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Abstract
In a designated verifier signature (DVS) scheme, the signer (Alice) creates a signature which is only verifiable by a designated
verifier (Bob). Furthermore, Bob cannot convince any third party that the signature was produced by Alice. A DVS scheme is
applicable in scenarios where Alice must be authenticated to Bob without disturbing her privacy. The de-facto construction
of DVS scheme is achieved in a traditional public key infrastructure (PKI) setting, which unfortunately requires a high-
cost certificate management. A variant of identity-based (ID-based) setting DVS eliminates the need of certificates, but it
introduces a new inherent key escrow problem, whichmakes it impractical. Certificateless public key cryptography (CL-PKC)
is empowered to overcome the problems of PKI and ID-based settings, where it does not suffer from any of the aforementioned
problems. However, only a few number of certificateless DVS (CL-DVS) schemes have been proposed in the literature to date.
Moreover, all existing CL-DVS schemes are only proven secure in the random oracle model, while some of them are already
known to be insecure. We provide three contributions in this paper. First, we revisit the security proofs of existing CL-DVS
schemes in the literature and show that unfortunately there are some drawbacks in the proofs of all of those schemes. Second,
we concentrate on the recently proposed CL-DVS scheme (IEEE Access 2018) and show a drawback in its security proof
which makes it unreliable. Furthermore, we show that this scheme is delegatable in contrast to the author’s claim. Finally,
we propose a CL-DVS scheme and prove its security requirements in the standard model. Our scheme is not only the first
scheme with a complete and correct security proofs, but also the only scheme in the standard model.

Keywords Designated verifier signature · Certificateless public key cryptography · Certificateless designated verifier
signature · Standard model · Random oracle model

1 Introduction

A digital signature is a well-known primitive that provides
integrity and authenticity of messages in cryptographic pro-
tocols [1]. In an ordinary digital signature scheme, the signer
(Alice) creates a signature which is publicly verifiable by
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everyone. The privacy of Alice is not preserved in a tradi-
tional digital signature, since a verifier (Bob) can convince
any third party about Alice’s signature by presenting her sig-
nature to the third party (without the need ofAlice’s consent).
This public verifiability of digital signatures is a useful and
necessary property in some applications, but it is not a desir-
able property in some specific applications such as e-votings,
e-auctions and fair exchanges, in which integrity and authen-
ticity must be satisfied without disturbing the privacy of the
signer. Many works have been devoted to overcome the con-
flicts between the authenticity and privacy of the signer in
digital signatures. In 1989, the concept of undeniable sig-
nature was proposed in which some help of the signer is
necessary in the verification phase [2]. In 1996, Jakobsson
et al. [3] and Chaum [4] independently proposed the con-
cept of designated verifier signature/proof (DVS/DVP), in
order to avoid the interaction between the signer and the ver-
ifier. In a DVS scheme, a signer (Alice) generates a signature
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which can only be verified by a designated verifier (Bob).
Moreover, Bob cannot transfer his conviction about Alice’s
signature to any third party, since he can produce a signature
which is indistinguishable from the one generated by Alice.
Thus, the authenticity of Alice is proved to Bob and her pri-
vacy is preserved at the same time, without any interaction
between Alice and Bob. Note that the main advantage of a
DVS scheme in comparison with other privacy-preserving
authentication schemes such as [5,6] is privacy-preserved
authentication of Alice to Bob without any reciprocal com-
munications between Alice and Bob.

In a traditional public key cryptography (PKC), a user
selects a public/private key pair (PK , SK ) for him/herself.
In a conventional public key infrastructure (PKI), a digi-
tal certificate is issued by a certificate authority (CA) to
bind between the public key and the identity of a user. The
management of the certificates requires a large amount of
computation, storage and communication costs in a tradi-
tional PKI. To solve this problem, the notion of identity-based
cryptography (ID-PKC) was put forth by Shamir in 1984
[7]. In an ID-PKC, a trusted third party called the private
key generator (PKG) produces the private key of a user from
his/her unique identifier information. An inherent problem
of ID-PKC is the key escrow problem, i.e., the PKG knows
all users’ private keys. To overcome these problems simul-
taneously, Al Riyami and Paterson introduced the concept
of certificateless public key cryptography (CL-PKC) in 2003
[8]. In a CL-PKC, a public/secret key pair (PK , x) is gen-
erated by the user him/herself without requiring PK to be
certified. Also, a partial private key d is created by a semi-
trusted third party called key generation center (KGC), from
the unique identifier information of the user. The knowl-
edge of both x and d is required for a user to acquire
his/her full private key SK . One can consider CL-PKC as
an intermediate solution between a traditional PKI and ID-
PKC.

The concept of certificateless designated verifier signature
(CL-DVS)was put forward byHuang et al. [9]. Subsequently,
only several CL-DVS schemes have been proposed in the lit-
erature [10–17]. Although these schemes are claimed to be
secure in the random oracle model (ROM), unfortunately
there exist some drawbacks in the security proofs of all of
them. Additionally, the proposed scheme in [16] is inse-
cure against the key replacement attack proposed in [18].
Furthermore, since the introduction of the notion of the mali-
cious KGC attack in CL-PKC [19], the need for a secure
scheme under this type of attack becomes essential. Unfor-
tunately, as shown in [19,20], the proposedCL-DVS schemes
in [9,14] are insecure against malicious KGC attack. There
are also key-compromise and malicious KGC attacks against
the scheme in [14] proposed in [21]. We should note that the
malicious KGC attack was not claimed in the original paper
of [9], but the work in [19] shows that there is some lack

of completeness of this paper in accordance with the current
state-of-the-art knowledge.

Our Contributions
We provide three contributions in this paper. First, we revisit
the existing CL-DVS schemes and their security proofs and
show that unfortunately there are issues in the security proofs
of all of those schemes. Second, we concentrate on the
recently proposed CL-DVS scheme [17] and show some
drawbacks in its security proofs whichmake them unreliable.
Moreover, we show that this scheme is delegatable in contrast
to the author’s claim. Finally, we present a CL-DVS scheme
and prove its security requirements without random oracles.
Note that as Rogaway discussed in [22], the schemes which
their security requirements are proved in the ROMmight not
be secure when the random oracles are replaced with the
real-world primitives (such as hash functions). Therefore,
we provide the security proof of our proposal in the standard
model (without random oracles). Not only our proposal is
the first CL-DVS scheme in the standard model, but also it
does not suffer from the drawbacks in the security proofs of
the previous proposals.

Paper Organization
In Sect. 2, we provide some preliminaries that will be used
throughout this work. In Sect. 3, the formal model of a
CL-DVS scheme is described. In Sect. 4,we provide a discus-
sion on the security proofs of CL-DVS schemes. In Sect. 5,
we provide a discussion on a recently proposed CL-DVS
scheme (IEEE Access 2018) and show some drawbacks in
this scheme. Subsequently, in Sect. 6, we propose our new
CL-DVS scheme. In Sect. 7, we prove the security require-
ments of our proposal in the standard model. In Sect. 8, a
comparison between our proposal and other existing schemes
is provided. Finally, Sect. 9 concludes this work.

2 Preliminaries

2.1 Bilinear pairings

Consider two multiplicative cyclic groups G1 and G2 of
prime order p and let g be a generator of G1. The map-
ping e : G1 × G1 −→ G2 is an admissible bilinear pairing
if and only if the following properties are satisfied:

1. Bilinearity: e(ga, gb) = e(g, g)ab, for all a, b ∈ Z
∗
p.

2. Non-degeneracy: i. e., e(g, g) �= 1G2 .
3. Computability: There exists an efficient algorithm for

computing e(g, g).

The readers can refer to [23] for more details about bilinear
pairings.
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2.2 Related complexity assumption

Consider a set of integers S ⊂ Z, and define S +p S �
{i + j mod λ(p) : i, j ∈ S}, where λ(p) is the order of
elements modulo p. Also, consider another target integer
m /∈ S +p S. The (S,m)-Computational-Bilinear Diffie–
Hellman Exponent-Set ((S,m)-CBDHE-Set) problem [24]
is that on inputs {gai ∈ G1 : i ∈ S}, for unknown a ∈
Z

∗
p, calculate e(g, g)

am . It is said that (ε, t)-(S,m)-CBDHE-
Set assumption holds in (G1,G2), if no t-time algorithm
can solve the (S,m)-CBDHE-Set problem in (G1,G2), with
probability at least ε.

Remark 1 By assigning S = SK = {0, 1, 2, . . . , K }, and
m = 2K + 1, the (S,m)-CBDHE-Set problem is that
on inputs g, ga, ga

2
, . . . , ga

K ∈ G1, for unknown a ∈
Z

∗
p, calculate the value of e(g, g)a

2K+1
. The unforgeabil-

ity of our proposed scheme is based on (S2, 5)-CBDHE-Set
and (S4, 9)-CBDHE-Set assumptions against AI and AI I ,
respectively.

3 Formal model of CL-DVS

3.1 Algorithms and syntax

A CL-DVS scheme comprises three entities: the key gener-
ation center (KGC), the real signer (S) and the designated
verifier (V ). It is defined by the following eight algo-
rithms [9]:

– Setup KGC runs this probabilistic polynomial time
(PPT) algorithm which takes a security parameter λ as
input and outputs system parameters params and a mas-
ter secret key msk. Then, KGC publishes params and
keeps msk secret.

– Partial-Private-Key-Extract (PPKE) KGC runs this
PPT algorithmwhich takes params,msk and an identity
I DU ∈ {0, 1}∗ as input and outputs a partial private key
dU . Then KGC sends dU to the corresponding user via a
secure channel.

– Set-Secret-Value (SSV)The userwith identity I DU runs
this PPT algorithm which takes params and I DU as
input and outputs a random choice xU . The user keeps
xU as his secret value.

– Set-Private-Key (SPrK) The user with identity I DU

runs this (P)PT algorithm which takes params, I DU ,
dU and xU as input and outputs the user’s full private key
SKU .

– Set-Public-Key (SPuK)Theuserwith identity I DU runs
this PT algorithm which takes params, I DU , xU (and
maybe dU ) as input and outputs the user’s public key

PKU . The user publishes PKU without requiring to be
certified.

– DVS Signing (DSign) The signer with identity I DS runs
this (P)PT algorithm which takes params, a messagem,
the signer’s identity I DS , the signer’s private key SKS ,
the verifier’s identity I DV and the verifier’s public key
PKV as input and outputs a signature σ on message m.

– DVS Verification (DVer) The verifier with identity
I DV runs this deterministic PT algorithm which takes
params, a message/DVS pair (m, σ ), I DS , PKS , I DV

and SKV as input and outputs 1 if σ is valid and 0, oth-
erwise.

– Transcript Simulation (TS) The verifier with identity
I DV is able to run this algorithm to produce a signatureσ ′
which is indistinguishable from σ created by the original
signer.

Remark 2 The SPrK algorithm is defined based on one of the
two following methods:

– SPrK1 SKU is directly set as xU and dU (or maybe a
part of dU ), i.e., SKU = (dU , xU ), such as the schemes
in [10,11,14–17].

– SPrK2 SKU is set as a function of dU and xU , i.e.,
SKU = f unc(dU , xU ), such as the scheme in [9].

There are some subtle differences in oracle accesses in the
security proof of CL-DVS schemes based on whether they
use SPrK1 or SPrK2 algorithms, which will be discussed in
Sect. 4.

3.2 Security requirements

Correctness, unforgeability and non-transferability (source
hiding) are three basic security requirements of a CL-DVS
scheme. They are described as follows.

Correctness If the signer properly creates a CL-DVS by
the DSign algorithm, then this signature must pass the
DVer algorithm successfully.
Unforgeability It is computationally infeasible to cre-
ate a valid CL-DVS for everyone except the signer or
the designated verifier. See Sect. 4 for more descriptions
about the security model for proving the unforgeability
of a CL-DVS scheme.
Non-TransferabilityGiven a messagem and a CL-DVS
σ on m, it is infeasible to determine whether the original
signer or the designated verifier creates σ , even if one
knows all private keys.

Remark 3 In 2005, a new security notion called as non-
delegatability was proposed for designated verifier signature
schemes [25]. According to this property, neither the signer
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nor the designated verifier is able to delegate the sign-
ing rights to a third party without revealing his/her private
key. However, the authors in [26] pointed out that although
the non-delegatability has been a focus of many recent
researches, it may be undesirable in some applications.
Therefore, the non-delegatable DVS schemes should be con-
sidered as a special category which are useful in specific
applications where the responsibility of the signer is impor-
tant and cannot be delegated to another entity. Among all
proposed CL-DVS schemes [9–17], only the schemes in [15–
17] are claimed to be non-delegatable. However, the scheme
in [16] is forgeable according to the attack proposed in [18].
Moreover,we show inSect. 5.1 that the scheme in [17] is dele-
gatable in contrast to its author’s claim.We should emphasize
that our proposal (in Sect. 6) is not placed in the category of
non-delegatable CL-DVS schemes, too.

4 A discussion on security proofs

In a certificateless public key cryptography, two types of
adversaries are considered [9–17]:

1. The type I adversary AI who cannot obtain the master
secret key but he can replace the public key of an arbitrary
entity because of the uncertified nature of the public keys
generated by the users. In fact, AI is a key replacement
attacker.

2. The type I I adversary AI I who possesses the master
secret key but cannot replace any public keys (malicious
KGC attacker).

In a CL-DVS scheme, the adversaries may access to the fol-
lowing oracles:

Hash Oracle (OH ): Given any input, returns its hash
function.
PPKEOracle (Od ): Given an identity I DU , returns dU .
SPuK Oracle (OPK ): Given an identity I DU , returns
PKU .
SSV Oracle (Ox ): Given an identity I DU , returns xU .
SPrK Oracle (OSK ): Given an identity I DU , returns
SKU .
Replace-Public-Key Oracle (ORPK ): Given an identity
I DU and a new valid public key PK ′

U , replaces PKU

with PK ′
U .

DSign Oracle (OS): Given a messagem, I DS and I DV ,
returns a valid signature σ on m from S to V .
DVer (OV ): Given a signature σ , I DS and I DV , returns
1 if σ is valid and 0 otherwise.

The third and the forth columns of Table 1 show the oracle
accesses of AI and AI I in the proposed CL-DVS schemes,

while the second column shows whether the scheme is
based on SPrK1 or SPrK2 algorithms (which is described
in Sect. 3.1). Note thatOI and OI I denote the set of oracles
which can be accessed by AI and AI I , respectively.

Unforgeability of a CL-DVS scheme is defined by the
two following games for type I and type I I adversaries,
respectively.

Game 1 A challenger C plays this game withAI as follows:

– Setup C takes a security parameter λ as input and pro-
duces params and msk. C sends params to AI and
keeps msk secret.

– Queries AI issues polynomially bounded number of
queries to the oracles in setOI and C must answer these
queries by simulating the oracles.

– Forgery Finally, AI creates a forged message/signature
(m∗, σ ∗) from the signerwith identity I DS∗ to the verifier
with identity I DV ∗ .

Game 2 A challenger C plays this game withAI I as follows:

– Setup C takes a security parameter λ as input and pro-
duces params and msk. C sends params and msk to
AI I .

– Queries AI I issues polynomially bounded number of
queries to the oracles in setOI I and C must answer these
queries by simulating the oracles.

– Forgery Finally,AI I creates a forged message/signature
(m∗, σ ∗) from the signerwith identity I DS∗ to the verifier
with identity I DV ∗ .

It is said that AI wins Game 1 (or AI I wins Game 2) if σ ∗
is a valid signature on m∗ with respect to I DS∗ and I DV ∗
and meanwhile σ ∗ is not obtained from the ODSign oracle.
Moreover there are some trivial conditions that must be sat-
isfied according to the oracle accesses and the construction
of the scheme which will be discussed in Sect. 4.2.

4.1 A discussion on oracle accesses

Here, we provide a discussion on oracle accesses in the pro-
posed CL-DVS schemes which are shown in Table 1. Note
that the adversaries may obtain some information from the
environment which must be simulated by the oracle accesses
in the security model. As the authors in [11] do not model the
oracle accesses, their security proof is not rigorous at all. So
we do not consider this scheme in the following discussions.

When the security is proved in the ROM, the adversaries
are considered to have access toOH . In fact, a hash function
is simulated as a random oracle and as Rogaway discussed in
[22], these schemes are not secure when the random oracles
are replaced with the real hash functions. As the proposed
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Table 1 Oracle accesses in the
existing CL-DVS schemes

Scheme SPrK OI OI I

[9] SPrK2 {OH ,OS,OV } {OH ,OS,OV }
[10] SPrK1 {OH ,OS,OV } {OH ,OS,OV }
[11] SPrK1 × ×
[12] SPrK1 {OH ,Od ,OPK ,Ox ,ORPK ,OS,OV } {OH ,OPK ,Ox ,OS,OV }
[13] SPrK1 {OH ,Od ,OPK ,Ox ,ORPK ,OS,OV } {OH ,OPK ,Ox ,OS,OV }
[14] SPrK1 {OH ,Od ,OPK ,Ox ,ORPK ,OS,OV } {OH ,OPK ,Ox ,OS,OV }
[15] SPrK1 {OH ,Od ,OPK ,OSK ,ORPK ,OS} {OH ,Od ,OPK ,OSK ,OS}
[16] SPrK1 {OH ,Od ,OPK ,Ox ,ORPK ,OS,OV } {OH ,OPK ,Ox ,OS,OV }
[17] SPrK1 {OH ,Od ,OPK ,Ox ,ORPK ,OS,OV } {OH ,Od ,OPK ,Ox ,OS,OV }

CL-DVS schemes in [9,10,12–17] are provable in the ROM,
the adversaries have access toOH in the security proof of all
of them.

In the security model of the schemes in [9,10], the adver-
saries have only access to {OH ,OS,OV }. In fact, in these
schemes, only the existential unforgeability against cho-
sen message attack (EUF-CMA) is considered in which the
adversaries can only obtain a signature on every message m
and the verification result on every signature from I DS∗ to
I DV ∗ and finally forge a signature on a new challenge mes-
sage m∗ from I DS∗ to I DV ∗ . However, in a certificateless
setting, the existential unforgeability against chosenmessage
and identity attack (EUF-CM&IDA) must be considered in
which the adversaries are considered more powerful as they
can obtain the signature on everymessagem from every I DS

to every I DV , the verification result of every signature from
every I DS to every I DV , and even the keys of every I DU

of their choice and finally forge a signature on a challenge
message m∗ from I D∗

S to I D∗
V . Hence, we concentrate on

the security model of the schemes in [12–17] in which the
EUF-CM&IDA is considered.

For considering EUF-CM&IDA, AI has access to the
oracles in set OI = {OH ,Od ,OPK ,Ox (and/or OSK ),

ORPK ,OS,OV }. However, AI I (a malicious KGC) pos-
sesses the master secret key and is able to obtain dU of
every user, so he/she does not require to have access to
Od (while it is not any problem to consider Od in set OI I

such as [15,17]). Moreover, it is assumed that AI I does not
replace public keys and so he/she does not have access to
ORPK , too. As a result, AI I has access to the oracles in set
OI I = {OH ,OPK ,Ox (and/or OSK ),OS,OV }.

As shown in Table 1, all of the schemes in [12–17] are
based on SPrK1 algorithms, i.e., SKU = (dU , xU ), and
the adversary can obtain SKU by obtaining xU from Ox

and dU from Od , so it is not a requirement for simulating
OSK in these schemes. However, in the scheme in [15], only
OSK is considered which is in fact a combination of Ox

andOd . In CL-DVS schemes based on the SPrK2 algorithm,
SKU = f unc(xU , dU ), i.e., xU is not directly used in the

signing process and so it is sufficient to consider OSK with-
out simulating Ox [27].

As shown in Table 1, in the security proof of the scheme
in [15],OV is not simulated, so its security proof is unfortu-
nately not rigorous as well. As a result, only in the proofs of
the schemes in [12–14,16,17] the oracle accesses seems to
be reasonable.

4.2 The conditions for the adversary success

As mentioned, it is said that AI wins Game 1 (or AI I wins
Game 2) if σ ∗ is a valid signature on m∗ with respect to
I DS∗ and I DV ∗ and meanwhile σ ∗ is not obtained from the
ODSign oracle. Furthermore, there are some trivial conditions
that must be satisfied according to the construction of the
scheme and the oracle accesses. In this section, we provide a
discussion on these conditions.Weonly consider the schemes
in which EUF-CM&IDA is considered (i.e., the schemes in
[12–17]).

It is obvious that SKS∗ must not be extracted at any point,
since it is trivial that by obtaining SKS∗ , the adversary can
forge a signature by running the DSign algorithm.Moreover,
as in all of the schemes in [12–17], the verifier can use his
full private key SKV to create a valid signature by the TS
algorithm, SKV ∗ must not be extracted at any point, too.

There are four conditions for the success of the adversary
(AI in Game 1 or AI I in Game 2) in the proposed schemes
as follows:

– C1: I DS∗ and I DV ∗ have not been submitted to Od .
– C2: I DS∗ and I DV ∗ have not been submitted to Ox .
– C3: I DS∗ has not been submitted to ORPK .
– C4: I DV ∗ has not been submitted to ORPK .

There are some contradictions between the conditions which
are considered in the definition and in the process of the
proof for some of the proposed schemes. In Table 2, the
conditions for winningAI in Game 1 andAI I in Game 2 are
summarized both in the definition and the process of the proof
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Table 2 The conditions for the
success of AI and AI I

Scheme The conditions in Game 1 The conditions in Game 2

Definition Proof Definition Proof

[12] ? C1 ? C2

[13] C1 C1 C2 C2

[14] C1,C2 C1,C2 C1,C2,C3,C4 C2

[15] C1 C1,C4 C1 C2

[16] C1,C2,C3,C4 C1 C1,C2 C2

[17] C1,C2 C1,C2,C3,C4 C2,C3,C4 C2

? There are not any descriptions for the conditions of the success of adversaries in definitions of [12]

for the schemes in [12–17]. There are some considerations
on Table 2 which will be described in Sects. 4.2.1 and 4.2.2.

4.2.1 The conditions for the success ofAI In Game 1

The conditions C1 and C2 are considered for preventing AI

from obtaining SKS∗ and SKV ∗ . Note that if AI cannot
obtain dS∗ (dV ∗ ) he/she cannot obtain SKS∗ (SKV ∗ ) even
if he/she knows xS∗ (xV ∗ ). Hence, the condition C1 seems to
be sufficient and there is not any reason for considering the
condition C2. In other words, C1must be satisfied inGame 1,
but there is not any necessity for satisfyingC2, although there
is not any problem to consider C1 and C2 together.

About the condition C3, note thatAI is a key replacement
attacker who tries to forge a signature from a signer with
identity I DS∗ to the verifier with identity I DV ∗ via Game 1.
Hence, it is not reasonable to prevent AI from replacing the
public key of I DS∗ , i.e., C3 is not a reasonable condition at
all. Although the authors in [16] consider C3 in their defini-
tion of the success of AI in Game 1, they do not consider
this condition in their proof, so although their definition is
not correct, their proof seems to be true in this sense. The
only scheme for which this unreasonable condition (i.e., C3)
is considered in the security proof is the scheme in [17], so its
security proof against AI is not rigorous at all (see Sect. 5.2
for more descriptions).

Although C3 is not reasonable, there is not any problem
to consider C4 in the conditions of the AI ’s success, since
AI does not gain any benefits from replacing PKV ∗ . More
precisely, note that AI tries to forge a signature from I DS∗
to I DV ∗ via Game 1, i.e., AI is trying to cheat I DV ∗ by a
forged signature from I DS∗ . Even if AI has the permission
to replace PKV ∗ with another public key PK ′

V ∗ in Game 1
and forges a signature σ ∗, he/she does not obtain any advan-
tage from this replacement, as I DV ∗ uses his/her real public
key PKV ∗ to verify the forged signature σ ∗. As a result, σ ∗
will not pass the DVer algorithm as it is a forged signature
corresponding to PK ′

V ∗ not PKV ∗ . So, as AI does not gain
any benefits from replacing PKV ∗ , it is not unreasonable to
consider C4 in the conditions of his/her success.

To sumup, consideringC1,C2 andC4 is reasonable,while
considering C3 is not reasonable for the success of AI in
Game 1. Hence, as shown in 2, the conditions for the success
of AI in Game 1 are reasonable in the proof of all of the
schemes except the scheme in [17].

4.2.2 The conditions for the success ofAII in Game 2

Note thatAI I is a malicious KGC attacker who possesses the
master secret key, so he/she can compute the partial private
key of every user and does not require to have access to Od .
Moreover, AI I does not have access to ORPK for any user.
As a result the conditions C1, C3 and C4 are meaningless
for AI I ’s success in Game 2. Although these conditions are
considered in the definition ofAI I ’s success in some papers
(see Table 2), they are not considered in the process of the
proof. Therefore, the only reasonable condition for the suc-
cess of AI I in Game 2 is C2, as if AI I can obtain xS∗ (xV ∗ )
he/she can easily obtain SKS∗ (SKV ∗ ) as he/she knows all
partial private keys. Hence, as shown in 2, the conditions for
the success of AI I in Game 2 are reasonable in the proof of
all of the schemes.

4.3 Probability analysis

It is well known that in a security proof, a simulator B is
constructed which uses the adversary (AI or AI I ) as a sub-
routine and tries to solve a hard problem. B must simulate C
and all oracle accesses of AI (AI I ) in Game 1 (Game 2). If
the success probability of the adversary in his/her attack (ε) is
non-negligible, then the success probability of B for solving
the hard problem (ε′) must be non-negligible too, as would
be a contradiction to the intractability of the hard problem.
From this contradiction, we conclude that ε is negligible. It
is obvious that if ε′ is negligible, there is not any contra-
diction which leads us to conclude that ε is negligible, and
so a security proof is valueless without probability analysis.
Unfortunately, probability analysis is not provided in none
of the schemes in [12–17], except [15,17].
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5 Discussions on Lin’s scheme

Recently (in IEEE Access 2018), Lin proposed a CL-DVS
scheme in theROMwith the claim of satisfying the following
properties [17]:

1. Essential security properties, i.e., correctness, unforge-
ability (against AI and AI I ) and non-transferability
which are described in Sect. 4.

2. SSA-KCA (signer ambiguity against key-compromise
attack) which is a notion introduced by Lin himself [17].

3. Non-delegatability which is described in Remark 3.

In this section, we first provide an overview on the algorithms
of Lin’s Scheme. Then, we show that in contrast to his claim,
his scheme is delegatable. Moreover, we have a comment on
the proof of the unforgeability of his scheme.

5.1 An overview of Lin’s scheme

The algorithms of Lin’s CL-DVS scheme are as follows:

– SetupOn input a security parameter λ, the KGC chooses
a large prime p and an elliptic curve E/Fp over the field
Fp. Let G1 be a cyclic additive group on E/Fp and P be
a base point of order q (another large prime) overG1. The
KGC also picks three collision-resistant hash functions
H1 : G1 × {0, 1}∗ −→ Z

∗
q , H2 : G4

1 −→ Z
∗
q and H3 :

{0, 1}∗ ×G1 −→ G1. Moreover, the KGC selects a ran-
dom s ∈R Z

∗
q as his/her master secret key and computes

Ps = sP as his/her public key. The public parameters are
Ω = {Fp, E/Fp,G1, q, P, H1, H2, H3, Ps}.

– PPKE On input an identity I Di (corresponding to the
user Ui ), the KGC first selects a random ui ∈R Z

∗
q

and then computes Di = ui P , qi = H1(Di , I Di ) and
si = ui + qi s mod q. Then, the partial private key Si =
(si , qi , Di ) is returned to the user Ui . Each user can ver-
ify it by checking whether the equality si P = Di + qi Ps
holds or not.

– SSV The userUi , selects a random xi ∈R Z
∗
q as his secret

value and compute Yi = xi P .
– SPrK Ui sets SKi = (xi , si ) as his/her full private key.
– SPuK Ui sets PKi = (Yi , qi , Di ) as his/her public key.
– DSign Suppose that a signer Ua wants to create a sig-
nature on a message m for a designated verifier Uv . The
signer selects random values w, r ∈R Z

∗
q and computes:

l = w + xa, K = lsa(Dv + qvPs), U = H3(m, K ),

R = r P −U = (rx , ry), V = (r + w)Yv,

Z = ryxaYv, h = H2(U , R, Z , V ).

Then returns σ = (l, R, h) to Uv .

– DVer Upon receiving σ = (l, R, h), Uv computes:

W = l P − Ya, K ′ = lsv(Da + qa Ps),

U ′ = H3(m, K ′),
V ′ = xv(R +U ′ + W ), Z ′ = ryxvYa,

h′ = H2(U
′, R, Z ′, V ′).

If h′ = h, Uv accepts the signature and returns 1, other-
wise rejects it and returns 0.

– TS Uv is able to generate a signature on a message m′
which is indistinguishable from that created by Ua . In
order to simulate a signature on a message m′, Uv first
selects two random values l ′ ∈R Z

∗
q and R′ ∈R G1 and

then computes:

W ′ = l ′P − Ya, K ′ = l ′sv(Da + qa Ps),

U ′ = H3(m
′, K ′),

V ′ = xv(R
′ +U ′ + W ′), Z ′ = r ′

yxvYa,

h′ = H2(U
′, R′, Z ′, V ′).

Then returns σ ′ = (l ′, R′, h′).

5.2 On delegatability of Lin’s scheme

Lin claimed that his scheme is non-delegatable and has tried
to prove this claim in Theorem 1 of [17]. However, we
show that his scheme is delegatable, as everyone who knows
the common secret key of Ua and Uv , i.e., Comm.Key =
(sasvP, xaxvP), is able to produce a valid signature σ ∗ on
a message m by selecting random values l∗, r∗ ∈R Z

∗
q and

computing:

K ∗ = l∗sasvP, U∗ = H3(m, K ∗),
R∗ = r∗P −U∗ = (r∗

x , r
∗
y )

V ∗ = (r∗ + l∗)Yv − xaxvP, Z∗ = r∗
y xaxvP,

h∗ = H2(U
∗, R∗, Z∗, V ∗).

It is easy to check that σ ∗ = (l∗, R∗, h∗) is a valid signature
since it passes the DVer algorithm successfully as:

W = l∗P − Ya,

K ′ = l∗sv(Da + qa Ps) = l∗svsa P = l∗sasvP = K ∗,

U ′ = H3(m, K ′) = H3(m, K ∗) = U∗,

V ′ = xv(R∗ +U ′ + W ) = xv(r∗P −U∗ +U∗ + l∗P − Ya)

= r∗xvP + l∗xvP − xvxa P = (r∗ + l∗)Yv − xaxvP = V ∗

Z ′ = r∗
y xvYa = r∗

y xvxa P = r∗
y xaxvP = Z∗,

h′ = H2(U
′, R∗, Z ′, V ′) = H2(U

∗, R∗, Z∗, V ∗) = h∗.

In otherwords, it is not necessary to know SKa = (xa, sa) (or
SKv = (xv, sv)) to create a valid signature and the knowl-
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edge of only Comm.Key = (sasvP, xaxvP) is sufficient
to generate a valid signature. Note that the signer Ua can
compute Comm.Key = (sa(Dv + qvP), xaYv) and dele-
gate the signing rights to every third party by only revealing
Comm.Key to him/her (and of course without revealing
SKa). As a result, in contrast to his claim, Lin’s scheme is not
located in the class of non-delegatable CL-DVS schemes.

5.3 On unforgeability of Lin’s scheme

Lin also claimed that his scheme is unforgeable against AI

and AI I in the ROM based on CDH assumption and has
tried to prove this claim in Theorem 4 of his paper [17].
However, there is an important drawback in the process of the
proof of Theorem 4whichmakes it unreliable. The drawback
is that in the security proof against AI , the public keys of
Ua∗ and Uv∗ are assigned as PKa∗ = (cP, qa∗ , Da∗) and
PKv∗ = (dP, qv∗ , Dv∗), respectively, where cP and dP are
the inputs of the CDHproblemwhichB is trying to solve it. If
these public keys be replaced, then the claims in the following
of the proof are no longer hold. However, as discussed in
Sect. 4.2.1, the condition of not replacing PKa∗ (i.e., C3) is
not reasonable at all. As a result, the unforgeability against
AI becomes questionable.

6 Our proposed scheme

6.1 The algorithms of our proposal

In this subsection, we propose our CL-DVS scheme based on
the ideas of the certificateless signature scheme in [28] which
is based on Waters’ identity-based encryption scheme [29].
Generality, identities can be considered of arbitrary lengths
and a hash function Hu : {0, 1}∗ −→ {0, 1}nu can be used
to convert them to the specific length nu . The algorithms of
our scheme are as follows:

– Setup On input a security parameter λ, the KGC selects
two multiplicative cyclic groups G1 and G2 of a large
prime order p, a random generator g of G1 and a bilin-
ear pairing e : G1 × G1 −→ G2. It also selects a
random s ∈R Z

∗
p and sets g1 = gs . Furthermore, it

picks random values g2, u′ ∈R G1 and a random vector−→u = (ui ) ∈R Gnu
1 , where ui ∈R G1, for i = 1, . . . , nu ,

then computes T = e(g1, g2) and T ′ = e(g1, g).
It also chooses two collision-resistant hash functions
Hu : {0, 1}∗ −→ {0, 1}nu and H : {0, 1}∗ × G8

1 −→
Z

∗
p. The public system parameters are params =

{G1,G2, p, e, g, g1, g2, u′,−→u , T , T ′, Hu, H}, and the
master secret key is msk = gs

2
.

– PPKE On input an identity I DU , the KGC calculates
Hu(I DU ). Let u[i] denotes the i th bit of Hu(I DU ) and
UU = {i |u[i] = 1, i = 1, . . . , nu}. The KGC randomly
selects rU ∈R Z

∗
p and computes dU , as follows:

dU = (dU ,1, dU ,2) =
⎛
⎝gs

2

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

rU

, grU

⎞
⎠ .

– SSV The user with identity I DU selects a random xU ∈R

Z
∗
p as his secret value.

– SPrK The user with identity I DU picks a random r ′
U ∈R

Z
∗
p and computes his private key as follows:

SKU = (SKU ,1, SKU ,2)

=
⎛
⎜⎝d

x2U
U ,1

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r ′
U

, d
x2U
U ,2g

r ′
U

⎞
⎟⎠

=
⎛
⎜⎝gs

2x2U

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

rU x2U+r ′
U

, grU x2U+r ′
U

⎞
⎟⎠

– SPuK The user with identity I DU computes his public
key as follows:

PKU = (PKU ,1, PKU ,2, PKU ,3) =
(
gxU1 , g

1
xU
2 , g

1
xU

)
.

Then the user publishes PKU without requiring it to be
certified.

– DSign Suppose that a signer with identity I DS , wants
to create a signature on a message m for a designated
verifier with identity I DV . The signer selects a random
rm ∈R Z

∗
p and executes the following steps:

1. Checks whether e(PKV ,1, PKV ,2) = T and
e(PKV ,1, PKV ,3) = T ′ hold or not. If one of the
equalities does not hold, aborts and outputs ⊥.

2. Sets σ1 = SKS,2.
3. Sets σ2 = grm .
4. Computes h = H(m, I DS, I DV , PKS, PKV , σ1,

σ2).
5. Sets σ3 = e(SKS,1PKhrm

S,2 , PKV ,3).
6. Outputs σ = (σ1, σ2, σ3).

– DVer Upon receiving (m, σ ) from the signer, the desig-
nated verifier checks the validity of σ = (σ1, σ2, σ3) as
follows:

1. Checks whether e(PKS,1, PKS,2) = T and
e(PKS,1, PKS,3) = T ′ hold or not. If one of the
equalities does not hold, aborts and outputs ⊥.
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2. Computes h = H(m, I DS, I DV , PKS, PKV , σ1,

σ2).
3. Verifies the following equality:

σ3 = (e(PKS,1, PKS,1).e

⎛
⎝u′ ∏

i∈US

ui , σ1

⎞
⎠

.e(PKh
S,2, σ2))

1
xV . (1)

If Eq. (1) holds, the verifier accepts the signature and
outputs 1, otherwise rejects it and outputs 0.

– TSThe verifier is able to generate a signature onm which
is indistinguishable from that created by the real signer
as follows:

1. Sets σ1 = SKS,2. Note that the verifier can obtain
SKS,2 from the previously signed messages by the
signer.

2. Selects a random rm ∈R Z
∗
p and computes σ2 = grm .

3. Computes h = H(m, I DS, I DV , PKS, PKV ,

σ1, σ2).
4. Computes:

σ3 = (e(PKS,1, PKS,1).e

⎛
⎝u′ ∏

i∈US

ui , σ1

⎞
⎠

.e(PKh
S,2, σ2))

1
xV .

Then returns σ = (σ1, σ2, σ3).

6.2 Some considerations

Note that the DVer algorithm is defined similarly in all pro-
posed CL-DVS schemes in [9–17,19] as it takes params,
a message/DVS pair (m, σ ), I DS , PKS , I DV and SKV as
input and outputs 1 if σ is valid and 0, otherwise. However,
it is necessary for a strong DVS (not DVS) that DVer takes
SKV as input. In our proposed scheme (which is a DVS), the
verifier can execute the DVer algorithm with only his secret
value xV , i.e., SKV is not required to be an input of the DVer
algorithm.

We consider the set of oracles that can be accessed byAI

and AI I as OI = {Od ,OPK ,OSK ,ORPK ,OS,OV } and
OI I = {OPK ,OSK ,OS,OV }, respectively. As our proof is
in the standard model, we do not consider OH , and as our
scheme is based on SPrK2, we only consider OSK without
requiring to simulate Ox (See Sect. 4.1).

We say that AI wins Game 1 if σ ∗ is a valid signature on
m∗ with respect to I DS∗ and I DV ∗ and meanwhile σ ∗ is not
obtained from the ODSign oracle. Furthermore:

– I DS∗ has not been submitted to Od and OSK .

– I DV ∗ has not been submitted to ORPK .

The first condition is considered to prevent AI from obtain-
ing SKS∗ . Note that as only xV ∗ (not SKV ∗ ) is used in the
TS algorithm, there is not any reason to prevent AI from
obtaining SKV ∗ . Moreover, the second case is C4 which is a
reasonable condition as discussed in Sect. 4.2.1.

We say that AI I wins Game 2 if σ ∗ is a valid signature
on m∗ with respect to I DS∗ and I DV ∗ and meanwhile σ ∗ is
not obtained from the ODSign oracle. Furthermore:

– I DS∗ has not been submitted to OSK .

This condition is considered to prevent AI I from obtaining
SKS∗ .

According to the above descriptions, we use the following
definition for proving the unforgeability of our scheme in
Sect. 7.2:

Definition 1 A CL-DVS scheme is (ε, t, qd , qsk, qpk, qr ,
qs, qv)-EUF-CM&IDA if no adversaries (AI and AI I ) run-
ning in time at most t , making at most qd PPKE queries
from Od (qd = 0 for AI I ), qsk SPrK queries from OSK ,
qpk SPuKqueries fromOPK , qr Replace-Public-Key queries
from ORPK (qr = 0 for AI I ), qs DSign queries from OS

and qv DVer queries from OV , wins Game 1 and Game 2
with probability at least ε.

7 Security analysis of the proposed scheme

7.1 Correctness

The correctness of the proposed scheme can be easily verified
as:

σ3 = e(SKS,1PKhrm
S,2 , PKV ,3)

= e

⎛
⎜⎝gs

2x2S

⎛
⎝u′ ∏

i∈US

ui

⎞
⎠

rS x2S+r ′
S

PKhrm
S,2 , g

1
xV

⎞
⎟⎠

=
⎛
⎜⎝e(gs

2x2S , g).e

⎛
⎜⎝

⎛
⎝u′ ∏

i∈US

ui

⎞
⎠

rS x2S+r ′
S

, g

⎞
⎟⎠ .e(PKhrm

S,2 , g)

⎞
⎟⎠

1
xV

=
⎛
⎝e(gxS1 , gxS1 ).e

⎛
⎝u′ ∏

i∈US

ui , g
rS x2S+r ′

S

⎞
⎠ .e(PKh

S,2, g
rm )

⎞
⎠

1
xV

=
⎛
⎝e(PKS,1, PKS,1).e

⎛
⎝u′ ∏

i∈US

ui , σ1

⎞
⎠ .e(PKh

S,2, σ2)

⎞
⎠

1
xV

,

which shows the correctness of Eq. (1).
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7.2 Unforgeability

Theorem 1 The proposed scheme is (ε, t, qd , qsk, qpk,
qr , qs, qv)-unforgeable against AI , if the (ε′, t ′)-(S2, 5)-
CBDHE-Set assumption holds in (G1,G2), where

ε′ ≥ ε

4(qd + qsk + qs + qv + 1)(nu + 1)
,

t ′ ≤ t + order(((qd + qsk + qs + qv)nu)TM
+ (qpk + qd + qsk + qs + qv)TE + (qr + qs + qv)TP ),

in which TM, TE and TP are the time for a multiplication
and exponentiation in G1 and a pairing computation, respec-
tively.

Proof Suppose that there exists a (ε, t, qd , qsk, qpk, qr ,
qs, qv)-type I adversary AI , who can break the EUF-
CM&IDA in the proposed scheme according to Game 1 and
forge a DVS σ ∗ on message m∗ with respect to I DS∗ and
I DV ∗ . By this assumption, we can construct a simulator B
that can use AI as a subroutine and solve an instance of a
(S2, 5)-CBDHE-Set problem with a probability at least ε′
and in time at most t ′, which contradicts the (ε′, t ′)-(S2, 5)-
CBDHE-Set assumption in (G1,G2).
Consider two multiplicative cyclic groups G1 and G2 of
a large prime order p and a random generator g of G1.
Let e : G1 × G1 −→ G2 be a bilinear pairing. Sup-
pose that B is given a random (S2, 5)-CBDHE-Set challenge
(g ∈ G1, A = ga ∈ G1, B = ga

2 ∈ G1) and is requested
to output e(g, g)a

5 ∈ G2. In order to use AI as a sub-
routine, B must simulate the challenger C and answer all
AI ’s queries in Game 1, i.e., the queries from the oracles
in set OI = {Od ,OPK ,OSK ,ORPK ,OS,OV }. In order
to respond these queries consistently, B generates a list
L = {(I DU , dU , xU , PKU , SKU , staU = 0)} which is ini-
tially empty. Then B plays Game 1 with AI as follows:

Setup Let l = 2(qd + qsk + qs + qv + 1) and assume that
l(nu + 1) < p. B chooses k ∈R {0, 1, . . . , nu} (Note that
0 ≤ kl < p, as l(nu + 1) < p). B also picks random values
x ′, x1, . . . , xnu ∈R Zl , y′, y1, . . . , ynu ∈R Zp, and z ∈R Zp.
These values are kept internal to B. Then B assigns a set of
public parameters as follows:

g1 = B = ga
2
, g2 = gz,

u′ = B−kl+x ′
gy

′
, ui = Bxi gyi (for i = 1, 2, . . . , nu).

B also computes T = e(g1, g2) and T ′ = e(g1, g),
then selects two collision-resistant hash functions Hu :
{0, 1}∗ −→ {0, 1}nu and H : {0, 1}∗ ×G8

1 −→ Z
∗
p and gives

params = {G1,G2, p, e, g, g1, g2, u′,−→u , T , T ′, Hu, H}
to AI . For simplicity of analysis, define two functions:

F(U ) = x ′ +
∑
i∈UU

xi − kl and J (U ) = y′ +
∑
i∈UU

yi ,

where UU is defined similar to that in the proposed scheme.
Then, we have

u′ ∏
i∈UU

ui = BF(U )gJ (U ).

Note that by these assignments, B does not know the mas-
ter secret key, msk = ga

4
, and he/she must simulate C and

answer all AI ’s queries in Game 1 without the knowledge
of msk. Moreover, note that by the mentioned settings, all
distributions are identical to those in the real world from the
perspective of AI .

Queries In this step, AI sends polynomially bounded
number of queries to the oracles in set OI = {Od ,

OPK ,OSK ,ORPK ,OS,OV }. B responds to AI ’s queries
by simulating these oracles as follows:
Od . As AI issues a partial private key query for an identity
I DU to Od , B looks up L to find dU and sends it to AI . If
dU does not exist in L, B tries to produce dU without the
knowledge of msk key as follows:

– If F(U ) = 0 mod p, B aborts the simulation.
– If F(U ) �= 0 mod p, B picks a random rU ∈ Z

∗
p and

constructs dU as follows:

dU =
⎛
⎝B− J (U )

F(U )

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

rU

, B− 1
F(U ) grU

⎞
⎠

=
⎛
⎜⎝ga

4

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r̃U

, gr̃U

⎞
⎟⎠ = (dU ,1, dU ,2),

where r̃U = rU − a2
F(U )

. Then B sends dU toAI and adds
it in L.

OPK . As AI issues a public key query for an identity I DU

to OPK , B looks up L to find PKU and sends it to AI . If
PKU does not exist in L, B picks a random xU ∈R Z

∗
p and

acts as follows:

– If F(U ) = 0 mod p, B sets PKU = (gxU1 , g
1
xU
2 , g

1
xU ).

Note that by this assignment, the real secret value of I DU

is xU , which is known to B.
– If F(U ) �= 0 mod p, B sets PKU = (A

1
xU , AzxU , AxU ).

Note that by this assignment, the real secret value of I DU

is 1
axU

, which is unknown to B.

Then, B sends PKU to AI . Furthermore, B adds PKU and
its corresponding xU in L.
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ORPK . Suppose that AI requests to replace the public key
of an identity I DU , i.e., PKU with respect to xU with a new
public key PK ′

U = (PK ′
U ,1, PK ′

U ,2, PK ′
U ,3) with respect

to x ′
U . B firstly checks whether e(PK ′

U ,1, PK ′
U ,2) = T and

e(PK ′
U ,1, PK ′

U ,3) = T ′ hold or not. If both equalities hold,
B looks up L to replace (xU , PKU ) with (x ′

U , PK ′
U ) and

sets staU = 1. If (xU , PKU ) does not exist in L, B directly
sets (xU , PKU ) = (x ′

U , PK ′
U ) and staU = 1 inL. Note that

AI can only replace PKU with a new correctly constructed

PK ′
U = (g

x ′
U

1 , g

1
x ′U
2 , g

1
x ′U ) as e(PK ′

U ,1, PK ′
U ,2) = T and

e(PK ′
U ,1, PK ′

U ,3) = T ′ must be satisfied. SoAI knows x ′
U

corresponding to PK ′
U .

OSK . As AI issues a private key query for an identity I DU

to OSK , B looks up L to find SKU and sends it to AI . If
SKU does not exist in L, B acts as follows:

– If F(U ) = 0 mod p, B aborts the simulation.
– If F(U ) �= 0 mod p, B acts as follows:

– If staU = 0 (i.e., PKU has not been replaced and
hence the real secret value of I DU is 1

axU
), B picks a

random r ′′
U ∈ Z

∗
p and sets:

SKU =
⎛
⎜⎝B

1
x2U

⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r ′′
U

, gr
′′
U

⎞
⎟⎠

=
⎛
⎜⎝g

a4
(

1
axU

)2
⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r ′′
U

, gr
′′
U

⎞
⎟⎠

= (SKU ,1, SKU ,2),

where r ′′
U = r̃U ( 1

axU
)2 + r ′

U . Then, B returns SKU to
AI and also stores it in L.

– If staU = 1 (i.e., PKU has been replacedwith PK ′
U ),

B can retrieve xU (which is in fact x ′
U corresponding

to PK ′
U ) from L. Then B picks dU from L if exists,

otherwiseB obtain dU by simulatingOd as described
(note that as F(U ) �= 0 mod p, B can simulate Od

without aborting). Finally, B can obtain SKU by run-
ning the SPrK algorithm, since he knows both xU and
dU . So B generates SKU , returns it to AI and also
stores it in L.

OS . As AI issues a signature query for (m, I DS, I DV ) to
OS , B searches L to find SKS . If this entry exists in L, B
picks it and creates a signature on m by running the DSign
algorithm and returns it to AI , otherwise B acts as follows:

– If F(S) �= 0 mod p, B obtains SKS by simulating OSK ,
then creates a signature onm by running the DSign algo-
rithm and returns it to AI .

– If F(S) = 0 mod p, B acts as follows:

– If staV = 1 (i.e., PKV has been replacedwith PK ′
V ),

B can retrieve xV (which is in fact x ′
V corresponding

to PK ′
V ) from L, then creates a signature on m by

running the TS algorithm and returns it to AI .
– If staV = 0 (i.e., PKV has not been replaced),B acts
as follows:

• If F(V )=0mod p, i.e., PKV=(gxV1 , g
1
xV
2 , g

1
xV ),

B can retrieve xV fromL, then creates a signature
on m by running the TS algorithm and returns it
to AI .

• If F(V ) �= 0 mod p, B aborts the simulation.

(Note that in this case, PKV=(A
1
xV , AzxV , AxV ),

and B cannot retrieve the real secret value of
I DV , i.e., 1

axV
.)

OV . As AI issues a verification query for ((m, σ =
(σ1, σ2, σ3)), I DS, I DV ) to OV , B acts as follows:

– If staV = 1 (i.e., PKV has been replaced with PK ′
V ),

B can retrieve xV (which is in fact x ′
V corresponding

to PK ′
V ) from L, then verifies σ by running the DVer

algorithm and sends the result to AI .
– If staV = 0 (i.e., PKV has not been replaced), B acts as
follows:

– If F(V ) = 0 mod p, i.e., PKV = (gxV1 , g
1
xV
2 , g

1
xV ),

B can retrieve xV from L, then verifies σ by running
the DVer algorithm and sends the result to AI .

– If F(V ) �= 0 mod p, B cannot retrieve the real secret
value of I DV , i.e., 1

axV
. In this case,B picks xV . Then,

B acts as follows:
• If F(S) �= 0 mod p, B obtains SKS by simulat-

ing OSK . Then, B acts as follows:

· If staS = 0, (i.e., PKS = (A
1
xS , AzxS , AxS )

which has not been replaced),B retrieves xS ,
computes h = H(m, I DS, I DV ,

PKS, PKV , σ1, σ2) andverifiesσ bycheck-
ing the following equation:

σ3 = e(SKS,1, PKV ,3)e(σ2, B)zhxSxV

· If staS = 1, (i.e., PKS has been replaced

with PK ′
S = (g

x ′
S

1 , g

1
x ′S
2 , g

1
x ′S ) and xS has

been replaced with x ′
S), B retrieves xS

from L, computes h = H(m, I DS, I DV ,

PKS, PKV , σ1, σ2) andverifiesσ bycheck-
ing the following equation:

σ3 = e(SKS,1, PKV ,3)e(σ2, A)
zhxV
xS .
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• If F(S) = 0 mod p, B aborts the simulation.

Forgery After a polynomially bounded number of queries
(if B does not abort),AI outputs a new valid signature σ ∗ =
(σ ∗

1 , σ ∗
2 , σ ∗

3 ) onmessagem∗ with respect to I DS∗ and I DV ∗ .
At the end of running Game 1 between AI and B, B acts as
follows:

– If F(S∗) �= 0 mod p or F(V ∗) = 0 mod p, B aborts.
– If F(S∗) = 0 mod p and F(V ∗) �= 0 mod p,
(and the simulation does not fail in any steps), B
retrieves xS∗ and xV ∗ from L and computes h =
H(m∗, I DS∗ , I DV ∗ , PKS∗ , PKV ∗ , σ ∗

1 , σ ∗
2 ). Then

B calculates and outputs:

e(g, g)a
5 =

⎛
⎝ σ ∗

3

e((σ ∗
1 )J (S∗)(σ ∗

2 )
zh∗
xS∗ , AxV∗ )

⎞
⎠

1
x2
S∗ xV∗

,

as the solution to the (S2, 5)-CBDHE-Set problem
instance.

TimeAnalysisNoting the abovedescriptions,we can see that
B needs a time t ′ ≤ t+order(((qd +qsk +qs +qv)nu)TM +
(qpk+qd +qsk+qs+qv)TE +(qr +qs+qv)TP ), for running
the game.

Probability Analysis Here, we evaluate the success prob-
ability of B for solving the (S2, 5)-CBDHE-Set problem
instance, i.e., ε′.B can complete the simulationwithout abort-
ing if all of the following independent events happen:

– E1: F(U ) �= 0 mod p for all queries from Od and OSK .
– E2: Let E2,1, E2,2, and E2,3 be the events of F(S) = 0
mod p, F(V ) �= 0 mod p, and staV = 0, respec-
tively, for all queries from OS and OV . Define E2 =
E2,1

⋂
E2,2

⋂
E2,3.

– E3: F(S∗) = 0 mod p and F(V ∗) �= 0 mod p.

Note that Pr[E2,3] = 1
2 . Moreover, it is easy to see that [24]

Pr[F(U ) = 0 mod p] = 1

l(nu + 1)
.

So we have

Pr[E1] =
(
1 − 1

l(nu + 1)

)qd+qsk
,

Pr[E2] =
(
1 − 1

2
.

(
1 − 1

l(nu + 1)

)
.

1

l(nu + 1)

)qs+qv

≥
(
1 − 1

l(nu + 1)

)qs+qv

,

Pr[E3] =
(
1 − 1

l(nu + 1)

)
.

1

l(nu + 1)
.

Hence,

Pr[abort] ≥ Pr[E1
⋂

E2
⋂

E3] = Pr[E1].Pr[E2].Pr[E3]

≥
(
1 − 1

l(nu + 1)

)qd+qsk
.

(
1 − 1

l(nu + 1)

)qs+qv

.

(
1 − 1

l(nu + 1)

)
.

1

l(nu + 1)

=
(
1 − 1

l(nu + 1)

)qd+qsk+qs+qv+1
.

1

l(nu + 1)

≥
(
1 − qd + qsk + qs + qv + 1

l(nu + 1)

)
.

1

l(nu + 1)

≥
(
1 − qd + qsk + qs + qv + 1

l

)
.

1

l(nu + 1)

= 1

4(qd + qsk + qs + qv + 1)(nu + 1)
, (2)

where the rightmost equality is implied from l = 2(qd +
qsk + qs + qv + 1).
Noting Eq. (2) and that ε is the success probability of AI in
Game 1, we have

ε′ ≥ ε.Pr[abort] ≥ ε

4(qd + qsk + qs + qv + 1)(nu + 1)
.

As the final result, if AI can win Game 1 with a non-
negligible probability ε, then B can solve an instance of the
(S2, 5)-CBDHE-Set problemwith a non-negligible probabil-
ity ε′ and this is a contradiction of the (S2, 5)-CBDHE-Set
assumption in complexity theory. ��
Theorem 2 The proposed scheme is (ε, t, qsk, qpk, qs, qv)-
unforgeable against AI I , if the (ε′, t ′)-(S4, 9)-CBDHE-Set
assumption holds in (G1,G2), where

ε′ ≥ ε

4(qsk + qs + qv + 1)(nu + 1)
,

t ′ ≤ t + order(((qsk + qs + qv)nu)TM

+ (qpk + qsk + qs + qv)TE + (qs + qv)TP ),

Proof Suppose that there exists a (ε, t, qsk, qpk, qs, qv)-type
I I adversary AI I , who can break the EUF-CM&IDA in the
proposed schemeaccording toGame2and forge aDVSσ ∗ on
messagem∗ with respect to I DS∗ and I DV ∗ . By this assump-
tion, we can construct a simulator B that can use AI I as a
subroutine and solve an instance of a (S4, 9)-CBDHE-Set
problem with a probability at least ε′ and in time at most t ′,
which contradicts the (ε′, t ′)-(S4, 9)-CBDHE-Set assump-
tion in (G1,G2).
Consider two multiplicative cyclic groups G1 and G2 of a
large prime order p and a random generator g = C = f a

2

of G1. Let e : G1 × G1 −→ G2. Suppose that B is
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given a random (S4, 9)-CBDHE-Set challenge (A = f ∈
G1, B = f a ∈ G1,C = f a

2 ∈ G1, D = f a
3 ∈ G1, E =

f a
4 ∈ G1) and is requested to output e( f , f )a

9 ∈ G2.
In order to use AI I as a subroutine, B must simulate the
challenger C and answer all AI I ’s queries from OI I =
{OPK ,OSK ,OS,OV }. In order to respond these queries con-
sistently, B generates a list L = {(I DU , xU , PKU , SKU )}
which is initially empty. Then B plays Game 2 with AI I as
follows:

SetupLet l = 2(qsk+qs+qv+1) and assume that l(nu+1) <

p. B selects a random s ∈ Z
∗
p and sets g1 = gs = Cs . Then

B selects the values k ∈R {0, 1, . . . , nu}, x ′, x1, . . . , xnu ∈R

Zl , y′, y1, . . . , ynu ∈R Zp, and z ∈R Z
∗
p, and assigns:

g = C = f a
2
, g1 = gs = Cs , g2 = gz

u′ = B−kl+x ′
Cy′

, ui = Bxi C yi (for i = 1, 2, . . . , nu).

B also computes T = e(g1, g2) and T ′ = e(g1, g),
then selects two collision-resistant hash functions Hu :
{0, 1}∗ −→ {0, 1}nu and H : {0, 1}∗ ×G8

1 −→ Z
∗
p and gives

params = {G1,G2, p, e, g, g1, g2, u′,−→u , T , T ′, Hu, H}
toAI I . B also computes two functions F(U ) and J (U ) sim-
ilar to those in the proof of Theorem 1 and sends them to
AI I . By these assignments, we have

u′ ∏
i∈UU

ui = BF(U )gJ (U ).

Note that by the mentioned settings in this step, all dis-
tributions are identical to those in the real world from the
perspective ofAI I . Also, remember that in Game 2 (in con-
trast to Game 1), B knows the master secret key, msk = gs

2

and must simulate C and answer all AI I ’s queries by this
fact.

Queries In this step, AI I has access to the oracles in set
OI I = {OPK ,OSK ,OS,OV }. B responds toAI I ’ s queries
by simulating these oracles as follows:
OPK . As AI I sends a public key query for an identity I DU

to OPK , B checks whether such key exists in L. If so, B
returns this public key to AI I . Otherwise, B picks a random
xU ∈R Z

∗
p and acts as follows:

– If F(U ) = 0 mod p, B sets PKU = (EsxU , A
z
xU , A

1
xU ).

Note that by this assignment, the real secret value of I DU

is a2xU , which is known to B.
– If F(U ) �= 0 mod p, B sets PKU = (B

s
xU , DzxU , DxU ).

Note that by this assignment, the real secret value of I DU

is 1
axU

, which is unknown to B.

Then B sends PKU to AI I . Furthermore, B adds PKU and
its corresponding xU in L.

OSK . As AI I sends a private key query for an identity I DU

to OSK , B checks whether such key exists in L. If so, B
returns this private key to AI I . Otherwise B acts as follows:

– If F(U ) = 0 mod p, B aborts the simulation.
– If F(U ) �= 0 mod p, B checks whether (xU , PkU ) exists
in L. If so, B picks it, otherwise B produces (xU , PkU )

by simulating OPK (Note that in as F(U ) �= 0 mod p,
the real secret value of I DU is 1

axU
). Then B selects a

random r ′′
U ∈R Z

∗
p and assigns the private key as:

SKU =
⎛
⎜⎝B

− J (U )
F(U )

(
s2

x2U

) ⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r ′′
U

, B
− s2

x2U F(U ) gr
′′
U

⎞
⎟⎠

=
⎛
⎜⎝g

s2
(

1
axU

)2
⎛
⎝u′ ∏

i∈UU

ui

⎞
⎠

r̃ ′′
U

, gr̃
′′
U

⎞
⎟⎠

= (SKU ,1, SKU ,2),

where r̃ ′′
U = r ′′

U − s2

ax2U F(U )
. Then B returns SKU to AI I

and also adds it in L.

OS . As AI I sends a signing query for (m, I DS, I DV ), B
searches L to find SKS . If this entry exists, B picks it and
creates a DVS σ on message m by running the DSign algo-
rithm and sends it to AI I . Otherwise, B acts as follows:

– If F(S) = 0 mod p, B aborts the simulation.
– If F(S) �= 0 mod p, B obtains SKS by simulating OSK ,
then creates aDVS σ onmessagem by running theDSign
algorithm and sends it to AI I .

OV . As AI I sends a verification query for (σ = (σ1, σ2,

σ3), I DS, I DV ), B acts as follows:

– If F(S) = 0 mod p, B aborts the simulation.

– If F(S) �= 0 mod p (and so PKS = (B
s
xS , DzxS , DxS ),

B obtains SKS by simulating OSK . Then B computes
h = H(m, I DS, I DV , PKS, PKV , σ1, σ2), retrieves xS
from L, and acts as follows:

– If F(V ) = 0mod p, i.e., PKV = (EsxV , A
z
xV , A

1
xV ),

B retrieves xV from L and verifies σ by checking the
following equation:

σ3 = e(SKS,1, PKV ,3)e(σ2, B)
zhxS
xV .

– If F(V ) �= 0mod p, i.e., PKV = (B
s
xV , DzxV , DxV ),

B B retrieves xV from L and verifies σ by checking
the following equation:
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σ3 = e(SKS,1, PKV ,3)e(σ2, E)zhxSxV .

Forgery After a polynomially bounded number of queries
(if B does not abort), AI I outputs a new valid DVS σ ∗ =
(σ ∗

1 , σ ∗
2 , σ ∗

3 ) on message m∗ for I DS∗ and I DV ∗ .
At the end of running Game 2 betweenAI I and B, B acts as
follows:

– If F(S∗) �= 0 mod p or F(V ∗) = 0 mod p, B aborts.
– If F(S∗) = 0 mod p and F(V ∗) �= 0 mod p,
(and the simulation does not fail in any steps), B
retrieves xS∗ and xV ∗ from L and computes h =
H(m∗, I DS∗ , I DV ∗ , PKS∗ , PKV ∗ , σ ∗

1 , σ ∗
2 ). ThenB cal-

culates and outputs:

e( f , f )a
9 =

⎛
⎜⎝ σ ∗

3

e((σ ∗
1 )J (S∗), DxV∗ )e(σ ∗

2 , B
zh∗xV∗
xS∗ )

⎞
⎟⎠

1
s2x2

S∗ xV∗

,

as the solution to the (S4, 9)-CBDHE-Set problem
instance.

Time Analysis Noting the above descriptions, we can see
that B needs a time t ′ ≤ t +order(((qsk +qs +qv)nu)TM +
(qpk + qsk + qs + qv)TE + (qs + qv)TP ), for running the
game.
Probability Analysis Here, we evaluate the success prob-
ability of B for solving the (S4, 9)-CBDHE-Set problem
instance, i.e., ε′.B can complete the simulationwithout abort-
ing if all of the following independent events happen:

– E1: F(U ) �= 0 mod p for all queries from OSK .
– E2: F(S) �= 0 mod p for all queries from OS and OV .
– E3: F(S∗) = 0 mod p and F(V ∗) �= 0 mod p.

Noting Pr[F(U ) = 0 mod p] = 1
l(nu+1) [24], we have

Pr[E1] =
(
1 − 1

l(nu + 1)

)qsk
,

Pr[E2] =
(
1 − 1

l(nu + 1)

)qs+qv

,

Pr[E3] =
(
1 − 1

l(nu + 1)

)
.

1

l(nu + 1)
.

Hence,

Pr[abort] ≥ Pr[E1

⋂
E2

⋂
E3] = Pr[E1].Pr[E2].Pr[E3]

≥
(
1 − 1

l(nu + 1)

)qsk
.

(
1 − 1

l(nu + 1)

)qs+qv

.

(
1 − 1

l(nu + 1)

)
.

1

l(nu + 1)

=
(
1 − 1

l(nu + 1)

)qsk+qs+qv+1

.
1

l(nu + 1)

≥
(
1 − qsk + qs + qv + 1

l(nu + 1)

)
.

1

l(nu + 1)

≥
(
1 − qsk + qs + qv + 1

l

)
.

1

l(nu + 1)

= 1

4(qsk + qs + qv + 1)(nu + 1)
(3)

where the rightmost equality is implied from l = 2(qsk +
qs + qv + 1).
Noting Eq. (3) and that ε is the success probability ofAI I in
Game 2, we have:

ε′ ≥ ε.Pr[abort] ≥ ε

4(qsk + qs + qv + 1)(nu + 1)
.

As the final result, if AI I can win Game 2 with a non-
negligible probability ε, then B can solve an instance of the
(S4, 9)-CBDHE-Set problemwith a non-negligible probabil-
ity ε′ and this is a contradiction of the (S4, 9)-CBDHE-Set
assumption in complexity theory. ��
Theorem 3 Theproposed scheme isEUF-CM&IDA (accord-
ing to Definition 1) in the standard model under the (S4, 9)-
CBDHE-Set assumption.

Proof The proof is directly implied from Theorems 1 and 2.
��

7.3 Non-transferability

Theorem 4 TheproposedCL-DVSscheme is unconditionally
non-transferable.

Proof Suppose that σ is a DVS on message m with respect
to I DS and I DV which is created by the original signer (by
the DSign algorithm) and σ ′ is a DVS on m with respect to
I DS and I DV which is produced by the designated verifier
(by the TS algorithm).

In order to generate σ , the signer, with the private key
SKS , selects a random value r0 ∈R Z

∗
p and sets:

(σ1, σ2, σ3) = (SKS,2, g
r0 , e(SKS,1PKhr0

S,2 , PKV ,3)),

where h = H(m, I DS, I DV , PKS, PKV , σ1, σ2).
In order to generate σ ′, the designated verifier, with the

secret value xV , picks a random value r1 ∈R Z
∗
p and sets:

(σ ′
1, σ

′
2, σ

′
3) = (

SKS,2, g
r1 , (e(PKS,1, PKS,1)

.e

⎛
⎝u′ ∏

i∈US

ui , σ
′
1

⎞
⎠ .e(PKh′

S,2, σ
′
2))

1
xV

⎞
⎠ ,
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where h′ = H(m, I DS, I DV , PKS, PKV , σ ′
1, σ

′
2).

It is easy to see that σ and σ ′ have the same distribu-
tions and hence they are indistinguishable. Suppose that a
challenger C selects a random value r∗ ∈R Z

∗
p, picks a bit

b ∈R {0, 1} by flipping a fair coin and creates a signature
σ ∗ = (σ ∗

1 , σ ∗
2 , σ ∗

3 ) as follows:

– If b = 0, C sets:

(σ ∗
1 , σ ∗

2 , σ ∗
3 ) = (SKS,2, g

r∗
, e(SKS,1PKh∗r∗

S,2 , PKV ,3)),

– If b = 1, C sets:

(σ ∗
1 , σ ∗

2 , σ ∗
3 ) =

(
SKS,2, g

r∗
, (e(PKS,1, PKS,1)

.e

⎛
⎝u′ ∏

i∈US

ui , σ
∗
1

⎞
⎠ .e

(
PKh∗

S,2, σ
∗
2 )

) 1
xV

⎞
⎠ ,

where h∗ = H(m, I DS, I DV , PKS, PKV , σ ∗
1 , σ ∗

2 ). We
have

Pr[σ ∗ = σ ] = Pr[r∗ = r0] = 1

p − 1
,

Pr[σ ∗ = σ ′] = Pr[r∗ = r1] = 1

p − 1
.

Therefore, the distributions of σ and σ ′ are identical and a
distinguisher D cannot distinguish whether the signature is
created by the signer or the designated verifier. Hence, the
signature is unconditionally non-transferable. ��
Remark 4 As mentioned in Remark 3, our proposal is not
placed in the category of non-delegatable CL-DVS schemes,
since the signer can delegate his/her signing rights to every
third party by providing Comm.Key = e(SKS,1, PKV ,3)

to him/her. Note that everyone who knows Comm.Key =
e(SKS,1, PKV ,3) can produce a valid DVS by selecting a
random value r ∈R Z

∗
p and setting:

(σ1, σ2, σ3)

= (SKS,2, g
r , e(SKS,1, PKV ,3)e(PKhr

S,2, PKV ,3)),

where h = H(m, I DS, I DV , PKS, PKV , σ1, σ2). Note
that SKS,2 can be easily obtained from the previously signed
messages from S to V .

8 Comparison

To the best of our knowledge, only nine CL-DVS schemes
have been proposed in the literature to date [9–17]. In Table 3,
a comparison among the existing CL-DVS schemes with our Ta
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proposal is provided. As mentioned in Sect. 4, among all
CL-DVS schemes in [9–17], there are issues in their security
proofs, as outlined below:

– In the proof of the scheme in [9], EUF-CM&IDA (which
is well known in CL-PKC) is not considered. Further-
more, the scheme is vulnerable againstAI I according to
the proposed attack in [19].

– In the proof of the scheme in [10], EUF-CM&IDA is not
considered.

– In the proof of the scheme in [11], oracles are not sim-
ulated, even EUF-CMA is not considered. Moreover,
probability analysis is not provided.

– In the proof of the schemes in [12,13], probability anal-
ysis is not provided.

– In the proof of the scheme in [14], probability analy-
sis is not provided. Moreover, the scheme is vulnerable
againstAI I and key-compromise attack according to the
proposed attacks in [20,21].

– In the proof of the scheme in [15], the oracle OV is not
simulated.

– In the proof of the scheme in [16], probability analysis is
not provided.Moreover, the scheme is vulnerable against
AI according to the proposed attack in [18].

– In the proof of the scheme in [17], the unreasonable con-
dition C3 makes the proof unreliable (See Sect. 4.2.1).

As a result, our scheme is not only the first scheme with
reliable security proofs, but also the only scheme in the stan-
dard model. We should note that the computational cost of
our proposal increases due to the need to provide additional
security properties in the standard model. Nevertheless, we
also note that most of these computations can be computed
off-line (i.e., can be pre-computed before running the DSign
and DVer algorithms), as shown in Table 3.

9 Conclusion

In this paper, we provided a discussion on the proposed cer-
tificateless designated verifier signature (CL-DVS) schemes
and showed that the security proofs of none of them are reli-
able. Furthermore, we concentrate on the recently proposed
CL-SDVS scheme (IEEE Access 2018) and showed that
this scheme is delegatable in contrast to its author’s claim.
Moreover, we showed a drawback in the security proof of
this scheme which makes it unreliable. Finally, we proposed
the first CL-DVS scheme in the standard model with reli-
able security proofs. We proved the unforgeability of our
scheme against the key replacement attacker (AI ) and the
malicious KGC attacker (AI I ) based on (S2, 5)-CBDHE-
Set and (S4, 9)-CBDHE-Set assumptions, respectively. The

security proof of our proposal does not suffer from the draw-
backs in the proofs of existing CL-DVS schemes.
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