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Abstract
One of the most important goals in an organization is to have risks under an acceptance level along the time. All organizations
are exposed to real-time security threats that could have an impact on their risk exposure levels harming the entire organization,
their customers and their reputation. New emerging techniques, tactics and procedures (TTP) which remain undetected, the
complexity and decentralization of organization assets, the great number of vulnerabilities proportional to the number of new
type of devices (IoT) or still the high number of false positives, are only some examples of real risks for any organization.
Risk management frameworks are not integrated and automated with near real-time (NRT) risk-related cybersecurity threat
intelligence (CTI) information. The contribution of this paper is an integrated architecture based on the Web Ontology
Language (OWL), a semantic reasoner and the use of Semantic Web Rule Language (SWRL) to approach a Dynamic
Risk Assessment and Management (DRA/DRM) framework at all levels (operational, tactic and strategic). To enable such
a dynamic, NRT and more realistic risk assessment and management processes, we created a new semantic version of
STIX™v2.0 for cyber threat intelligence as it is becoming a de facto standard for structured threat information exchange. We
selected an international leading organization in cybersecurity to demonstrate new dynamic ways to support decision making
at all levels while being under attack. Semantic reasoners could be our ideal partners to fight against threats having risks under
control along the time, for that, they need to understand the data. Our proposal uses an unprecedented mix of standards to
cover all levels of a DRM and ensure easier adoption by users.
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1 Introduction

Motivation
Current frameworks and methodologies for risk assess-

ment (RA) processes [1,2] follow an iterative approach in
which a partial snapshot of the organization assets and busi-
ness processes is periodically taken for the estimation of
its risk exposure and it is primarily based on expert and
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subjective theories. Risk management (RM) and its counter-
measures, are also identified during these periodical reviews
with the intent to keep the risk below an acceptable level.

On the other hand, cyberthreat landscape and the attack
surface of any organization change constantly. Then, its cor-
porate risk level (which is based on probability and potential
impact of such threats) changes too. This real and dynamic
behavior renders these legacy frameworks and methodolo-
gies highly ineffective and unreliable for any organization or
risk analyst.

None of probability and impact variables used for risk
estimation can depend just on a specific person experience.
Experience is relevant and necessary but it is not enough, and
we should take into account the real threats in order to address
them by investing in countermeasures as earlier as possible
at the same time wemeasure their effectiveness. There is just
one reality of an organization but current approaches, even by
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international recognized organizations in the cybersecurity
arena, are not addressing RA/RM processes by considering
NRT (near real time) threats.

It can be worse because of the adoption of the Internet of
Everything (IoE) as it multiplies the number of devices, data,
connections and processes as never expected. Themore num-
ber of assets to protect, the larger attack surface, so increasing
automation is encouraged. It does imply a more complex and
heterogeneous context. Discovery protocols and processes
play an important role; however, they lack of standardiza-
tion.

Unintentional incidents might increase as well, while
more complex contexts are considered. New risk measures
have to be included during change management processes in
order to prevent either unintentional or intentional incidents
before they happen. At the same time, a small cybersecurity
flaw is usually enough for an attacker to success. Further-
more, it can be easier for an attacker when such a flaw is
not part of the RA/RM scope, as it could lack of specific
countermeasures.

As an example, social engineering attacks are based on
people cheating other people in order to overcome specific
countermeasures of the organization.An attacker can directly
get access to a specific password during a phone call with the
victim, and this is usually easier than launching a specific
cyberattack. The victim will simply provide it to the attacker
if it supposes to be talking to the IT admin or any other
trusted person. Other example is to bypass the perimeter by
providing a malicious USB stick outside of the perimeter to
a victim, who will potentially connect it inside the perimeter
despite all efforts and investments made by the organization
at the perimeter level.

In our case, a top manager (with enough access rights
to classified data) is usually reading a specific third-party
news Web site on a daily basis. Web surfing to these exter-
nal systems is not part of the organization RA/RM scope.
Then, despite all efforts at the perimeter and risk man-
agement countermeasures, a watering hole attack could
affect not only the victim data and its laptop but also
any data accessible by the victim like the classified data.
Furthermore, usually risk assessments (as demonstrated in
our work by the example of an international lead orga-
nization), are not updated dynamically once a security
event, an attack or an incident is detected. RA/RM pro-
cesses are usually disconnected from incident handling
or from any other real-time cybersecurity threat intelli-
gence system. It also implies limitations to have more
effective prevention safeguards, better detection mecha-
nisms and more real ROI (return of investment) calculations
over safeguards.

On the other hand, cyber threat intelligence domain has its
own challenges as well. Until today there is an asymmetric
battle, common vendors try to fight against the unknown by

using products that were designed only to fight the known
threats, that is, using IoCs (indicators of compromise) of
threats. At the same time, there is a need of a common lan-
guage as most vendors use vendor specific taxonomies along
their data models. Sometimes, the reason provided is related
to efficiency; however, all vendors realized the importance
of information sharing as they cannot fight alone against
increasing unknowns. They realized that having additional
and reliable information, coming from any other partner or
external source, will benefit their own customers. Their own
intelligence data will be then enriched by additional and
external data. In order to share data efficiently, there is a
need of a common language, if possible, based on standards
like STIX™.

IoCs (indicators of compromise) like hashes, IP addresses,
domains and vulnerabilities are in the bottom part of the
“PyramidofPain” [3]whichmeans that, if filteredor blocked,
the threat actor will easily overcome those filters by simple
tasks. On the other hand, we would be in the top of the pyra-
mid when our defense is based on filtering the TTP of the
attack. Thatwill cause enough “pain” to the attacker, that is, if
our measures are very difficult to overcome by the attacker,
it will certainly decide to give up the attack, or at least it
will have to completely change the whole TTP which is a
complex and difficult task and it can have high associated
costs. If vendors are responding to attacks by blocking cer-
tain hashes, IP or domains, attackers will make lateral and
easy movements to change such known artifacts into new
(unknown) ones. It is quite easy for threat actors to modify
such variables. If we really want threat actors to give up, we
need to force them to change their TTP (techniques, tactics
and procedures). Then, solutions should be focused to filter
sequences, patterns and behaviors instead of static IoCs
(indicators of compromise).

Threat intelligence specification drafts like CybOX™,
STIX™orTAXII™byOASIS, between others, are becoming
de facto standards with great involvement from the commu-
nity willing to share threat data. Current implementations of
such protocols evolved from XML schema to JSON format
in v2.0 [4]; however, their authors are proposing a potential
future research direction into amore expressive standard (like
semantic RDF/OWL mentioned at implementations’ section
of [5]) as there are still important limitations to describemore
complex concepts like TTP (tactics, techniques and proce-
dures) [6], campaigns [7] or incidents [8], between others.

Information sharing nowadays is more than just a proac-
tive individual initiative; as an example, the Directive on
Security of Network and Information Systems (the NIS
Directive) [9] was adopted by the European Parliament on
2016, July the 6th. In its Communication of 2016, July the
5th, the European Commission encourages member states to
enhance cross-border cooperation in case of a major cyber-
incident. The directive establishes a baseline for a formal
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cooperation between member states and beyond; however,
confidentiality, data protection and national security must
be guaranteed, while incident information is being shared
between interested parties. National Competent Authori-
ties and/or CSIRTs (Computer Security Incident Response
Teams) are empowered by the directive to assess essential
services operators and digital service providers risk level
exposure. They are also forced to notify relevant incidents
as a mandatory legal requirement. The directive is also open
for voluntary information sharing to other types of organiza-
tions in case of significant impacts caused by cyberattacks.

With regard to standardization, article 19 of the direc-
tive promotes convergent implementation without imposing
or discriminating in favor of the use of a particular type of
technology. It encourages the use of European or interna-
tionally accepted standards and specifications. Now, being
information sharing mandatory, the same cybersecurity con-
cepts at European level (related to risk and threat intelligence
domains) are probably in risk of not having the same under-
standing around the globe.

In this work, we propose a mix of 3 standards to overcome
all described limitations: STIX™ [5] as an industry-driven
standard, as well as OWL [10] and SWRL [11] to overcome
all semantic expressiveness and limitations of STIX [6–8].
We consider that if our proposal is based on standards, it will
be easier to implement and deploy by several organizations
in the future.

Semantic ontology [12], supported by scientific language
researchers as well as the World Wide Web Consortium
(W3C), is a standard solution to create formal models, defi-
ning concepts, domains and relationships (even complex
ones) guaranteeing unequivocal meaning.

They are considered building blocks for semantic infe-
rence [13], which is a mechanism to discover new relation-
ships, to automatically analyze the content of the data and
to manage knowledge. These inference-based techniques are
also important in discovering possible inconsistencies in the
(integrated) data. The role of ontologies is to help data inte-
gration when, for example, ambiguities may exist on the
terms used in the different datasets, or when a bit of extra
knowledge may lead to the discovery of new relationships.
Consider, for example, the application of ontologies in the
field of health care. Medical professionals use them to re-
present knowledge about symptoms, diseases and treatments.
Pharmaceutical companies use them to represent information
about drugs, dosages and allergies. Combining this know-
ledge from the medical and pharmaceutical communities
with patient data enables a whole range of intelligent appli-
cations such as decision support tools that search for possible
treatments, systems that monitor drug efficacy and possible
side effects, and tools that support epidemiological research.

We selected theOWLWebOntologyLanguage [10]which
is designed for the use of applications that need to process the

content of information instead of presenting information to
humans. OWL facilitates a greater machine capacity of inter-
pretation of Web content than the one supported by XML,
RDF and RDF schema (RDF-S). It is because it provides
additional vocabulary along with formal semantics. OWL
has three increasingly expressive sublanguages: OWL Lite,
OWL DL and OWL Full.

Semantic Web needed a separate language due to the
nature of its applications. Interoperability is one of the pri-
mary goals of the Semantic Web, and there is a significant
interest in its standardization.

The goal of sharing rule bases and processing them with
different rule engines has resulted in RuleML, SWRL,Meta-
log, and ISOProlog, and other standardization efforts. One of
the key steps to rule interoperability on theWeb is SWRL[11]
which was designed to be the rule language of the Semantic
Web. SWRL is based on a combination of the OWL DL and
OWL Lite sublanguages of the OWL Ontology Web Lan-
guage, the Unary/Binary Datalog (Datalog is a query and
rule language for deductive databases that syntactically is
a subset of Prolog) and Sublanguages of the Rule Markup
Language.

SWRL permits users to write hornlike rules expressed in
terms of OWL concepts in order to reason about OWL indi-
viduals. The rules can be used to get new knowledge from
already existing OWL knowledge bases. The SWRL specifi-
cation does not impose restrictions on how reasoning should
be performed with SWRL rules. Thus, developers are free to
use a variety of rule engines to reason with the SWRL rules
stored in an OWL knowledge base.

In SWRL [11] each rule has an antecedent (body) and a
consequent (head). Once all conditions in the antecedent are
verified, all the consequent conditions are also fulfilled.

“antecedent -> consequent”
As an example, in the following SWRL rule:

hasParent(?x1,?x2) AND hasBrother(?x2,?x3) −>
−> hasUncle(?x1,?x3)

If two individuals ?x1 and ?x2 have a relationship where
?x1 has a parent ?x2 and, at the same time, ?x2 has a brother
?x3, then ?x1 will have an uncle which is ?x3.

From this rule, if John has Mary as a parent and Mary has
Bill as a brother, then John has Bill as an uncle.

Variables used in consequent (in our case: ?x1, ?x3) have
to be defined in antecedent.

Atoms in SWRL can be of the form C(x), P(x,y),
sameAs(x,y) or differentFrom(x,y), where C is an OWL
description, P is an OWL property, and x,y are either vari-
ables, OWL individuals or OWL data values.

In SWRL [11], there are different types of atoms to express
different meanings:
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– belonging to an instance (a variable can be used instead)
to a class extension,

– a literal to a data type listed in OWL DL,
– a relation between two instances of object type through
a property of type ObjectProperty,

– relationship between a copy of type object (in the subject
position) and a literal (in the object position) through a
property of type DatatypeProperty,

– or equality and inequality between two copies.

SWRL [11] increases the OWL expression ability to define
rules and restrictions It includes a high-level abstract syn-
tax for conditional rules (Horn-like rules) in both the OWL
DL and OWL Lite sub languages of OWL. SWRL allows
defining complex conditions to be fulfilled in the antecedent
of the rules, through the built-ins, the AND operator and the
use of atoms. The use of variables in atoms allows defining
constraints that are not possible in RDF or in OWL.

Taking into account that we developed the complete
ontology version of STIX™v2.0 as well as a complete
DRM ontology, there are several options to create enriched
antecedent (body) and enriched consequent (head) rules as
seen in this work.

Reasoners [14] are tools than can perform automatic and
continuous reasoning tasks like inferencing, deriving new
facts from existing ontologies and guaranteeing data consis-
tency. They are based onRDF,OWL [10] or some rule engine
like SWRL [11].

We selected Pellet incremental reasoner [15] for our work,
based on Ontology Web Language (OWL) and SWRL to
manage all our cybersecurity threat intelligence and risk data.

Interoperability, standardization, expressiveness as well
as the need of automation are some of our reasons to pro-
pose a model based on ontologies to either minimize the
impact of different threat and risk management interpreta-
tions among different countries; at the same time, it enables
effective automation via machine to machine communica-
tion.

Related work Since 2007, different authors have been
investigating the usage of ontologies for risk domain.

It is the case of Herzog et al. [16] where authors define a
generic security domain ontology specified in OWL which
coversmost of the aspects of an information security domain.
It provides a detailed vocabulary as well as it supports rea-
soning capabilities. It is built on classical risk assessment
concepts: asset class, threat class, vulnerability class, coun-
termeasure class, security goal class, defense strategy class.
Authors provide with some detailed subclasses and relation-
ships between them.

Fenz et al. in [17] contribute with ontologies for a quan-
titative risk analysis in which authors visualize the damage
caused by specific threats, outage costs and the recovery time.
Running the programwith added safeguards shows their ben-

efits and offers objective data for decision making: which
safeguards to implement and to avoid installing countermea-
sures that are not cost-effective. Authors thus justify the need
to have a security ontology to clarify themeaning and interde-
pendence of unambiguous IT security relevant terms which
then can be used to facilitate qualitative risk analysis and
decision processes.

Fenz in [18] contributes with ontologies to define IT
security metrics. Author plans to align it with ISO 27004
standards and to apply it in real-world audit scenarios as
well as to go further in the degree of automation.

Fenz et. al. in [19] integrate an ontological information
security concept in risk-aware business processmanagement.
The ontology is based on NIST, and authors provide threat,
vulnerability and control sub-ontologies. Authors propose
to improve and extend the threat classification in order to
consider the threat for human life as the main priority in case
of any risk. In addition to this, supplemental information
to be considered by the ontology can provide valuable and
essential details for decision makers.

More recent work like Villagra et al. [20] is used to pro-
pose amodel based on ontologies to integrate and share alerts
between different Security Information Management Sys-
tems.

Villagra et al. [21] propose an Automated Intrusion
Response System (AIRS) based on ontologies, that is, to use
reasoning to select optimum responses. The systemwill infer
the optimum responses at network level (e.g., intrusion pre-
vention systems). This time, they work at network domain.

Obrst et al. [22] introduce a proposed ontology for cyber-
security, especially as an extension of MAEC (Malware
Attribute and Enumeration Characterization). Authors use
as a reference the Diamond Model of Malicious Activity.

Singapogu et al. [23] describe a proposed ontology for
making enterprise risk assessment by supporting the IT secu-
rity risk analysis process.

Erbacher [24] developed a packet-centric ontology named
PACO which allowed them to represent and capture the
atomic elements of network communication, i.e., packets and
sequences of packets. It is a proposed model as a basic for
more holistic approaches.

Syed et al. [25] worked on an integration between
STIX™and ontologies for situational awareness which is a
very interesting approach. They demonstrated the benefits
for different use cases (vulnerabilities associated with PDF
readers, suggestion of similar SW, etc.) as a very interesting
contribution, for example, to check the impact of changing
vendors.

With regard to querying the data, some approaches [26,27]
suggest semantic, but they are still semantic-agnostic nor
using standards.

Meszaros et al. in [28] propose a framework for online
service cybersecurity risk management applied to a large
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enterprise. The risk model is providing simplicity to ma-
nage by either providers or consumer’s viewpoints. It is also
aligned with standards [1,2].

One of the most recent as well as interesting works is
the work of Qamar et al. [29]. Authors implemented the
ontologyversionofSTIX™(version1.X), togetherwithCVE
and network ontologies to build STIX analyzer, a framework
to perform data-driven analytics for threat intelligence and
information sharing. It is based on known shared and threat
data from threat repositories. One of its main use cases is
working on attribution. Authors also provide a way to simu-
late and calculate some risks based on exposure levels. It is
not focused on leveraging an organization threat intelligence
data having a near-real-time detection, protection and risk
management.

We propose a complete dynamic risk management frame-
work compatible with any widespread risk assessment and
management standard. We also provide the needed expres-
sivity and granularity for risk management frameworks, for
example, considering the differences between the likelihood
of threats based on knowledge, access rights and behaviors of
each of our users. Our proposal is also focused on behavioral
detection of new and still unknown threats (when IOCs are
still not available in any intelligence repository or feed) and
complex TTP behaviors. We also work with the new version
of STIX™2.0 which has several improvements from version
1.X, like an integration between CyBox™and STIX™.

Poolsappasit et al. in [30] proposed a very interest-
ing dynamic risk management model based on Bayesian
attack graphs, using conditional probabilities to encode the
contribution of different security conditions during system
compromise. They estimate an organization security risk
from different vulnerability exploitations based on the met-
rics defined in the Common Vulnerability Scoring System
(CVSS) [31].

Mozzaquatro et al. in [32] provide an interesting approach
based on some of our building blocks like OWL, SWRL and
a reasoner for detecting, identifying and classifying vulnera-
bilities (or bad configurations) of IoT devices. They propose
3 layers (design, run time and an integration layer). The
reasoner is used to propose specific measures to improve
vulnerabilities or bad configurations (e.g., if a WEP con-
fig is detected, then it is best to use WPA2). At the same
time, authors use signature matching sensors and IMDEF
format. However, it is not oriented to a risk assessment or
management framework like our work, and it can potentially
be connected with our framework to benefit from it. At the
same time, our proposal goes beyond IoT, vulnerabilities and
IMDEF. We implemented the whole STIX™ spec draft cre-
ating its ontology version to cover as much types of threats
as possible leveraging from that standard draft. We also use
STIX™ along the whole system (sensors work, understand
and deliver STIX™ format data). We also propose a fully

integrated domain of STIX™ threat and the risk domain. In
our case, using SWRL and the reasoner we are able to use it
for detection at sensors level, but we are also able to detect
malicious patterns without knowledge of specific signatures.
We create rules based on SWRL following a certain pattern
to make reasoning proposals within risk management and
CTI domains once those patterns have been detected. As a
future research direction, authors in [32] propose the usage
of artificial intelligence and Bayesian networks to overcome
the limited detection capabilities of signature-based match-
ing sensors. As demonstrated in our work, we consider that
ontologies, SWRL and reasoners can be used together with
STIX™ to handle the needed expressiveness to detect pat-
terns of unknown IOCs.

Despite all references, no one is providing a solution
to have a near-real-time dynamic risk framework based on
dynamic threat detection. Even all of them are based on threat
data (mostly IOCs), but they are not based on patterns or
behaviors. Semantics has been used in some of the refer-
ences provided even in very recent works as a good solution
for the current lack of expressiveness.

Both domains need to be connected (cybersecurity threat
intelligence and risk domains) completely, and the connec-
tion should be based on standards to enable risk and threat
information sharing.

By using and developing the entire STIX™new version 2
in OWL format, we are promoting the widespread industry-
driven taxonomy for threats but in its semantic version to
overcome their limitations with regard to expressiveness [5–
8].

Inference [13] by our Pellet reasoner [15] will enable
automatic threat and risk data discovery. At the same time,
the usage of SWRL [11] rules will also enable the usage of
extended and enriched algorithms.

As an example, we could provide the automation needed
to detect unknown threats based on patterns like detect-
ing any technique, tactic and procedure (TTP) [6] with
enough expressivity. This kind of detection techniques will
go beyond current approaches based on known IoCs (indica-
tors of compromise). At the same time a detection is done,
the systemwill infer risk re-calculations dynamically. SWRL
rules will be able to give solution to any type of algorithm,
and it can be a cybersecurity threat intelligence algorithm, a
risk domain algorithm or a mixed CTI-risk one.

By using SWRL [11], we will also simplify the creation
of either threat or risk algorithms specially for non technical
people. A one-day training on domain ontologies and the
usage of SWRLwill be enough.Until today, thosewho create
algorithms needed development skills [33].

Approach and results
Our approach is based on OWL ontologies [10] and

Semantic Web Rule Language (SWRL) [11] as seen, for
example, in Figs. 1 and 3, respectively. It provides a coherent
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Fig. 1 Ontology representation of our integrated (OWL and STIX™based) cyber threat intelligence and dynamic risk management architecture,
e.g., CybersecurityExpert User instance, its data access, personal computer, CyberObservables, user-related NetworkTraffic related to a malicious
dropper

and integrated solution to the needed expressiveness of such
concepts and rules but also to inference [13] new knowledge.
They could also resolve the lack of interoperability between
existing risk management frameworks and methodologies
under a common language and a common understanding in
order to expand risk context into a global and more realistic
picture.

Ontologies [12] are an explicit and formal way to repre-
sent concepts, their meaning and their relationships. Explicit
because it defines concepts as classes, properties, relation-
ships, functions, taxonomies, axioms as well as rules and
restrictions. It is formal because it is defined by a language,
which is interpretable by machines. It is a conceptualization,
because it is an abstract model for a simplified view of the
domain to be represented (e.g., structure). It is also shared by
the community for consensus.

By connecting both domains (risk and cyber threat intelli-
gence) semantically, we demonstrate the ability to dynam-
ically assess organizational risks based on near-real-time
(NRT) threat data.

We propose a model based on layers (data, business logic,
services/applications and visualization) as well as to inte-
grate both domains and ontologies to approach both domains
simultaneously.

In order to test our proposal, we selected a specific inter-
national recognized organization in the cybersecurity arena.
Its current static risk assessment and management (RA/RM)
approach has been improved by our model into a dynamic

risk framework which is successfully reacting and respond-
ing to real-time threats.

We have simulated a well-known watering hole attack
from July to August 2017 targeting our selected organiza-
tion (however, it was not the target of the real attack) in
order to test how our model provides with a more effective
way to prevent, detect and respond against a watering hole
TTP (techniques, tactics and procedures). Once the TTP is
detected, security events are created. Those security events
would trigger specific risk re-assessments dynamically.

Now that we are able to model any TTP with enough
expressiveness, we would be able to model any TTP like
those of [34].

Contributions (i) Layered architecture for dynamic risk
assessment andmanagement (DRA/DRM)basedonSTIX™,
OWL ontologies, SWRL and a Pellet semantic reasoner. (ii)
Evolution and integration of cyber threat intelligence data
within DRA/DRM processes. For that, we implemented the
OWL of a complete version of STIX™v2.0 [4] de facto
standard (STIX2.owl ontology that was imported by our
DRM.owl ontology). (iii) Definition of several SWRL rules
as algorithms and axioms to support all the business logic
made by the Pellet incremental semantic reasoner used in
this work.

Paper organization In Sect. 1, we introduce the problem,
the motivation, related work as well as the summary of our
approach and main contributions.
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In Sect. 2, we give details about the problem and how
the selected (and internationally recognized) organization
is addressing each domain by giving partial details of the
methodologyused aswell as eachof the layers involved (data,
business logic, services/application, visualization). We also
make a detailed description of our proposal by taking into
account all specificities of the selected organization inside.

In Sect. 3, we describe the selected attack (TTP and moti-
vation) to test how our proposal would benefit the selected
organization threat detection, risk assessment and risk man-
agement processes dynamically and in an integrated way. In
this case, we test how it performs under an attack situation of
type watering hole, which are usually very difficult to detect.
Our framework will implement pattern detection techniques
without their indicators of compromise (IoCs). At the same
time, the integrated approach will enable an automatic re-
assessment of our organization cybersecurity risks triggered
by each particular (new) knowledge.

In Sect. 4, we describe the implementation.
In Sect. 5, we describe our main results.
In Sect. 6, we describe our main conclusions.

2 The problem and our proposal

We present the cyber threat intelligence (CTI) model consid-
ered in this work also as an evolution of current offering in
the market. Main purpose of threat intelligence is to have as
much sophisticated knowledge as possible about unknown
threats either for having better detection capabilities or hav-
ing better prevention ones. For example, an emerging threat
which is affecting similar entities would be able to affect our
organizationwith high probability if we share the same threat
actors’ motivation. Detecting this type of complex connec-
tions by inference and expressivenesswill allow us to provide
enhanced prevention and detection services.

Automation is neededdue to the evolution in the number of
threats, services to protect, lack of resources and complexity
of each organization. Some of themost relevant and common
cybersecurity needs with regard to automation are related to:

– Enrichment of threat information context.
– Security event detection.
– Security incident detection and prevention.
– Incident triage by severity (incident handling).
– Information sharing control (why, what, when and how).
– Risk assessment and risk management.

In addition to this, incidents and risks are usuallymanaged
by different teams due to the specificity of each domain and
levels involved (operation tactical or strategic levels), and
their tools are in most of the cases not integrated as they
should. Threat intelligence data are sometimes connected to

incident handling; however, none of them are connected to
enterprise risk management by default.

Each domain has its specificity also with regard to the
concepts they manage. There are different initiatives either
in cyber threat intelligence (CTI) [22,25] or riskmanagement
(RM) [16–18,23] trying to define clear taxonomies of each
domain, but all of them in an isolated way. They are only
targeting one domain at the same time, and in most of the
cases, it is a partial approach. Querying approaches [26,27]
are suggesting semantics, but they are semantic-agnostic nor
using standards.

The most relevant and advanced products in CTI are
started to use open standards like STIX™ that will allow
them to share threat intelligence information based on a com-
mon taxonomy that is accepted by themajority of the industry
as a standard format. STIX™ is offering real benefits by
its taxonomy of cybersecurity threat domain concepts but
also defining relationships between their objects. However,
some concepts inside STIX™ cannot be represented yet, due
to their limitations to describe more complex concepts like
TTP (tactics, techniques and procedures) [6], campaigns [7]
or incidents [8]. STIX™ version 2 has evolved into a more
integrated approach (e.g., cyberobservables are represented
inside) as well as it uses JSON instead of XML (used in
STIX™ v1.1) for better automation with current product
offering. It still lacks full expressiveness; however, v1.1white
paper [5] suggested RDF/OWL as a potential future solution
for it.

Despite this evolution, we need formal models to describe
meaning of even complex concepts that cannot be described
by today. At the same time, formal models would enable
machines to also understand those concepts and relationships
for a better and more effective automation [12,13].

In this work, we introduce the evolution of STIX™v2.0
JSON [4] into a semantic STIX™2.0 OWL (ontology) ver-
sion and associated SWRL (Semantic Web Rule Language)
rules as a formal model of a CTI framework to solve above
needs.

On the other hand, risk assessment (RA) and risk man-
agement (RM) domain is using a different taxonomy to
describe the type of risks, asset dependencies but also the
appropriate controls (safeguards or countermeasures). We
implemented and used the international standard ISO2700X
family [1] as well as the ISO31000 [2]. Because there are
different reference standard models, the creation of a formal
model would also enable us to have interoperability between
themselves.

Another relevant factor that could be one of the most
important reasons for not having any effective integration
between RA/RM and CTI frameworks yet is that both
domains are using different timing.
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RA/RM is usually using Deming cycle (plan, do , check,
act) as an improvement life cycle that is not real time, which
is different from the reality of cyber threat intelligence and
incident handling as they have to be at least NRT (near real
time) or if possible, RT (real time).

Not havingNRT/RT risk assessment and riskmanagement
nowadays mean that our management is not well informed
of their exposure levels on time as well as investments are
based usually on annual external consultants estimations
(e.g., standard threat probability estimations) not consider-
ing the reality of our organization’s threat landscape. Risk
calculations are then only taking place few times per year.
Mostly, one per cycle.

Dynamic risk assessment (DRA) and dynamic risk man-
agement (DRM) are new concepts to describe the real need to
have knowledge of our risk exposure level close to NRT/RT.

In thiswork,we also introduce a new semanticDRA/DRM
OWL (ontology) and associated SWRL rules leveraging CTI
as a formal model of a DRA/DRM framework to solve all
problems described above.

The main contribution of the present work would be the
integrated (CTI+DRA/DRM)architecture to cover all above
needs of different domains at the same time. It is based
on ontologies, SWRL rules and the use of a reasoner. All
domains are now integrated with regard to concepts (ontolo-
gies STIX2.owl andDRM.owl) but alsowith regard to timing
(NRT/RT).

2.1 Organization under study: a National CSIRT

Here we introduce the organization selected to test our work.
We selected a National CSIRT (Computer Security Incident
Response Team) as we consider it an international reference
for its corporatematurity (riskmanagement framework certi-
fied under ISO and under a National Cybersecurity Scheme)
and thematurity of their CSIRT services (incident prevention
and incident response services based on cyber threat intelli-
gence services).

This public organization is responsible to provide nation-
wide preventive and incident response services affecting
citizens and private sector audience, including critical infras-
tructures.

At the same time, this organization has its own SOC
(security operation center) to protect its corporate IT infras-
tructure. As described above, it is certified under ISO2700X
Information Security Management standards but also under
a new National Risk Management Standard which is a must
for public entities like our selected organization.

Several attacks are targeting our organization (e.g., hack-
tivism, state-sponsored, etc.) dynamically. Security events
are received and handled by its SOC; however, there is still
not connection between those threats and its risk manage-
ment framework.

2.1.1 Cyber threat intelligence model of the organization
under study

Here we describe the current CTI model of the selected orga-
nization based on layers (bottom-up).

With regard to the data layer, the organization has different
international agreements with partners as well as differ-
ent providers to gather valuable threat information affecting
their customers. Several IOCs (indicators of compromise)
are received from external sources with regard to different
threats. Some examples are: malicious URL, domain, sub-
domains, IP addresses, bots, botnet servers, defacements,
vulnerable assets, vulnerabilities, malware samples, hashes,
SPAM emails, phishing campaigns.

The organization has its own threat data coming from their
advanced sensors: honeypots (low, medium but also high
interaction ones), dark/deep Web monitoring systems, and
so forth.

Threat data information (internal and external) is parsed
into its own data model through a SIEM (Security Informa-
tion and Event Management), and it is persisted on a Big
Data architecture (Apache Spark+Hadoop). SIEM vendor
provides a restricted proprietary data model so there is a need
to persist a parsed version into the Big Data under STIX™-
format.

Each organization will have a different CTI dataset
depending on its own interests CTI data will range from
their own collection of data to external interested data from
business partners/feeds. As an example, we consider a CTI
dataset for our work that includes different types of data like:

– Incident handling attacks received.
– Intelligence analyst data.
– Other internal data like strange patterns of traffic of spe-
cific users.

– External CTI data provided by third parties (e.g., supply
chain, business partners, other CSIRT, equivalent entities
within the sector, etc.) but in the same format (STIX™).

– Any data of any STIX™ object/concept.

The idea is to keep a coherent dataset in a semantic version
of STIX™to be able to run SWRL rules. We are really open
to any type of possibilities but limited to that taxonomy.

The business logic layer is formed by algorithms and rules.
Today, logic is widespread between sensors, security event
information management (SIEM), as well as in the Big Data.
It has mainly three problems: isolation (data not shared, API
not available, proprietary language), limitations (static, pre-
defined and not touring complete logic) and complexity [33]
(SCALA language for Big Data, vendor specific for SIEM).

Services/application layer is where actions (e.g., alerts,
notifications, etc) are taken to cover all potential use cases
(incident prevention, incident detection notification, incident
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handling, information sharing, KPI updates being triggered,
etc). It uses the business logic and data layers. As an exam-
ple, the SIEM is used to open incident tickets automatically
into their incident response ticketing system for its NRT/RT
capability.

For example, the information sharing application helps
partners and stakeholders of our selected organization. TLP
(traffic light protocol) tag is used to keep confidential infor-
mation safe, and it is equivalent to an ACL (access control
list). TLP avoids cybersecurity information to be shared
without consent; at the same time, we benefit the whole
cybersecurity community when the info can be shared with
a broader audience. Different levels will apply depending on
the confidentiality of the information.

In case of the visualization layer, the organization is cur-
rently migrating into a business intelligence platform to
guarantee effective visualization to the three different levels
(operation, tactical and strategic levels). Nowadays visual-
ization is provided only to operational level via Web access
to data storage (SIEM logger and Big Data). Tactical and
strategic levels have been approached partially, still without
business intelligence, flexibility to deploy new algorithms
and interactive drill down options to explore the data. This is
something that we will have by definition by using ontolo-
gies (e.g., graphs). As data model is not completely standard
yet (still using some vendor specific data model), tactical
and strategic levels could experience some problems when
new indicators need to be provided. In this case, there are
situations where data meaning is not clear enough (e.g., com-
promised resources versus incidents). By using ontologies
[12], we will address these inconsistencies.

2.1.2 Risk assessment and risk management model of the
organization

Here we describe our organization risk assessment and risk
management model:

Risk assessment has limited scope as only a few (but busi-
ness essential) services or projects are in the scope of the risk
assessment process. Risk owners usually give the service or
project context by filling down a form and/or an interview.
The scope includes the context, that is to say, assets and
dependencies either internal or external. The context also
includes the compliance, legal, politics factors. Risk owners
have to evaluate each service by different dimensions:

– Information security: confidentiality, integrity, account-
ing, authenticity, availability.

– Business impact assessment (recovery time objective,
recovery point objective).

– Strategy.
– Satisfaction.

Dependencies are usuallymanually definedby risk owners
which is considered a big limitation, as they are usually not
experts on their corporate network topology to clearly define
IT dependencies between assets (better known by IT staff).
They evaluate the importance of each service with regard
to different dimensions. That valuation is then considering
all dependencies. As a result in a top-down approach, all
assets inherit the valuation from above. An asset which is
providing support to two different services in scope will have
inheritance from both services. Services in risk assessment
scopewill dependondata,which at the same timewill depend
on SW/HW and later will depend on their users who will be
using those assets.

Threat inventory is taking place again by hand, identify-
ingmost relevant threats that can threaten our service/project.
Those threats can harm the image of our organization some-
times, so those risks have also to be manually entered. After
that, safeguards have to be manually identified as well. They
could partially mitigate our risks depending on the threat and
the countermeasure.

Risk should be a function of probability and impact as
suggested bymost of themethodologies and standards today.

The organization under studydecided to follow the follow-
ing formula where risk is a combination of probability and
impact, reduced by availability of certain countermeasures:

Ri = Pi + Ii − C1i − C2i (1)

where

– Ri is the residual risk of threat i ,
– C1i is the decreasing value of the impact (severity) I
or Probability P of threat i due to a countermeasure 1
(specific control established in the organization),

– C2i is the decreasing value of the impact (severity) I or
Probability P of threat i due to a new proposed counter-
measure 2 (specific new control to be established),

– Pi is the probability P of threat i ,
– Ii is the impact (severity) I of threat i when it is materi-

alized.

Threats could be of different types (strategic, compliance,
physical security, IT security, quality and process manage-
ment, others).

Because the assignment of each safeguard to each threat is
not really done in the organization today (it had to be done by
hand and high level of granularity), the formula is simplified
in the organization under study by using average values.

Depending on the new risk value after all new counter-
measures are setup, risk is classified in the following scale
(from 1 to 10):
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– Extreme (8–10): risk is unacceptable,
– High (6–7): risk is undesirable,
– Medium (5): risk is tolerable,
– Low (1–2–3–4): risk is acceptable.

A mitigation strategy is recommended for extreme and
high risks with different possibilities:

– to reduce,
– to avoid,
– to share,
– to transfer the risk.

An investigation strategy is recommended for medium
risks with different possibilities: to assume or to reduce the
risk.

Amonitoring strategy is recommended for low riskswhere
usually risks are assumed.

In addition to this, all strategies should take into account
potential actions of different impact in different dimensions:

– Image and reputation.
– Compliance.
– Security.
– Budget and costs.
– Operations (Ops).

Other special response to risk strategies can also be con-
sidered where

– attack, deception, deterrent, information sharing, aware-
ness, are some examples.

Summarizing, being the selected organization an inter-
national recognized CSIRT which is providing nationwide
advanced cybersecurity services, it has its own risk as organi-
zation. Still CTI and RA/RM processes are isolated between
themselves, the reason behind after some interviews is that
they are supposed to belong to different domains and they
are managed by different teams inside the organization (as
usual in most organizations).

Data, business logic, services/applications and visualiza-
tion from each of these domains are completely separated.
RA/RM is using static tools (Excel, etc.) different from CTI
tools, but they are also using different taxonomies, level
access and a different timing, when they should not be iso-
lated.

2.2 Our proposal: integrated CTI and DRA/DRM
architecture

Here we introduce our proposal as an integrated and layered
architecture.

2.2.1 Semantic data model

Here we created two main OWL ontologies (OWL—Web
Ontology Language) for the two domains:

– STIX2.owl for all threat intelligence data in STIX™v2.0
[4] format,

– DRM.owl for dynamic risk data.

Both are connected as DRM.owl directly imports and
extends STIX2.owl.

OWL DL (description logic) is designed to provide the
maximum expressiveness as possible while retaining compu-
tational completeness (either Φ or ¬Φ holds), decidability
(there is an effective procedure to determine whether Φ is
derivable or not), and the availability of practical reasoning
algorithms.

STI2.owl is a contribution to help STIX™v2.0 [4] to solve
their current problems with regard to the representation of
more complex concepts like TTP (techniques, tactics and
procedures) [6], campaigns [7] or incidents [8] but also to
make automation easier by using semantic reasoners. We
followed all OASIS open standard specification of its ver-
sion 2.0 translating the whole standard, that is to say, all
requirements and restrictions from the STIX™specifications
are now ontology classes, property objects, data types and
axioms in OWL format.

DRM.owl imports STIX2.owl leveraging CTI into a more
comprehensive and meaningful DRA/DRM architecture.

Taxonomies and domains are fully integrated: concepts
are related between themselves, and relationships are for-
mally established between all types in order to help us to
solve initial challenges but also providing us the capability
to use a reasoner (this time we used Pellet incremental rea-
soner) [14]. Data types are formally defined as well.

We then have a graph and meaningful data model to con-
nect a specific IOC, threat or security event to an asset. We
also have the possibility to calculate associated risks around
each service, based on dependencies, as seen in Fig. 1.

The framework presented is a formalmodelwhich enables
the representation of any CTI or DRM context despite its
complexity and previous limitations like the ones still not
solved in STIX™XML and JSON format [6–8] evolving
threat intelligence data until today into real TTP meaningful
patterns and representations (graphs beyond connected IOC).
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Fig. 2 SWRL DNS enrichment

Due to our contribution of a complete DRM framework
leveraging a complete version of STIX™v2.0 ontology, any
STIX™related data can be parsed into our ontology.

In our work, all the relevant data for our use case at all
levels (operational, tactic, strategic) were parsed into our
DRM ontology as a central data storage. All SWRL rules
handle or evaluate these data. On the other hand, we limited
to STIX™the different types of data to be collected as future
sensors will probably provide data in a format compatible
with this taxonomy. We have then focused our contribution
to the processing of data but not about its collection.

2.2.2 Semantic business logic (reasoning) model

Now that all data (threat intelligence and risk data) are based
on OWL and relationships are formally established, we pro-
pose to use SWRL (Semantic Web Rule Language) which
will enable us to express rules as well as logic combining
OWLDL, OWLLite and RuleML (RuleMarkup Language).

Rules are of the form of an implication between an
antecedent (body) and consequent (head). The intended
meaning can be read as: Whenever the conditions specified
in the antecedent hold, then the conditions specified in the
consequent must also hold.

Wewill use SWRL to create semantic algorithms and rules
that will use semantic data to provide value added and to
cover all use cases defined above, like:

(a) Enrichment of threat information context, for example,
by using the SWRL rule of Fig. 2, we can represent a simple
DNS data enrichment to make relationships between IP and
domain concepts. By knowing an IP address belonging to a
DomainName, we create a reverse relationship, that is, the
DomainName to IP is the “inverseOf” IP to DomainName.

The rule has an antecedent (body) indicating that all IP
addresses in IPv4 format belonging to a specific domain name
will then create an inverse relationship in the consequent
(head), that is to say, the samedomain nameswill then resolve
back to those IP addresses. This is a DNS versus reverse DNS
behavior.

As we implemented the whole STIX™v2.0 [4] taxonomy,
the rule uses the unambiguous concept (classes) “IPv4Addr”
to differentiate from “IPv6Addr”, also in STIX™taxonomy
the property named belongToRef and the domain name is the
concept DomainName (without spaces).

Fig. 3 SWRL rule to make automatic inventory of deliberated mali-
cious SW distribution threat inventory when a service in scope of our
risk management framework depends on data and later on SW (OS,
Browser, AdobeFlashPlugin) but also on HW (Personal Computers)
used by internal users with little cybersecurity experience <= 3

Once this SWRL rule is created and imported as an axiom
into the ontology, the reasoner, when active, will make auto-
matic reasoning by filling and enriching all new domain
names or IP addresses if there is enough info related to the
antecedent to execute the consequent (head).

This is a very simple example, but we can also create more
complex enrichment rules by using SWRL as our semantic
business logic model.

Anyway, SWRL rules are quite easy to understand and to
create by non-experience users. A 4-h briefing about SWRL
and the namespace domains used (e.g., OWL ontologies:
classes, properties and data types of both domains) should
be enough to start creating business oriented SWRL rules.
Until today, complex rules had to be created by programmers
with high SW programming skills [33]. We propose SWRL
rules to solve this problem and to enable any person (oper-
ator (operational), manager (tactical) or director (strategic))
to create its own rules.

(b) Enrichment of risk assessment and risk management
context. We are now able to work in all phases dynamically;
for example, by using the SWRL rule presented in Fig. 3, we
automatically make an automated threat inventory of “Delib-
erated Malicious SW Distribution Threats” type.

This will make an automatic inventory of threats by a
more advanced pattern which is useful to risk owners if it
can be automatically detected by reasoners. The algorithm
is taking into consideration specific patterns when potential
deliberated malicious windows executables are dropped dur-
ing Web surfing traffic. However, part of this behavior could
happen with licit content, and strange Javascript redirections
together with lack of cybersecurity expertise by the end user
will be also considered in the business logic of the algorithm
as shown inside the SWRL rule. That is to say, the same
algorithm will not create automatic threats with that level of
probability if the end user navigating is an expert (the sys-
tem understands that the probability of a fake installer to be
executed by an expert is residual).
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The algorithm antecedent of the figure will take into
account the situation when an essential service depends on
specific data which also depends on SW used by an internal
(corporate) user who has access to it at the same time he/she
has low cybersecurity experience (cybersecurity experience
<= 3). The threat is then recognized as a potential risk in
specific situations. Situations can be of any type as we count
with enough expressivity to define patterns and behaviors in
our framework.

Taking into account the level of cybersecurity experience
of an end user, it is clear that itwill influence the probability to
execute (or not) a specific malicious installer or dropper. The
risk level for this type of threats (malicious SW distribution)
will be different if the end user has different levels of exper-
tise (the impact could be the same but not the probability of
occurrence).

In this rule, we can see that most concepts used are defined
into the drm ontology (see drm: prefix before the concept
used, the prefix defines the ontology where is defined). We
also use built-in features like swrlb and swrlx prefixes used
for different purposes, like comparison features, math calcu-
lations or even to create new individual instances. In the rule,
we also use a class property defined in stix2 (see stix2 prefix
in the rule). At the end, we have an integrated framework
where either stix2 or drm can be used in the same business
logic (algorithm) together with SWRL built-in functions.

In Fig. 4, we implemented a rule to detect real malicious
events related to this type of risk. This specific SWRL rule
checks redirection after redirection until an executable file is
dropped, all events following STIX™standard. SWRL per-
mits enhanced rules to describe a specific semantic pattern
in the network traffic without having knowledge about spe-
cific IOC involved in the attack. The SWRL rule is then IOC
agnostic with regard to domain name, IP or hashes.

It is an effective cyber threat intelligence rule that can
also be shared between mates without the risk of exposing
your corporate data. This is one example of how two or more
organizations can share intelligence and build trust without
sharing real data or IOCs between them. By using ontologies
(as a formal model) and standards, rules can be easily loaded
into new organizations upgrading their detection capabilities
rapidly. This is possible when the reasoner uses and under-
stands the same language which is a real contribution to the
state of the art.

This type of service/project will likely have more risk
related to this type of threats when used by non expert users
versuswhen they are used only by cybersecurity expert users.
Risks are guessed automatically taking all this granularity
into consideration.

c) Automation of risk management like the automation of
risk level classification, as a previous step to decisionmaking.
The SWRL rule of Fig. 5 makes the automatic classification

Fig. 4 Pattern-based SWRL rule to detect a security event that will
be triggered by a dropper executable delivered automatically after a
network traffic redirection of an injected Javascript takes place. It has
not specific IOC, and all individuals are variables

Fig. 5 SWRL rule for auto classification of high severity risks

of risks belonging to what it is defined by the organization
as high risks along the time.

By using SWRL, we are able to easily implement the
business logic of our threat and risk domains. By using the
integrated ontologies, our rules based on SWRLcould handle
any data from any domainwithin the same algorithm in either
antecedent or consequent. It fulfills the needed expressivity.
Once new data came in, our reasoner will make dynamic,
automatic and semantic reasoning. This could help CTI or
DRA/DRM domains, for example making automatic threat
inventory explained in Fig. 3 or even more complex reason-
ing like triggering an alert in the services/application layer
when a TTP occurs like the pattern explained in Fig. 4.

As an example of potential efficiency, nowadays, to miti-
gate one threat, there are always multiple rules and filters if
they are based on IOCs. By using our model, a threat’s TTP
can be described into a SWRL rule to have the same effect
that multiple IOC-based rules (matching IOC). As a result,
we can be more efficient as we can cover and filter multiple
mutations of the same threat in a single pattern-based rule.
From an operator point of view, less rules and a reasoner are
better teammates thanmultiple IOC-based rules to block one
threat.

2.2.3 Semantic services/application model

Here we provide services and applications for both domains.
We can also give answer to more complex scenarios and
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use cases in the services/application layer by using SWRL
expressivity as well.

As an example, we propose a rule for CTI security event
detection. By using a more sophisticated SWRL rule, we can
represent a security event detection based on a TTP (which
now can be represented without semantic limitations [5–8])
which business logic is based on a specific network traffic
pattern. The pattern, once it matches, will increase dynami-
cally the risk level of those risks of type deliberatedmalicious
SW distribution.

The following SWRL alert will analyze and represent
a TTP when an injected Javascript is loaded after visit-
ing a compromised Web site, and it redirects an internal
corporate user to a different URL where a Windows exe-
cutable file (*.exe) is automatically retrieved. The SWRL
rule in Fig. 4 creates an individual instance of class Securi-
tyEvent (meaning a security alert). The creation is done at
“swrlx:makeOWLThing” using variable x (?x means). After
that, a drm:SecurityEvents(?x) is defining the class of the
individual instance of that variable. This rule will analyze
two different network traffics: One depends on the other:
first connection made a redirection into another URL which
destination is dropping an executable artifact as dstPayload-
Ref. All this naming convention came from STIX™standard
by OASIS that we implemented in OWL as proposed in
STIX™white paper as potential future research and imple-
mentation [5].

We are also able to solve challenges like security inci-
dent detection and prevention, for example based on security
events like the example described in Fig. 4.

Other types ofCTI challenges like incident triage by sever-
ity (incident handling) and information sharing control (why,
what, when and how) will have their corresponding SWRL
rules, but also they will be meaningful (SWRL with OWL
DL graph-based data) also for reasoners.

Information sharing application could also be better guar-
anteed by implementing STIX™v2.0 [4]Marking definition,
for example, to control how data can be used and shared. For
example, implementing TLP as a marking definition restric-
tionwhere datamay be sharedwith the restriction that it must
not be re-shared, or that it must be encrypted at rest.

We implemented a concrete example of a risk manage-
ment action at tactical level and other example of a risk
management action at strategic level to demonstrate how
our framework enables the connection from CTI into a com-
plete DRM, at all levels.

With regard to the tactical level, we propose to share risk
intelligence information as a preventive action once we are
receiving a specific attack in one office to protect other remote
offices and/or partners. In our case, wewill create an instance
of class “Information Sharing Control” dynamically once
this situation is happening. In our case, we have two options
either to share details about IoC or to send the intelligence

Fig. 6 SWRL rule to implement a specific risk management tactic:
Once a specific type of attack is detected, the detection algorithm (not
the data or IOC) will be shared with the rest of the offices or partners
to transfer knowledge (to improve their own detection capabilities). It
enables the detection of the same attack even if using modified IOCs
but the same TTP

rule that is how receivers can detect by themselves the same
incident if using our formal model framework. The SWRL
rule that detects the pattern attack will be shared itself inside
another SWRL information sharing rule dynamically once
the attack is being received. This tactic will facilitate efficient
and dynamic detection and protection during a campaign as
part of our corporate tactics. Thenew rulewill not include IoC
but the rule itself (algorithm) in order to demonstrate other
of our contributions (risk intelligence sharing rules without
IOC/data). This changes the paradigmof information sharing
until today. By using a formal model and ontologies, rules
can be applied as plug and play if using the same framework.

In detail, once we have a detection of a security event of
type “Dropper behavior of Malicious Windows Executable,”
we will create an instance of a ISO27K control sharing class
named “Information Sharing Control” to share it with our
mates. The new instance will include inside the related algo-
rithm for detection (SWRLdetection rule) in order to transfer
knowledge about how to detect it. It will help others to better
prevent similar incidents with different IOCs but the same
TTP by improving their detection capabilities beyond spe-
cific IOCs.

We decided to encode the algorithm or SWRL rule being
shared into base64 (it could also be ciphered if needed). The
rule to share is the same as in Fig. 4.

The SWRL rule at tactic risk management level that will
create an information sharing control to manage intelligence
sharing is the one in Fig. 6

With regard to the strategic level, the same security inci-
dent will trigger specific “Awareness trainings” as a dynamic
RM decision proposed by the reasoner using NRT and the
claimed expressiveness. That is to say, the reasoner pro-
poses dynamically specific awareness trainings only to those
employees which are receiving real and specific security
threats (security event instances), and at the same time, they
still do not count with enough experience in cybersecurity
(rating equal or below3out of 5). This allows the organization
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Fig. 7 SWRL rule to propose a specific and detailed riskmanagement
strategy: Once a specific type of attack is detected, the reasoner will
propose a specific awareness training to those specific users which are
affected by the threat, and at the same time, they do not have enough
cybersecurity experience

to launch more efficient trainings with so much granularity
and dynamically. In this case, the SWRL rule is shown in
Fig. 7.

In detail, the reasoner instances new strategic safeguards
or controls dynamically of class “HR Related Security
Awareness Education and Cyber capabilities control” indi-
cating the need to protect (property drm:protects) each
specific user (class drm:InternalUsers) associated with real-
time threats. We also consider in the rule that only non-
experience users in cybersecurity will be eligible for the
training (rating equal or below 3 out of 5, for that we
use drm:hasCybersecurityExperience property AND swrlb:
lessThanOrEqual operator). Additionally, we can create
content-oriented SWRL rules to make specific types of train-
ing depending on the threats (e.g., social engineering, Web
surfing, etc.). With this expressiveness, there could be cus-
tomized trainings proposed by the reasoner based on real but
specific classification of threats.

Another interesting benefit is that we could leverage sen-
sors into more intelligence sensors by letting them access
structured OWL data as well as using SWRL rules or even
using SQWRL (Semantic Query Web Rule Language that
will be explained in the next section) to query the formal
model by using a syntax close to SQL. There would be high
benefits if all the topology is using the same data model stan-
dards and ontologies, even sensors.

2.2.4 Semantic visualization model

Because our data, business logic and services/applications
are based on semantic OWL data, SWRL and reasoners; our
visualization model could benefit from enriched semantic
graphs. We have different options by using Protegé tool cre-
ated by Stanford.

– OntoGraph plug-in to render interactive graphs of our
integrated formalmodel (CTI+DRA/DRMclasses, prop-
erties and data types). It also includes individual instances

Fig. 8 Screenshot in Protegé tool of the security event created by the
SWRL rule seen in Fig. 4 when our CFO browser has been redirected
into a fake Flash (exe) installer. The pattern, redirections+dropper are
part of the TTP definition

Fig. 9 SQWRL rule for risk re-calculations after a security event is
detected

(threat intelligence and risk-related data) as shown in
Fig. 1. Equivalent plug-ins could beVOWLandOntoViz.

– Protege standard interfacewhere object and data property
assertions can be read (Fig. 8). - SQWRL query language
to query our data model or instances. An example of
query is shown in Fig. 9 and results of that query are
shown in Fig. 13. When consequent belongs to a query,
“sqwrl:select” is used.

With regard to risk assessment and risk management pro-
cesses, our model is able to accommodate the specificities
of the selected organization (the National CSIRT) whose
risk assessment and risk management model is described in
Sect. 2.1.2.

CTI data is already integrated with risk assessment and
riskmanagement data. Some examples of this NRT (near real
time) integration can be shown in Fig. 4 where prefix “stix2”
represent our new ontology implementation of STIX™v2.0
[4] data and prefix “drm” represent our new ontology imple-
mentation of DRA/DRM (dynamic risk assessment and
dynamic risk management) as well as their relationships,
rules and axioms.
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Fig. 10 SWRL rule used in risk management for automatic classifica-
tion. Once a high severity risk is detected, it is automatically classified
for a mitigation strategy because the risk is not acceptable for the orga-
nization as is

Another example of a dynamic risk management process
is the automation of the better strategy depending on the risk
and its severity. The SWRL rule for this can be shown in
Fig. 10.

As seen in Figs. 9 and 13, our dynamic risk assessment
approach would also allow risks to be updated along the time
due to special security events. The one shown in Fig. 4 is an
example of an event that will increase the risk once it is
detected. Risks can be increased by changes on two factors
or variables: impact or probability. In this case, the probabil-
ity will change as something strange is close to become an
incident related to that type of risk.

As seen in Fig. 6, specific algorithms have been imple-
mented to help the reasoner to propose specific tactics. In
our case, once a security event is detected of a specific type,
the reasoner will create an instance to share the detection
algorithm as a risk intelligence sharing practice. The algo-
rithm encoded in base64 will be shared to other offices or
partners once an attack has been detected in our office. We
are then transferring knowledge and detection capabilities
by transferring the algorithm or SWRL rule inside another
SWRL rule. They will be able to detect the same pattern
once the SWRL rule shared is loaded in their systems even
if attack IoC has changed. The only condition is that the
TTP pattern remains the same as our rule is an algorithm to
detect a TTP pattern. There will be different SWRL rules to
detect different TTP patterns. The instance created automat-
ically (prefix owl followed by a hash means automatically
generated instances) can be seen in Fig. 11 together with the
contents of the instance; in this case, it includes the base64
encoding version of rule seen in Fig. 4.

At the same time, in Fig. 7, specific algorithms have
been implemented to help the reasoner to propose specific
strategies about HR awareness trainings. In our case, once
a security event is detected of a specific type, the reasoner
will create an instance of recommended awareness train-
ing to specific users which are receiving real-time attacks
and can be vulnerable to those attacks due to their cyber-
security experience. As seen in Fig. 12, a new instance of
the suggested control class (HR Related Security Awareness
Education and Cyber capabilities control) is created dynam-

Fig. 11 Screenshot in Protegé tool of the instance created dynamically
of class information sharing control which at the same time is including
the encoded version of the SWRL attack detection TTP

Fig. 12 Screenshot in Protegé tool of the instance created dynamically
of class HR Related Security Awareness Education and Cyber capabil-
ities control as recommended training by the reasoner due to real-time
security events

ically by the SWRL rule of Fig. 7 considering the specific
internal user that is recommended for the training.

2.2.5 Feasibility of a new dynamic risk equation

By using our framework, we can then improve the selected
organization’s equation 1 to leverage risk assessment into
something dynamic (depending on time t and security events)
and affordable with enough flexibility and granularity like:

Ri t = Pi t + Ii t − �(C1i t ,C2i t , . . . ,CNi t ) (2)

Rt = �Ri t (3)

being:

Pi t = Pi t−1 + �(EP1i t , EP2i t , . . . , EPNi t ) (4)

Ii t = Ii t−1 + �(E I1i t , E I2i t , . . . , E I Ni t ) (5)

where:

– Pi t is the probability of threat i at time t ,
– Ii t is the impact of threat i at time t ,
– CNi t is the decreasing value of the impact (severity) I or

probability P of threat i at time t due to countermeasure
N ,

– EPNi t is the increasing value of the probability P of
threat i at time t due to the security event N ,

– E I Ni t is the increasing value of the impact (severity) I
of threat i at time t due to the security event N ,

– Ri t is the residual risk associated with threat i , at time t ,
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– �Ri t is the sum of all type of residual risks associated
with threats i = 1, . . . , Z , at time t ,

– Rt is the total residual risk at time t of all type of threats
i = 1, . . . , Z ,

We are finally able to implement the dynamic risk assess-
ment equation 2 by using our model. We use SWRL rules to
decrease values when a safeguard (CN) mitigates that risk.
There are also rules to increase values when a security event
(EPN or EIN) increases the same risk.

In our case:

Ri t=1 = Pi t=1 + Ii t=1 − �(C1i t=1,C2i t=1), (6)

Pi t=1 = Pi t=0 + 1 (7)

Ii t=1 = Ii t=0 + 0 (8)

where:

– i is the “Threat of Deliberated Malicious SW Distribu-
tion,”

– Pi t=1 is the probability of that threat at time t = 1, that
is “newp” of Fig. 13,

– Ii t=1 is the impact of that threat at time t = 1, which is
equal to the impact at t = 0 because the recent security
event is only updating the probability,

– C1i t=1 is the decreasing value of the Impact (severity)
i or probability P of that threat i at time t = 1 due to
countermeasure 1 which is the “Antivirus” (reducing 0.5
float),

– C2i t=1 is the decreasing value of the impact (Severity)
I or Probability P of that threat i at time t = 1 due
to countermeasure 2 which is the “LDAP” (reducing 0.0
float as it is not considered a countermeasure for this type
of threats),

– EPNi t=1 which is equal to 1 because it is the increasing
value of the probability P of that threat i at time t = 1
due to the security event N = 1; in our case, it is 1.0 float
once the security event of a dropper has been detected,

– E I Ni t=1 which is equal to 0 because it is the increasing
value of the impact (severity) I of that threat i at time
t due to the security event N = 1; in our case, it is 0.0
float, and the security event updates the probability not
the impact variable.

– Ri t=1 is the residual risk associated with that threat i , at
time t = 1, it is “newar” of Fig. 13,

Figure 13 shows how the probability changes after a sus-
picious pattern is detected as it increases the probability of a
specific threat type.

New values are calculated, and they can be seen in Fig. 13
after a dropper has been detected inside network traffic of the

Fig. 13 Results of querying rule at Fig. 9

CFO User (see Fig. 9 to check its related SQWRL query).
As an example:

– p=previous probability → newp=new probability ,
– pr=previous potential risk → newpr = new potential risk

and
– ar=previous actual risk → newar = new actual risk.

Risks assessments will be updated dynamically, so does
its risk management classification and their recommended
treatment.

Until today, our selected organization is re-assessing risks
once a year. Risks considered by our organization are also
related to threats identified by hand by risk owners. Those are
usually reflected in an Excel file or any other static file. By
using our proposal, we are providing to our organization the
benefit to leverage their CTI into a dynamic riskmanagement
framework. The proposal is based on standards [4,10,11], and
then, any other organization whowill be working under these
standards will have the same benefit as well.

In our case, a risk that had been identified as a medium-
level risk by the organization is dynamically re-classified
under high-level risk once a threat is detected that will poten-
tially be affecting a classified data. The reasoner will provide
reasoning evidences for that, in our case, a specific user
(CFO) with low-level cybersecurity expertise but, with high-
level access to that classified data, is under attack. As this
user has inherently more probability to accept this malicious
fake installer, the dynamic risk framework will trigger a re-
classification of the risk with that granularity (details) in
that specific moment, before it becomes a real incident. It
is then a proactive and preventive response with again, dif-
ferent options or alternatives.

Semanticswould allow a pseudo-automated response exe-
cution where complex and/or special actions would require a
balanced human supervision and interaction (HMI). This is
our recommendation for all decision-making actions related
to cybersecurity domain.

As a result, here we propose some examples of different
types of automated responses within a dynamic risk manage-
ment framework:
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– Security policy changes (e.g., blocking traffic, increase
password robustness, etc.).

– Patching remediation and reprioritization queues.
– Risk transfer to a third party.
– New rules or signatures for networking devices.
– Risk Information Sharing.
– Alert notification.
– Launch honeypot and counterintelligence (deception)
measures.

– Distributed topologybasedon software-definednetworks
(as a joint) response (e.g., sensing, monitoring, or even
taking offensive actions).

– Risk exposure escalation to management including visu-
alization to support decision making based on historical
action and responses.

– Etc.

3 Use case: watering hole attack

We selected a real attack from August 2017 that affected a
popular middle east news site. The attacks of type watering
hole are usually very sophisticated attacks as well as they are
very difficult to detect.

This is the main reason for us to select this specific attack
in this work. There is a difficulty to detect this type of attacks
if our detection techniques are only based on knowns IOCs
(indicators of compromise), it forces us to deploy new detec-
tion techniques based on behavioral patterns to detect and
fight the still unknown and dangerous attacks. Our proposal
is based on standards, and it adds so much expressiveness
by using ontologies, so it will allow us to create any pat-
tern detection rule in SWRL beyond watering hole attacks.
It will help us to detect any other emerging unknown attack
based on patterns. At the same time, all risk information will
be updated dynamically after a dynamic re-assessment. It
will be presented accordingly to tactical and strategic man-
agement, but it will also may include any type of automatic
responses. Here we propose a pseudo-automatic response, at
least for offensive ones, as we consider that a human should
take the ultimate decision in this type of attacks.

A watering hole attack is a computer attack strategy, in
which the victim is a particular group (organization, industry,
or region). In this attack, the attacker guesses or observes
whichWeb sites the group often use and infect one ormore of
themwithmalware. Eventually, somemember of the targeted
group becomes infected.

Hacks looking for specific information may only attack
users coming from a specific IP address (same request from
different IPs might result in different responses), so malware
will be only delivered to our victims. On the other hand, stan-
dard responses are sent back to http requests coming from
non-interesting users or entities (e.g., researchers investigat-

ing this attack from a different source IP address). This also
makes the hacks harder to detect and research. The name is
derived from predators in the natural world, who wait for an
opportunity to attack their prey near watering holes.

Our selected organization (a national CSIRT) did not suf-
fer from such known attack; however, we will test our work
into the organization by simulating the same watering hole
attack to our selected organization. We will then introduce
the same traffic formatted in STIX™and OWL. The reason
for this is because this type of attacks is really by-passing
the perimeter, being one of the most probable attacks against
leading organizations in cybersecurity arena that are usually
implementing good solutions at the perimeter. These attacks
are targeting the people directly despite the perimeter, attack-
ers try to have some interaction by the end user to help them to
get into the system (e.g., like accepting a malicious installer
from a trusted source like their usual news Web site)

We will use our integrated and semantic model to manage
all related data in an integrated and effective way. Our objec-
tive is to better protect our organization risks dynamically by
improving our detection and prevention capabilities based on
leveraged cyber threat intelligence data.

All relevant information is managed by our model at all
levels: data, business logic, services/applications, visualiza-
tion and risk assessment/risk management.

Another objective it is to facilitate the investigation by a
new enriched data model.

For that, all CTI data are parsed into standards STIX™and
OWL (stix2.owl). Risk owners will define their services
under scope and evaluate their importance as usual (in any
other risk management framework like [1]); however, this
time they will define that in DRM (drm.owl) not in Excel or
any other static file. The rest will be automatically done by
our reasoner (e.g., asset dependencies, threats identification,
inventory, inherited assessment, etc.)

3.1 TTP of the attack

On July the 8th, a news Web site was compromised. The tar-
get organization was used to have traffic to that news Web
site from different internal (corporate) users. Since that date
(firstSeen=2017-07-08 as timestamp in STIX™), a mali-
cious Javascript artifact (CyberObservable of class artifact
and mimetype=“javascript” in STIX™) was injected in the
homepage, affecting a specific company (e.g., our company)
but not any other companies.

That was possible because of the business logic behind the
Javascript. All users navigating through http network traffic
(NetworkTraffic in STIX™) to that domain name (Domain-
Name in STIX™) where loading the Javascript that was
automatically redirecting to load another (second) malicious
Javascript. Our company users (and not other connections
with a different source IP (srcRef in STIX™) were again
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Fig. 14 Graphical description representing the TTP of the watering hole attack

redirected into a different Malicious URL where a Windows
(exe) Installer (CyberObservable of Class URL in STIX™)
was dropped as a fake Flash update. The rest of the users
were redirected to the original Adobe Flash update instead
of the malicious one.

The attack started to get victims from its targeted organi-
zations and was persisted at least until August the 1st, where
the Javascript was modified again to provide different pay-
loads.

Once a victim executes such a fake update, its personal
computer would be compromised, so threat actor would have
access to the user data from its personal computer (e.g.,
stealing credentials, connecting to any other system from
its computer, etc.).

A graphical representation of the attack TTP can be seen
in Fig. 14.

3.2 The target (andmotivation)

The target is to get access to the organization “Classified
Data.” That means that the attackers are interested in those
users with enough access level to any classified data. Attack-
ers could have investigated specific users behavior like the
news Web site they are usually reading. This information
gathering is usually done by using social networks (e.g.,
continuous post in Twitter referencing this source). We will
simulate the interest of the attackers around some classified
data only accessible by specific internal (corporate) users.
We will define a data property named hasAccessLevel in our
ontology to define the access level of each user of our orga-
nization. That property will have a value between 1 and 5
(from low to high-level access, respectively). We can then
use this variable in any SWRL rule.

4 Implementation

We used Protegé Tool by Stanford [35] to test our CTI/DRM
integrated model with the proposed use case at Sect. 3.

All data related to this TTP description will be under
STIX™and OWL. At the same time, all DRM data will be
under OWL. As a result, all data in our work are under a
semantic data model.

4.1 Architecture

As described in Sect. 2.2, we propose a layered approach
with some characteristics:

– The whole architecture is based on a mix of standards
(STIX™[4], OWL [10], SWRL [11]) as a standard pro-
posal oriented to have a quick and widespread adoption
by the industry with the needed expressivity.

– STIX™ v2.0 standard is used to handle all threat and
traffic data (really any CTI data) but under OWL format
(stix2.owl is the ontology that we have created for that).

– It is an integrated architecture. Our dynamic riskmanage-
ment framework is leveraging cyber threat intelligence
data. For that, DRM.owl ontology imports STIX2.owl.
There are relationships between objects and our reasoner
together with SWRL will create new knowledge based
on those relationships.

– SWRL is used for all business logic: algorithms and rules.
– It is a layered approach, a use case at service / application
layer will need some business logic layer to access the
data layer. The same happens with DRA/DRM or any
other type of service (e.g., an alert).
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– It is a semantic approach, which means that a semantic
reasoner (in our case, Pellet incremental reasoner [14])
will understand themeaning of data and all their relation-
ships to infer new knowledge dynamically.

– Relevant data (e.g., events, traffic) collected for this work
were necessarily parsed into our ontologies to demon-
strate the benefits of using semantics. On the other hand,
we limited our data collection to STIX™which is becom-
ing a de facto standard. Future sensors will probably
collect data under this new standard without the need
to parse data (e.g., logs).

– The collection of all data used in a SWRL rule has not
necessarily to be done on real time.

– We used a unique central data storage to implement and
validate our work.

– The purpose of our work is to demonstrate the benefits to
have all data under semantics and standards like STIX™,
but it is neither the collection/parsing of the data nor the
additional overhead in case of new type of sensors to
collect STIX™related data.

Our data model is based on five types of concepts (enti-
ties):

– Classes/subclasses to represent the concepts, objects,
families or classes of the ontology.

– Object Properties to represent the relationships between
objects.

– Data properties to represent the variables, values or fields
of each object.

– Data types to represent the types of the data (float, integer,
string, dateTimeStamp, custom, etc.).

– Individuals to represent the “instances” of the different
Classes.

Because all data will be parsed into semantic OWL data,
all the business logic, services/applications, as well as all
the dynamic risk assessment and management models are
implemented using SWRL rules and a reasoner. We selected
Pellet incremental reasoner [14] for this work to provide live
semantic reasoning.

As described earlier, we developed STIX2.owl (as the
semantic and complete version of STIX™v2.0 [4]) and
DRM.owl ontologies. By today, we have about 453 Classes
and above 11565 axioms. We also developed different fam-
ilies of SWRL rules to support all levels of the model
presented in this work. Thirty-four SWRL rules were cre-
ated to test all of our implementation.

Visualization model is based in Protegé plug-ins, espe-
cially OntoGraph. With regard to querying the data, we used
SQWRL as a standard query language by using its corre-
sponding Tab in Protegé [35].

4.2 Instances of our threatened organization

With regard to the organization, we describe the setup to test
the behavior against the watering hole attack (use case) in the
following subsections. Due to the motivation of the attack
(access to classified data), we will describe in detail those
instances on risk as well as the corresponding relationships.
This will help the reader to understand the attack vector.

Internal (corporate) users: We use two main profiles of
the organization, both belonging to class InternalUsers as
SubClassOf Users:

Victim_0will be theCFOuserwhich is theChief Finan-
cial Officer of the organization. It hasAccessLevel 5 out
of 5, so it would have access to all ClassifiedData in our
company. However, it will not have so much Cyberse-
curityExperience (3 out of 5), so that characteristic will
be taken into account for dynamic risk assessment as
this type of users will likely execute a fake SW update
with more probability than a cybersecurity expert (like
the AdobeFlashUpdate described as part of the TTP).

Victim_1 will be the CybersecurityExpert user which
is the Head of cyber threat intelligence of the organi-
zation. It hasAccessLevel 3 out of 5, so it would not
have access to ClassifiedData in the organization, but
it would have access to threat intelligence data and any
other type of data equal or below its hasAccessLevel
data type. It will have high CybersecurityExperience
(5 out of 5), so that characteristic will be taken into
account for dynamic risk assessment as this type of
users will likely not execute a fake SW update (like
the AdobeFlashUpdate described as part of the TTP).
Rejecting the execution (rejectExecution action in our
model) is semantically equivalent as not executing the
fake update. As part of its reaction, it could also create
an IOC (indicator of compromise) after detecting and
investigating its malicious behavior. It will be shared
within the CTI community to avoid future attacks,
this time, based on knowns (IOC data). Furthermore,
it could also open an internal security investigation
together with the CISO (Chief Information Security
Officer) and the quality team in charge of the informa-
tion security certification based on ISO2700X.

Data: It is a subClassOf Asset. We selected five specific
instances of data of our organization, all belonging to class
data, but only two of them belonging to the subClass Classi-
fiedData.

There are five instances in our work:

– Data_1 instance has a requiredAccessLevel of 3,
– Data_2 instance has a requiredAccessLevel of 2,
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– DataClassified_1 instance has a requiredAccessLevel of
5,

– DataClassified_2 instance has a requiredAccessLevel of
5,

– FileFlashPlayer instance of the malicious executable
dropper.

Risk scope is the class representing all the services or
projects in scope of the organization risk management certi-
fication.

There are different instances of risk scope (RiskScope con-
cept in our ontology) representing all the different services
or projects in scope of the risk management certification
of the selected organization (based on ISO2700X). By
using semantics, our framework will enable interoperabil-
ity between any risk management framework or standard as
all of them will use equivalent concepts.

For the testing of this work, we selected some relevant
and interesting services of our organization, especially two
services that depends on (property) ClassifiedData (class)
named:

– GDPR-compliance instance of class RiskScope, which
depends on Data_Cassified_1. This service is

– CyberThreatINTEL-service instance of class RiskScope,
which depends on DataClassified_2 and Data_2.

Software is the class representing the installed SW on the
PC computers of users to access any data.

To validate this work, we selected the following SW
instances:

– OperatingSystem instance of class software representing
the operating system installed on the PC,

– Browser instance of class software representing the
browser installed on the PC,

– AdobeFlashPlayerPlugin instance of class software rep-
resenting the browser installed on the PC,

Personal Computer is the class representing the computers
of the different users which will be used to access the data.

To validate this work, we selected just the following
instances:

– PC-CFO instance of class PersonalComputer represent-
ing the PC of the CFO,

– PC-CybersecurityExpert instance of class PersonalCom-
puter representing the PC of the head of cyber threat
intelligence.

CyberObservable is the class representing all of the
STIX™cyberobservables.

To validate this work, however, we implemented the
entire STIX™v2 standard, and our watering hole attack only
needed instances belonging to the following subclasses of
class CyberObservable:

– Artifacts class representingmalicious Javascript artifacts,
– Domain name/subdomains classes representing domains
and subdomains,

– IPv4Addr class representing IP addresses,
– URL class representing URLs,
– Network traffic class representing the network traffic.

Safeguards represent the class for countermeasures. They
represent the controls setup by the organization as, for exam-
ple, in equations 1 and 2.

To validate this work, we selected just the following safe-
guards’ instances:

– LDAP-Group-And-Roles-Control instance of class safe-
guards representing the access control based on LDAP.

– Antivirus instance of class safeguards representing the
antivirus of the organization.

– Information sharing control instances which are created
automatically by the reasoner for the tactical scenario of
Fig. 11.

– HR Related Security Awareness Education and Cyber
capabilities control instances which are created automat-
ically by the reasoner for the strategic scenario of Fig. 12.

AssetValuation, Threats, Risk, RiskAssessment, Risk-
Severity, SecurityEvents classes are also used; however, their
instances are created automatically by using SWRL rules.
This is one of our main contributions as errors by hand are
frequent in risk management frameworks nowadays. Organi-
zations are also addressing risk management by simplifying
relationships because until today they were difficult to con-
sider if done by hand. Our reasoner could understand the
meaning of our data, so does its relationships. When risk
owners evaluate the service in scope, all related dependen-
cies are considered. An automated dependency tree is created
because of static or even inferred relationships. All their
values are updated and inherited thanks to automatic asset
valuation SWRL rule. The same happen when a datum is of
type ClassifiedData, and the reasoner understands that dif-
ferent types of risks are associated with such data because
it is classified. Associated risks to that data are identified
automatically. Risks are ranging from bad reputation risk (if
someone leak that data) to deliberated malicious SW distri-
bution (if someone has access to that data, but it does not
have enough cybersecurity expertise to reject a malicious sw
distribution intent) depending on the context around. In order
to make this happen, rules should allow enough expressivity
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which is the main reason we use OWL as suggested by STIX
white paper (RDF/OWL) [5].

Dependencies are a key factor to define the different sce-
narios or contexts.

Some examples of SWRL rules have been shown during
this work (see Figs. 2, 3, 4, 5, 6, 7). They implement most of
the business logic; however, there are different families, and
some of them are:

– Asset valuation rules to automatically calculate the asset
value based on inheritance (risk frameworks usually eval-
uate the importance of the service and depending on asset
dependency tree, there are cascading effects). This is
done automatically to avoid errors (errors by hand are
frequent) as well as to have a broader, consistent and a
more standardized picture.

– Enrichment rules to enrich all our data model (e.g., for
example filling down IP-domain relationships (like a
DNS/Reverse DNS). Once some data are missing, rela-
tionships between data would help the reasoner to infer
the missed data. See Fig. 2 for an example.

– Threat inventory rules to automatically identify threats
depending on our topology. As an example, instances of
class “Deliberated Malicious SW Distribution Threat”
will be created around our company data when specific
users that have access to that data have, at the same time,
a cybersecurity experience below 3 (3 out of 5). See Fig. 3
to see the SWRL rule.

– Risk inventory rules to make an automatic inventory of
all risks. It uses identified threats to guess associated risks
to them dynamically. It is important to have enough and
accurate information for decision makers along the time.

– Risk assessment rules to make the assessment of each
risk which depends on each threat. As an example, see
Fig. 16 for residual risk calculation.

– Risk management rules to decide the best strategy
depending on the organization policy. An example can
be seen in Fig. 10 where we implemented the organiza-
tion policy for high-level risks in SWRL. In this case, any
high-level risk will have associated a mitigation strategy
instance. The specific action to be performed could also
be automated. Also in this category, we created a tactical
level rule (see Fig. 6) to implement a dynamic informa-
tion sharing once an attack is detected. The whole SWRL
detection rule will be shared instead of IOC. On the other
hand, a strategic level rule was also created (see Fig. 7) to
implement new knowledge for the reasoner. In this case,
new awareness training programs are recommended for
those users being threatened, and at the same time, they
are not experts in cybersecurity.

– Risk severity rules to make another type of automated
classification depending on the severity and the policy
defined by the organization.

Fig. 15 SWRL security policy to know data access of users depending
on requiredAccessLevel of data and hasLevelAccess of users

– Security policy rules, for example, to automatically
make an inventory of users and their data access rights.
Depending on hasAccessLevel property of each user and
requiredAccessLevel property of each data, the reasoner
will keep an updated version of access rights database,
that is, who has (or could have) access to what. Thanks
to that, the reasoner is able to associate risks in a granular
a detailed way. (See Fig. 15)

– Threat intelligence rules to detect security events instances
like theSWRLrule shown inFig. 4.Wecreated it to detect
a security event dynamically once it fulfills the antecedent
pattern of our rule. The algorithm will detect a mali-
cious TTP pattern when any user from our organization
is being redirected after another redirection to an URL
which is dropping a (potential malicious) exe installer (in
our case a fake Flash installer). By using this behavioral
pattern rule, we are detecting a security event related to
theTTPof the selectedwatering hole attack. This security
event will trigger a risk re-assessment to recalculate the
new risk level automatically. The risk probability will be
increased by this security event accordingly and dynam-
ically. As a result, there would be a new instance of class
high risk coming from an instance of medium risk due to
its probability has changed. The risk is of type deliber-
ated malicious SW distribution. Now it is worse as there
has been a security event. An event like this will trigger
our reasoner to open or instance a new (proactive) secu-
rity incident although the end user still has not executed
the installer. Once the end user executes it, the proactive
incident will become a reactive incident. Recommended
actions will differ between proactive or reactive state, but
most of them could be automated by our framework.

– Etc.

5 Results

In our case, as the Victim_1 (cybersecurity expert) does not
have access to any classified data, its instance will not have
access or dependencies from this type of data neither Dat-
aClassified_1 nor DataClassified_2. In our model, we can
confirm the users having access to classified data anytime by
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querying the ontology dataset using SQWRL for example.
We can check it out also by using any graph visualiza-
tion plug-in expanding all relationships around any classified
data’s instances.

The selected watering hole attack was motivated due to
the interest of the threat actor to access this type of data, but
in our organization only the CFO has access to it. Then, the
CFO (Victim_0) is classified automatically by our framework
as a potential victim of this type of attack. Different types of
risks related to any unauthorized access to classified data will
be created by the framework automatically due to the nature
of the data (e.g., bad reputation risk when classified data
are accessed and leaked, data protection risk, corporate bad
image, etc.). In addition to this, once the framework detects
that there is an end user which has low cybersecurity expe-
rience with access to this classified data, the framework will
make automatic connections (relationships) between both
types of risks (risk of unauthorized access to classified data
and risk of deliberated malicious SW distribution to the user
who has access to that data). This type of connections are
possible due to different reasons:

– Our model, based on ontologies, SWRL and STIX™, is
able to provide enough expressivity to any type of rule
that will be understood by the reasoner.

– ASWRLrule is creating automatic dependencies between
classified data and the CFO. The rule acts as an access
control security policy rule as seen in Fig. 15. The rule
understands that if CFO hasAccessLevel of 5 (out of 5),
it will have then access to all data, including all classified
data.

– A SWRL rule is automatically detecting a potential risk
of unauthorized access to classified data due to a potential
deliberatedmalicious SWdistribution threat (as an attack
vector) associated to the CFO user. This user has high
probability to install a malicious SW based on its low
experience on cybersecurity. In the selected attack, once
the attacker infects the CFO by using a watering hole
pattern, there will be an identity theft granting access
to any classified data. This complex TTP pattern is now
possible to be written as a threat detection algorithm by
using our semantic framework. (See the SWRL rule in
Fig. 3 as an example)

– Although the CFO becomes our main target as victim
due to the TTP of this attack, other relevant staff with
similar access level from the organization could also be
a potential target of the ThreatActor. Then, our GDPR-
compliance service in scope of our DRA/DRM will
identify this dependency as well. On the other hand, the
CyberThreatINTEL service is also dependent of classi-
fied data as well as non-classified data. This service will
have the same type of risk associated with it. In this case,
the reasoner will explain that the risk comes from the

probability to get access to Data_Classified_2 in case the
CFO is being hacked by a deliberated malicious SW dis-
tribution threat.

– Based on the same security events, our reasoner initi-
ates the sharing of the SWRL rule to detect such TTP
pattern within other offices and partners. It is a shift of
paradigm because IoCs are not shared (they are simple
to be changed by attacker) but the intelligence algorithm
itself. Knowledge about how to detect specific patterns is
shared. This is an implementation of a tactical level risk
management action. See SWRL rule at Fig. 6 and created
instances at Fig. 11.

– Also because of the same detection, our reasoner pro-
poses other action at strategic level. In this case, specific
awareness training for workforce capacity building is
selecting only the users being threatened which at the
same time has low cybersecurity experience. See SWRL
rule at Fig. 7 and created instances at Fig. 12.

DRA/DRM is calculated properly as expected and risks
are classified into different risk management strategies
depending on the severity.

Victim_0 and Victim_1 browsed the Web site the day
before it was compromised, but no security alerts were
received (instanced). The rules were created, but that mali-
cious behavior was inexistent.

The day after, when the press site was compromised, both
users, as usual, started navigating to the infected domain, but
after the homepage was loaded, an injected Javascript started
to load different artifacts from different URLs making dif-
ferent redirections. After that, a payload was dropping a fake
(exe) AdobeFlashPlayer installer as expected in our work to
both users.

Once our SWRL rule detected that traffic, it created a new
instance of type SecurityEvent class classifying that behavior
into a security event of type “Dropper behavior of Malicious
Windows Executable,” again for both users. The rule is then
a pattern-like to detect the TTP of our watering hole attack.

The SWRL TTP-like rule was designed by using a combi-
nation of sequential http request and response traffic analysis
while being automatically redirected by malicious Javascript
until an URL is dropping a fake windows installer.

All security events triggered were using our proposed
semantic architecture. Then, it was very easy to follow all
new or established relationships. As an example, know-
ing the LAN IPv4Addr (CyberObservable) originating the
http request connection, we could not only identify the user
behind that connection but we were also able to identify all
related risks (and only those related to this specific threat)
to make a dynamic re-assessment (DRA). Risks related to
other type of threats were kept unchanged as they did not
have relationships within these type of security events.
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In our work, however, we had security events triggered
from both users’ network traffic (both were navigating and
experiencing the same attack), our system considered that
the Cybersecurity Expert was likely not going to execute
the strange (fake) Flash update or any other strange update
due to its cybersecurity experience. Risk re-assessment only
took place for those risks which were belonging to those
users whose experience in cybersecurity were less than 3
(out of 5). The model was then able to accommodate such
kind of specificities. More than that, if our CFO improves its
cybersecurity experience in the coming future, once the value
is updated in its end user instance, our framework will adapt
itself to the new context. Some risks will then be removed as
the same SWRL rules will consider that some past risks are
no longer justified. The reasoner will identify inconsistencies
over the data anytime.

We are then moving forward from the original (static) risk
assessment approach used by the organization until today
(see Eq. 1) to a more feasible, meaningful, more effective,
realistic, complete and dynamic approach (by implementing
Eq. 2).

For this evaluation, we limited the implementation mostly
to “Deliberated Malicious SW Distribution Risks” (Fig. 16)
but also to other type of non-IT-related risks, like strategic
risks of type “Bad Reputation Risks” because their relation-
ships in case of potential data leak when unauthorized access
to classified data take place.

Again, due to this semantic approach, it is easy to follow
risks relationships from a service/project to the users and vice
versa, even to connect its network traffic to a specific service
in risk dynamically.

In our example, IP 192.168.1.10 belongs to our CFO user.
In case it executes the fake Flash update, a new rule would be
able, for example, to create an automated incident response
with all the related context (security event, user potentially
infected, dateTimeStamp, Services Affected, etc.). Without
a malware analysis yet, or without more cyber threat intel-
ligence data, the incident could not have still the highest
severity score (we still do not know if the dropped file is
a malware and their motivation); however, it is a malicious
pattern detected.

But, when the binary file is identified as malware, the
incident severitywould then get the highest score as classified
data could have been compromised already by using stolen
credentials.

One of the main challenges in cybersecurity it is to work
against unknown or emerging threats (e.g., APT) having
real-time visibility about our risk exposure along the time.
Another challenge is to clearly define when a security event
becomes an incident (preventive or reactive).

By using our framework (as shown in Fig. 17), we have
all the needed expressiveness to better know what is really

Fig. 16 SWRL residual risk calculation for deliberated malicious SW
distribution risks when safeguards of type “control-against-malicious-
sw” are available. Safeguards reduce potential risk

Fig. 17 Screenshot of Protegé tool [35] of an instance of class risk
assessment and type “Deliberated Malicious SW Distribution Risk”
whose risk has being increased automatically by different security
events as well as mitigated by one countermeasure, the antivirus

happening along the time; in this case, we know that there is
a risk automatically identified of type deliberated malicious
SW distribution which has been mitigated by one safeguard,
but at the same time, it was increased by different secu-
rity events. We perfectly know the connection of this risk
to the affected assets and services, and all information is
consistent. We can query our model to know more about
all the relationships and reasoner conclusions, but we can
also use interactive graphs to see all the relationships as
shown in Fig. 1. Apart from operational level, our frame-
work is able to work at tactical and strategic levels as seen in
Figs. 11, 12.
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6 Conclusion

Today, risk assessment (RA) and management (RM) are
mostly manual processes performed once per year by dif-
ferent experts based on their personal opinions. On the
other hand, any entity is exposed to cybersecurity threats
everyday. Unfortunately, these threats are not taken into
consideration dynamically into the organization risk cal-
culation. Risk exposure level calculation, countermeasure’s
responses, projects or related investment plans should be
updated dynamically and proportionally to the threat level
and risk exposure of each organization along the time. There
should not be treated as a static annual review process (by
auditors).

We developed a formal model based on standards to
connect real-time threats to risk calculation and risk man-
agement processes which also provide better automation,
enrichment, detection capabilities and simplicity by using
standards STIX™ [4], OWL [10], SWRL [11] and a reasoner
[14].

This paper presents thefirst practicalDRA/DRMapproach
applied to up-to-date threat and risk processes of an interna-
tional reference entity, a national CSIRT. We have selected
a real publicly known attack for the implementation, as we
consider it a good example to test our proposal on leading
organizations that could easily be impacted by this type of
attack due to its nature. This type of attacks is very difficult
to detect even by leading organizations. We implemented
behavioral pattern rules in SWRL to detect and update our
risk level exposure accordingly with so much expressivity
to understand what is really happening either by humans or
machines. At the same time, we demonstrated how a spe-
cific security event could trigger different actions beyond the
operational level, like the tactical and strategic levels. In our
case, at tactical level, the same attack produces an automatic
risk intelligence sharing (share of TTP detection algorithm
but not specific IoC) as a tactic to avoid bigger impact of a
potential campaign against other remote offices or partners
even if the IoCs are changed during the attack. As a future
research direction, there is a need to improve incentives for
intelligence sharing (IoC or algorithms). At strategic level,
specific awareness training sessions were identified to those
victims involved in the attack which at the same time have
poor cybersecurity knowledge.
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