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Abstract
In this paper, we introduce a new concept of digital signature that we call fuzzy signature, which is a signature scheme that
uses a noisy string such as biometric data as a private key, but does not require user-specific auxiliary data (which is also
called a helper string in the context of fuzzy extractors), for generating a signature. Our technical contributions are threefold:
(1) we first give the formal definition of fuzzy signature, together with a formal definition of a “setting” that specifies some
necessary information for fuzzy data. (2) We give a generic construction of a fuzzy signature scheme based on a signature
scheme that has certain homomorphic properties regarding keys and satisfies a kind of related key attack security with respect
to addition, and a new tool that we call linear sketch. (3) We specify two concrete settings for fuzzy data, and for each of
the settings give a concrete instantiation of these building blocks for our generic construction, leading to two concrete fuzzy
signature schemes. We also discuss how fuzzy signature schemes can be used to realize a biometric-based PKI that uses
biometric data itself as a cryptographic key, which we call the public biometric infrastructure.

Keywords Digital signature · Fuzzy signature · Public biometric infrastructure

1 Introduction

1.1 Background andmotivation

As the information society grows rapidly, the public key
infrastructure (PKI) plays amore significant role as an infras-
tructure for managing digital certificates. It is also expected
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to be widely used for personal use such as national IDs and
e-government services. One of the biggest risks in the PKI,
which needs to be considered in the personal use, lies in a
user’s private key [10]: since the user’s identity is verified
based only on his/her private key, the user needs to protect
the private key in a highly secure manner. For example, the
user is required to store his/her private key into a smart card
(or USB token) and remember a password to activate the key.
Such limitations reduce usability, and especially, carrying a
dedicated device can be a burden to users. This becomesmore
serious for elderly people in an aging society.

One of the promising approaches to fundamentally solve
this problem is to use biometric data (e.g., fingerprint, face,
and iris) as a cryptographic private key. Since a user’s
biometrics is a part of human body, it can offer a more
secure and usable way to link the individual with his/her
private key (i.e., it is not forgotten unlike passwords and
is much harder to steal than cards). Also, a sensor that
captures multiple biometrics simultaneously (e.g., face and
iris [5]; fingerprint and finger-vein [27]) has been widely
developed to obtain a large amount of entropy at one time,
and a recent study [22] has shown that very high accu-
racy [e.g., the false acceptance rate (FAR) is 2−133 (resp.
2−87) when the false rejection rate (FRR) is 0.055 (resp.
0.0053)] can be achieved by combining four finger-vein fea-
tures [28].
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Fig. 1 Architecture of fuzzy
signature (our proposal) (left),
and that of digital signature
using a fuzzy extractor (right)
(x , x ′: noisy string, sk: signing
key, vk: verification key, σ :
signature, m: message, �: valid,
⊥: invalid)
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However, since biometric data is noisy and fluctuates each
time it is captured, it cannot be used directly as a crypto-
graphic key. In this paper, we call such a noisy string fuzzy
data. Intuitively, it seems that this issue can be immediately
solved by using a fuzzy extractor [8], but this is not always
the case. More specifically, for extracting a string by a fuzzy
extractor, an auxiliary data called a helper string is necessary,
and therefore, either the user is still enforced to carry a dedi-
cated device that stores it, or it has to be stored in some server
that has to be online at the time of the signing process. (We
discuss the limitations of the approaches with helper data
(i.e., the fuzzy-extractor-based approaches) in more detail in
“Appendix A.”)

Hence, it is considered that the above problem cannot
be straightforwardly solved by using fuzzy extractors, and
another cryptographic technique by which noisy data can be
used as a cryptographic private key without relying on any
auxiliary data, is necessary.

Fuzzy signature: digital signature with a fuzzy private key.
In this paper, we introduce a new concept of digital signa-
ture that we call fuzzy signature. Consider an ordinary digital
signature scheme. The signing algorithm Sign is defined
as a (possibly probabilistic) function that takes a signing
key sk and a message m as input, and outputs a signature
σ ← Sign(sk,m).1 Thus, it is natural to consider that its
“fuzzy” version Sign should be defined as a function that
takes a noisy string x and a message m as input, and outputs
σ ← Sign(x,m). In this paper, we refer to such digital sig-
nature (i.e., digital signature that allows to use a noisy string
itself as a signing key) as fuzzy signature. It should be noted
that some studies proposed a fuzzy identity-based signature
(FIBS) scheme [11,34,35,37,38], which uses a noisy string
as a verification key. However, fuzzy signature is a totally
different concept since it does not allow a fuzzy verification
key, but allows a fuzzy signing key (i.e., fuzzy private key).

Figure 1 shows the architecture of fuzzy signature in the
left, and that of digital signature using a fuzzy extractor in the

1 Strictly speaking, in this paper we adopt the syntax in which Sign also
takes a public parameter (generated by the setup algorithm) as input (see
Sect. 2.5 for the formal definition). In the introduction, we omit it for
simplicity.

right. In fuzzy signature, the key generation algorithm KGFS

takes a noisy string (e.g., biometric feature) x as input, and
outputs a verification key vk; The signing algorithm SignFS
takes another noisy string x ′ and a message m as input, and
outputs a signature σ . The verification algorithm VerFS takes
vk,m, and σ as input, and verifies whether σ is valid or not. If
x ′ is close to x , σ will be verified as valid. We emphasize that
the signing algorithmSignFS in a fuzzy signature schemedoes
not use the verification key in the signing process.2 Hence,
a fuzzy signature scheme cannot be constructed based on
the straightforward combination of a fuzzy extractor and an
ordinary signature scheme, since it requires a helper string
P along with a noisy string x ′ to generate a signature σ

on a message m. To date, to the best of our knowledge, the
realization of fuzzy signature has been an open problem.

1.2 Our contributions

In this paper, we initiate the study of fuzzy signature, and
give several results on it. Our main contributions are three-
fold: we give (1) the formal definitions for fuzzy signatures,
(2) a generic construction of a fuzzy signature scheme from
simpler primitives, and (3) two concrete constructions of a
fuzzy signature scheme (each of which is obtained by instan-
tiating the building blocks of our generic construction).

Below we detail each of the contributions as well as other
results:

– Formal definitions for fuzzy signatures. Our first main
contribution is the formalizations of fuzzy signature and
concepts related to it, which we give in Sect. 4. More
specifically, to formally define fuzzy signatures, we need
to first somehow give a formalization of fuzzy data, e.g.,
a metric space to which fuzzy data belongs, a distribu-
tion from which each data is sampled, etc. Therefore,
we first formalize it as a fuzzy key setting in Sect. 4.1.
We then give a formal definition of a fuzzy signature

2 We note that like an ordinary signature scheme, the algorithms of a
fuzzy signature scheme actually take as input a public parameter that is
generated by the setup algorithm and does not contain any user-specific
information. We omit it from the explanations in the introduction for
simplicity. (See the formal definitions of a fuzzy signature in Sect. 4.)
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scheme as a primitive that is associated with a fuzzy key
setting in Sect. 4.2. We also introduce a new primitive
that we call linear sketch, which incorporates a kind of
encoding and error correction processes. This primitive
is also associated with a fuzzy key setting and is one
of the building blocks of our generic construction. We
informally explain how it works and how it is used in
our generic construction in Sect. 1.3, and give the formal
definition in Sect. 4.3.

– Generic construction. Our second main contribution is
a generic construction of a fuzzy signature scheme from
simpler primitives, which we give in Sect. 5. Specifically,
in order to ease understanding our ideas and the security
proofs for our proposed schemes clearly and in a mod-
ular manner, we give a generic construction of a fuzzy
signature scheme from the combination of a linear sketch
scheme (that we introduce in Sect. 4.3) and an ordinary
signature scheme. In this construction, we require that
the underlying ordinary signature scheme has a certain
natural homomorphic property regarding public/secret
keys, and furthermore satisfy a kind of related key attack
(RKA) security with respect to addition, denoted by
Φadd-RKA∗ security. We give an overview of this generic
construction in Sect. 1.3. Our concrete instantiations of a
fuzzy signature scheme are derived from this generic con-
struction by concretely instantiating the building blocks.

– Concrete instantiations. Our third main contribution is
two concrete instantiations of a fuzzy signature scheme:
the first construction is given in Sect. 6 and the second one
is given in Sect. 7. For each of the constructions, we first
specify a concrete fuzzy key setting,3 then show how to
concretely realize the underlying signature scheme and
a linear sketch scheme that can be used in the generic
construction for this fuzzy key setting.

In Sect. 1.3, we give an overview of how our proposed
fuzzy signature scheme is constructed, and also an overview
on what a linear sketch is like, how it works, as well as our
strategies for designing it.

It is expected that our fuzzy signature schemes can be
used to realize a biometric-based PKI that uses biometric
data itself as a cryptographic key, which we call the public
biometric infrastructure (PBI). We discuss it in Sect. 9 in
more detail. We would like to emphasize that although so
far we have mentioned biometric data as a main example of
noisy data, our scheme is not restricted to it, and can also
use other noisy data such as the output of a PUF (physically

3 The underlying metric space to which fuzzy data belongs, required
of our instantiations of a fuzzy signature scheme, is assumed to be a
real vector space [0, 1)n , where we use the L∞-distance as the distance
function. For the details of the formal requirements, see Sects. 6.1 and
7.1.

unclonable function) [23] as input, as long as it satisfies the
requirements of fuzzy key settings.
On the requirements for the underlying signature scheme. As
mentioned above, in our generic construction of a fuzzy sig-
nature scheme, we use an ordinary signature scheme that has
some special structural/security properties (the homomor-
phic property regarding keys and Φadd-RKA security). These
special properties are formalized and studied in Sect. 3. That
we require the underlying signature scheme to satisfy a ver-
sion of RKA security, might sound a strong requirement. To
better understand it and potentially make it easier to achieve,
we show two technical results on them:

1. We show sufficient conditions for Φadd-RKA∗ security.
More specifically, we show that if an ordinary signature
scheme that satisfies standard EUF-CMA security and the
above-mentioned homomorphic property regarding pub-
lic/secret keys, additionally satisfies a similarly natural
homomorphic property also regarding signatures, then it
automatically satisfies Φadd-RKA∗.

2. We also show that the original Schnorr signature scheme
[31] already satisfies Φadd-RKA∗ security in the ran-
dom oracle model under the discrete logarithm (DL)
assumption (i.e., the same assumption used for proving its
standardEUF-CMA security in the randomoraclemodel).

The first (resp. second) technical result listed above is used
for our first (resp. second) concrete instantiation of a fuzzy
signature scheme.

1.3 Technical overview

Linear sketch.Asmentioned above,we introduce a newprim-
itive that we call a linear sketch scheme, and use it as one of
the building blocks in our generic construction. This prim-
itive is somewhat similar to the one-time pad encryption
scheme: recall that in the one-time pad encryption scheme
(implemented over some finite additive group), a ciphertext
c of a plaintext m under a key K is computed as c = m + K .
Due to the linearity of the structure, the one-time pad encryp-
tion scheme satisfies the following properties: (1) given two
ciphertexts c = m + K and c′ = m′ + K (under the same
key K ),4 one can calculate the “difference” �m = m − m′
between two plaintexts by calculating c − c′, and (2) given
a ciphertext c = m + K and “shift” values �m and �K ,
one can calculate a ciphertext c′ of the “shifted” message
m + �m under a “shifted” key K + �K by calculating
c′ = c + �m + �K .

Linear sketch formalizes these functionalities of the one-
time pad encryption scheme, except that we use fuzzy data

4 Of course, a key in the one-time pad encryption scheme should not
be used more than once in a normal use!
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as a key. The main algorithms of this primitive are Sketch
and DiffRec. (It additionally has the setup algorithm that pro-
duces a public parameter, but we omit it here for simplicity.)
The first algorithm Sketch captures the encryption mecha-
nism. It takes an element s (of some additive group) and a
fuzzy data x as input, and outputs a “sketch” c (which is like
an encryption of s using x as a key).5 The second algorithm
DiffRec (which stands for “Difference Reconstruction”) cap-
tures the above-mentioned property (1) of the one-time pad
encryption scheme, but has an additional “error correction”
property. Namely, given two sketches c and c′ that, respec-
tively, encrypt s and s′ using fuzzy data x and x ′ as a key, if
x and x ′ are sufficiently “close” according to some metric,
then we can calculate the difference �s = s − s′. We stress
that x and x ′ need not be exactly the same value, and thus
the algorithm DiffRec is required to somehow “absorb” the
difference between two noisy data in addition to calculate the
difference between s and s′.

In addition to these functional requirements, we also
require two additional properties for a linear sketch scheme.
The first property is what we call linearity, which is similar
to the property (2) of the one-time pad encryption mentioned
above. Namely, given a sketch c that encrypts s using a fuzzy
data x as a key, and “shift” values �s and �x , one can gen-
erate a sketch c′ that encrypts a shifted element s+�s under
a shifted key x + �x . The second property is a confidential-
ity notion (which we call weak simulatability), that roughly
requires that c hides its content s if s and x come from
appropriate distributions. These two properties are used in
the security proof. For the details of the formalization, see
Sect. 4.3.

For our concrete instantiations of a fuzzy signature
scheme, we construct different linear sketch schemes. The
linear sketch scheme for the first instantiation is given in
Sect. 6.3, and that for the second instantiation is given in
Sect. 7.2.

Generic construction. Our proposed fuzzy signature scheme
ΣFS is constructed based on an ordinary signature scheme
(let us call it the “underlying scheme” Σ for the explanation
here), and a linear sketch scheme. In Fig. 2, we illustrate an
overview of our construction of a fuzzy signature scheme.

An overview of our generic construction is as follows: In
the signing algorithm SignFS(x

′,m) (where x ′ is a fuzzy data
used as a signing key and m is a message to be signed), we
do not extract a signing key sk (for the underlying scheme
Σ) directly from x ′ (which is the idea of the fuzzy-extractor-
based approach), but generate a random fresh “temporary”

5 Unlike the one-time encryption scheme, decryption is not considered
in this primitive, and hence it would be more appropriate to consider it
as a (one-way) “encoding,” rather than “encryption.” This is also one
of the reasons why we call c a “sketch” (something that contains the
information of the input s), not a “ciphertext.”

x'

Signm

Step 2

Step 1

Step 3

Sketch

x Sketch

Fig. 2 An overview of our generic construction of a fuzzy signature
scheme. The box “Sketch” indicates one of the algorithms of a primitive
that we call “linear sketch,” which is formalized in Sect. 4.3

key pair (˜vk, ˜sk) of the underlying signature scheme Σ , and
generate a signature σ̃ on m using ˜sk. This enables us to
generate a fresh signature σ̃ without being worried about the
fuzziness of x ′. Here, however, since σ̃ is a valid signature
only under ˜vk, we have to somehow link it with the noisy
signing key x ′. This is done by the linear sketch scheme.

More specifically, in the signing procedure, we addition-
ally generate a “sketch” c̃ (via the algorithm denoted by
“Sketch” in Fig. 2) of the temporary signing key ˜sk using
the fuzzy data x ′. (As explained above, this works like a one-
time pad encryption of ˜sk generated by using x ′ as a key.)
Then, we let a signature σ of the fuzzy signature scheme
consist of (˜vk, σ̃ , c̃).

Before seeing how we verify σ = (˜vk, σ̃ , c̃), we explain
how a verification key in our fuzzy signature scheme is gen-
erated: In the key generation algorithm KGFS(x) (where x is
also a fuzzydatameasured at the keygeneration),wegenerate
a fresh key pair (vk, sk) of the underlying signature scheme
Σ , as well as a “sketch” c of the signing key sk using the
noisy data x (in exactly the same way we generate c̃ from x ′
and ˜sk), and put it as part of a verification key of our fuzzy
signature scheme. Hence, a verification key VK in our fuzzy
signature scheme ΣFS consists of the verification key vk of
the underlying schemeΣ , and the sketch c generated from sk
and x . Then, in the verification algorithm VerFS(VK,m, σ )

where VK = (vk, c) and σ = (˜vk, σ̃ , c̃), we first check the
validity of σ̃ under ˜vk (Step 1), then recover the “difference”
�sk = ˜sk−sk of the underlying secret keys from c and c̃ via
the DiffRec algorithm of the underling linear sketch scheme
(Step 2), and finally checkwhether the difference between vk
and ˜vk indeed corresponds to �sk (Step 3). The explanation
so far is exactly what we do in our generic construction in
Sect. 5.

Requirements on the underlying signature scheme. In order to
realize Step 3 of the verification algorithmof our generic con-
struction, we require the underlying signature scheme Σ to
satisfy the property that given two verification keys (vk, ˜vk)
and a (candidate) difference �sk, one can verify that the dif-
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ference between the secret keys sk and ˜sk (corresponding to
vk and ˜vk, respectively) is indeed �sk. It turns out that such
a property is satisfied if a signature scheme satisfies a certain
natural homomorphic property regarding verification/secret
keys, which we formalize in Sect. 3.1. This property is sat-
isfied by many existing schemes, and in particular we will
show that it is satisfied by our variant of the Waters signa-
ture scheme [36] (MWS scheme) and the Schnorr signature
scheme [31].

The security6 of our generic construction of a fuzzy sig-
nature scheme is, with the help of the properties of the
underlying linear sketch scheme, reduced to our variant of the
RKA security (with respect to addition),Φadd-RKA∗ security,
of the underlying signature scheme Σ . Roughly speaking,
this security notion requires that an adversary, who is ini-
tially given a verification vk (corresponding to a secret key
sk) and can obtain signatures computed under “shifted” sign-
ing keys of the form sk+�sk (where the “shift” values �sk
can be chosen by the adversary) via the “RKA”-signing ora-
cle, cannot generate a successfully forced message/signature
pair, even under a “shifted” verification key vk′ correspond-
ing to a shifted signing key of the form sk + �sk′ (where
again the “shift” �sk′ can be chosen by the adversary). The
formal definition is given in Sect. 3.2, where we also explain
the difference between this security notion and the popular
RKA security definition by Bellare et al. [2]. Roughly speak-
ing, the reason why we require such “RKA” security for the
underlying signature scheme Σ , is because in a sequence of
games in the security proof, we change how the temporary
key pair (˜vk, ˜sk) is generated, in such a way that instead of
picking a fresh key pair, (1) we first pick a random shift�sk,
(2) then compute ˜sk = sk + �sk (where sk is the secret
key corresponding to vk in the verification key VK), and (3)
finally compute ˜vk from ˜sk. Then, the value σ̃ appearing in
a fuzzy signature σ = (˜vk, σ̃ , c̃) can be seen as a signature
generated by using the “shifted” key ˜sk = sk + �sk, which
can be simulated without knowing sk if one has access to the
“RKA”-signing oracle. For the details of the security proof,
see Sect. 5.3.

First instantiation. Our first instantiation, denoted by ΣFS1

and given in Sect. 6, is constructed for a specific fuzzy key
setting in which fuzzy data is a uniformly distributed vector
over ametric spacewith the L∞-distance.7 For this fuzzy key
setting, we propose a concrete linear sketch scheme based on
the Chinese remainder theorem (CRT) and some form of lin-
ear coding and error correction methods. We also propose a
variant of the Waters signature scheme [36], which we call

6 The security of a fuzzy signature scheme is defined similarly to that of
the standard EUF-CMA security [13] of an ordinary signature scheme.
See Sect. 4.2 for the formal definition.
7 In practice, we have to consider the treatment of real numbers. We
discuss how it is represented at the beginning of Sect. 6 and in Sect. 8.

modified Waters signature (MWS) scheme, that is compati-
ble with the linear sketch scheme and furthermore satisfies
all the requirements required of the underlying signature
scheme in our generic construction. The resulting fuzzy sig-
nature scheme from these linear sketch andMWSschemes, is
secure in the standardmodel under the computational Diffie–
Hellman (CDH) assumption in bilinear groups.

Second instantiation. One drawback of our first instantia-
tion is that it has to assume that fuzzy data is distributed
uniformly. Our second construction based on the Schnorr
signature scheme [31], denoted byΣFS2 and given in Sect. 7,
tries to overcome this drawback. Specifically, we consider
another specific fuzzy key setting in which fuzzy data is
assumed to come from a distribution that has high average
min-entropy [8] given a part of the fuzzy data. (The exact
specification of a fuzzy key setting is given in Sect. 7.1.) For
this fuzzy key setting, we propose a concrete linear sketch
scheme based on a universal hash family satisfying a natu-
ral linearity property. We use a version of the leftover hash
lemma [8,14] to show that this scheme achieves the confiden-
tiality notion required of a linear sketch scheme. Our second
construction of a fuzzy signature scheme is obtained by com-
bining this linear sketch scheme and the original Schnorr
signature scheme [31] (which we will show to be Φadd-
RKA∗). The resulting fuzzy signature scheme is secure in the
random oracle model under the DL assumption. Although
this construction relies on a random oracle, it assumes a
weaker requirement for the distribution of fuzzy data, more
efficient, easier to implement, and hence more practical, than
our first construction.

1.4 Paper organization

The rest of the paper is organized as follows:

– In Sect. 1.5, we explain the relations between this paper
and our earlier papers [19,33].

– In Sect. 2, we review basic notation and standard defini-
tions.

– In Sect. 3, we formalize the homomorphic property and
our variant ofRKAsecurity, aswell as some facts on them
that are useful for our instantiations of a fuzzy signature
scheme.

– In Sect. 4, we provide the formal definition of fuzzy sig-
nature, together with the formalization of a “fuzzy key
setting” over which a fuzzy signature is defined. We also
give a formalization of linear sketch.

– In Sect. 5, we show a generic construction of a fuzzy sig-
nature schemebasedon the combination of a linear sketch
scheme and a signature scheme with (the weaker version
of) the homomorphic property (defined in Sect. 3).
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– In Sect. 6, we give our first instantiation of a fuzzy signa-
ture scheme based on the Waters signature scheme [36].

– In Sect. 7, we give our second instantiation of a
fuzzy signature scheme based on the Schnorr signature
scheme [31].

– In Sect. 8, we discuss the treatment of real numbers for
our fuzzy signature schemes in practical implementa-
tions.

– Finally, in Sect. 9, we discuss how a fuzzy signature
scheme can be used to realize the public biometric infras-
tructure (PBI). There, we also give a discussion about
the requirement on the fuzzy key settings for which our
concrete instantiations are constructed, and several open
problems.

1.5 Relation to earlier versions

This paper is the merged full version of our earlier papers
[19,33]. Here, we first explain the overview of these papers
and then clarify the correspondences of the contents between
this paper and [19,33] and the additional contributions from
them. (The reader who has not read our earlier papers [19,33]
could skip this subsection.)

Overview of [33]. We introduced the formalizations of fuzzy
signatures, including the formal definitions for a fuzzy key
setting and a linear sketch scheme, and gave a generic con-
struction of a fuzzy signature scheme from an ordinary
signature scheme satisfying the single key generation process
(Definition 7) and the homomorphic property (Definition 9).
Then, we specified a concrete fuzzy key setting (in which
the metric space for fuzzy data is [0, 1)n with L∞-distance
and fuzzy data is assumed to be distributed uniformly), and
showed a concrete linear sketch scheme (denoted SCRT)
based on the Chinese remainder theorem and a concrete
signature scheme [called modified Waters signature (MWS)
scheme and denoted ΣMWS] based on the Waters signature
scheme [36] that satisfy the requirements for the generic
construction, and thus they led to the first instantiation of
a fuzzy signature scheme, denoted ΣFS1. We also introduced
the notion of Public Biometric Infrastructure (PBI), which
is a biometrics-analogue of public key infrastructure (PKI),
and discussed how a fuzzy signature scheme can be used to
realize it.

Overview of [19]. We gave some relaxations to the require-
ments for the underlying linear sketch scheme and the
underlying signature scheme used in the generic construction
in [33]. More specifically, for the underlying linear sketch
scheme, we showed that weaker syntactical and confiden-
tiality properties were sufficient. Regarding the underlying
ordinary signature scheme, we showed that it only needs to
have a weaker form of homomorphic property (called weak
homomorphic property in Definition 9) if it satisfies a ver-

sion of “related key attack” security (denoted “RKA∗” in this
paper) with respect to addition. (Security against related key
attacks might seem a strong requirement, but we also showed
that if a signature scheme satisfies the homomorphic property
required in [33], then it automatically satisfies RKA∗ secu-
rity with respect to addition.) We then specified a concrete
fuzzy key setting (in which the metric space is the same as
in [33], but fuzzy data distribution is only required to have
high average min-entropy given some leakage) and showed
concrete instantiations of a linear sketch scheme (denoted
SHash) based on a universal hash family (with linearity) and
the Schnorr signature scheme [31] (denotedΣSch) satisfy the
weakened requirements. From these ingredients,we obtained
the second instantiation of a fuzzy signature scheme, denoted
ΣFS2.

Correspondences. Here, we explain the correspondences of
the contents between the current paper and those in [19,33].
(See also the “Additional Contributions” paragraph below.)

In this paper, the formalizations for fuzzy signatures, fuzzy
key setting, and linear sketch schemes in Sect. 4 are basically
the ones used in [19].However,we introduce a new relaxation
to the confidentiality notion for a linear sketch scheme,which
we call weak simulatability.

The generic construction and its proof given in Sect. 5
are based on [19,33], respectively, but the security proof in
this paper has a new aspect in that we now use a weaker
assumption on the linear sketch scheme than [19] (i.e., weak
simulatability).

The results regarding the first instantiationΣFS1 in Sect. 6
are based on [33], and those regarding the second instantia-
tion ΣFS2 in Sect. 7 are based on [19]. The technical results
regarding ordinary signature schemes in Sect. 3 are based
on [19].

The discussion on the PBI in Sect. 9 is based on [33].

Additional contributions. Here, we list the additional contri-
butions in this paper compared to our earlier papers [19,33].

– As mentioned above, we introduce a security definition
called weak simulatability for a linear sketch scheme,
which is weaker than the security definitions that we
introduced in our earlier papers. This leads to weaken-
ing the assumption needed for the security proof of our
generic construction of a fuzzy signature scheme to go
through, and hence potentially makes it easier to con-
struct a fuzzy signature scheme in the future.

– Corresponding to the above item, the security proof for
our generic construction of a fuzzy signature scheme (in
Sect. 5), and the security proofs for the concrete linear
sketch schemes (SCRT in Sect. 6.3 andSHash in Sect. 7.2),
are changed from the ones we had for our earlier papers
to accommodate the use of weak simulatability. In partic-
ular, the security proof for the linear sketch scheme SCRT

123



Signature schemes with a fuzzy private key 587

is entirely renewed from the one we had in [33] (which
is partly also due to the next item).

– As mentioned earlier, in our earlier papers [19,33], we
left the treatment of real numbers in the constructions of
our fuzzy signature schemes and linear sketch schemes
somewhat ambiguous (and it was pointed out by Yasuda
et al. [39] that our linear sketch schemes could be vul-
nerable to so-called “recovering attacks,” if real numbers
are improperly treated). In this paper, we clarify the treat-
ment of real numbers in the “On the Treatment of Real
Numbers” paragraph in the beginning of Sect. 6. (This
also shows that Yasuda et al.’s attacks do not work for
our linear sketch schemes, and we explain it in Sect. 6.3.)

– Section 8 is new to this paper, where we revisit and
discuss the treatment of real numbers in our proposed
fuzzy signature schemes by taking into account practical
implementations. In particular, we consider variants of
our fuzzy signature schemes in which the “decimal part”
of real numbers are truncated, and then explain how the
truncation affects the correctness and security of themod-
ified schemes. We state the effect on the correctness as
theorems and provide the formal proofs for them.

– We add discussions on the revocation functionality in the
PBI in Sect. 9.

– The formal proofs of the most of the theorems and lem-
mas were omitted in [19,33] due to the space limitation,
and they are all given in this paper.

2 Preliminaries

In this section, we review the basic notation, the definitions
of standard primitives, and existing results that we use in this
paper.

2.1 Basic notation

N, Z, R, and R≥0 denote the sets of all natural numbers, all
integers, all real numbers, and all nonnegative real numbers,
respectively. If n ∈ N, then we define [n] := {1, . . . , n}.
If a, b ∈ N, then “GCD(a, b)” denotes the greatest common
divisor of a and b. If a ∈ R, then “
a�” denotes themaximum
integer which does not exceed a (i.e., the rounding-down
operation), and “
a�” denotes the integer that is the nearest
to a (i.e., the rounding operation). Throughout the paper, we
use the bold font to denote a vector (such as x and a). We
extend the definition of “
·�” to allow it to take a real vector
a = (a1, a2, . . .) as input, by 
a� := (
a1�, 
a2�, . . .).

“x ← y” denotes that y is (deterministically) assigned to
x . If S is a finite set, then “|S|” denotes its size, and “x ←R S”
denotes that x is chosen uniformly at random from S. If Φ

is a distribution (over some set), then x ←R Φ denotes that
x is chosen according to the distribution Φ. If x and y are

bit-strings, then |x | denotes the bit length of x , and “(x ||y)”
denotes the concatenation of x and y. “(P)PTA” denotes a
(probabilistic) polynomial time algorithm.

If A is a probabilistic algorithm, then “y ←R A(x)”
denote that A computes y by taking x as input and using
an internal randomness that is chosen uniformly at random,
and if we need to specify the used randomness (say r ), we
denote by “y ← A(x; r)” (in which case the computation
of A is deterministic, taking x and r as input). If further-
more O is a (possibly probabilistic) algorithm or a function,
then “AO” denotes that A has oracle access to O. Through-
out the paper, “k” denotes a security parameter. A function
f (·): N → [0, 1] is said to be negligible if for all posi-
tive polynomials p(·) and all sufficiently large k, we have
f (k) < 1/p(k).

2.2 Basic definitions and lemmas related to
probability and entropy

Definition 1 LetX be a distribution defined over a set X . The
min-entropy of X, denoted by H∞(X), is defined by

H∞(X) := − log2
(

max
x ′∈X

Pr[X = x ′]
)

.

Definition 2 [8] Let (X,Y) be a joint distribution defined
over the direct product of sets X × Y . The average min-
entropy of X given Y, denoted by ˜H∞(X|Y), is defined by

˜H∞(X|Y) := − log2
(

E
y←RY

[

max
x ′∈X

Pr[X = x ′|Y = y]
] )

.

Definition 3 Let X and X′ be distributions defined over the
same set X . The statistical distance between X and X′,
denoted by SD(X,X′), is defined by

SD(X,X′) := 1

2

∑

z∈X

∣

∣

∣Pr[X = z] − Pr[X′ = z]
∣

∣

∣.

We say that X and X′ are statistically indistinguishable, if
SD(X,X′) is negligible.

In this paper, we will use the following simple and yet
useful lemma shown by Dodis and Yu [9, Lemma 1].8

Lemma 1 (Adapted from [9, Lemma 1]) Let X be a finite
set, and let UX be the uniform distribution over X. For any
(deterministic) real-valued function f : X → R≥0 and any
distribution X over the set X, we have

E[ f (X)] ≤ |X | · 2−H∞(X) · E[ f (UX )].
8 Dodis and Yu [9] stated the lemma for the case in which the set X
is of the form {0, 1}m . However, it is straightforward to see that their
proof carries over to the more general case stated here.
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From the above lemma, we can derive the following
lemma about the (in)distinguishability between the uniform
distribution versus a distribution with high min-entropy:

Lemma 2 (Corollary of Lemma 1) Let X be a finite set, and
let UX be the uniform distribution over X. For any computa-
tionally unbounded, probabilistic algorithm A: X → {0, 1}
and any distribution X over the set X, we have

Pr[A(X) = 1] ≤ |X | · 2−H∞(X) · Pr[A(UX ) = 1],

where both of the probabilities are also taken overA’s inter-
nal randomness.

Proof of Lemma 2 Let A be any algorithm, and consider the
function f (x) := Pr[A(x) = 1] (where the probability is
over A’s internal randomness). Then, f is a deterministic
function that maps x ∈ X to the range [0, 1]. Further-
more, by definition, we have Pr[A(X) = 1] = E[ f (X)]
and Pr[A(UX ) = 1] = E[ f (UX )]. Hence, by Lemma 1, we
obtain the lemma. ��

2.3 Universal hash function family and the leftover
hash lemma

Here, we first recall the definition of a universal hash function
family, then its concrete construction, and finally the leftover
hash lemma [8,14].

Definition 4 Let H = {hz : D → R}z∈Z be a family of hash
functions, where Z denotes the seed space ofH. We say that
H is a universal hash function family if for all x, x ′ ∈ D such
that x �= x ′, we have Prz←RZ [hz(x) = hz(x ′)] ≤ 1/|R|.

Concrete universal hash family with linearity. In this paper,
wewill use the following concrete construction of a universal
hash function family Hlin whose domain is Fpn and whose
range is Fp, where Fp is a finite field with prime order p
and n ∈ N. Note that Fpn , when viewed as a vector space,
is isomorphic to the vector space (Fp)

n . Let ψ : (Fp)
n →

Fpn be an isomorphism of the vector spaces, and ψ−1 be its
inverse, which are both efficiently computable in terms of
log2(p

n).
Let the seed space be Z = Fpn , the domain be D = (Fp)

n ,
and the range be R = Fp. For each z ∈ Z , define the function
hz : D → R as follows: On input x ∈ (Fp)

n , hz(x) computes
y ← ψ(x) · z, where the operation “·” is the multiplication
in the extension field Fpn . Let (y1, . . . , yn) = ψ−1(y). The
output of hz(x) is y1 ∈ Fp. The family Hlin consists of the
hash functions {hz}z∈Z .

It is well known (see, e.g., [4]) thatHlin is a universal hash
function family. Furthermore, for every z ∈ Z , hz satisfies
linearity, in the following sense:

∀x, x′ ∈ (Fp)
n and α, β ∈ Fp:

α · hz(x) + β · hz(x′) = hz(α · x + β · x′).

Leftover hash lemma. Roughly speaking, the leftover hash
lemma [14] states that a universal hash function family is a
good (strong) randomness extractor. Here, we recall a version
of the leftover hash lemma shown by Dodis et al. [8] that
allows leakage from the inputs to a universal hash function.

Lemma 3 [8] LetH = {hz : D → R}z∈Z be a universal hash
function family. Let UZ and UR be the uniform distributions
over Z and R, respectively. Furthermore, let (X,Y) be a joint
distribution, where the support ofX is contained in D. Then,
when z is chosen uniformly as z ←R Z, it holds that

SD
(

(z, hz(X),Y), (UZ ,UR,Y)
)

≤ 1

2

√

2−˜H∞(X|Y) · |R|.

2.4 (Bilinear) Groups and computational problems

Discrete logarithm assumption. Let GGen be a PPTA, which
we call a “group generator,” that takes 1k as input and outputs
a tuple G := (p, G, g), where G is a (description of) group
with prime order p such that |p| = Θ(k), and g is a generator
of G.

Definition 5 Wesay that the discrete logarithm (DL) assump-
tion holds with respect to GGen if for all PPTAs A,
AdvDLGGen,A(k) defined below is negligible:

AdvDLGGen,A(k)

:= Pr
[

G = (p, G, g) ← GGen(1k); x ←R Zp:A(G, gx ) = x
]

.

Bilinear groups and CDH assumption. We say that BG =
(p, G, GT , g, e) constitutes (symmetric) bilinear groups if
p is a prime, G and GT are cyclic groups with order p, g is a
generator of G, and e: G×G → GT is an efficiently (in |p|)
computablemapping satisfying the following two properties:

(Bilinearity) For all g′ ∈ G and a, b ∈ Zp, it holds that
e(g′a, g′b) = e(g′, g′)ab
(Non-degeneracy) For all generators g′ of G, e(g′, g′) ∈
GT is not the identity element of GT .

For convenience,we denote byBGGen an algorithm (referred
to as a “bilinear group generator”) that, on input 1k , outputs
a description of bilinear groups BG = (p, G, GT , g, e) such
that |p| = Θ(k).

Definition 6 We say that the computational Diffie–Hellman
(CDH) assumption holds with respect to BGGen if for all
PPTAs A, AdvCDHBGGen,A(k) defined below is negligible:
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AdvCDHBGGen,A(k)

:= Pr
[

BG = (p, G, GT , g, e) ← BGGen(1k); a, b ←R Zp:
A(BG, ga, gb) = gab

]

.

2.5 Signature schemes

Here, we review the standard definitions for (ordinary) sig-
nature schemes and some properties. We also review the
descriptions of the Waters signature scheme [36] and the
Schnorr signature scheme [31] on which the concrete con-
structions of our fuzzy signature schemes will be based.

Syntax and correctness. We model a signature scheme Σ

as a quadruple of the PPTAs (Setup, KG, Sign,Ver) that are
defined as follows:

– Setup is the setup algorithm that takes 1k as input, and
outputs a public parameter pp.

– KG is the key generation algorithm that takes pp as input,
and outputs a verification/signing key pair (vk, sk).

– Sign is the signing algorithm that takes pp, sk, and a
message m as input, and outputs a signature σ .

– Ver is the (deterministic) verification algorithm that takes
pp,vk,m, andσ as input, andoutputs either�or⊥.Here,
“�” (resp. “⊥”) indicates that σ is a valid (resp. invalid)
signature of the message m under the key vk.

We require for all k ∈ N, all pp output by Setup(1k), all
(vk, sk) output by KG(pp), and all messages m, we have
Ver(pp, vk,m, Sign(pp, sk,m)) = �.

Simple keygenerationprocess.Here,we formalize the natural
structural property of a signature scheme that we call the sim-
ple key generation process property, which says that the key
generation algorithm KG first picks a secret key sk uniformly
at random from the secret key space, and then computes the
corresponding verification key vk deterministically from sk.
Looking ahead, both of our concrete instantiations of fuzzy
signature schemes are constructed from ordinary signature
schemes with this property.

Definition 7 Let Σ = (Setup, KG, Sign,Ver) be a signature
scheme.We say thatΣ has a simple key generation process if
each pp output by Setup specifies the secret key spaceKpp,
and there exists a deterministic PTA KG′ such that the key
generation algorithm KG(pp) can be written as follows:

KG(pp):
[

sk ←R Kpp; vk ← KG′(pp, sk); Return (vk, sk).
]

.

(1)

EUF-CMA security. Here, we recall the definition of existen-
tial unforgeability against chosenmessageattacks (EUF-CMA

security) [13]. For a signature scheme Σ = (Setup, KG,

Sign,Ver) and an adversary A, consider the following
EUF-CMA experiment ExptEUF-CMAΣ,A (k):

ExptEUF-CMAΣ,A (k) :
pp ←R Setup(1k)
(vk, sk) ←R KG(pp)
Q ← ∅
(m′, σ ′) ←R AOSign(·)(pp, vk)
If m′ /∈ Q ∧ Ver(pp, vk,m′, σ ′) = �

then return 1 else return 0
where OSign is the signing oracle that takes a message m as
input, updates the “used message list” Q by Q ← Q ∪ {m},
and returns a signature σ ←R Sign(pp, sk,m).

Definition 8 We say that a signature scheme Σ is EUF-CMA
secure if for all PPTA adversaries A,

AdvEUF-CMAΣ,A (k) := Pr[ExptEUF-CMAΣ,A (k) = 1]

is negligible.

On “weak” distributions of signing keys. Let Σ = (Setup,

KG, Sign,Ver) be a signature scheme with a simple key gen-
eration process (as per Definition 7) with secret key space
Kpp for a public parameter pp, and thus there exists the
algorithm KG′ such that KG can be written as in Eq. (1). Let
u: N → N be any function. For an EUF-CMA adversary A
attacking Σ , let Ãdv

EUF-CMA

Σ,A (k) be the advantage of A in
the experiment that is the same as ExptEUF-CMAΣ,A (k), except

that a secret key sk is chosen by sk ←R ˜Kpp (instead of
sk ←R Kpp) where ˜Kpp denotes an arbitrary (non-empty)
subset of Kpp satisfying |Kpp|/|˜Kpp| ≤ u(k).

We will use the following fact, which is obtained as a
corollary of Lemma 1. For completeness, we provide its for-
mal proof in “Appendix D.”

Lemma 4 (Corollary of Lemma 1) Under the above setting,

for any PPTA adversary A, it holds that Ãdv
EUF-CMA

Σ,A (k) ≤
u(k) · AdvEUF-CMAΣ,A (k).

Waters signature scheme. Our first concrete instantiation of
a fuzzy signature scheme given in Sect. 6 is based on the
Waters signature scheme [36], and thus we review it here.We
consider the version where the setup and the key generation
for each user are separated so that the scheme fits our syntax.

Let 
 = 
(k) be a positive polynomial, and let BGGen be a
bilinear group generator. Then, the Waters signature scheme
ΣWat for 
-bit messages, is constructed as in Fig. 3 (left). It
was shown by Waters [36] that ΣWat is EUF-CMA secure if
the CDH assumption holds with respect to BGGen.

Schnorr signature scheme.Our second concrete instantiation
of a fuzzy signature scheme given in Sect. 7 is based on the
Schnorr signature scheme [31], and thus we review it here.
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Fig. 3 The Waters signature
scheme ΣWat [36] (left) and the
Schnorr signature scheme ΣSch

[31] (right)

Using a group generator GGen, the Schnorr signature
scheme ΣSch = (SetupSch, KGSch, SignSch,VerSch) is
constructed as in Fig. 3 (right). It was formally shown by
Pointcheval and Stern [25] that ΣSch is EUF-CMA secure in
the random oracle model where the used hash function H is
modeled as a random oracle, under the DL assumption with
respect to GGen.

3 Special definitions for (ordinary)
signatures

In this section, we formalize somewhat less standard and
yet natural and useful properties for (ordinary) signature
schemes with a simple key generation process, and also show
some facts about them that will be utilized in the later sec-
tions.

This section is organized as follows: in Sect. 3.1, we for-
malize certain homomorphic properties regarding keys and
signatures, and in Sect. 3.2, we introduce a variant of RKA
security which we callΦ-RKA∗ security. Finally, in Sect. 3.3,
we show some useful facts about them.

3.1 Homomorphic properties

For building our fuzzy signature schemes, we will utilize a
signature scheme that has certain homomorphic properties
regarding keys and signatures, and thus we formalize the
properties here. We define two versions, normal and weak.
The weaker version only requires the first two requirements
out of the three, which is sufficient for our security proof for
the generic construction for fuzzy signatures given in Sect. 5

to go through. The benefit of considering the normal version
will be made clear in Sect. 3.3.

Definition 9 Let Σ = (Setup, KG, Sign,Ver) be a signature
scheme with a simple key generation process (i.e., there is
a deterministic PTA KG′ in Definition 7). We say that Σ is
homomorphic if it satisfies the following three properties:

1. For all parameters pp output by Setup, the signing key
space Kpp constitutes an abelian group (Kpp,+).

2. There exists a deterministic PTA Mvk that takes a public
parameter pp (output by Setup), a verification key vk
(output by KG(pp)), and a “shift” �sk ∈ Kpp as input,
and outputs the “shifted” verification key vk′.
We require for all pp output by Setup and all sk,�sk ∈
Kpp, it holds that

KG′(pp, sk + �sk) = Mvk(pp, KG
′(pp, sk),�sk). (2)

3. There exists a deterministic PTAMsig that takes a public
parameter pp (output by Setup), a verification key vk
(output by KG(pp)), a message m, a signature σ , and
a “shift” �sk ∈ Kpp as input, and outputs a “shifted”
signature σ ′.
We require for all pp output by Setup, all messages m,
and all sk,�sk ∈ Kpp, the following two distributions
are identical:
{

σ ′ ←R Sign(pp, sk + �sk,m): σ ′ }, and
{

σ ←R Sign(pp, sk,m);
σ ′ ← Msig(pp, KG′(pp, sk),m, σ,�sk)

: σ ′
}

.

(3)
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Furthermore, we require for all pp output by Setup, all
sk,�sk ∈ Kpp, and all message/signature pairs (m, σ )

satisfying Ver(pp, KG′(pp, sk),m, σ ) = �, it holds
that

Ver
(

pp, KG′(pp, sk + �sk),m,

Msig(pp, KG
′(pp, sk),m, σ,�sk)

)

= �. (4)

If Σ satisfies only the first two properties, then we say that
Σ is weakly homomorphic.

Looking ahead, in Sect. 6.4, we will show a variant of
the Waters signature scheme [36] (that we call the modi-
fied Waters signature (MWS) scheme) that satisfies all of
the above three properties of the homomorphic property.
Furthermore, we note that the Schnorr signature scheme
ΣSch [see Fig. 3 (right)] on which our second instantiation
in Sect. 7 is based, satisfies the weak homomorphic prop-
erty. We will state this in a formal manner in Lemma 6 in
Sect. 3.3.

3.2 RKA∗ security

Here, we introduce an extension of the standard EUF-CMA
security for signature schemes, which we call RKA∗ security,
that considers security against an adversary who may mount
a kind of related key attacks (RKA).9 Like the popular def-
inition of RKA security for signature schemes by Bellare
et al. [2], RKA∗ is defined with respect to a class of func-
tions that captures an adversary’s ability to modify signing
keys. However, our definition has subtle differences from the
definition of [2]. The main difference is that in our defini-
tion, an adversary is allowed to modify the verification key
under which its forgery is verified, while we do not allow
an adversary to use a message to be used as its forgery if
it has already been signed by the signing oracle. A more
detailed explanation on the differences between our defini-
tion and the existing RKA security definitions is given in
“Appendix B.”

Formally, let Σ = (Setup, KG, Sign,Ver) be a signature
scheme which has a simple key generation process, namely
there exists a deterministic PTA KG′ such that KG can bewrit-
ten as Eq. (1). Let Φ be a class of functions both of whose
domain and range are the secret key space of Σ . For Σ , Φ,
and an adversary A, consider the following Φ-RKA∗ exper-
iment ExptΦ-RKA∗

Σ,A (k):

9 The asterisk (*) in the security notion indicates that the notion is differ-
ent from the popular RKA security definition for signatures formalized
by Bellare et al. [2].

ExptΦ-RKA∗
Σ,A (k):

pp ←R Setup(1k)
(vk, sk) ←R KG(pp)
Q ← ∅
(φ′,m′, σ ′) ←R AOSign(·,·)(pp, vk)
vk′ ← KG′(pp, φ′(sk))
If φ′ ∈ Φ ∧ m′ /∈ Q ∧ Ver(pp, vk′,m′, σ ′) = �

then return 1 else return 0
where OSign is the RKA-signing oracle that takes (the
description of) a function φ ∈ Φ and a message m as input,
updates the “used message list” Q by Q ← Q ∪ {m}, and
returns a signature σ ←R Sign(pp, φ(sk),m).We stress that
in thefinal step of the experiment, the adversary’s forgedmes-
sage/signature pair (m′, σ ′) is verified under the “modified”
verification key vk′ = KG′(pp, φ′(sk)).

Definition 10 We say that a signature schemeΣ (with a sim-
ple key generation process) isΦ-RKA∗ secure if for all PPTA
adversaries A,

AdvΦ-RKA∗
Σ,A (k) := Pr

[

ExptΦ-RKA∗
Σ,A (k) = 1

]

is negligible.

Note that ifwe considerΦ to be consisting only of the identity
function in the above definition, then we recover the standard
EUF-CMA security.

The class of functions. In this paper, we will treat RKA∗
security with respect to addition, which is captured by the
following simple functions (whereK denotes the signing key
space of a signature scheme that we assume constitutes an
abelian group):

Addition: Φadd := {φadd
a |a ∈ K}, where φadd

a (x) :=
x + a.

3.3 Useful facts

Here, we show some useful facts about the properties intro-
duced in the previous subsections.

Sufficient conditions forΦadd-RKA∗ security. It turns out that
anyEUF-CMA secure signature scheme that satisfies the three
requirements of the homomorphic property (Definition 9) is
automatically Φadd-RKA∗ secure, and hence these are suffi-
cient conditions for Φadd-RKA∗ security.

Lemma 5 Any EUF-CMA secure signature scheme satisfy-
ing the homomorphic property (Definition 9) is Φadd-RKA∗
secure.

This proof is almost straightforward from the definition of
the homomorphic property, and we provide a proof sketch
in “Appendix E.” It is based on a simple observation that
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the homomorphic property allows us to simulate the RKA-
signing oracle in the Φadd-RKA∗ security experiment by
only using the normal signing oracle (for the same signa-
ture scheme).

Weak homomorphic property andΦadd-RKA∗ security of the
Schnorr signature scheme. It is straightforward to see that
the Schnorr signature scheme ΣSch [Fig. 3 (right)] admits
a simple key generation process and is weakly homomor-
phic. Specifically, given a public parameter pp = (G =
(p, G, g), H), we can specify its signing key space to be
Zp, and then the deterministic PTA KG′ can be defined by

KG′(pp, sk) := gsk,

where sk ∈ Zp. Furthermore, its signing key space (given a
public parameter pp) constitutes an abelian group (Zp,+).
Therefore, we can talk about its weak homomorphic property
and Φadd-RKA∗ security. The following theorem formally
states that the Schnorr signature scheme satisfies these func-
tionality/security properties.

Lemma 6 TheSchnorr signature schemeΣSch (Fig.3 (right)
in Sect. 2.5) satisfies the weak homomorphic property in the
sense of Definition 9. Furthermore, if the DL assumption
holds with respect toGGen, thenΣSch isΦadd-RKA∗ secure
in the random oracle model where H is modeled as a random
oracle.

The weak homomorphic property should be fairly easy to
see: For vk = gsk and �sk ∈ Zp, we can just define

Mvk(pp, vk,�sk) := (vk) · g�sk

= gsk+�sk = KG′(pp, sk + �sk).

The proof for the Φadd-RKA∗ security can be shown very
similarly to the proof of theEUF-CMA security of the Schnorr
scheme using the general forking lemma of Bellare and
Neven [3], and itsΦadd-weak-RKAsecurity shownbyMorita
et al. [20,21], and thus we provide its proof in “Appendix F.”

4 Definitions for fuzzy signatures

In this section, we introduce the definitions for fuzzy signa-
tures.

As mentioned in Sect. 1, to define fuzzy signatures, we
need to first define some “setting” that models a space
to which fuzzy data (used as a signing key) belongs, a
distribution fromwhich fuzzy data is sampled, etc. We there-
fore first formalize it as a fuzzy key setting in Sect. 4.1,
and then define a fuzzy signature scheme that is asso-
ciated with a fuzzy key setting in Sect. 4.2. Then, we
also introduce a new tool that we call linear sketch,

which is also associated with a fuzzy key setting and
will be used as one of the main building blocks in our
generic construction of a fuzzy signature scheme given in
Sect. 5.

4.1 Fuzzy key setting

Consider a typical biometric authentication scheme: At the
registration phase, a “fuzzy” biometric feature x ∈ X (where
X is some metric space) is measured and extracted from a
user. Later at the authentication phase, a biometric feature
x ′ ∈ X is measured and extracted from a (possibly differ-
ent) user, and this user is considered the user who generated
the biometric data x and thus authentic if x and x ′ are suffi-
ciently “close” according to the metric defined in the space
X .

We abstract out and formalize this typical setting for
“identifying fuzzy objects” as a fuzzy key setting. Roughly,
a fuzzy key setting specifies (1) the metric space to which
fuzzy data (such as biometric data) belongs (X in the above
example), (2) the distribution of fuzzy data sampled at the
“registration phase” (x in the above example), and (3) the
error distribution that models “fuzziness” of the fuzzy data
(the relationship between x and x ′ in the above exam-
ple).

We adopt what we call the “universal error model,” which
assumes that for all objectsU that produce fuzzy data that we
are interested in, if U produces a data x at the first measure-
ment (say, at the registration phase), and if the same object
is measured next time, then the measured data x ′ follows the
distribution {e ←R Φ; x ′ ← x+e: x ′}. That is, the error dis-
tribution Φ is independent of individualU . (We also assume
that the metric space constitutes an abelian group so that
addition is well defined.)

Formally, a fuzzy key setting F consists of ((d, X), t,X,

Φ, ε), each of which is defined as follows:

(d, X) This is a metric space, where X is a space to which
a possible fuzzy data x belongs, and d: X2 → R

is the corresponding distance function.We further-
more assume that X constitutes an abelian group.

t : (∈ R) This is the threshold value, determined by a secu-
rity parameter k. Based on t , the false acceptance
rate (FAR) and the false rejection rate (FRR) are
determined. We require that FAR := Pr[x, x ′ ←R

X:d(x, x ′) < t] is negligible in k.
X This is a distribution of fuzzy data over X .
Φ This is an error distribution (see the above expla-

nation).
ε (∈ [0, 1]) This is an error parameter that repre-

sents FRR. We require that for all x ∈ X , FRR :=
Pr[e ←R Φ:d(x, x + e) ≥ t] ≤ ε.
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4.2 Fuzzy signatures

A fuzzy signature scheme ΣFS for a fuzzy key setting F =
((d, X), t,X, Φ, ε) consists of the four algorithms (SetupFS,
KGFS, SignFS,VerFS):

SetupFS This is the setup algorithm that takes the descrip-
tion of the fuzzy key setting F and 1k as input
(where k determines the threshold value t of F),
and outputs a public parameter pp.

KGFS This is the key generation algorithm that takes pp
and a fuzzy data x ∈ X as input, and outputs a
verification key vk.

SignFS This is the signing algorithm that takes pp, a fuzzy
data x ′ ∈ X , and amessagem as input, and outputs
a signature σ .

VerFS This is the (deterministic) verification algorithm
that takes pp, vk, m, and σ as input, and outputs
either � (“accept”) or ⊥ (“reject”).

δ-correctness. Let δ ∈ [0, 1]. We say that a fuzzy signature
scheme ΣFS = (SetupFS, KGFS, SignFS,VerFS) for a fuzzy
key setting F = ((d, X), t,X, Φ, ε) satisfies δ-correctness
if it holds that

Pr
[

pp ←R SetupFS(1
k); x ←R X; vk ←R KGFS(pp, x);

e ←R Φ; σ ←R SignFS(pp, x + e,m):
VerFS(pp, vk,m, σ ) = �

]

≥ 1 − δ

for all k ∈ N and all messages m.10

EUF-CMA security. For a fuzzy signature scheme, we con-
sider EUF-CMA security in a similar manner to that for
an ordinary signature scheme, reflecting the universal error
model of a fuzzy key setting.

Formally, for a fuzzy signature scheme ΣFS = (SetupFS,
KGFS, SignFS,VerFS) for a fuzzy key setting F = ((d, X),

t,X, Φ, ε) and an adversary A, consider the following
EUF-CMA experiment ExptEUF-CMAΣFS,F,A (k):

10 The definition of correctness here is slightly weakened from the
one we used in the earlier versions [19,33], in which we used the fol-
lowing definition: For all k ∈ N, all pp output by SetupFS(F, 1k),
all x, x ′ ∈ X such that d(x, x ′) < t , and all messages m, it holds
that VerFS(pp, KGFS(pp, x),m, SignFS(pp, x

′,m)) = �. Note that
this definition implies ε-correctness, because Pr[x ←R X; e ←R

Φ: d(x, x + e) < t] ≥ 1 − ε. Note also that as long as FRR is not
zero, a fuzzy signature scheme cannot satisfy 0-correctness.

ExptEUF-CMAΣFS,F,A (k) :
pp ←R SetupFS(F, 1k)
x ←R X
vk ←R KGFS(pp, x)
Q ← ∅
(m′, σ ′) ←R AOSignFS (·)

(pp, vk)
If m′ /∈ Q ∧ VerFS(pp, vk,m′, σ ′) = �

then return 1 else return 0
whereOSignFS is the signing oracle that takes a messagem as
input, and operates as follows: It updates the “used message
list” Q by Q ← Q ∪ {m}, samples e ←R Φ, computes a
signature σ ←R SignFS(pp, x + e,m), and returns σ .

Definition 11 We say that a fuzzy signature scheme ΣFS is
EUF-CMA secure if for all PPTA adversaries A,

AdvEUF-CMAΣFS,F,A (k) := Pr
[

ExptEUF-CMAΣFS,F,A (k) = 1
]

is negligible.

4.3 Linear sketch

Here, we give the definition of a linear sketch scheme. The
syntactical definition here is the one we adopt in [19], and
we introduce a new security requirement for a linear sketch
scheme, which we call weak simulatability, which is weaker
than the security requirements that we introduced in our ear-
lier versions [19,33], but is nonetheless sufficient for proving
the security of our generic construction of a fuzzy signature
scheme in the next section. For completeness, we give the
definitions in our earlier versions and discuss the differences
between the definitions in “Appendix C.”

A linear sketch scheme is associated with a fuzzy key set-
ting and an abelian group (in which addition is well defined),
and is defined as follows:

Definition 12 Let F = ((d, X), t,X, Φ, ε) be a fuzzy key
setting. We say that a tuple of PPTAs S = (Setup, Sketch,

DiffRec) is a linear sketch scheme for F, if it satisfies the
following three properties:

Syntax and correctness. Each algorithm of S has the fol-
lowing interface:

– Setup is the “setup” algorithm that takes the descrip-
tion F of the fuzzy key setting and the description Λ of
an abelian group (K,+) as input, and outputs a public
parameter pp (which we assume contains the informa-
tion of Λ).

– Sketch is the “sketching” algorithm that takes pp, an
element s ∈ K, and a fuzzy data x ∈ X as input, and
outputs a “sketch” c.

– DiffRec is the (deterministic) “difference reconstruction”
algorithm that takes pp and two values c, c′ (supposedly
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output by Sketch) as input, and outputs the “difference”
�s ∈ K.

We require that for all x, x ′ ∈ X such that d(x, x ′) < t , all
pp output by Setup(F,Λ), and all s,�s ∈ K, it holds that

DiffRec
(

pp, Sketch(pp, s, x), Sketch(pp, s+�s, x ′)
)

= �s.

(5)

Linearity. There exists a PPTAMc satisfying the following:
for all pp output by Setup(F,Λ), all x, e ∈ X , and for all
s,�s ∈ K, the following two distributions are statistically
indistinguishable (in the security parameter k that is associ-
ated with t in F):
{

c ←R Sketch(pp, s, x);
c′ ←R Sketch(pp, s + �s, x + e)

: (c, c′)
}

, and

{

c ←R Sketch(pp, s, x);
c′ ←R Mc(pp, c,�s, e)

: (c, c′)
}

. (6)

Weak Simulatability 11. Let Λ = (K,+) be a (finite) abelian
group. There exists a PPTA simulator Sim such that for all
PPTA algorithms A, there exist a positive polynomial12 u
and a negligible function ε such that the following inequality
holds (where k is the security parameter k associated with t
in F):

Pr[A(Dreal) = 1] ≤ u(k) · Pr[A(Dsim) = 1] + ε(k), (7)

where the distributionsDreal andDsim are defined as follows:

Dreal :=
{

pp ←R Setup(F, Λ); x ←R X;
s ←R K; c ←R Sketch(pp, s, x)

: (pp, s, c)
}

,

Dsim :=
{

pp ←R Setup(F, Λ); s ←R K;
c ←R Sim(pp)

: (pp, s, c)
}

.

We remark that the definition of weak simulatability
is strictly weaker than the simulatability and the average-
case indistinguishability that we used in our earlier ver-
sions [19,33]. In particular, we only require it to hold for
a computationally bounded adversary, and unlike a typi-
cal simulation-based security notion we allow not only the
additive simulation error (captured by ε(k)) but also themul-
tiplicative simulation error that is captured by u(k) in Eq. (7).
As mentioned above, these relaxations are still sufficient to
prove the security of our generic construction in the next
section.

11 The choice of the word “weak” in weak simulatability is because it is
a weaker requirement than the simulatability we used in [33] in several
aspects. See the explanation given after the definition.
12 We call u a multiplicative simulation error.

5 Generic construction

In this section, we show a generic construction of a fuzzy
signature scheme. Our construction uses an ordinary signa-
ture scheme (with the weak homomorphic property) and a
linear sketch scheme as building blocks. The fuzzy key set-
ting for which the fuzzy signature scheme is constructed is
the one with which the underlying linear sketch scheme is
associated.

We have already provided an overview of our generic
construction in Sect. 1.3. Thus, we directly proceed to the
construction in Sect. 5.1. We then provide the proof for cor-
rectness in Sect. 5.2, and finally the proof for security in
Sect. 5.3.

5.1 Description of the construction

Let F = ((d, X), t,X, Φ, ε) be a fuzzy key setting, and let
S = (Setupl , Sketch,DiffRec) be a linear sketch for F. Let
Σ = (Setups, KG, Sign,Ver) be a signature scheme with a
simple key generation process (i.e., there exists a determinis-
tic PTA KG′). We assume that Σ is weakly homomorphic (as
per Definition 9), namely its secret key space (given pp) is
an abelian group (Kpp,+) and has the additional algorithm
Mvk. Using S and Σ , the generic construction of a fuzzy sig-
nature schemeΣFS = (SetupFS, KGFS, SignFS,VerFS) for the
fuzzy key setting F is constructed as in Fig. 4.

5.2 Correctness

The correctness of the fuzzy signature scheme ΣFS is guar-
anteed as follows.

Theorem 1 If Σ and S satisfy correctness, then the fuzzy
signature scheme ΣFS in Fig. 4 is ε-correct.

Proof of Theorem 1 Fix arbitrarily a message m. Let x, x ′ ∈
X such that d(x, x ′) < t . Also, let pp = (pps, ppl) be a
public parameter output by SetupFS(F, 1k), let VK = (vk =
KG′(pps, sk), c) be a verification key output by KGFS(pp, x),
and let σ = (˜vk = KG′(pps, ˜sk), σ̃ , c̃) be a signature output
by SignFS(pp, x

′,m).
Recall that by the definition of the fuzzy key settingF, we

have Pr[e ←R Φ:d(x, x + e) < t] ≥ 1− ε. Hence, to prove
the theorem, it is sufficient to show that if d(x, x ′) < t , then
it always holds that VerFS(pp,VK,m, σ ) = �, which we do
in the following.

Firstly, since σ̃ is a signature of the message m generated
using the signing key ˜sk, and ˜vk is the verification key cor-
responding to ˜sk, we have Ver(pps, ˜vk,m, σ̃ ) = � due to
the correctness of the underlying signature scheme Σ . Sec-
ondly, d(x, x ′) < t impliesDiffRec(ppl , c, c̃) = ˜sk− sk due
to the correctness of the underlying linear sketch scheme S.
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Fig. 4 Our generic construction of a fuzzy signature scheme ΣFS for a fuzzy key setting F, based on a signature scheme Σ with the weak
homomorphic property and a linear sketch scheme S for F

Thirdly, due to the weak homomorphic property ofΣ , letting
�sk := ˜sk − sk, we have

Mvk(pps, vk,�sk) = Mvk(pps, KG
′(pps, sk),�sk)

= KG′(pps, sk + �sk) = KG′(pps, ˜sk) = ˜vk.

The conditions seen so far are exactly those checked in the
verification algorithm VerFS(pp,VK,m, σ ), and hence its
output is guaranteed to be �, as required. ��

5.3 Security

The security of the fuzzy signature schemeΣFS is guaranteed
as follows.

Theorem 2 If Σ is Φadd-RKA∗ secure and S is a linear
sketch scheme for F (in the sense of Definition 12), then
the fuzzy signature scheme ΣFS for F in Fig. 4 is EUF-CMA
secure.

Our proof is via the sequence of games argument. We gradu-
ally change the originalEUF-CMA security experiment for an
adversaryA against our construction ΣFS by using the weak
homomorphic property of the underlying signature scheme
Σ and the linearity property and weak simulatability of the
underlying linear sketch scheme S, so thatA’s success prob-
ability in the original EUF-CMA security experiment is not
non-negligibly different from A’s success probability in the
final game (Game 5), and the latter is negligible due to the
Φadd-RKA∗ security of Σ .

Proof of Theorem 2 Let A be an arbitrary PPTA adversary
that attacks the EUF-CMA security of ΣFS. Below, we con-
sider a sequence of five games, where the first game is
ExptEUF-CMAΣFS,F,A (k) itself. For i ∈ [5], let Si be the event that
in Game i , A succeeds in outputting a successful forgery
(m′, σ ′) satisfying VerFS(pp,VK,m′, σ ′) = � and m′ /∈ Q.
Our goal is to show that AdvEUF-CMAΣFS,F,A (k) = Pr[S1] is negligi-
ble.

Game 1 This is the EUF-CMA experiment ExptEUF-CMAΣFS,F,A (k).
In this game, the public parameter pp and the ver-
ification key VK are generated as follows:
Generation of pp and VK in Game 1:

pps ←R Setups(1
k)

ppl ←R Setupl(F,Λ := (Kpps ,+))

pp ← (pps, ppl)
x ←R X
sk ←R Kpps
vk ← KG′(pps, sk)
c ←R Sketch(ppl , sk, x)
VK ← (vk, c)

Furthermore, the signing oracleOSignFS(m) gener-
ates a signature σ as follows:
Signing oracle OSignFS(m) in Game 1:
e ←R Φ
˜sk ←R Kpps
˜vk ← KG′(pps, ˜sk)
σ̃ ←R Sign(pps, ˜sk,m)

c̃ ←R Sketch(ppl , ˜sk, x + e)
σ ← (˜vk, σ̃ , c̃)

Game 2 This game is the same as Game 1, except that in
the signing oracle, ˜sk is generated by firstly pick-
ing a random “difference” �sk ∈ Kpps , and then
setting ˜sk ← sk + �sk.

More specifically, the signing oracleOSignFS(m) in
this game generates a signature σ as follows: (The
difference from Game 1 is underlined.)
Signing oracle OSignFS(m) in Game 2:
e ←R Φ

�sk ←R Kpps
˜sk ← sk + �sk
˜vk ← KG′(pps, ˜sk)
σ̃ ←R Sign(pps, ˜sk,m)

c̃ ←R Sketch(ppl , ˜sk, x + e)
σ ← (˜vk, σ̃ , c̃)

Since the distribution of ˜sk in Game 2 and that in
Game 1 are identical, we have Pr[S2] = Pr[S1].

123



596 K. Takahashi et al.

Game 3 This game is the same as Game 2, except that in
the signing oracle, ˜vk is generated by using vk and
�sk via Mvk.
More specifically, the signing oracleOSignFS(m) in
this game generates a signature σ as follows: (The
difference from Game 2 is underlined.)
Signing oracle OSignFS(m) in Game 3:
e ←R Φ

�sk ←R Kpps
˜sk ← sk + �sk
˜vk ← Mvk(pps, vk,�sk)
σ̃ ←R Sign(pps, ˜sk,m)

c̃ ←R Sketch(ppl , ˜sk, x + e)
σ ← (˜vk, σ̃ , c̃)

By the property of Mvk [Eq. (2)], the distribution
of ˜vk in Game 3 and that in Game 2 are identical,
and thus we have Pr[S3] = Pr[S2].

Game 4 This game is the same as Game 3, except that in
the signing oracle, c̃ is generated by using c, e, and
�sk, via the auxiliary algorithm Mc of the linear
sketch scheme S.
More specifically, the signing oracleOSignFS(m) in
this game generates a signature σ as follows: (The
difference from Game 3 is underlined.)
Signing oracle OSignFS(m) in Game 4:
e ←R Φ

�sk ←R Kpps
˜sk ← sk + �sk
˜vk ← Mvk(pps, vk,�sk)
σ̃ ←R Sign(pps, ˜sk,m)

c̃ ←R Mc(ppl , c,�sk, e)
σ ← (˜vk, σ̃ , c̃)

By the linearity of the linear sketch scheme S, the
distribution of c̃ generated in the signing oracle
in Game 4 and that in Game 3 are statistically
indistinguishable. We can apply this statistical
indistinguishability query-by-query, to conclude
thatA’s view inGame 4 and that in Game 3 are sta-
tistically indistinguishable.13 This guarantees that
|Pr[S4] − Pr[S3]| is negligible.

Game 5 This game is the same as Game 4, except that the
sketch c contained in VK is generated by the sim-
ulator Sim (without using x ∈ X or sk ∈ Kpps ),
whose existence is guaranteed by the weak simu-
latability of the linear sketch scheme S.
More specifically, in this game, the public param-
eter pp and the verification key VK are gener-

13 If the statistical distance between the distributions considered in the
linearity property [Eg. (6)] is a negligible value εlin and the adversary
A makes q = q(k) signing queries (where q is some polynomial), the
difference |Pr[S4] − Pr[S3]| is at most q · εlin, which is still negligible.

ated as follows: (The difference from Game 4 is
underlined.)
Generation of pp and VK in Game 5:

pps ←R Setups(1
k)

ppl ←R Setupl(F,Λ := (Kpps ,+))

pp ← (pps, ppl)
sk ←R Kpps
vk ← KG′(pps, sk)
c ←R Sim(ppl)
VK ← (vk, c)

(We no longer pick x ∈ X, because it is not used
in Game 5.)
Now, we show that due to the weak simulatability
of the linear sketch schemeS, there exists a polyno-
mial u = u(k) and a negligible function ε = ε(k)
such that Pr[S4] ≤ u ·Pr[S5]+ε holds. To see this,
let pps ←R Setups(1

k), and let Λ = (Kpps ,+)

be the abelian group that describes the secret key
space of Σ . Then, consider the PPTA adversary
B′ that has pps hardwired, takes as input a tuple
(ppl , sk, c) that is generated by either

Dreal =
⎧

⎨

⎩

ppl ←R Setupl(F,Λ);
x ←R X; sk ←R Kpps ;
c ←R Sketch(ppl , sk, x)

: (ppl , sk, c)
⎫

⎬

⎭

or

Dsim =
{

ppl ←R Setupl(F,Λ);
sk ←R Kpps ; c ←R Sim(ppl)

: (ppl , sk, c)
}

,

simulates Game 4 for A by using these values,14

and outputs 1 if and only if A succeeds in forging
a signature. Then, it is straightforward to see that if
the input (ppl , sk, c) to B′ comes from the distri-
butionDreal (resp.Dsim), thenB′ simulatesGame 4
(resp. Game 5) in which pps is the one hardwired
in B′, perfectly for A. Consequently, we have

E
pps←RSetups (1k)

[ Pr[B′(Dreal) = 1] ] = Pr[S4], and

E
pps←RSetups (1k)

[ Pr[B′(Dsim) = 1] ] = Pr[S5].

Also, by the weak simulatability of S, it holds that
Pr[B′(Dreal) = 1] ≤ u · Pr[B′(Dsim) = 1] + ε.
Hence, by the linearity of expectation, we obtain

Pr[S4] ≤ u · Pr[S5] + ε.

14 That is, B′ runs A on input the public parameter pp = (pps , ppl)
and the verification key VK = (vk = KG′(pps , sk), c), and answers
A’s signing queries as in the signing oracle in Game 4 does.
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Putting everything together, we can estimate an upper-
bound of A’s EUF-CMA advantage as follows:

AdvEUF-CMAΣFS,F,A (k) = Pr[S1]
≤

∑

i∈[3]

∣

∣

∣Pr[Si ] − Pr[Si+1]
∣

∣

∣ + Pr[S4]

≤
∑

i∈[3]

∣

∣

∣Pr[Si ] − Pr[Si+1]
∣

∣

∣ + u(k) · Pr[S5] + ε(k),

≤ u(k) · Pr[S5] + ε′(k),

where u(k) is a polynomial and ε(k) is a negligible function
that are both due to the weak simulatability of the linear
sketch scheme S as seen above, and ε′ is another negligible
function such that ε′ = ε + |Pr[S3] − Pr[S4]|. (Recall that
Pr[S1] = Pr[S2] = Pr[S3].)

Hence, in order to complete the proof, it is sufficient to
show that Pr[S5] is negligible. We show this by relying on
the Φadd-RKA∗ security of the underlying signature scheme
Σ . Specifically, using A as a building block, we construct
the following PPTA adversary B that attacks theΦadd-RKA∗
security of the underlying signature scheme Σ :

BOSign(·,·)(pps, vk):Let Λ := (Kpps ,+). B first gener-
ates ppl ←R Setupl(F,Λ) and sets pp ← (pps, ppl).
Next, B computes c ←R Sim(ppl), and then sets VK ←
(vk, c). Then, B runs A(pp,VK).
For each signing querym fromA,B responds as follows:

1. Pick e ←R Φ and �sk ←R Kpps .
2. Submit (φadd

�sk,m) to its own RKA-signing oracle
OSign, and receive the result σ̃ . (Note that by defini-
tion, σ̃ is computed by σ̃ ←R Sign(pps, sk + �sk,
m), where sk is the original signing key correspond-
ing to vk that B received.)

3. Compute ˜vk ← Mvk(pps, vk,�sk) and c̃ ←R

Mc(ppl , c,�sk, e).
4. Returnσ = (˜vk, σ̃ , c̃) toA as the result of the signing

query.

When A outputs (m′, σ ′ = (˜vk
′
, σ̃ ′, c̃′)) and terminates,

B computes �sk′ ← DiffRec(ppl , c, c̃′), and terminates
with output (φadd

�sk′ ,m′, σ̃ ′).

The above completes the description of B. It is not hard to
see that B perfectly simulates Game 5 forA. In particular, B
generates pp and VK = (vk, c) in exactly the same way as
Game 5. Furthermore, since B can ask a RKA-signing query
of the form (φadd

�sk,m) in the Φadd-RKA∗ experiment and is
given a signature σ̃ computed by using the “shifted” secret
key sk + �sk, we can view sk + �sk as ˜sk generated for
answering each signing query in Game 5. Note also that the
“used messages list” Q by A and that of B are identical.

We finally show that whenever A succeeds in outputting
a successful forgery pair (m′, σ ′ = (˜vk

′
, σ̃ ′, c̃′)) such that

VerFS(pp,VK,m′, σ ′) = �, B also succeeds in outputting a
successful forgery (φadd

�sk′ ,m′, σ̃ ′), such that

Ver(pps, KG′(pps, sk + �sk′),m′, σ̃ ′) = �
where �sk′ = DiffRec(ppl , c, c̃′). (8)

To see this, note that VerFS(pp,VK,m′, σ ′) = � implies that
Ver(pps, ˜vk

′
,m′, σ̃ ′) = �, DiffRec(ppl , c, c̃′) = �sk′, and

Mvk(pps, vk,�sk′) = ˜vk
′
hold. The last condition implies

˜vk
′ = KG′(pps, sk + �sk′) due to the weak homomor-

phic property of Σ . Thus, if A’s output (m′, σ ′) satisfies
the condition of violating the EUF-CMA security of ΣFS,
B’s output (φadd

�sk′ ,m′, σ̃ ′) satisfies the condition of violating
the Φadd-RKA∗ security of the underlying signature scheme

Σ . Hence, we have AdvΦadd-RKA∗
Σ,B (k) = Pr[S5]. Since Σ is

assumed to be Φadd-RKA∗ secure and B is a PPTA, we can
conclude that Pr[S5] is negligible.

At this point, we have shown that AdvEUF-CMAΣFS,F,A (k) is
upperbounded to be negligible. This completes the proof of
Theorem 2. ��

6 First instantiation

This and next sections give the concrete instantiations of our
generic construction of a fuzzy signature scheme given in
Sect. 5. In this section, we give our first instantiation based
on theWaters signature scheme [36] that uses bilinear groups
and the security is proven in the standard model. One strong
requirement of this instantiation is that it needs to assume that
the fuzzy data is distributed uniformly. (This requirement is
relaxed in our second instantiation given in the next section.)

The rest of this section is organized as follows. Since
we treat real numbers in our instantiations (in this and next
sections), below we first clarify how we treat real numbers.
Then in Sect. 6.1, we first specify a concrete fuzzy key set-
ting F1 for which our first instantiation is constructed. Next,
in Sect. 6.2, we provide some mathematical preliminaries.
Armedwith them, in Sects. 6.3 and 6.4, we show the concrete
linear sketch scheme SCRT for F1 and the signature scheme
ΣMWS, respectively, which are used to instantiate the building
blocks of our generic construction. The final description of
the first instantiation of our fuzzy signature scheme, ΣFS1, is
given in Sect. 6.5.

On the treatment of real numbers. In this and next sections,
we use real numbers to represent and process fuzzy data. We
assume that a suitable representation with sufficient accuracy
is chosen to encode the real numbers whenever they need to
be treated by the considered algorithms.
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Fig. 5 An illustration of multiplication of a real number x = m
2γ and

an n-bit integer a

Concretely, we assume that the significand of all real num-
bers is expressed in an a priori fixed length (in bits) λ, where
λ is some natural number that is a polynomial of a secu-
rity parameter k. That is, a real number is expressed in the
form m

2γ , where m is a λ-bit integer that represents the sig-
nificand and − γ ∈ Z is the exponent. (For ease of treatment
of decimal numbers, we use the convention that a positive γ

implies a negative exponent.) Furthermore, if real numbers
are involved in some arithmetic operations such as addition
and multiplication, then the rounding-down operation is nat-
urally applied to the significand of the resulting number, so
that the result is always expressed in the above form (i.e., its
significand is expressedwithλbits).We stress that this setting
is natural, taking computer implementations into account.

For example, if we multiply a real number x = m
2γ (where

m is a λ-bit integer and 0 ≤ γ ≤ λ) with an n-bit integer
a (where n ≤ γ ), then the resulting number x · a of the
multiplication of x and a is treated as

⌊m · a
2n

⌋

· 2−(γ−n). (9)

That is, its significand is a λ-bit integer 
m·a
2n � and its expo-

nent is−(γ −n). This might not look straightforward at first
glance, but note that the significand 
m·a

2n � is the result of
the multiplication m · a rounded down to have a λ-bit preci-
sion (the denominator 2n is due to the fact that a is an n-bit
integer). The exponent is correspondingly “shifted” to take
into account that a is an n-bit integer. See Fig. 5 for an illus-
tration for the calculation of x · a. [Such multiplication of
a real number in [0, 1) with an integer appears in our con-
crete instantiations of linear sketch schemes in Sects. 6.3 and
7.2 (and thus in the final descriptions of our concrete fuzzy
signature schemes that appear in Sects. 6.5 and 7.3).]

6.1 Specific fuzzy key setting

Here, we specify a concrete fuzzy key setting F1 = ((d, X),

t,X, Φ, ε) for which our first fuzzy signature scheme ΣFS1

is constructed.

Metric space (d, X). We define the space X by X :=
[0, 1)n ⊂ R

n , where n is a parameter specified by the
context (e.g., an object from which we measure fuzzy
data). We use the L∞-distance as the distance function
d : X × X → R. Namely, for x = (x1, . . . , xn) ∈ X
and x′ = (x ′

1, . . . , x
′
n) ∈ X , we define d(x, x′) :=

‖x − x′‖∞ := maxi∈[n] |xi − x ′
i |. Note that X forms

an abelian group with respect to
coordinate-wise addition (modulo 1).

Threshold t . For a security parameter k, we define the thresh-
old t ∈ R so that

k = 
−n log2(2t)�. (10)

Looking ahead, this guarantees that the algorithm“WGen”
that we will introduce in the next subsection, is a PTA in
k.
Furthermore, we require that n = O(log2 k), so that 2n

can be considered to be upperbounded by some polyno-
mial of k. Looking ahead, this property is used in showing
the weak simulatability of the linear sketch schemeSCRT.
We do not directly show that FAR is negligible here,
because it is indirectly implied by the EUF-CMA security
of our proposed fuzzy signature scheme.

Distribution X. Theuniformdistributionover a “discretized”
version of X = [0, 1)n . Specifically, let λ ∈ N be the
natural number that denotes the representation length
of a real number as introduced at the beginning of this
section. We require that each coordinate xi of a data
x = (x1, . . . , xn) ∈ X is distributed as { j ←R Z2λ : j

2λ }.
Furthermore, we require λ to be sufficiently large (at least
k/n).

Error distribution Φ and Error parameter ε. Φ can be any
efficiently samplable (according to k) distribution over X
such that FRR ≤ ε for all x ∈ X .

6.2 Mathematical preliminaries

Group isomorphism based on Chinese remainder theorem.
Let n ∈ N. Let w1, . . . , wn ∈ N be positive integers with the
same bit length (i.e., �log2 w1� = · · · = �log2 wn�), such
that

∀i ∈ [n]:wi ≤ 1

2t
, and ∀i �= j ∈ [n]:GCD(wi , w j ) = 1,

(11)

and W = ∏

i∈[n] wi = Θ(2k), where k is defined as in
Eq. (10). Note that Eqs. (10) and (11) imply that we have
wi ≤ 2k/n for all i ∈ [n].

We assume that there exists a deterministic algorithm
WGen that on input (t, n) outputs w = (w1, . . . , wn) sat-
isfying the above.
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Fig. 6 The linear sketch scheme
SCRT =
(Setup, Sketch,DiffRec) for the
fuzzy key setting F1 (left), and
the auxiliary algorithms Mc for
showing linearity and the
simulator Sim for showing weak
simulatability (right). In the
figure, all addition are done in
R
n
w, and 
′ = λ − �k/n�

For vectors v = (v1, . . . , vn) ∈ N
n and w = (w1, . . . wn)

∈ N
n , we define

v mod w := (v1 mod w1, . . . , vn mod wn). (12)

For vectors v1, v2 ∈ N
n , we define the equivalence relation

“∼” by

v1 ∼ v2
def⇐⇒ v1 mod w = v2 mod w,

and let Z
n
w := Z

n/ ∼ be the quotient set of Z
n by ∼. Note

that (Zn
w,+) constitutes an abelian group, where the addition

is modulo w as defined in Eq. (12).
Consider the following system of equations: given v,w ∈

N
n , find V such that V mod wi = vi (i ∈ [n]). Accord-

ing to the Chinese remainder theorem (CRT), the solution
V is determined uniquely modulo W . Thus, for a fixed
w ∈ N

n , we can define a mapping CRTw: Zn
w → ZW such

that CRTw(v) = V ∈ ZW . Note that this mapping is a bijec-
tion, and we denote by CRT−1

w the “inverse” procedure of
CRTw.

Note that CRTw satisfies the following homomorphism:
For all v1, v2 ∈ Z

n
w, it holds that

CRTw(v1 + v2) = CRTw(v1) + CRTw(v2) mod W .

Since CRTw is bijective between Z
n
w and ZW , CRTw is an

isomorphism.

Codingand error correction.Letw = (w1, . . . , wn) ∈ N
n be

the n-dimensional vector satisfying the requirements in Eq.
(11). Similarly to Z

n
w, we define R

n
w := R

n/ ∼ be the quo-
tient set of real vector spaceR

n by the equivalence relation∼,
where for a real number y ∈ R, we define r = y mod wi by
the number such that ∃n ∈ Z: y = nwi + r and 0 ≤ r < wi .

Let Ew: Rn → R
n
w be the following function:

Ew(x) := (w1x1, . . . , wnxn) ∈ R
n
w,

where x = (x1, . . . , xn) ∈ R
n . Note that it holds that

Ew(x + e) = Ew(x) + Ew(e) (mod w). (13)

Therefore, Ew can be viewed as a kind of linear coding.
Let Cw: Rn

w → Z
n
w be the following function:

Cw
(

(y1, . . . , yn)
)

:=
(


y1+0.5�, . . . , 
yn +0, 5�
)

. (14)

We note that the round-down operation 
yi + 0.5� in Cw can
be regarded as a kind of error correction. Specifically, by the
conditions in Eq. (11), the following properties are satisfied:
For any x, x′ ∈ X , if ‖x − x′‖∞ < t , then we have

∥

∥

∥ Ew(x) − Ew(x′)
∥

∥

∥∞ < t · max
i∈[n]{wi } ≤ 0.5.

Therefore, for such x, x′, it always holds that

Cw
(

Ew(x) − Ew(x′)
)

= 0. (15)

Additionally, for any x ∈ R
n and s ∈ Z

n
w, the following

holds:

Cw(x + s) = Cw(x) + s (mod w). (16)

6.3 Concrete linear sketch

Let F1 = ((d, X), t,X, Φ, ε) be the fuzzy key setting
defined in Sect. 6.1, and let w = (w1, . . . , wn) =
WGen(t, n), where n is the dimension of X , and let W =
∏

i∈[n] wi . Let CRTw, CRT−1
w , Ew, and Cw be the functions

defined in Sect. 6.2. Using these objects, we consider the
linear sketch scheme SCRT = (Setup, Sketch,DiffRec) for
F1 and the additive group (ZW ,+) (=: Λ), as described in
Fig. 6 (left). In the right of the figure, we also describe the
auxiliary algorithm Mc that is used to show the linearity of
SCRT, and the simulator Sim that is used to show its weak
simulatability.

The setup algorithm Setup in this linear sketch scheme
actually does nothing, and the main algorithms Sketch and
DiffRec as well as the auxiliary algorithm Mc are all deter-
ministic. Furthermore, recall that we assume that the decimal
part of each coordinate wi xi in the computation of Ew(·) is
rounded down so that its precision is the same as xi . Con-
cretely, since the significand of each xi is expressed in λ bits
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and wi is a (�k/n�)-bit natural number, the decimal part of
each wi xi is truncated to 
′ := λ − �k/n� bits. Correspond-
ingly, the simulator also picks an element inR

n
w, such that the

integer part of each of its coordinates is sampled uniformly
from Zwi , and its decimal part is distributed uniformly in
{ j
2
′ | j ∈ Z2
′ }.
Remark on hypothetical recovering attacks and why they do
not work. Let s ∈ ZW and s = (s1, . . . , sn) := CRT−1

w (s) ∈
Zw. Let ci = si + wi · xi mod wi be the i th coordinate of
a sketch c output from Sketch(pp, s, x), where x = (x1,
. . . , xn) ←R X, and thus each wi is of the form xi = j

2λ

for some λ-bit integer j . Notice that in our linear sketch
scheme SCRT, if it were not for the rounding-down operation
after multiplication of wi and xi , it holds that 2λ · ci = 2λ ·
si + wi · j mod wi = 2λ · si mod wi . Hence, if furthermore
GCD(2λ,wi ) = 1, we can recover si from ci by computing
si = (2λ · ci ) · (2λ)−1 mod wi , from which we can also
recover xi . (Yasuda et al. [39] pointed out recovering attacks
of this kind.)

Similarly, notice that the “decimal” part c(i)
de of ci is

dependent only on wi and xi . Hence, if it were not for the
rounding-down operation after multiplication of wi and xi ,
c(i)
de would bewi ·xi mod 1 = wi · j

2λ mod 1. This would in turn

imply2λ·c(i)
de = wi · j mod 2λ. If furthermoreGCD(2λ,wi ) =

1, then we can calculate (2λ · c(i)
de ) · (wi )

−1 = j mod 2λ.

Hence, j (and hence xi ) could be recovered from c(i)
de as well.

However, such recovering attacks mentioned above do not
apply to our proposed linear sketch scheme SCRT due to the
rounding-down operation.As explained in the “On the Treat-
ment of Real Numbers” paragraph, since each wi is a k/n-bit
integer, each x ′

i = wi · xi results in 
 wi · j
2�k/n� � · 2−(λ−�k/n�).

Thus, the i th coordinate ci of c, and its decimal part c(i)
de , are

actually of the following forms:

ci = si +
⌊wi · j
2�k/n�

⌋

· 2−(λ−�k/n�) mod wi , and

c(i)
de =

⌊wi · j
2�k/n�

⌋

· 2−(λ−�k/n�) mod 1,

for which the above-mentioned methods for calculating xi =
j
2λ from ci (in case GCD(2λ,wi ) = 1) are not applicable.
In fact, the weak simulatability of SCRT that we show in
Lemma 7 below implies that if x is distributed as required
in the fuzzy key setting F1 (specified in Sect. 6.1) and s is
chosen uniformly, then recovering fuzzy data x or the input
s from c is not possible (except for a negligible probability).

The following lemma guarantees that our construction
SCRT satisfies all the requirements.

Lemma 7 The linear sketch scheme SCRT in Fig. 6 (left) sat-
isfies Definition 12.

Proof of Lemma 7 Wefirstly show correctness, then linearity,
and finally weak simulatability.

Correctness. The correctness of SCRT follows from the prop-
erties of the functions CRTw, Ew, and Cw. Specifically, let
x, x′ ∈ X be such that d(x, x′) = ‖x − x′‖∞ < t . Let pp
be a public parameter output by Setup, let s,�s ∈ ZW ,
and let s = CRT−1

w (s) and �s = CRT−1
w (�s). Further-

more, let c = Sketch(pp, s, x) = (s + Ew(x)) mod w and
c′ = Sketch(pp, s + �s, x′) = (s + �s + Ew(x′)) mod w.
Then, we have

Cw(c′ − c) = Cw
(

s + �s + Ew(x′) − (s + Ew(x))
)

(∗)= �s + Cw
(

Ew(x′) − Ew(x)
)

(†)= �s,

where (*) is due to Eq. (16) (we omit to write “ mod w”), and
(†) is due to Eq. (15) and ‖x − x′‖∞ < t . Thus,

DiffRec(pp, c, c′)

= DiffRec
(

pp, Sketch(pp, s, x), Sketch(pp, s + �s, x′)
)

= CRTw
(

Cw(c′ − c)
)

= CRTw(�s)

= �s,

which shows that the correctness condition [Eq. (5)] is satis-
fied.

Linearity.Weconsider the auxiliary algorithmMc as described
in Fig. 6 (right-top). To see thatMc satisfies the required prop-
erty, let x, e ∈ R

n
w and s,�s ∈ ZW , and let s = CRT−1

w (s)
and �s = CRT−1

w (�s). Then, note that Sketch(pp, s, x) =
(s+ Ew(x)) mod w and CRT−1

w (s +�s) = (s+�s) mod w.
Thus, it holds that

Mc

(

pp, Sketch(pp, s, x),�s, e
)

=
(

s + Ew(x) + �s + Ew(e)
)

mod w

(∗)=
(

s + �s + Ew(x + e)
)

mod w

= Sketch(pp, s + �s, x + e),

where (*) is due to the linearity ofEw [Eq. (13)]. This equation
implies that the two distributions in Eq. (6) are identical, and
hence the linearity is satisfied.

Weak simulatability. We consider the simulator Sim as
described in Fig. 6 (right-bottom). Let Dreal and Dsim be
the distributions for the weak simulatability of SCRT, which
are defined as follows:
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Dreal :=
{

x ←R X; s ←R ZW ;
c ← CRT−1

w (s) + Ew(x)
: (s, c)

}

=
{

j ←R (Z2λ)n; x ← 2−λ · j;
s ←R ZW ; c ← CRT−1

w (s) + Ew(x)
: (s, c)

}

,

Dsim :=
{

s ←R ZW ; c ←R Sim(pp) : (s, c)
}

=
{

s ←R ZW ; cin ←R Z
n
w; j ←R (Z2
′ )n;

cde ← 2−
′ · j; c ← cin + cde
: (s, c)

}

,

where pp = Λ = (ZW ,+) and 
′ = λ−�k/n�.Wewill show
that for any (even computationally unbounded) algorithmA,
the following inequality holds:

Pr[A(Dreal) = 1] ≤ 2n · Pr[A(Dsim) = 1]. (17)

Recall that we are requiring that n = O(log2 k), equivalently
2n is smaller than some polynomial of k, and hence Eq. (17)
implies weak simulatability.

Instead of directly showing Eq. (17) for any algorithmA,
we first slightly simplify the setting. Specifically, consider
the following two distributions D′

real and D′
sim:

D′
real :=

{

j ←R (Z2λ)n; x ←R 2−λ · j; x′ ← Ew(x): x′ }

D′
sim :=

{

x′
in ←R Z

n
w; j ←R (Z2
′ )n;

x′
de ← 2−
′ · j; x′ ← x′

in + x′
de

: x′
}

.

We now show that for any algorithm A considered for
weak simulatability, there exists a corresponding algorithm
B (with almost the same running time as A) such that
Pr[A(Dreal) = 1] = Pr[B(D′

real) = 1] and Pr[A(Dsim) =
1] = Pr[B(D′

sim) = 1]. Specifically, B takes x′ ∈ R
n
w

as input, picks s ∈ ZW uniformly at random, sets c ←
CRT−1

w (s) + x′, and outputs A(s, c). If x′ that is input to
B is sampled from D′

real, then the pair (s, c) that B inputs
to A is distributed identically to Dreal, while if x′ is sam-
pled fromD′

sim, then (s, c) is distributed identically toDsim.
(In particular, the “integer part” of c is uniformly distributed
over Z

n
w, even if CRT

−1
w (s) is added.) Clearly, this B satisfies

Pr[B(D′
real) = 1] = Pr[A(Dreal) = 1] and Pr[B(D′

sim) =
1] = Pr[A(Dsim) = 1].

Hence, in order to show Eq. (17) for any algorithmA, it is
sufficient to show the following inequality for any algorithm
B:

Pr[B(D′
real) = 1] ≤ 2n · Pr[B(D′

sim) = 1]. (18)

Furthermore, notice thatD′
sim is nothing but the uniform dis-

tribution over the set Z
n
w × { j

2
′ | j ∈ Z2
′ }n , whose size is
∏

i∈[n](wi · 2
′
). Hence, by applying Lemma 2, we obtain

Pr[B(D′
real) = 1] ≤

∏

i∈[n]
(wi ·2
′

)·2−H∞(D′
real)·Pr[B(D′

sim) = 1].

(19)

To complete the proof, we will show

2−H∞(D′
real) ≤

∏

i∈[n]

( 1

wi · 2
′ + 1

2λ

)

. (20)

Before showing the above, note that Eq. (20) implies that
∏

i∈[n](wi · 2
′
) · 2−H∞(D′

real) [appearing in the right hand
side of Eq. (19)] is upperbounded as follows:

∏

i∈[n]
(wi · 2
′

) ·
∏

i∈[n]
(

1

wi · 2
′ + 1

2λ
) ≤

∏

i∈[n]
(1 + 2�k/n�+
′−λ) = 2n,

where the inequality uses wi ≤ 2�k/n�, and the equality uses

′ = λ − �k/n�. Thus, if indeed we can show Eq. (20), then
by combining it with Eq. (19), we can obtain Eq. (18).

Hence, it remains to show Eq. (20). For each i ∈ [n], let
D′(i)

real be the distribution of the i th coordinate inD′
real. Recall

that each wi is a k/n-bit integer, each xi ∈ [0, 1) is of the
form j

2λ where j ←R Z2λ , and x ′
i is amultiplication ofwi and

xi . Recall also that 
′ = λ − k/n. Hence, D′(i)
real is distributed

as follows [see also Eq. (9)]:

D′(i)
real =

{

j ←R Z2λ; xi ← 2−λ · j : 
wi · xi · 2
′ � · 2−
′ }

=
{

j ←R Z2λ : 
wi · j · 2
′−λ� · 2−
′}
.

We can thus calculate 2−H∞(D′
real) as follows:

2−H∞(D′
real)

=
∏

i∈[n]
2−H∞(D′(i)

real) =
∏

i∈[n]

(

max
z∈Rwi

Pr
x ′
i←RD′(i)

real

[ x ′
i = z ]

)

=
∏

i∈[n]

(

max
z∈Rwi

Pr
j←RZ2λ

[


wi · j · 2
′−λ� · 2−
′ = z
] )

=
∏

i∈[n]

(

max
z∈Rwi

Pr
j←RZ2λ

[

z · 2
′ ≤ wi · j · 2
′−λ < z · 2
′ + 1
] )

=
∏

i∈[n]

(

max
z∈Rwi

Pr
j←RZ2λ

[ z · 2λ

wi
≤ j <

z · 2λ

wi
+ 2λ

wi · 2
′
] )

.

(21)

Now, for each z ∈ Rwi , let az be the number of integers

that belong to the interval [ z·2λ

wi
,

(z·2
′+1)·2λ

wi ·2
′ ). By definition,

the probability appearing in Eq. (21) is az
2λ . Furthermore, the

number of integers that belong to an interval [l, r) is at most
r − l + 1, and thus we have az ≤ 2λ

wi ·2
′ + 1. (Note that

the right hand side is independent of z.) Using this, we can
upperbound 2−H∞(D′

real) as follows:
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2−H∞(D′
real) =

∏

i∈[n]

(

max
z∈Rwi

az
2λ

)

≤
∏

i∈[n]

( 1

wi · 2
′ + 1

2λ

)

,

which is exactly Eq. (20), as required. This completes the
proof that SCRT satisfies weak simulatability, and the entire
proof of Lemma 7. ��

6.4 ModifiedWaters signature scheme

Here, we show a variant of theWaters signature scheme [36],
which we call themodified Waters signature (MWS) scheme
ΣMWS. We then show that ΣMWS satisfies EUF-CMA security
and the homomorphic property (Definition 9), which in turn
implies that it is Φadd-RKA∗ secure (due to Lemma 5).

Specific bilinear group generator BGGenMWS. In the MWS
scheme, we use a (slightly) non-standard way for specifying
bilinear groups, namely the order p of (symmetric) bilinear
groups is generated based on an integer W = ∏

i∈[n] wi ,
where w = (w1, . . . , wn) ∈ N

n satisfies the conditions in
Eq. (11), so that p is the smallest prime satisfying W |p − 1.
More concretely, we consider the following algorithm PGen
for choosing the order p based on W :

PGen(W ): on input W ∈ N, for i = 1, 2, . . . check
if p = iW + 1 is a prime and return p if this is the
case. Otherwise, increment i ← i + 1 and go to the next
iteration.

According to the prime number theorem, the density of
primes among the natural numbers that are less than N
is roughly 1/ ln N , and thus for i’s that are exponentially
smaller thanW , the probability that iW +1 is a prime can be
roughly estimated as 1/ lnW . Therefore, by using the above
algorithm PGen, one can find a prime p satisfying W |p − 1
by performing the primality testing for O(lnW ) = O(k)
times on average (recall that W = Θ(2k)). Furthermore, if
PGen(W ) outputs p, then it is guaranteed that p/W = O(k).
(This fact is used for security.)

Let BGGenMWS denote an algorithm that, given 1k , runs
w ← WGen(t, n) where t and n are the parameters from the
fuzzy data setting F corresponding the security parameter k,
computes W ← ∏

i∈[n] wi , p ← PGen(W ), and outputs a
description of bilinear groups BG = (p, G, GT , g, e), where
G andGT are cyclic groupswith order p and e: G×G → GT

is a bilinear map.

Construction. Using BGGenMWS and the algorithms in the
original Waters signature scheme ΣWat = (SetupWat,
KGWat, SignWat,VerWat) in Fig. 3 (left), the MWS scheme
ΣMWS = (SetupMWS, KGMWS, SignMWS,VerMWS) is constructed
as in Fig. 7 (left). Note that the component ppWat in a public
parameter pp (generated by SetupMWS) is distributed identi-
cally to that generated in the original Waters scheme ΣWat

in which the bilinear group generator BGGenMWS is used.
Therefore,ΣMWS can be viewed as the originalWaters scheme
ΣWat, except that

1. we specify how to generate the parameter of bilinear
groups by BGGenMWS, and

2. we use a secret key sk′ (for the Waters scheme) of the
form sk′ = zsk mod p, thereby we change the signing
key space from Zp to ZW .

Because of these changes, it is immediate to see that the
MWS scheme inherits the perfect correctness of the Waters
signature scheme.

In the following, we show that ΣMWS satisfies EUF-CMA
security (based on the CDH assumption with respect to
BGGenMWS) and the homomorphic property (Definition 9).
These properties, combined with Lemma 5, imply that
ΣMWS satisfies Φadd-RKA∗ security, and thus satisfies the
assumption required in Theorem 2. (One might suspect
the plausibility of the CDH assumption with respect to
BGGenMWS due to our specific choice of the order p. We
discuss it in “Appendix G.”)

Lemma 8 If the CDH assumption holds with respect to
BGGenMWS, then theMWS schemeΣMWS isEUF-CMA secure.

Let pp = (ppWat, z) be a public parameter output by
SetupMWS, let D

(1)
pp = {sk ←R ZW ; sk′ ← zsk mod p: sk′}

and D(2)
pp = {sk′ ←R Zp: sk′}. Note that the support of D(1)

pp

is a strict subset of that of D(2)
pp .

Now, letAbe anyPPTAadversary attacking theEUF-CMA
security of the MWS scheme ΣMWS. Let Expt1 be the orig-
inal EUF-CMA experiment, i.e., ExptEUF-CMAΣMWS,A (k), and let
Expt2 be the experiment that is defined in the same man-
ner as Expt1, except that sk

′ is sampled according to the
distribution D(2)

pp . For both i ∈ {1, 2}, let Advi be the advan-
tage of A (i.e., the probability of A outputting a successful
forgery) in Expti . Then, by Lemma 4, we have Adv1 ≤
(p/W ) · Adv2 = O(k) · Adv2. Furthermore, it is straight-
forward to see that succeeding in forging in Expt2 is as
difficult as succeeding in breaking the EUF-CMA security
of the original Waters scheme ΣWat (in which the bilinear
group generator BGGenMWS is used), and thus Adv2 is negli-
gible if ΣWat is EUF-CMA secure.

Finally, due to Waters [36], if the CDH assumption holds
with respect to BGGenMWS, then the Waters scheme ΣWat (in
which BGGenMWS is used,) is EUF-CMA secure. Hence, Adv2
is negligible. Combining all the explanations above proves
the lemma. ��
Lemma 9 The MWS scheme ΣMWS is homomorphic (as per
Definition 9).

123



Signature schemes with a fuzzy private key 603

Fig. 7 The modified Waters
signature (MWS) scheme ΣMWS

(left), and the auxiliary
algorithms (KG′,Mvk,Msig) for
showing the homomorphic
property (right). Note that the
signing algorithm SignMWS (resp.
the verification algorithm
VerMWS) of the MWS scheme
ΣMWS uses the signing algorithm
SignWat (resp. the verification
algorithm VerWat) of the original
Waters scheme ΣWat [described
in Fig. 3 (left)] as a subroutine

Proof of Lemma 9 Consider the algorithms (KG′,Mvk,Msig)

that are described in Fig. 7 (right). KG′ is the algorithm for
showing that this scheme has a simple key generation pro-
cess. That is, using this algorithm, KGMWS can be rewritten
with the process in Eq. (1). The secret key space is ZW , and
(ZW ,+) constitutes an abelian group, as required.

Next, it should be easy to see thatMvk satisfies the require-
ment in Eq. (2). Indeed, let pp = (ppWat, z) be a public
parameter, and let sk,�sk ∈ ZW . Then, it holds that

Mvk(pp, KG
′(pp, sk),�sk) = (gz

sk
)z

�sk = gz
sk+�sk

= KG′(pp, sk + �sk),

which is exactly Eq. (2).
Finally, we observe that Msig satisfies the requirements

in Eq. (3). Let pp = (ppWat, z) and sk,�sk ∈ ZW as
above, and m = (m1‖ . . . ‖m
) ∈ {0, 1}
 be a message to
be signed. Let (σ1, σ2) be a signature on the message m
that is generated by SignMWS(pp, sk,m; r), where r ∈ Zp

is a randomness. By definition, σ1 and σ2 are of the form
σ1 = hz

sk · (u′ · ∏i∈[
] u
mi
i )r and σ2 = gr , respectively.

Thus, if σ ′ = (σ ′
1, σ

′
2) is output byMsig(pp, vk,m, σ,�sk),

then it holds that

σ ′
1 = σ z�sk

1 = hz
sk+�sk ·

⎛

⎝u′ ·
∏

i∈[
]
umi
i

⎞

⎠

r ·z�sk

,

σ ′
2 = σ z�sk

2 = gr ·z�sk
.

This implies σ ′ = (σ ′
1, σ

′
2) = SignMWS(pp, sk + �sk,m; r ·

z�sk). Note that for any �sk ∈ ZW , if r ←R Zp, then
((r · z�sk) mod p) is uniformly distributed in Zp. This
implies that the distributions considered in Eq. (3) are identi-
cal. Furthermore, by the property of theMWSscheme (which

is inherited from the original Waters scheme [36]), any sig-
nature σ ′ = (σ ′

1, σ
′
2) satisfying VerMWS(pp, vk,m, σ ′) =

� must satisfy the property that there exists r ′ ∈ Zp

such that SignMWS(pp, sk,m; r ′) = σ ′. Putting every-
thing together implies that for any sk,�sk ∈ ZW , any
message m ∈ {0, 1}
, and any signature σ such that
VerMWS(pp, vk,m, σ ) = �, if vk = KG′(pp, sk), vk′ =
Mvk(pp, vk,�sk) and σ ′ = Msig(pp, vk,m, σ,�sk), then
it holds that VerMWS(pp, vk′,m, σ ′) = �. Therefore, the
requirement regarding Eq. (4) is satisfied as well. This com-
pletes the proof of Lemma 9. ��

The combination of Lemmas 5, 8, and 9 shows that ΣMWS

satisfies Φadd-RKA∗ security.

Corollary 1 If the CDH assumption holds with respect to
BGGenMWS, then the MWS scheme ΣMWS is Φadd-RKA∗
secure.

6.5 Full description

Here, we give the full description of our first instantiation
of a fuzzy signature scheme, by instantiating the underlying
linear sketch and signature schemes in the generic construc-
tion, with the concrete linear sketch scheme SCRT (given in
Sect. 6.3) and the MWS scheme ΣMWS (given in Sect. 6.4),
respectively.

Let 
 = 
(k) be a positive polynomial that denotes the
length of messages. Let F1 = ((d, X), t,X, Φ, ε) be the
fuzzy key setting defined in Sect. 6.1, where t (and n) are
determined according to the security parameter k. let w =
(w1, . . . , wn) = WGen(t, n), where n is the dimension of
X , and let W = ∏

i∈[n] wi . Let CRTw, CRT−1
w , Ew, and Cw

be the functions defined in Sect. 6.2. Let BGGenMWS be the
bilinear group generator defined in Sect. 6.4. Then, using
these ingredients, our first proposed fuzzy signature scheme

123



604 K. Takahashi et al.

Fig. 8 Our first instantiation of a fuzzy signature scheme ΣFS1. (†) The steps involving “Round
” enclosed by a box in KGFS1 and SignFS1 are those
at which we perform the “rounding” operation of the decimal part, which we will explain in Sect. 8. (The reader who has not read there is expected
to ignore them)

ΣFS1 = (SetupFS1, KGFS1, SignFS1,VerFS1) for the fuzzy key
setting F1 is constructed as in Fig. 8.15

The following theorem guarantees the correctness and
security of our scheme ΣFS1, which is obtained as a corol-
lary of the combination of Theorems 1 and 2, Lemma 7, and
Corollary 1.

Theorem 3 The fuzzy signature schemeΣFS1 for the fuzzy key
setting F1 in Fig. 8 is ε-correct. Furthermore, if the CDH
assumption holds with respect to BGGenMWS, then ΣFS1 is
EUF-CMA secure.

7 Second instantiation

In this section, we propose our second instantiation of a fuzzy
signature scheme, based on the Schnorr signature scheme.
The strong requirement for our first instantiation proposed
in Sect. 6 is that the fuzzy data is assumed to be distributed
uniformly. This strong requirement is relaxed in our second
instantiation.

The rest of this section is organized as follows. In Sect. 7.1,
we specify a concrete fuzzy key setting F2 for which our
second instantiation is constructed. Next, in Sect. 7.2, we
show the concrete linear sketch scheme SHash for F2. Com-
bining this linear sketch scheme SHash and the Schnorr
signature scheme ΣSch (Fig. 3 (right)), we obtain our sec-
ond instantiation of a fuzzy signature scheme ΣFS2. The
description of this fuzzy signature scheme ΣFS2 is given in
Sect. 7.3.

In this section, we treat real numbers in the same way as
in Sect. 6.

15 In Fig. 8, the operations involving “Round
” enclosed by a box in
KGFS1 and SignFS1 are those for concerning practical treatment of real
numbers explained in Sect. 8. The reader who has not read there is
expected to ignore them.

7.1 Specific fuzzy key setting

Here, we specify a concrete fuzzy key setting F2 = ((d, X),

t,X, Φ, ε) for which our linear sketch schemeSHash and our
Schnorr-based fuzzy signature schemeΣFS2 are constructed.

Metric space (d, X). The space X is definedby X := [0, 1)n
⊂ R

n , where n ∈ N is a parameter specified by the
context (e.g., an object from which we measure fuzzy
data) and a security parameter k. The distance func-
tion d: X × X → R is the L∞-distance. Namely, for
x = (x1, . . . , xn) ∈ X and x′ = (x ′

1, . . . , x
′
n) ∈ X , we

define d(x, x′) := ‖x−x′‖∞ := maxi∈[n] |xi − x ′
i |. Note

that X forms an abelian group with respect to coordinate-
wise addition (modulo 1).

Threshold t . For a security parameter k, we require the
threshold t ∈ R to satisfy

k ≤ 
−n log2(2t)�. (22)

For notational convenience, let T := 1/(2t).
Distribution X. An efficiently samplable distribution over a

“discretized” version of X = [0, 1)n . That is, letting λ ∈
N denote the length of the significand of a real number,
if x = (x1, . . . , xn) is sampled from X, then each xi is of
the form m

2λ , where m is a λ-bit integer. (See the “On the
Treatment of Real Numbers” paragraph at the beginning
of Sect. 6.) We require T ≤ 2λ.
Furthermore, we require thatX satisfy the assumption on
the average min-entropy that we state later.

Error distribution Φ and Error parameter ε. Φ can be any
efficiently samplable (according to k) distribution over
X such that FRR ≤ ε for all x ∈ X .

Here, before going into the actual requirement on the dis-
tribution X, we quickly highlight the difference between the
fuzzy key setting F2 and F1 (where the latter is the one
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for which we constructed our first concrete fuzzy signature
scheme in Sect. 6): the only difference between F2 and F1,
other thanX, is in the threshold t . Here, we need amore strict
threshold for t , so that we can use the leftover hash lemma,
as we will see in the proof of Lemma 10.

The requirement on the distribution of fuzzy data X. Let X′
be the “scaled-up” version ofX, namelyX′ is the distribution
obtained bymultiplying the value T = 1/(2t) to the outcome
of the distribution X, where the rounding-down operation
is performed for each coordinate of X′ as explained at the
“On the Treatment of Real Numbers” paragraph in the begin-
ning of Sect. 6. Since X is a distribution over [0, 1)n , X′ is
a distribution over [0, T )n . Now, let us divide X′ into the
“integer” part X′

in and the “decimal” part X′
de. Namely, let

x′ = (x ′
1, . . . , x

′
n) be a vector produced from X′. Then, X′

in
is the distribution of the n-dimensional vector whose i th ele-
ment is the integer part of x ′

i . Similarly,X′
de is the distribution

of the n-dimensional vector whose i th element is the decimal
part of x ′

i . Note that each coordinate of the integer part X′
in

is represented by �log2 T � bits, and thus each coordinate of
the decimal part X′

de will have (λ − �log2 T �)-bit precision,
so that the significand of the entire x ′

i is expressed in λ bits.
Note also that the joint distribution (X′

in,X′
de) contains the

same information as X′ (and hence as X).
The requirement we impose on the distribution X is that

we have

˜H∞(X′
in|X′

de) ≥ log2 p + ω(log2 k),

where p is the order of the field over which we consider the
universal hash family Hlin. We note that ˜H∞(X′

in|X′
de) =

˜H∞(X′|X′
de). Looking ahead, p will also be the order of the

group over which the Schnorr scheme is constructed, and
thus we typically set |p| = �log2 p� = Θ(k).

We would like to emphasize that our requirement on the
distribution X in F2 is arguably much more natural and
relaxed than requiring that X is the uniform distribution
over (the discretized version of) X (as is required of F1).
Specifically, in order for the above requirement for X to be
satisfied, it is necessary that X′

de does not leak much about
X′
in. Intuitively, when fuzzy data x is sampled from an object

according to some distribution, the upper part of (in the rep-
resentation of the significand of) x should be dominant for
identifying the object. On the other hand, the lower part of x
should be dominated by noise caused at the measurement of
x. Since we are adopting the universal error model in which
the measurement error captured by the error distributionΦ is
independent of individual objects producing fuzzy data, the
lower part of x contains information that is less dependent
on the original object. In our requirement for the fuzzy data
distributionX, the distribution of the upper (resp. lower) part
of fuzzy data corresponds toX′

in (resp.X′
de), and thus requir-

ing that X′
de does not leak much information about X′

in, is
arguably a natural requirement.

7.2 Concrete linear sketch

Let F2 = ((d, X), t,X, Φ, ε) be the fuzzy key setting as
defined above. Let Fp be a finite field with prime order p
satisfying p ≥ T = 1/(2t). Here, we identify Fp with Zp,
and thus we freely interpret an element in the former set
as an element in the latter set, and vice versa. Let Hlin =
{hz : (Fp)

n → Fp}z∈Fpn be the universal hash function fam-
ilywith linearity, which is described in Sect. 2.3. For each z ∈
Fpn and s ∈ Fp, we define “h−1

z (s)” as the set of preimages
of s under hz . That is, h−1

z (s) := {a ∈ (Fp)
n|hz(a) = s}.

Hence, the notation “a ←R h−1
z (s)” means that we choose

a vector a uniformly from the set h−1
z (s) (which can be per-

formed efficiently in terms of log2(p
n)). Furthermore, recall

that T = 1/(2t).
Then, using these ingredients, our linear sketch scheme

SHash = (Setup, Sketch,DiffRec) for F2 and the additive
group (Zp,+) (=: Λ) is constructed as described in Fig. 9
(left), where for convenience, we also give the description of
the auxiliary algorithmMc used for showing its linearity and
that of the simulator Sim for showing its weak simulatability
(right).

We remind the reader that we are treating real numbers as
explained in the “On the Treatment of Real Numbers” para-
graph at the beginning of Sect. 6. We remark that as in our
first linear sketch scheme SCRT proposed in Sect. 6.3, if the
rounding-down operation were not performed after multipli-
cation T · x in the computation of Sketch(pp, s, x), then a
hypothetical recovering attack (that recovers x and s from a
sketch c) could work [39]. However, due to our treatment of
real numbers, if x is distributed as required in the fuzzy key
setting F2 (specified in Sect. 7.1), then recovering x or s is
not possible.

The following lemma guarantees that our construction
SHash satisfies all the requirements.

Lemma 10 The linear sketch scheme SHash in Fig. 9 (left)
satisfies Definition 12.

Proof of Lemma 10 Roughly speaking, the correctness fol-
lows from the linearity of the universal hash familyHlin and
a simple algebra; the linearity property of S follows from the
linearity of Hlin; The weak simulatability follows from the
leftover hash lemma together with the requirement on the
average min-entropy satisfied by the distribution X of fuzzy
data in the fuzzy key setting F2 specified in Sect. 7.1.

Below,wefirst showcorrectness, then linearity, andfinally
weak simulatability.16

16 In fact, the construction shown here satisfies average-case indistin-
guishability that we defined in [19]. See “Appendix C” for its definition.
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Fig. 9 The linear sketch scheme
SHash =
(Setup, Sketch,DiffRec) for the
fuzzy key setting F2 (left), and
the auxiliary algorithm Mc for
showing linearity and the
simulator Sim for showing weak
simulatability (right). (†) The
operation “+” (resp. “−”) in
(Rp)

n are the coordinate-wise
addition (resp. subtraction) in
Rp

Correctness. Fix pp = (Λ = (Zp,+), z), x, x′ ∈ X such
that d(x, x) = ‖x − x′‖∞ < t , and s,�s ∈ Fp. Recall that
T = 1/(2t). Note that ‖x − x′‖∞ < t implies ‖T · (x −
x′)‖∞ < 1/2, and hence 
T · (x − x′)� = 0. Now, suppose
c and c′ are output by Sketch(pp, s, x) and Sketch(pp, s +
�s, x ′), respectively. Then, by the definition of Sketch, it
holds that c = a+T ·x for somea ∈ h−1

z (s) and c′ = a′+T ·x′
for some a′ ∈ h−1

z (s + �s). Therefore,

DiffRec(pp, c, c′) = hz(
c′ − c�)
= hz(
(a′ + T · x′) − (a + T · x)�)
= hz(a′ − a + 
T · (x′ − x)�)
(∗)= hz(a′ − a)
(∗∗)= hz(a′) − hz(a)

= (s + �s) − s = �s,

where the equality (*) is due to 
T · (x − x′)� = 0, and the
equality (**) is due to the linearity of Hlin. This shows that
Eq. (5) is satisfied, and thus SHash satisfies correctness.

Linearity.We use the auxiliary algorithmMc in Fig. 9 (right-
top). Fix pp = (Λ = (Zp,+), z), x, e ∈ X , and s,�s ∈
Fp. For showing linearity, it is sufficient to show that the
following distributions D1 and D2 are equivalent:

D1 :=
{

c ←R Sketch(pp, s, x);
c′ ←R Sketch(pp, s + �s, x + e)

: (c, c′)
}

=
⎧

⎨

⎩

a ←R h−1
z (s); c ← a + T · x;

a′ ←R h−1
z (s + �s);

c′ ← a′ + T · (x + e)
: (c, c′)

⎫

⎬

⎭

,

D2 :=
{

c ←R Sketch(pp, s, x);
c′ ←R Mc(pp, c,�s, e)

: (c, c′)
}

=
{

a ←R h−1
z (s); c ← a + T · x;

�a ←R h−1
z (�s); c′ ← c + �a + T · e : (c, c′)

}

=
⎧

⎨

⎩

a ←R h−1
z (s); c ← a + T · x;

�a ←R h−1
z (�s);

c′ ← a + �a + T · (x + e)
: (c, c′)

⎫

⎬

⎭

.

To this end, focusing on the difference between the above
D1 and D2, and also on how c′ is generated, it is sufficient
to show that the following two distributions D′

1 and D′
2 are

equivalent:

D′
1 :=

{

a ←R h−1
z (s); a′ ←R h−1

z (s + �s): (a, a′)
}

,

D′
2 :=

{

a ←R h−1
z (s); �a ←R h−1

z (�s);
a′ ← a + �a

: (a, a′)
}

.

Here, D′
1 is the uniform distribution over the direct prod-

uct (h−1
z (s)) × (h−1

z (s + �s)). We show that D′
2 is also

the uniform distribution over the same set. Indeed, by the
linearity of Hlin, for any s′, s′′ ∈ Fp, the set h−1

z (s′) and
the set h−1

z (s′′) have the same size, and the second ele-
ment a′ produced from D′

2 belongs to the set h−1
z (s + �s).

This means that for each fixed element ã ∈ h−1
z (s), the

distribution D′ = {�a ←R h−1
z (�s): ã + �a} yields the

uniform distribution over h−1
z (s + �s). This in turn means

that D′
2 is the uniform distribution over the direct product

(h−1
z (s)) × (h−1

z (s + �s)). Hence, we can conclude that
the original distributionsD1 andD2 are equivalent, and thus
SHash satisfies linearity.

Weak simulatability.Weuse the simulatorSim in Fig. 9 (right-
bottom). We will show that the statistical distance between
the following two distributions Dreal and Dsim is negligibly
small:

Dreal :=
{

pp ←R Setup(F2,Λ); x ←R X;
s ←R Fp; c ←R Sketch(pp, s, x)

: (pp, s, c)
}

=
{

z ←R Z; x ←R X; s ←R Fp;
a ←R h−1

z (s); c ← a + T · x : (z, s, c)
}

,

Dsim :=
{

pp ←R Setup(F2,Λ); s ←R Fp;
c ←R Sim(pp)

: (pp, s, c)
}

=
{

z ←R Z; x ←R X; s, s′ ←R Fp;
a ←R h−1

z (s′); c ← a + T · x : (z, s, c)
}

,

where Z = Fpn is the seed space of Hlin. Note that
this implies weak simulatability, because for all (even
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computationally unbounded) algorithms A, it holds that
Pr[A(Dreal) = 1] ≤ Pr[A(Dsim) = 1] + SD(Dreal,Dsim),17

and thus shows that SHash satisfies weak simulatability.
Firstly, note that for every z ∈ Z , the distribution {s ←R

Fp; a ←R h−1
z (s): (s, a)} and the distribution {a ←R (Fp)

n;
s ← hz(a): (s, a)} are equivalent. Hence, the above distri-
butions Dreal and Dsim are, respectively, equivalent to the
following distributions D′

real and D′
sim:

D′
real :=

{

z ←R Z; x ←R X; a ←R (Fp)
n;

c ← a + T · x : (z, hz(a), c)
}

,

D′
sim :=

{

z ←R Z; x ←R X; a ←R (Fp)
n;

c ← a + T · x; s ←R Fp
: (z, s, c)

}

.

Clearly we have SD(Dreal,Dsim) = SD(D′
real,D′

sim).
Now, we define the joint distribution (A,C) as follows:

(A,C) :=
{

x ←R X; a ←R (Fp)
n; c ← a + T · x: (a, c)

}

.

We can think of this joint distribution as the one specifying
the “input” a for a hash function hz and “leakage” c (about the
inputa).Hence, ifwe can show that˜H∞(A|C) is “sufficiently
large,” thenwe can apply the leftover hash lemma (Lemma 3)
to upperbound SD(D′

real,D′
sim) = SD(Dreal,Dsim) to be

“small,” leading to the desired conclusion that SHash sat-
isfies weak simulatability. To this end, in the following we
show that ˜H∞(A|C) = ˜H∞(X′

in|X′
de) holds, where X′

in and
X′
de are, respectively, the “integer” part and the “decimal”

part of the “scaled-up” version X′ of the original distribution
X of fuzzy data that we introduced in Sect. 7.1.

Note that the distribution X′
in (resp. X′

de) is over (Fp)
n

(resp. [0, 1)n). Furthermore, by definition, all the informa-
tion regarding X′ can be expressed as the joint distribution
(X′

in,X′
de). Using the distributions X′

in and X′
de, and divid-

ing the “integer” part and “decimal” part of C into Cin and
Cde in the same manner as X′

in and X′
de, we can equivalently

rewrite the joint distribution (A,C) as the joint distribution
(A,Cin,Cde) in the following way:

(A,Cin,Cde) :=
⎧

⎨

⎩

(x′
in, x

′
de) ←R (X′

in,X′
de);

a ←R (Fp)
n;

cin ← a + x′
in; cde ← x′

de

: (a, cin, cde)
⎫

⎬

⎭

.

By focusing on the relation among x′
in, cin, and a, we can fur-

ther equivalently rewrite the joint distribution (A,Cin,Cde)

as follows:

17 Hence, it in fact achieves weak simulatability with the optimal mul-
tiplicative simulation error u(k) = 1, while in order for the security
proof of our generic construction to go through, it is sufficient for u to
be some polynomial of k.

(A,Cin,Cde) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x′
de ←R X′

de;
x′
in ←R (X′

in|X′
de = x′

de);
cin ←R (Fp)

n;
a ← cin − x′

in; cde ← x′
de

: (a, cin, cde)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where (X′
in|X′

de = x′
de) denotes the distribution X′

in condi-
tioned on X′

de = x′
de. Note that guessing a = cin − x′

in given
(cin, c = x′

de), is equivalent to guessing x
′
in given x

′
de. Hence,

we have ˜H∞(A|Cin,Cout) = ˜H∞(X′
in|X′

de). Furthermore,
since ˜H∞(A|C) = ˜H∞(A|Cin,Cde) holds by definition, we
can conclude that ˜H∞(A|C) = ˜H∞(X′

in|X′
de).

Recall that we are requiring

˜H∞(X′
in|X′

de) ≥ log2 p + ω(log2 k).

Thus, by the leftover hash lemma (Lemma 3), we have

SD(Dreal,Dsim) = SD(D′
real,D′

sim)

≤ 1

2

√

2−˜H∞(A|C) · |Zp|

= 1

2

√

2−˜H∞(X′
in|X′

de) · p

≤ 1

2

√

2− log2 p−ω(log2 k) · p
= k−ω(1),

which is negligible, as required. This completes the proof
that SHash satisfies weak simulatability, and the entire proof
of Lemma 10. ��

7.3 Full description

Here, we give the full description of our second instantiation
of a fuzzy signature scheme, by instantiating the underlying
linear sketch and signature schemes in the generic construc-
tion, with the concrete linear sketch scheme SHash (given in
Sect. 7.2) and the Schnorr signature schemeΣSch (described
in Fig. 3 (right)), respectively.

LetF2 = ((d, X), t,X, Φ, ε) be the fuzzy key setting that
we specified in Sect. 7.1, and suppose the dimension of the
fuzzy data space is n. Let GGen be a group generator (which
we assume to produce a description of a groupwhose order is
p). LetHlin = {hz : (Fp)

n → Fp}z∈Fpn be the universal hash
family with linearity introduced in Sect. 2.3. (As in previ-
ous sections, we identify Fp with Zp.) Let H : {0, 1}∗ → Zp

be a cryptographic hash function which will be modeled as
a random oracle. Using these building blocks, our second
fuzzy signature scheme ΣFS2 = (SetupFS2, KGFS2, SignFS2,
VerFS2) for the fuzzy key setting F2 is constructed as in
Fig. 10.18

18 In Fig. 10, the operations involving “Round
” enclosed by a box
in KGFS2 and SignFS2 are those for concerning practical treatment of
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Fig. 10 Our second instantiation of a fuzzy signature scheme ΣFS2. (†) The operation “+” (resp. “−”) in (Rp)
n are the coordinate-wise addition

(resp. subtraction) inRp . (‡) The operations involving “Round
” enclosed by a box in KGFS2 and SignFS2 are those for concerning practical treatment
of decimal numbers explained in Sect. 8. (The reader who has not read there is expected to ignore them)

The following theorem guarantees the correctness and
security of our second scheme ΣFS2, which is obtained as
a corollary of the combination of Theorems 1 and 2, and
Lemmas 6 and 10.

Theorem 4 The fuzzy signature scheme ΣFS2 for the fuzzy
key setting F2 in Fig. 10 is ε-correct. Furthermore, if the
DL assumption holds with respect to GGen, then ΣFS2 is
EUF-CMA secure in the random oracle model where H is
modeled as a random oracle.

Althoughour second instantiationΣFS2 can be shown to be
secure only in the random oracle model due to the reliance
on the Schnorr scheme, it has several practical advantages
compared to our first instantiation ΣFS2 given in Sect. 6.
Specifically, ΣFS2 does not require bilinear maps, and the
public parameter size can be much shorter than that in ΣFS1.
More importantly, ΣFS2 works for the fuzzy key setting in
which fuzzy data cannot be assumed to be distributed uni-
formly over the data space (which was required in ΣFS1), but
that only its average min-entropy (given some parts of the
fuzzy data) is sufficiently high.

8 On the treatment of real numbers in
implementations

In this section, we revisit and discuss the treatment of real
numbers in our proposed fuzzy signature schemes.

Let us quickly remind the reader: Asmentioned at the “On
the Treatment of Real Numbers” paragraph at the beginning
of Sect. 6, in Sects. 6 and 7, we adopt the natural setting in

real numbers explained in Sect. 8. The reader who has not read there is
expected to ignore them.

which all real numbers are expressed so that it has a signifi-
cand of an a priori fixed length λ. Treatments of real numbers
are especially relevant to our concrete linear sketch schemes
SCRT proposed in Sect. 6.3 and SHash proposed in Sect. 7.2,
wherewe showed in Lemmas 7 and 10 that our schemesSCRT

and SHash satisfy the requirements of a linear sketch scheme
in Definition 12, respectively. These results in turn enable us
to derive Theorems 3 and 4 that guarantee the security of our
concrete fuzzy signature schemes ΣFS1 in Sect. 6.5 (Fig. 8)
and ΣFS2 in Sect. 7.3 (Fig. 10).

However, naively using datawith a priori fixed-size format
for real numbers, is not always desirable from the viewpoint
of efficiency, because it directly affects the space (or com-
munication) complexity. During the computation, we should
use as precise values as possible for them, while from the
viewpoint of the space (communication) complexity, the rep-
resentation size of them should be minimized.

Hence, motivated by this practical consideration, here we
consider the “truncated” versions of our concrete fuzzy sig-
nature schemes in which the decimal part of the real numbers
in the vectors c and c̃ appearing in our concrete fuzzy sig-
nature schemes ΣFS1 and ΣFS2 are explicitly truncated (i.e.,
rounded down) to some length, and discuss its effects on the
correctness and security of each scheme. Fortunately, in our
fuzzy signature schemes, truncating the decimal part of c and
c̃ affects the correctness of the schemes, but not the security
of them, as we will see in the following.

Σ̂FS1: Truncated version of our first instantiation. For a natu-
ral number 
 ≤ 
′ = λ−�k/n�, let Round
 be the operation
that takes an n-dimensional vector of real numbers as input,
and outputs an n-dimensional vector such that the decimal
part of each element of the vector is rounded down to an 
-bit
value. Then, consider the fuzzy signature schemes ΣFS1 in
Fig. 8 inwhich the operationRound
 enclosed in the boxes is
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executed in KGFS1 and SignFS1. To differentiate this truncated
version from the original oneΣFS1, we simply call the former
the truncated scheme and denote it by Σ̂FS1. We remark that
in general, to make the calculation error as small as possible,
the variables appearing during calculations should be treated
as accurate as possible, and thus the “rounding” operations
should be applied only to the very last of the values that are
stored/transmitted. The operation “Round
” in KGFS1 and
SignFS1 is used with this principle.

We first note that the truncated scheme Σ̂FS1 is as secure
as the original scheme ΣFS1 (regardless of the value 
). Spe-
cially, if there exists an adversary A against the truncated
scheme Σ̂FS1,we can straightforwardly convert it into another
adversary B that attacks the security of the original scheme.
The adversary B running in the security experiment for the
original scheme ΣFS1 can easily simulate the security exper-
iment for Σ̂FS1, and a forgery for the truncated scheme is a
forgery for the original scheme.

Hence, all we need to see is what effect the trunca-
tion causes on correctness. The following theorem formally
shows that if the error distribution Φ has some natural
property, then the effect of the truncation on correctness is
moderate.

Theorem 5 LetF1 be the fuzzy key setting considered for our
first instantiation ΣFS1. Assume that the error distribution
Φ in F1 satisfies the additional property that there exists a
constant c such that Pr [e ←R Φ: ‖Ew(e)‖∞ < 0.5 − δ] ≥
1 − ε − c · δ holds for all δ ∈ [0, 0.5). Then, the truncated
scheme Σ̂FS1 is (2c · 2−
 + ε)-correct.

Recall that the fuzzy key setting F1 for our first instantia-
tion ΣFS1 originally requires that Pr [e ←R Φ: ‖e‖∞ < t] ≥
1−ε, which implies Pr [e ←R Φ: ‖Ew(e)‖∞ < 0.5] ≥ 1−ε.
Note that this corresponds to the case that δ = 0 in the
assumption on the error distribution Φ. We can interpret the
additional assumption onΦ as the requirement that the prob-
ability distribution of Φ has monotonically non-increasing
tails. Such a condition is satisfied by most natural error dis-
tributions, such as the Gaussian distribution and the uniform
distribution.

Proof of Theorem 5 Suppose x is a fuzzy data that is used
to generate a verification key VK = (vk = gz

sk
, c =

CRT−1
w (sk) + Ew(x)), and x′ = x + e is a fuzzy data used

for generating a signature σ = (˜vk = gz
˜sk
, σ̃1, σ̃2, c̃ =

CRT−1
w (˜sk)+Ew(x+e)) of somemessagem, where e ←R Φ.

Let

c′ = Round
(c) = CRT−1
w (sk) + Round
(Ew(x)) and

c̃′ = Round
(̃c′) = CRT−1
w (˜sk) + Round
(Ew(x + e)).

Let VK ′ = (vk, c′) and σ ′ = (˜vk, σ̃1, σ̃2, c̃′). (Note that VK ′
and σ ′ are the “truncated” versions of VK and σ , respec-
tively.)

Now, consider the verification of (m, σ ′) under the verifi-
cation key VK ′. Due to our design of ΣFS1, VerFS1(pp,VK ′,
m, σ ′) = � occurs as long as Cw (̃c′ − c′) = CRT−1(˜sk− sk)
holds, and the latter condition is in turn implied by the con-
dition ‖Round
(Ew(x + e)) − Round
(Ew(x))‖∞ < 0.5.
We can upperbound the left hand side of this condition as
follows:
∥

∥

∥Round
(Ew(x + e)) − Round
(Ew(x))
∥

∥

∥∞
≤

∥

∥

∥Round
(Ew(x + e)) − Ew(x + e)
∥

∥

∥∞
+

∥

∥

∥Ew(x + e) − Ew(x)
∥

∥

∥∞
+

∥

∥

∥Ew(x) − Round
(Ew(x))
∥

∥

∥∞
≤ 2 · 2−
 +

∥

∥

∥Ew(e)
∥

∥

∥∞,

where the first inequality is due to the triangle inequality, and
in the second inequality we used ‖Round
(y)−y‖∞ ≤ 2−


holds for any y ∈ R
n
w (because Round
(y) just truncates

all but 
 bits of the decimal part of y), and Ew(x + e) =
Ew(x) + Ew(e) which is due to the linearity of Ew [Eq. (13)].
Hence, if ‖E(e)‖∞ < 0.5−2·2−
 holds, we have VerFS1(pp,
VK ′,m, σ ′) = �. Due to the given condition on Φ, it occurs
with probability at least 1− ε − c · (2 · 2−
) when e ←R Φ.
Hence, we can conclude that the truncated scheme Σ̂FS1 is
(2c · 2−
 + ε)-correct. ��
Σ̂FS2: Truncated version of our second instantiation. Let 
 ≤
λ − �log2 T � be a natural number. Similarly to the above,
consider the fuzzy signature schemeΣFS2 in Fig. 10 in which
the operation Round
 enclosed in the boxes is executed in
KGFS2 andSignFS2.Wecall it the truncated schemeanddenote
it by Σ̂FS2.

Then, as is the case with Σ̂FS1, the truncated scheme Σ̂FS2

is as secure as our original second instantiation ΣFS2.
Furthermore, with essentially the sameway as in Σ̂FS1, we

can prove the following theorem for Σ̂FS2. (Since the proof
is essentially the same as that of Theorem 5, we omit it.)

Theorem 6 LetF2 be the fuzzy key setting considered for our
second instantiationΣFS2. Assume that the error distribution
Φ in F2 satisfies the additional property that there exists a
constant c such that Pr [e ←R Φ: ‖T · e‖∞ < 0.5 − δ] ≥
1 − ε − c · δ holds for all δ ∈ [0, 0.5). Then, the truncated
scheme Σ̂FS2 is (2c · 2−
 + ε)-correct.

Relaxing the requirement on fuzzy data by truncation.Finally,
we remark that the truncation for the second scheme also
enables us to weaken the requirement on the distribution X
of fuzzy data. Specifically, let X′ be the scaled-up version
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of X (by T ), and let X′
in and X′

de be the integer and deci-
mal part of X′, respectively. Then, in order to carry out the
security proof for the truncated version Σ̂FS2, we only need
to require ˜H∞(X′

in|Round
(X′
de)) ≥ log2 p + ω(log2 k).

Note that this is a strict relaxation compared to requir-
ing ˜H∞(X′

in|X′
de) ≥ log2 p + ω(log2 k). This is because

˜H∞(X′
in|Round
(X′

de)) ≥ ˜H∞(X′
in|X′

de) holds, which is in
turn because Round
(X′

de) is a (strict) part of X′
de, and thus

˜H∞(X′
in|Round
(X′

de)) ≥ ˜H∞(X′
in|X′

de) holds.
19

9 Toward public biometric infrastructure

As one of the promising applications of our fuzzy signature
schemes,we discuss how it can be used to realize a biometric-
based PKI that we call the public biometric infrastructure
(PBI).

The PBI is a biometric-based PKI that allows to use bio-
metric data itself as a private key. Since it does not require
a helper string to extract a private key, it does not require
users to carry a dedicated device that stores it. Like the PKI,
it provides the following functionalities: (1) registration, (2)
digital signature, (3) authentication, and (4) cryptographic
communication. At the time of registration, a user presents
his/her biometric data x , from which the public key pk is
generated. A certificate authority (CA) issues a public key
certificate to ensure the link between pk and the user’s iden-
tify (in the same way as the PKI). It must be sufficiently
hard to restore x or estimate any “acceptable” biometric fea-
ture (i.e., biometric feature x̃ that is sufficiently close to x)
from pk. This requirement is often referred to as irreversibil-
ity [15,32]. Note that the irreversibility is clearly included in
the unforgeability, since the adversary who obtains x or x̃
can forge a signature σ for any message m. Since our fuzzy
signature schemes are proved to be secure, it also satisfies
the irreversibility.

It is well known that a digital signature scheme can be
used to realize authentication and cryptographic communi-
cation, as standardized in [16]. Firstly, a challenge-response
authentication protocol can be constructed based on a dig-
ital signature scheme (refer to [30] for details). Secondly,
an authenticated key exchange (AKE) protocol can also be
constructed based on a digital signature scheme and the
Diffie–Hellman key exchange protocol. In the same way, we
can construct an authentication protocol and a cryptographic
communication protocol in the PBI using our fuzzy signature
schemes.

On the revocation functionality in the PBI. One of the fun-
damental functionalities in a standard PKI is the revocation

19 Note that the definition of average min-entropy implies that
˜H∞(A|B,C) ≤ ˜H∞(A|B) holds for any joint distribution (A, B,C).

functionality. When considering the revocation functionality
in the PBI, we think the following two basic functional-
ities should be considered: (1) revocation of a certificate
(and thereby revoking the corresponding secret key). (2) Re-
issuance of a certificate for a user whose public key had a
certificate but was revoked previously.

In the PBI, revocation of a certificate can be realized just
as in a standard PKI: We can just add the information of a
certificate to be revoked into the certificate revocation list
(CRL) maintained by a CA. Then, we can just treat transac-
tions involving fuzzy signatures under a public key with a
revoked certificate, as invalid.

Whether re-issuance of a certificate can be realized exactly
as in a standard PKI, depends on the cause of the revocation
of a user’s previous certificate. If the cause of the previous
revocation is on the CA’s side (say, due to the leak of the
CA’s secret key) and the confidentiality of the user’s secret
key has not been affected, then re-issuance of a certificate on
the user’s public key is possible just as in a standard PKI: the
user can ask for a new certificate on his/her public key (from
another CA or from the same CA with its new secret key).
However, if the cause of the previous revocation is on the
user’s side (say, due to the leak of the user’s secret key from
which his/her public key is generated), then things are not
so easy: In the PBI, a secret key is generated from a biomet-
ric feature and thus, unlike in a standard PKI with standard
signature schemes, a new (fresh) secret key cannot be gener-
ated as many times as one wants from one person. This is an
inherent limitation of the PBI, compared to a standard PKI.
(However, let us remark that the problem that the number
of times we can extract fresh biometric information is lim-
ited, is not unique to the PBI or fuzzy signatures, but rather
it is a problem that exists virtually in any biometrics-based
authentication technologies.) How many times fresh secret
keys can be generated from one person, will depend on what
biometric features are adopted in an actual implementation
of a fuzzy signature scheme.

Although how to extract biometric information from
actual biometric features in the form of fuzzy data formalized
in this paper is beyond the scope of our paper, we note that if
multiple biometric features (individually or in combination)
are supported, the number of times one person can gener-
ate a fresh secret key could be increased. Furthermore, in
the literature of biometrics, there are several researches that
could be useful to overcome the above limitation. For exam-
ple, recently Fujita et al. [12] proposed the “micro biometrics
authentication mechanism,” which is a biometric authentica-
tion method by using minute patterns of human body parts,
such as a very small area of human skin texture measured
via a microscope, as a biometric feature. Such biometric fea-
tures allow us to increase the number of times one can extract
biometric information from one person. If fuzzy signature
schemes for this type of biometric feature are realized, the
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number of times one person can generate a fresh secret key
could be increased.

On the plausibility of our requirement on the distribution of
fuzzy data. For the security proofs to go through, our first
concrete fuzzy signature scheme (given in Sect. 6) requires
that the fuzzy data is uniformly distributed, and our second
scheme (given in Sect. 7) requires that the average min-
entropy in the presence of leakage (where the leakage is
the “decimal” part of the “scaled-up version” of fuzzy data,
˜H∞(X′

in|X′
de) in our notation).

A natural question would be whether practical fuzzy key
settings can satisfy our requirements. The requirement that
fuzzy data is uniformly distributed, is somewhat a strong
assumption, and may not be suitable for biometrics-based
applications, and hence we focus on the latter requirement.

In the biometric setting, which is one of the main motiva-
tions for considering fuzzy signature schemes (and thus is one
of the most important settings that should be captured by the
formalization of a fuzzy data setting), awell-known approach
to measure the biometric entropy is discrimination entropy
proposed by Daugman [6]. He considered a distribution of
a Hamming distance m between two iriscodes (well-known
iris features [7]) that are extracted from two different irises,
and showed that it can be quite well approximated using the
binomial distribution B(n, p), where n = 249 and p = 0.5.
He referred to the parameter n (= 249) as a discrimination
entropy. The probability that two different iriscodes exactly
match can be approximated to be 2−249. This is a positive
news for us, and for the future of related research.

However, of course, that the probability of two different
iriscodes matching is approximated as 2−249, does not nec-
essarily mean that using iriscode x as fuzzy data gives us
249-bit security. Especially, in our case, we need to take into
account the leakage (information leaked from the “decimal”
part X′

de), when the data is cast into our setting. We have to
choose the threshold t by taking into account various other
things, such as FAR and FRR. (Note that an adversary does
not have to estimate the original iriscode x , but only has to
estimate an iriscode x̃ that is sufficiently close to x .) There-
fore, it seems not so easy to use the results from [6,7] just as
it is.

If a single biometric feature does not have enough entropy,
then one of the promising solutions to the problem would
be to combine multiple biometric features. For example,
Murakami et al. [22] recently showed that by combining
four finger-vein features, FAR = 2−133 (resp. FAR =
2−87) can be achieved in the case when FRR = 0.055
(resp. FRR = 0.0053). Also, a multibiometric sensor that
simultaneously acquires multiple biometrics (e.g., iris and
face [5]; fingerprint and finger-vein [27]) has also been
widely developed. Thus, we believe that using multiple
biometrics is a promising direction for increasing entropy

without affecting usability (which is also an important factor
in practice).

It is also important to note that (an approximation of)
˜H∞(X′

in|X′
de) could be experimentally estimated by using

real fuzzy data (in a similar manner done in [22]). This is an
important feature in order for fuzzy signature schemes (and
security systems based on them) to be used in practice.

Open problems. It would be important to tackle the problem
ofwhetherwe can realize the fuzzy key setting required in our
work by some practical biometric settings/systems. It is also
worth tackling whether further relaxing the requirement than
our specific fuzzy key setting is possible. In particular, for our
second scheme,weused the leftover hash lemma to guarantee
the weak simulatability of the linear sketch scheme, but it
achieves the optimal simulation error u = 1 and is stronger
than what is required for our proof to go through. Can we use
other tools (e.g., the more recent version of the leftover hash
lemma by Barak et al. [1]) to further weaken the requirement
on the average min-entropy?

It is also an interesting open problem to consider con-
structing fuzzy signature schemes over fuzzy key settings
that are different from ours. For example, can we construct
a fuzzy signature scheme with other types of metric spaces
(e.g., Euclid distance,Hammingdistance, edit distance, etc.)?
It would also be worth clarifying whether we can construct
more fuzzy signature schemes based on other existing signa-
ture schemes.
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A More on the limitations of fuzzy-extractor-
based approaches

The right of Fig. 1 shows an example of a digital signature
system using a fuzzy extractor. Assume that the client gen-
erates a signature on a message, and the server verifies it. At
the time of registration, a signing key sk and a helper string
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P are generated from a noisy string (e.g., biometric feature)
x , and a verification key vk corresponding to sk is generated
and stored in a server-side DB. At the time of signing, the
client generates a signature σ on a message m using P and
another noisy string x ′, and sends σ to the server. The server
verifies whether σ is a valid signature on m under vk. If x ′ is
close to x , it outputs “�” (valid). Otherwise, it outputs “⊥”
(invalid). The important point here is that the helper string P
has to be stored in some place so that the client can retrieve
it at the time of signing.

There are three possible models for storing the helper
string: Store-on-Token (SOT), Store-on-Client (SOC), and
Store-on-Server (SOS). In the SOT, the helper string is stored
in a hardware token (e.g., smart card, USB token). Since
this model requires each user to possess a token, it reduces
usability. In the SOC, the helper string is stored in a client
device. Although this model can be applied to the applica-
tions where each user has his/her own client device, it cannot
be employed if the client device is shared by general pub-
lic (e.g., bank ATM, POS, and kiosk terminal). In the SOS,
the helper string is stored in a server-side DB, and the client
queries for the helper string to the server at the time of sign-
ing. However, it cannot be used in an offline environment
(i.e., a user generates a signature, which is sent to the server
later, offline).

To sum up, the SOT reduces usability, and the SOC/SOS
limits the client environment. Although a digital signature
scheme using biometrics is proposed in [17,18] and an
extended version of the PKI based on biometrics is discussed
in [29], all of them require additional data like the helper
string and suffer from this kind of problem.

B Differences among RKA∗ security and exist-
ing RKA security definitions

As mentioned earlier, our definition of RKA∗ security has
subtle differences with the popular definition of RKA secu-
rity for signature schemes by Bellare et al. [2]. Specifically,
an adversary in the RKA security experiment of [2] has to
come up with a forgery pair (m′, σ ′) that is under the origi-
nal verification key vk, while an adversary in our definition is
allowed to additionally output a functionφ′, and is considered
successful if (m′, σ ′) is a valid forgery under the “related”
verification key vk′ = KG′(pp, φ′(sk)). In this aspect, our
definition is less restrictive than that of [2]. On the other hand,
in the RKA security experiment of [2], a messagem used as a
signing query (φ,m) is included into the “used message list”
Q only if φ(sk) = sk, while in our definition, any message
used as a signing query is included in Q. Since the message
m′ used as a forgery needs to satisfy m′ /∈ Q, in this aspect
our adversary is more restrictive than that of [2]. Because

of the differences, there seem to be no obvious implications
from one notion to another in both directions.

Recently, Morita et al. [20,21] defined the so-called Φ-
weak-RKA security, which is defined in the same manner as
the RKA security definition of [2], except that an adversary
has to forge a new message that has not been signed by the
signing oracle (like in our definition). However, their defini-
tion does not allow an adversary to modify the verification
key. Therefore, our definition of Φ-RKA∗ security is strictly
stronger than the Φ-weak-RKA security of [20,21] (for the
same function class Φ).

C Our previous definitions of linear sketch

In this section, we review the definition of a linear sketch
scheme thatwe introduced inACNS’15 [33] and inACNS’16
[19] for self-containment, and discuss the difference with the
one we give in Sect. 4.3.

C.1 ACNS’15 version

Definition 13 Let F = ((d, X), t,X, Φ, ε) be a fuzzy key
setting. In [33], a linear sketch scheme S for F was defined
as a pair ofdeterministicPTAs (Sketch,DiffRec) that satisfies
the following three properties:

Syntax and correctness. Sketch is the “sketching” algorithm
that takes the description Λ of an abelian group (K,+),
an element s ∈ K, and a fuzzy data x ∈ X as input, and
outputs a “sketch” c; DiffRec is the “difference recon-
struction” algorithm that takes Λ and two values c, c′
(supposedly output by Sketch) as input, and outputs the
“difference” �sk ∈ K.
It is required that for all x, x ′ ∈ X such that d(x, x ′) < t ,
and for all s,�s ∈ K, it holds that

DiffRec
(

Λ, Sketch(Λ, s, x), Sketch(Λ, s+�s, x ′)
)

= �s.

Linearity. There exists a deterministic PTAMc satisfying the
following: For all x, e ∈ X ,20 and for all s,�s ∈ K, it
holds that

Sketch(Λ, s+�s, x+e) = Mc(Λ, Sketch(Λ, s, x),�s, e).

Simulatability. There exists a PPTA Sim such that for all
s ∈ K, the following two distributions are statistically

20 In the original version [33], x and e were quantified as “for all x, e ∈
X such that d(x, x + e) < t .” However, the “such that d(x, x + e) <

t” condition should not be there, and the definition here reflects this
correction.
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indistinguishable (in the security parameter k that is asso-
ciated with t ∈ F):

{x ←R X; c ← Sketch(Λ, s, x): c} and

{c ←R Sim(Λ): c}.

Difference with Definition 12. The differences between the
definition recalled above (ACNS’15 version) and Defini-
tion 12 in Sect. 4.3 are as follows:

1. Definition 12 introduces a setup algorithm that produces
a public parameter used by all algorithms.

2. Definition 12 allows the sketching algorithm Sketch,
and the auxiliary algorithm Mc, to be probabilistic (as
opposed to being deterministic required in the ACNS’15
version).

3. Definition 12 relaxes the linearity property to a weaker
“distributional” variant, while in the ACNS’15 version
it is defined like a correctness property that needs to be
satisfied without any failure.

4. Definition 12 relaxes the simulatability property (which
captures confidentiality of sketches produced by Sketch)
of the ACNS’15 version, so that

– (1) the simulatability is required only for the case the
element s ∈ K is chosen uniformly at random,

– (2) the indistinguishability of the output of Sketch
and that of Sim is required to hold only against com-
putationally bounded distinguishers, and

– (3) most importantly, the “multiplicative” simulation
error is allowed in Definition 12, which is captured
by p. (In contrast, only the case of optimal simulation
error u = 1 is allowed in the ACNS’15 version.)

C.2 ACNS’16 version

Definition 14 Let F = ((d, X), t,X, Φ, ε) be a fuzzy key
setting. In [19], a linear sketch schemeS forFwas defined as
a tuple of PPTAs S = (Setup, Sketch,DiffRec) that satisfies
the following three properties:

Syntax and correctness. Same as in Definition 12.
Linearity. Same as in Definition 12.
Average-case indistinguishability 21. For all (finite) abelian

groups Λ = (K,+), the following two distributions are

21 Theword “average-case” in the nameof average-case indistinguisha-
bility is due to the property that its definition guarantees that the element
s in a sketch c is hidden only when it is chosen randomly from K.

statistically indistinguishable (in the security parameter
k that is associated with t in F):
{

pp ←R Setup(F,Λ); x ←R X; s ←R K;
c ←R Sketch(pp, s, x)

: (pp, s, c)
}

, and

{

pp ←R Setup(F,Λ); x ←R X; s, s′ ←R K;
c ←R Sketch(pp, s, x)

: (pp, s′, c)
}

(23)

Difference with Definition 12. We note that average-case
indistinguishability implies weak simulatability. Specifi-
cally, we can define the following canonical simulator
Sim(pp):

Sim(pp): Let Λ = (K,+) be an abelian group specified
in pp. Sim picks x ←R X and s′ ←R K. Then, Sim
computes c ←R Sketch(pp, x, s′), and outputs c.

It is straightforward to see that if a linear sketch scheme satis-
fies average-case indistinguishability, then the linear sketch
with the simulator Sim defined above satisfiesweak simulata-
bility, because the “simulated” distributionDsim = { pp ←R

Setup(F,Λ); s ←R K; c ←R Sim(pp): (pp, s, c)} is
equivalent to the second distribution in Eq. (23) (where the
roles of s and s′ are swapped). Also, the real distribution
Dreal considered in weak simulatability is equivalent to the
first distribution inEq. (23).Hence, by the average-case indis-
tinguishability, SD(Dreal,Dsim) is negligible, which means
that there exists a negligible function ε = ε(k) such that
for all (even computationally unbounded) algorithms A, it
holds that Pr[A(Dreal) = 1] ≤ Pr[A(Dsim) = 1] + ε.
In fact, this is stronger than what is required for showing
weak simulatability, because it shows the case in which the
optimal multiplicative simulation error u = 1 is achieved,
while it is sufficient that u is any polynomial for showing
weak simulatability. The construction of the simulator shown
here is used in our second concrete linear sketch scheme in
Sect. 7.2.

D Proof of Lemma 4

Fix the security parameter k ∈ N and a PPTA adver-
sary A. For each pp [output by Setup(1k)], let Advpp be
AdvEUF-CMAΣ,A (k) in which the public parameter is fixed as pp.

We define Ãdvpp similarly. Note that by definition, the fol-
lowing equations hold:

E
pp←RSetup(1k )

[Advpp] = AdvEUF-CMAΣ,A (k) and

E
pp←RSetup(1k )

[̃Advpp] = Ãdv
EUF-CMA

Σ,A (k).
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Next, for each pp, we define the function f pp that takes
a secret key sk ∈ Kpp as input, and outputs A’s suc-
cess probability in forging a signature in ExptEUF-CMAΣ,A (k)
in which the public parameter and the secret key are fixed
as pp and sk, respectively. Then, by definition, we have

E[ f pp(UKpp )] = Advpp andE[ f pp(U˜Kpp
)] = Ãdvpp,where

UKpp (resp.U˜Kpp
) is the uniform distribution overKpp (resp.

˜Kpp).
Now, by using Lemma 1, we obtain

E
[

f pp(U˜Kpp
)
]

≤ |Kpp| · 2−H∞(U
˜Kpp

) · E
[

f pp(UKpp )
]

= |Kpp|
|˜Kpp|

· E
[

f pp(UKpp )
]

≤ u(k) · E
[

f pp(UKpp )
]

.

Hence, we obtain Ãdvpp ≤ u(k) · Advpp, from which we

obtain Ãdv
EUF-CMA

Σ,A (k) ≤ u(k) · AdvEUF-CMAΣ,A (k). ��

E Proof sketch of Lemma 5

For any PPTA adversary A that attacks the Φadd-RKA∗
security of a signature scheme satisfying the homomorphic
property (as per Definition 9), one can immediately construct
another adversaryB that attacks theEUF-CMA security of the
same signature scheme, in a fairly straightforward manner,
using the algorithmsMsig andMvk that are guaranteed to exist
due to the homomorphic property.

Specifically, when the EUF-CMA security experiment
begins, B receives (pp, vk) as input from the experiment,
then inputs them toA, and starts simulating the Φadd-RKA∗
experiment forA. For a RKA-signing query (φadd

�sk,m) from
A, B firstly submits m to its own signing oracle and obtains
a signature σ̂ , and then computes σ ← Msig(pp, vk,m, σ̂ ,

�sk), which is distributed identically to a signature gener-
ated by using a secret key sk + �sk due to the property
of Msig. Furthermore, when A finally outputs a forgery
(φadd

�sk′ ,m′, σ ′), B can compute σ̂ ′ ← Msig(pp, vk′,m′, σ ′,
−�sk′) where vk′ = Mvk(pp, vk,�sk′) = KG′(pp, sk +
�sk′). Due to the property of Msig and Mvk, σ̂ ′ is a valid
signature on the message m′ under the verification key vk,
whenever (m′, σ ′) is a valid forgery pair under the verifica-
tion key vk′. Therefore, B’s EUF-CMA advantage is exactly
the same as the Φadd-RKA∗ advantage of A.

Hence, if a signature schemewith the homomorphic prop-
erty is EUF-CMA secure, it is Φadd-RKA∗ secure as well. ��

F Proof of Lemma 6

We first recall the general forking lemma shown by Bellare
and Neven [3], which will be used in the proof of Lemma 6.

Lemma 11 (General forking Lemma [3]) Let S be a finite set
with |S| ≥ 2, Q > 0 be an integer, and IG be a probabilis-
tic algorithm, called an instance generator, that outputs a
string X (called an instance). Let F be a probabilistic algo-
rithm that takes an instance (output by IG) and Q values
h1, . . . , hQ ∈ S as input, and outputs a pair (J , V ), where
J is an integer between 0 and Q, and V is any string.

For such an algorithm F, we consider the corresponding
“forking” algorithm ForkF that takes an instance X (output
by IG) as input, and runs as follows:

ForkF(X):
1. Pick a randomness rF for F uniformly at random.
2. h1, . . . , hQ ←R S.
3. (J , V ) ← F(X , h1, . . . , hQ; rF).
4. If J = 0 then return (0,⊥,⊥).
5. h′

J , . . . , h
′
Q ←R S.

6. (J ′, V ′) ← F(X , h1, . . . , hJ−1, h′
J , . . . , h

′
Q; rF).

7. If J = J ′ and hJ �= h′
J then return (1, V , V ′) else

return (0,⊥,⊥).

Let accF and frkF be the probabilities defined as follows:

accF := Pr

[

X ←R IG; h1, . . . , hQ ←R S;
(J , V ) ←R F(X , h1, . . . , hQ)

: J ≥ 1

]

,

frkF := Pr
[

X ←R IG; (b, V , V ′) ←R ForkF(X): b = 1
]

.

Then, it holds that

accF ≤ Q

|S| +
√

Q · frkF. (24)

Now, we are ready to proceed to the proof of Lemma 6.

Proof of Lemma 6 First of all, note that for a public param-
eter pp = (G = (G, p, g), H), a key pair (vk, sk) =
(y = gx , x), and a “shift” �sk = �x , it holds that
KG′(pp, sk + �sk) = gx+�sk = y · g�x . Hence, we can
defineMvk(pp, vk,�sk) := (vk)·g�sk , which clearly shows
that ΣSch satisfies the weak homomorphic property.

Then, we go on to the proof ofΦadd-RKA∗ security. LetA
be any PPTA adversary that attacks the Φadd-RKA∗ security
of the Schnorr signature scheme ΣSch in the random oracle
model, and makes in total q = q(k) > 0 queries (where q is
the total number of RKA-signing and hash queries). Without
loss of generality, and for simplicity, we assume that when
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A finally outputs (φadd
a∗ ,m∗, σ ∗ = (h∗, s∗)) at the end of the

Φadd-RKA∗ experiment,22

(1) m∗ is different from any of messages that A has used as
its RKA-signing queries, and

(2) at somepointAmakes ahashqueryof the form (R∗‖m∗),
where R∗ = gs

∗−a∗·h∗ · y−h∗
(= gs

∗ · (gx+a∗
)−h∗

) and
y = vk(= gx ) is a verification key thatA receives at the
beginning of the Φadd-RKA∗ experiment.23

For such A, we will show that there exists a PPTA B for
solving theDLproblemwith respect toGGen, whose running
time is almost twice that of A, such that

AdvΦadd-RKA∗
ΣSch,A (k) ≤ q(q + 1)

p
+
√

q · AdvDLGGen,B(k), (25)

which is sufficient for proving Lemma 6, because due to our
assumption that the DL assumption holds with respect to
GGen and p = Θ(2k), the right hand side is negligible in k,
and thus so is A’s Φadd-RKA∗ advantage.

We will use the general forking lemma (Lemma 11) for
showing the above inequality, and thus we specify the set S,
the number Q, the instance generator IG, and the algorithm
F, as follows: Let IG be the “instance generator” that runs
G := (G, p, g) ← GGen(1k), picks x ←R Zp, computes
y ← gx , and outputs X = (G, y). We specify the set S to be
Zp, and the number Q to be q. Let F be an algorithm whose
randomness rF consists of a randomness rA for A and q
values s1, . . . , sq ∈ Zp, which takes X = (G, y = gx ) and
h1, . . . , hq ∈ Zp as input, and internally runs A as follows:

F(X = (G, y), h1, . . . , hq ; rF = (rA, s1, . . . , sq)): F
sets pp ← G (H is modeled as a random oracle for A
and thus is not included in pp here), and sets vk ← y. F
also prepares a list LH which is initially empty. Then, F
runs A(pp, vk; rA).
ForA’s i th query (where i ∈ [q]),F responds as follows:

– If the i th query is a hash query of the form (Ri‖mi ),
then F checks if there is an entry of the form
(mi , Ri , h, ∗) for some h ∈ Zp in the list LH (where
* is any value). If this is the case, then F returns
h to A. Otherwise, F adds an entry of the form
(mi , Ri , hi ,⊥) into LH (where hi is the value that
appears in F’s input), and returns hi to A.

22 In this proof, we use the asterisk (*) for representing the values
regarding A’s final output (i.e., the forgery).
23 Note that these conditions are indeed without loss of generality,
because for any PPTA adversary A that does not respect these con-
ditions, we can always consider a “wrapper” algorithmA′ that satisfies
them and has exactly the same Φadd-RKA∗ advantage as A.

– If the i th query is a RKA-signing query of the form
(φadd

ai ,mi ), then F first computes Ri ← gsi−ai ·hi ·
y−hi (= gsi · (gx+ai )−hi ). If there is already an
entry of the form (mi , Ri , ∗, ∗) in the list LH , then
F gives up, and terminates with output (0,⊥). (In
this case, we say that F fails to answer A’s RKA-
signing query.) Otherwise, F adds an entry of the
form (mi , Ri , hi , si ) into LH (where hi is the value
that appears in F’s input, and si is the value that
appears in F’s randomness rF), and then returns a
signature σi = (hi , si ) to A.

When A terminates with output (φadd
a∗ ,m∗, σ ∗ = (h∗,

s∗)), F proceeds as follows. Let R∗ = gs
∗−a∗·h∗ ·

y−h∗ = gs
∗ · (gx+a∗

)−h∗
. F finds an entry of the form

(m∗, R∗, h, ∗) for some h ∈ Zp in the list LH , where it is
guaranteed that h is equal to one of h1, . . . , hq , because
by our assumption A must have made a hash query of
the form (R∗‖m∗), which must have been answered with
one of h1, . . . , hq . Let J ∈ [q] be the index such that
h = hJ found in this process. (Therefore, (m∗, R∗, h) =
(mJ , RJ , hJ ).) If h∗ = hJ , thenF sets V ← (a∗, h∗, s∗)
and terminates with output (J , V ). (Note that this case
corresponds to the case that H(R∗‖m∗) = h∗ occurs, and
hence σ ∗ = (h∗, s∗) is a valid signature form∗ under the
“shifted verification key” vk∗ = gx+a∗

in the experiment
simulated byF.) Otherwise (i.e., h∗ �= hJ ),F terminates
with output (0,⊥).

The above completes the description ofF. Note that the inter-
face of F matches that of the algorithm F considered in the
general forking lemma (Lemma 11).

We argue that when F receives an instance X (output
from IG) and random elements h1, . . . , hq ∈ Zp as input,
and uniformly chosen values rF = (rA, s1, . . . , sq) as its
randomness, the probability thatF fails to answerA’s RKA-
signing queries is upperbounded by q2/p. This is because the
value Ri = gsi−ai ·hi · y−hi computed by F when answering
A’s RKA-signing query is information-theoretically hidden
from A’s view at the point A makes the query (because si
and hi are hidden from A’s view at the point the query is
made), and thus for one particular RKA-signing query, the
probability that an entry of the form (mi , Ri , ∗, ∗)has already
been defined in the list LH (and thusF fails to answer it) is at
most q/p. SinceAmakes at most q queries, the union bound
tells us that the probability that F fails to answer A’s RKA-
signing queries is atmostq2/p. Furthermore, note that unless
F fails to answerA’sRKA-signing queries,Fperfectly simu-
lates theΦadd-RKA experiment (in the randomoraclemodel)
for A. Therefore, the probability that A outputs a success-
ful forgery (φadd

a∗ ,m∗, σ ∗ = (h∗, s∗)), and correspondingly
F outputs (J , V = (a∗, h∗, s∗)) such that J ≥ 1 and
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h∗ = hJ , namely accF, is at least AdvΦadd-RKA∗
ΣSch,A (k) − q2/p.

Recall that by the general forking lemma [Eq. (24)], we have
accF ≤ q

p +√

q · frkF. Consequently, we have the following
inequality:

AdvΦadd-RKA∗
ΣSch,A (k) ≤ q(q + 1)

p
+ √

q · frkF. (26)

Next, we relate frkF with the advantage of another algo-
rithm B for solving the DL problem. B receives an instance
(G = (G, p, g), y = gx )of the problem, and tries to compute
x = logg y as follows:

B(G, y): B sets X ← (G, y) and runs the “forking algo-
rithm” ForkF(X) corresponding to F that we described
above. Let (b, V , V ′) be the output of ForkF. If b = 0,
then B gives up and aborts. Otherwise (i.e., b = 1),
let V = (a∗, h∗, s∗) and V ′ = (a′∗, h′∗, s′∗). We have
h∗ �= h′∗ by the definition of ForkF, and we also have
R∗ = gs

∗−a∗·h∗ · y−h∗ = gs
′∗−a′∗·h′∗ · y−h′∗

due to our
design of F.24 B now computes

x ← (s∗ − a∗ · h∗) − (s′∗ − a′∗ · h′∗)
h′∗ − h∗ mod p,

and terminates with output x .

The above completes the description of B. Note that the run-
ning time of B is essentially the same as that of ForkF. Since
ForkF runs F twice, and F in turn runs A once, the running
time of B is almost twice that of A. Furthermore, whenever
ForkF outputs (b, V , V ′) such that b = 1,B succeeds in com-
puting the discrete logarithm x such that y = gx . Therefore,
we have AdvDLGGen,B(k) = frkF. Combining this equality with
Eq. (26), we obtain Eq. (25), as required. This completes the
proof of Lemma 6. ��

G On the plausibility of the CDH assumption
with respect to BGGenMWS

For the security of the MWS scheme ΣMWS constructed in
Sect. 6.4, we need to assume that the CDH assumption holds
with respect toBGGenMWS. Onemight suspect the plausibility
of this assumption because of our specific choice of the order
p. However, to the best of our knowledge, there is no effective
attack on the discrete logarithm assumption in the groups G

and GT , let alone the CDH assumption.

24 Note that if b = 1 holds, then there is an index J ′ ∈ [q] such that
the first execution and the second execution of F in ForkF have run
identically up until the point A makes the J ′th query. Furthermore,
A’s J ′th query in both of the executions is a hash query of the form
(R∗‖m∗), and hence R∗ = RJ ′ (= R′∗ = gs

′∗−a′∗·h′∗ · y−h′∗
) holds.

Actually, the discrete logarithm problem for the multi-
plicative group (Z∗

p, ·) could be easy because W |p − 1 and
W = ∏

i∈[n] wi , and thus we can apply the Pohlig–Hellman
algorithm [24] to reduce an instance of the discrete logarithm
problem inZ

∗
p to instances of the discrete logarithmproblems

in Zwi . However, it does not mean that the Pohlig–Hellman
algorithm is applicable to the discrete logarithm problem in
G or GT , whose order is a prime.

Note that a verification/signing key pair (vk, sk) of the
MWS scheme ΣMWS is of the following form (vk, sk) =
(gz

sk
, sk), where sk ←R ZW , and z and W are in a public

parameter pp. In fact, due to the existence of the bilinear
map e: G × G → GT , a variant of Pollard’ ρ-algorithm [26]
is applicable, and one can recover sk from vk (and pp) with
O(

√
W ) steps. However, this is exponential time in a security

parameter k. (Recall that W = Θ(2k).) This also does not
contradict theEUF-CMA security of theMWS scheme shown
in Lemma 8.
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