Wiley & Sons (2014)

Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst.
14(1), 1-37 (2008)

Suthaharan, S.: Support Vector Machine, Machine Learning Mod-
els and Algorithms for Big Data Classification, pp. 207-235.
Springer, Berlin (2016)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
Nielsen, M.A.: Neural Networks and Deep Learning. Determina-
tion Press (2015). http://neuralnetworksanddeeplearning.com/
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural net-
works. In: 14th International Conference on Artificial Intelligence
and Statistics, pp. 315-323 (2011)

scikit-learn: Data science library for Python. https://pypi.org/
project/scikit-learn/

TensorFlow: Open source ML platform. https://www.tensorflow.
org/

Loh, W.-Y.: Classification and regression trees. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 1(1), 14-23 (2011)

Bradley, A.P.: The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognit. 30(7),
1145-1159 (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1515/jisys-2017-0472
https://doi.org/10.1515/jisys-2017-0472
http://neuralnetworksanddeeplearning.com/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/scikit-learn/
https://www.tensorflow.org/
https://www.tensorflow.org/

	DDoS attack detection with feature engineering and machine learning: the framework and performance evaluation
	Abstract
	1 Introduction
	2 Related work and analysis
	2.1 Literature review
	2.2 Research gap

	3 Proposed framework and research approach
	3.1 Strategic-level framework
	3.2 Research approach

	4 Feature engineering
	4.1 Data preprocessing
	4.1.1 Feature elimination and adjustment
	4.1.2 Data normalization and full dataset `DS00_Full'

	4.2 Feature selection
	4.2.1 Backward elimination
	4.2.2 Chi-square test
	4.2.3 Information gain test

	5 Performance evaluation with machine learning
	5.1 Machine learning models
	5.1.1 K-nearest neighbors
	5.1.2 Naive Bayes
	5.1.3 Support vector machine
	5.1.4 Random forest
	5.1.5 Artificial neural network

	5.2 Improvements and analyses
	5.2.1 Optimization
	5.2.2 Validation
	5.2.3 Evaluation

	5.3 Experimental results
	5.3.1 Results with KNN
	5.3.2 Results with NB
	5.3.3 Results with SVM
	5.3.4 Results with RF
	5.3.5 Results with ANN

	5.4 k-fold cross-validation
	5.5 AUC analyses and discussion with comparisons
	5.5.1 Comparison of machine learning algorithms across datasets
	5.5.2 Comparison of datasets across machine learning algorithms
	5.5.3 Comparison for overall performance
	5.5.4 Comparison with related work approaches

	6 Conclusion and future work
	References

