
International Journal of Information Security (2019) 18:465–479
https://doi.org/10.1007/s10207-018-0421-5

REGULAR CONTRIBUT ION

Analyzing XACML policies using answer set programming

Mohsen Rezvani1 · David Rajaratnam2 · Aleksandar Ignjatovic2 ·Maurice Pagnucco2 · Sanjay Jha2

Published online: 26 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
With the tremendous growth of Web applications and services, eXtensible Access Control Markup Language (XACML) has
been broadly adopted to specify Web access control policies. However, when the policies are large or defined by multiple
authorities, it has proved difficult to analyze errors and vulnerabilities in a manual fashion. Recent advances in the answer set
programming (ASP) paradigm have provided a powerful problem-solving formalism that is capable of dealing with policy
verification. In this paper, we employ ASP to analyze various properties of XACML policies. To this end, we first propose
a structured mechanism to translate a XACML policy into an ASP program. Then, we leverage the features of off-the-shelf
ASP solvers to specify and verify a wide range of properties of a XACML policy, including redundancy, conflicts, refinement,
completeness, reachability, and usefulness. We present an empirical evaluation of the effectiveness and efficiency of a policy
analysis tool implemented on top of the Clingo ASP solver. The evaluation results show that our approach is computationally
more efficient compared with existing approaches.

Keywords XACML · Policy analysis · Anomaly detection · Answer set programming

1 Introduction

Due to the impressive growth of Web applications, access
control policy languages for these applications have received
considerable attention, which provides adequate security and
privacy support for such applications. The eXtensible Access
Control Markup Language (XACML) is an XML-based lan-
guage standardized by theOrganization for theAdvancement
of Structured Information Standards (OASIS) to express
security policies, request context, and response context state-
ments (allwritten inXML) [1].XACMLhasbecomeawidely

B Mohsen Rezvani
mrezvani@shahroodut.ac.ir

David Rajaratnam
david.rajaratnam@unsw.edu.au

Aleksandar Ignjatovic
a.ignjatovic@unsw.edu.au

Maurice Pagnucco
m.pagnucco@unsw.edu.au

Sanjay Jha
sanjay.jha@unsw.edu.au

1 Faculty of Computer Engineering, Shahrood University of
Technology, Shahrood, Iran

2 School of Computer Science and Engineering, University of
New South Wales, Sydney, Australia

accepted solution for modeling access control policies for
various Web applications as it provides a rich data model for
the specification of complex conditions. XACML (particu-
larly version 3.0) enables the use of arbitrary attribute types,
hierarchical role-based access control (RBAC), and several
rule (policy) combination algorithms to resolve conflicts.

Although XACML is an expressive specification lan-
guage, it lacks an effective and comprehensive policy1

analysis framework [6]. The problem becomes more preva-
lent when the policy is specified by different authorities,
making it harder for policy administrators to perceive the
overall effect and consequences of the policy execution.
For example, it is complicated to manually check essen-
tial properties, such as query analysis which determines the
accessibility of a resource by a principal [21]. Furthermore,
when an administrator updates the policy, understanding the
impact of such changes becomes a daunting task. More-
over, policy anomalies, including redundancies and conflicts,
remain significant issues that may lead to security leak-
ages through unauthorized access. However, resolving the
anomalies through manually changing the XACML policies

1 In this paper, the term policy refers to a security policy specified by
XACML. Also terms “policy,” “security policy,” and “XACML policy”
are used interchangeably.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-018-0421-5&domain=pdf
http://orcid.org/0000-0002-1172-1941

466 M. Rezvani et al.

is impossible in practice [19]. Thus, a policy verification tool
is required to verify various properties at design time.

Answer set programming (ASP) [23] is a declarative pro-
gramming approach using non-monotonic reasoning aimed
toward solving difficult search problems. Due to a high-
level expressiveness and providing convenient constructs for
application-specific problem representation, it has gained
significant attention in recent years [11,13]. ASP has also
become an attractive formal language for policy analysis, and
several works have already employedASP for XACML anal-
ysis [4,7,22,28,29]. However, none of them has tackled the
policy analysis problem by providing a comprehensive solu-
tion which takes into account various policy properties such
as anomalies, including conflicts and redundancies, refine-
ment, completeness, reachability, and usefulness. Another
important challenge in XACML analysis is to consider both
XACML 2.0 and 3.0 for checking the policy properties. The
newer version ofXACMLproposesmore complex syntax for
defining the target elements along with additionally combin-
ing algorithms for resolving conflicts [1].

To address the above challenges,wepropose a comprehen-
sive and structured policy analysis framework by employing
ASP as an underlying reasoner. As a basis for formal specifi-
cation of a XACML policy, we transform the XACMLpolicy
into an ASP program. Such a transformation is independent
of any policy evaluation mechanism, which helps us to not
only support both XACML 2.0 and 3.0 but also provide a
compact policy specification. Employing ASP provides ease
of specification and offers additional benefits such as opti-
mization in policy verification and the potential for dynamic
policy analysis such as checks. Furthermore, we specify the
policy evaluation (query matching mechanism) as a separate
policy property.

We also demonstrate that our framework is general enough
to specify a wide range of policy properties proposed in the
literature. To this end, we specify each of these policy proper-
ties in an ASP program. Specifying a XACML policy and the
properties as ASP programs allows us to employ several effi-
cient ASP solvers, such as Clasp2 and Smodels3, to verify the
policy against its required properties. As a result of the policy
verification, our framework provides detailed evidence in the
form of answer sets, which helps the policy administrator to
understand the consequences of the policy and helps revise it
accordingly. Finally, we implement a prototype of the frame-
work on top of Clingo [15] and conduct experiments using
both real-world and synthetically generated XACML poli-
cies to evaluate the efficiency and effectiveness of our policy
analysis solution.We consider variousmetrics to compare the
efficiency of our method with existing approach for policy
translation, grounding, and solving phases. The evaluation

2 http://www.cs.uni-potsdam.de/clasp/.
3 http://www.tcs.hut.fi/Software/smodels/.

results show that our approach is computationally more effi-
cient compared with existing approaches.

In summary, we make the following contributions.

– We propose a new approach for transforming a XACML
policy into a set of ASP programs which supports both
XACML 2.0 and 3.0.

– We specify the matching operation of various elements
in a XACML policy using ASP. Such specification is
independent of any specific policy.

– We specify a wide range of policy properties using our
policy transformation, such as query analysis, anomaly
detection, policy refinement, isomorphism, complete-
ness, and reachability.

– We develop a prototype of our policy analysis framework
and evaluate its efficiency and effectiveness using both
real-world and synthetically generated XACMLpolicies.

The rest of this paper is organized as follows. Section 2
describes the basic concepts about XACML and ASP. We
present our translation of XACML into ASP in Sect. 3. Sec-
tion 4 shows how to analyze anomalies as well as other
properties, such as completeness and reachability of a pol-
icy. Section 5describes our implementation and experimental
results. Section 7 presents the relatedwork. Finally, the paper
is concluded in Sect. 8.

2 Preliminaries

In this section, we briefly describe the basic concepts of
XACML and ASP.

2.1 XACML policy language

Since 2003, XACML has three standard versions, in which
the last version (XACML 3.0) was introduced in 2010 [1].
XACML is enforcing authorizations on the resources pro-
vided on the Web and specifies how a Web application can
access these resources. In this section, we present a summary
of the syntax and semantics of XACML 3.0. Figure 1 shows
an abstract syntax of XACML 3.0.

There are threemain levels in a policy written in XACML:
rule, policy, and policy set. A rule is the most elementary
unit of a policy and can contain three components: an effect,
a target, and a condition. The effect of a rule indicates the
consequence of evaluating the rule which can be either Per-
mit, Deny, or Indeterminate. The target of a rule defines the
applicability of the rule to a set of access requests. A target
consists of a conjunctive sequence of AnyOf elements. An
AnyOf element contains a disjunctive sequence of AllOf ele-
ments. An AllOf element includes a conjunctive sequence of
Match elements. A Match element identifies an entity by a

123

http://www.cs.uni-potsdam.de/clasp/
http://www.tcs.hut.fi/Software/smodels/

Analyzing XACML policies using answer set programming 467

Fig. 1 An abstract syntax of XACML 3.0 [29]

matching attribute value. For example, the target is a pred-
icate over the subject (e.g., developer), the resource (e.g.,
codes), and the action (e.g., read) of requests to which the
rule can be applied. The condition of a rule is a Boolean
expression that refines the applicability of the rule beyond
its target. If a request satisfies both the target and condition
of a rule, the rule’s effect is returned as a matching decision;
otherwise, NotApplicable is returned.

A policy combines several rules and comprises three com-
ponents: a target, a rule combining algorithm, and a sequence
of rules. Similarly, a policy set combines policies and pol-
icy sets. A policy set comprises three components: a target,
a policy combining algorithm, and a sequence of policies
or policy sets. The rule (policy) combining algorithm speci-
fies the procedure by which the results of evaluation of rules
(policies/policy sets) within a policy (policy set) are com-
bined to evaluate the policy (policy set). XACML supports
four common combining algorithms defined as follows:

– First-applicable (fa): In this algorithm, each rule (pol-
icy/policy set) is evaluated in the order inwhich it is listed
in the policy (policy set). In other words, it returns the
decision of the first-applicable rule (policy/policy set).

– Permit-overrides (po): In this algorithm, a permit deci-
sion has priority over a denydecision. Thus, the algorithm
returns permit for a request if there is a rule (policy),
which permits the request; returns deny only if all rules
(policies/policy sets) deny the request.

– Deny-overrides (do): In this algorithm, a deny decision
has priority over a permit decision. Thus, the algorithm
returns deny for a request if there is a rule (policy/policy
set) that denies the request; returns permit only if all rules
(policies/policy sets) permit the request.

– Only-one-applicable (ooa): This algorithm is defined
only for policy sets. In this algorithm, if only one policy
(or policy set) is applicable, then its result is returned; if
no policy (nor policy set) is applicable, then the result is

NotApplicable; if more than one policy is applicable, the
result is Indeterminate.

2.2 XACML 2.0 versus 3.0

There are several enhancements in XACML 3.0 compared
with version 2.0 [1]. In XACML 2.0, a target defines a set
of attributes to which a rule (policy/policy set) is intended
to apply. A target groups attributes of the same attribute
type together under elements that reflect such attribute types.
The attributes are combined by either disjunctive or con-
junctive relationship. The attribute types are organized into
Action, Environment, Resource, and Subject. As discussed in
the previous section, XACML 3.0 removes such grouping of
attributes and introduces the AnyOf and AllOf elements that
help to define disjunction or conjunction between attribute
types. Note that there are other updates in XACML3.0which
are out of the scope of this paper [1].

2.3 Answer set programming

The basic idea in ASP is to express a search problem by a
logic program and then employ an ASP solver to calculate
its stable models (or answer sets) which encodes the solu-
tions to the problem. In general, ASP solving proceeds in
two steps: grounding in which a propositional representation
of the ASP program is generated, and solving in which the
stable models (answer sets) are computed from the proposi-
tional representation. The final solution is obtained from the
resulting answer sets [15].

An ASP program over a set A of ground atoms consists
of a finite set of declarative rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an (1)

where 0 ≤ m ≤ n and each ai ∈ A is a ground atom for
0 ≤ i ≤ n and not is a symbol for default negation. The
set of literals consists of all atoms in A and their default
negations. Intuitively, rule (1) means that a0 must be true
if a1, . . . , am are (provably) true and if am+1, . . . , an are
(possibly) false. Here, a0 is the head of the rule, and right-
hand side of the implication symbol constitutes the body of
the rule. If the body of a rule is empty, the rule is a fact written
without the implication symbol. A rule with an empty head
is an integrity constraint that eliminates unwanted solution
candidates described in its body.

Recently, ASP has been significantly extended to sup-
port advanced constructs, such as optimization, preference
building, andmulti-shot solving which can be utilized in pol-
icy analysis. There are several off-the-shelf solvers for ASP,
such as Clasp, Smodels, and many more, which efficiently
compute answer sets. Since the solvers work on variable-
free programs, a grounder is needed to compute a ground

123

468 M. Rezvani et al.

Fig. 2 Our policy analysis framework

(variable-free) program from an ASP program. In this paper,
we use Clingo which combines two tools from the Potassco
project [16]: Gringo (as a grounder) and clasp (as a solver)
into a monolithic system.

3 Mapping XACML into ASP

In this section, we first describe the conceptual framework of
our policy analysis. We then explain the details of its com-
ponents.

3.1 Solution overview

The main idea in our policy analysis framework is to trans-
form both XACML policies and policy properties into ASP
programs and then leverage off-the-shelf ASP solvers to ver-
ify the properties of the policies. Figure 2 shows our policy
analysis framework. The top layer of this framework contains
three modules for translating XACML components into ASP
programs. We develop a modular translation approach that
helps us to specify XACML policies, queries, and combining
algorithms in separate ASP programs. As results of the top
layer translation, we obtain three ASP programs containing
the translation of anXACMLpolicy, a query, and all combin-
ing algorithms. Note that the transformation defines a formal
semantics of XACML in terms of Answer Set semantics.
We plan to extend this research by formally proving that our
translation holds the semantics of XACML.

In the middle layer of our framework, we specify each
policy property as an ASP program. The property program
along with the translation results is sent to an ASP solver to
verify the satisfiability of the property on the policy. The final
results provide evidence for satisfiability of each property in
the form of answer sets generated by the solver.

3.2 Request transformation

In access control systems, an access request generates a deci-
sion request that contains a set of attributes of the entity
making the access request. Thus, we translate a request as
a list of facts in which each fact specifies the value of the
corresponding attribute type. For example, an access request
stated as John who is a developer and tester, wants to read
the reports at 9:00 AM is translated as

subject(developer;tester). resource(reports).

action(read). time(9).

request(X ,Y , Z , T) ← subject(X), resource(Y),

action(Z), time(T).

In the rest of this paper, a request is denoted by variable
Q which represents a tuple of variables, such as Q =
(X ,Y , Z , T) in the above example.

3.3 Policy elements transformation

In this section, we propose a bottom-up approach to trans-
forming a XACML policy into an ASP program, denoted as
�xacml . We bind each component into its upper layer com-
ponent. To transform a rule r , we first transform the target
of the rule. As discussed in the previous section, a target
element in XACML 3.0 is a conjunction of disjunctions of
conjunctions of match elements. A conjunction of attribute
values forms an AllOf object, a disjunction of AllOf objects
forms an AnyOf object, and a conjunction of AnyOf objects
forms an Target object.

An important extension in XACML 3.0 is to support var-
ious types of match functions, such as string-equal, integer-
less-than, and integer-greater-than. Thus, we need to gen-
eralize the specification of AllOf objects to cover different
types of match functions. To this end, we include the specifi-
cation of thematch functions of anAllOf object into the spec-
ification of the object. A match function inside of an AllOf
object is used to specify the match of the container AnyOf
object which is implemented using the Python API in ASP.
Thus, we specifyAnyOf object anyof j in rule r using ASP as

anyof j (r .rid) ← allof(attr_val1,match f1 . . . ,

attr_valn,match fn) (1 ≤ i ≤ n),

where r .rid is the unique identifier of rule r , n is the number
of attribute types defined in the policy, and match_ f ni is
the match function specified for the i th attribute in the AllOf
object. Note that we assume that each rule, policy, and policy
sets have a unique identifier in a XACML policy. An AllOf
may match all values for an attribute type in which we set a
wildcard for the attribute in the ASP program. Moreover, the

123

Analyzing XACML policies using answer set programming 469

disjunction of AllOf objects in an AnyOf object is specified
by repeating the above rule for each AnyOf object.

The target of a rule is a conjunction of the AnyOf objects
in the rule. Thus, we specify the target object of rule r as

target(r .rid) ← anyof1(r .rid), . . . , anyofm(r .rid),

where m is the number of AnyOf objects in rule r . In the
case that a target element accepts every request, we define
target(r .rid) as a fact term.

A target in XACML 2.0 is a conjunction of groups of
attribute values in which each group is corresponding to an
attribute type. Each group is specified by a list of facts, one
for each attribute value in the group. For example, a group
element for subjects with values manager and designer in
rule r is defined in ASP as

subjects(r .rid,manager).

subjects(r .rid,designer).

The condition component of an XACML rule is a boolean
expression which can be evaluated merely using facts and
constraints in anASPprogram. For example, assume that rule
r1 has no condition and rule r2 matches in the working hours.
The condition components of these two rules are defined as

bool_expr(true, Q).

bool_expr(working_hours, Q) ← T >= 8, T <= 17, time(T).

condition(r1,true).

condition(r2, working_hours).

In the above translation, we bind each target and condition
components into their corresponding rule. Now, for a rule r
with identifier r .rid, effect r .e f f ect , and a policy holder
r .pid, we define the following ASP rule:

rule(r .rid, r .pid, r .e f f ect).

Note that the above ASP rule not only defines the effect
of rule r but also binds the rule to its corresponding pol-
icyholder. As described, a policy p is represented by an
identifier p.pid, a policy set holder (parent) with identifier
p.psid, a list of rules, a target, and a rule combining algo-
rithm p.comb_alg. A policy p is defined by an ASP rule
as

policy(p.pid, p.psid, p.comb_alg).

Similarly, a policy set ps is defined by an identi-
fier ps.psid, a policy set holder (parent) with identifier
ps.ppsid, a list of policies and policy sets, a target, and

a policy combining algorithm ps.comb_alg. A policy set ps
is translated as

policyset(ps.psid, ps.ppsid, ps.comb_alg).

It is worth noting that the target of a policy (policy set) is
defined by a similar approach we used for the target of a rule.
It is clear that there is a recursive relationship between poli-
cies and policy sets. We assume that there is a root policy set
with identifier ps0, with its parent identifier also being ps0.

3.4 Match transformation

We aim to specify the matching of XACML components
independently of any specific policy. In other words, there is
no need to update the matching program when the XACML
policy is changed. To this end, we define an ASP program,
denoted as�match to specify thematching of various compo-
nents in a XACML policy against an access request, denoted
as Q. We follow a bottom-up methodology to define the
matchingoperations in aXACMLpolicy.As described, a pol-
icy (policy set) may be composed of some individual rules
(policies). At the lowest level, a rule matches a request if
both target and condition of the rule match; consequently,
the rule’s effect is returned. A target in XACML 3.0 matches
a request if all AnyOf objects in the target match. An AnyOf
object matches a request if at least one of its AllOf objects
matches. Thus, we first define matching functions for an
AnyOf construct as

match_anyof(R, Q) ← request(Q),

anyof(R, allof(V1, F1, . . . , Vn, Fn)),

match(Q.Attr1, V1, F1), . . . ,

match(Q.Attrn, Vn, Fn),

no_match_anyof(R, Q) ← request(Q), anyof(R, _),

not match_anyof(R, Q),

no_indeter_allof(R, Q) ← request(Q),

anyof(R, allof(V1, F1, . . . , Vn, Fn)),

not indeter(Q.Attr1, V1, F1), . . . ,

not indeter(Q.Attrn, Vn, Fn),

indeter_anyof(R, Q) ← request(Q),

no_match_anyof(R, Q),

not no_indeter_allof(R, Q),

where R is a variable corresponding to a rule identifier,
Q = (Attr1 . . . , Attrn) is an access request containing a
value corresponding to each n attribute types in the XACML
policy, andmatch(A, V , F) is a general function for match-
ing the values A and V based on the F function which
considers a wildcard symbol as well. We implemented this
function using an external Python function in our experi-
ments, thanks to the Python API developed for the gringo

123

470 M. Rezvani et al.

grounder and clasp solver packages. Note that the Python
implementation of this function helps us to support the
complex composition operators and various matching func-
tions introduced in XACML 3.0, such as regular expressions
and both integer and real linear arithmetic. Moreover, such
implementation addresses an intrinsic problem in ASP for
expressing arithmetic constraints without generating a large
number of clauses. The match(A, V , F) function returns
true if attribute A matches value V based on the matching
function F , and returns false if it is not matched.

According to the XACML 3.0 specification, if an opera-
tional error were to occur while evaluating an attribute value
presented in an AllOf object, then the result of the entire
expression SHALL be Indeterminate [1]. For example, the
absence of matching attributes in the request context for any
of the attribute designators may result in an enclosing AllOf
element to return a value of Indeterminate. In such missing
attribute scenarios, the policy decision point (PDP) indicates
that more information is needed for a definitive decision to
be rendered. We use indeter_anyof here to specify an inde-
terminate result for matching an AnyOf object. Similarly, the
indeter(A, V , F) function returns true if an error occurs dur-
ing the matching of attribute A with value V based on the
matching function F ; otherwise, it returns false. This func-
tion is also implemented using an external Python script.

In the above listing, the second rule, no_match_anyof ,
shows that there is a non-satisfied AnyOf object. We
employed this to specify the matching of a target object as

match_target(T , Q) ← request(Q), target(T),

match_target(T , Q) ← request(Q), anyof(T , _),

not no_match_anyof(T , Q),

indeter_target(T , Q) ← request(Q), anyof(T , _),

not match_target(T , Q),

indeter_anyof(T , Q),

where the first match_target term supports the case that a tar-
get object accept every request which is called empty target.
The second term checks all the AnyOf elements within the
target construct and the target value shall be matched if all
the AnyOf objects specified in the target match values in the
request context. Clearly, the body of the second rule specifies
a target which includes AnyOf objects matching the request.

In the third rule of the above listing, indeter_target speci-
fies the indeterminate results for matching of a target object.
According to the XACML 3.0 specification, if any one of
the AnyOf specified in the target is not matched, then the
target shall be not matched. Otherwise, the target shall be
indeterminate [1]. Note that there is no need to define the
not matched results. Clearly, a target is Not Matched if it is
neither matched nor indeterminate. Above listing shows that
how we can specify various values for AllOf, AnyOf, and

target objects in XACML 3.0. We can simply use a similar
method to specify various values for other constructs such as
rule, policy, and policy set. In the rest of this paper, we only
present our specification for matching results.

In XACML 2.0, the target construct is different from
XACML 3.0 and specified by the accepted values of each
attribute type separately. Thus, the translation of the target in
XACML 2.0 is simpler, as follows:

match_target(T , Q) ← request(Q),

match_actions(T , Q.Act Req),

match_resources(T , Q.ResReq),

match_subjects(T , Q.SubReq).

match_actions(T , Act Req) ← actions(T , Act Req).

match_resources(T , ResReq) ← resources(T , ResReq).

match_subjects(T , SubReq) ← subjects(T , SubReq).

Note that we generalize the matching of a target object in
order to reuse the above specification for targets in policies
and policy sets.

Now, using the above functions we define the matching of
a rule as

match_rule(R, P, E, Q) ← request(Q), rule(R, P, E),

match_target(R, Q),

condition(R, B), bool_expr(B, Q),

where P is the identifier of the policy holding R and E is the
matching results.

The matching of a policy (policy set) is defined based on
its combining algorithm. The rule (policy) combining algorithm
defines a procedure for deciding on a request given the individ-
ual matching results of a set of rules (policies or policy sets). We
present the matching of a policy based on four combining algo-
rithms explained in Sect. 2.1, and the matching of a policy set can
be specified similarly.

In the first-applicable combining algorithm, the result is deter-
mined by the matching result of the first rule whose target and
condition are matched to the decision request. Thus, we specify
the algorithm in ASP as

dom_match_rule(R1, P, E, Q) ← request(Q), rule(R1, P, E),

rule(R2, P, _),

match_rule(R1, P, E, Q),

match_rule(R2, P, _, Q),

R2 < R1,

match_policy_alg(P,fa, E, Q) ← request(Q), rule(R, P, E),

policy(P, _,fa),

match_rule(R, P, E, Q),

not dom_match_rule(R, P, E, Q),

123

Analyzing XACML policies using answer set programming 471

where the first statement selects the rules that match the request
and are dominated by a higher priority rule within the same policy.
The second statement defines the effect of a rule that matches the
policy and is not dominated.

In the permit-overrides combining algorithm, if there is a per-
mit rule, which matches the request, then the result is Permit;
otherwise, the result is obtained by deny rules4. We specify the
algorithm in ASP as

match_policy_alg(P,po,permit, Q) ← request(Q),

policy(P, _,po),

match_rule(_, P,permit, Q).

match_policy_alg(P,po,deny, Q) ← request(Q),

policy(P, _,po),

not match_rule(_, P,permit, Q),

match_rule(_, P,deny, Q).

Likewise, the deny-overrides combining algorithmcan be spec-
ified.

In the only-one-applicable combining algorithm, if exactly one
policy is matched, the result of the combining algorithm is iden-
tified by such a policy. Thus, we specify this algorithm in ASP as

match_policyset_alg(PS,ooa, E, Q) ← request(Q),

policy_set(PS, _,ooa),

match_policy(_, PS, E, Q),

1{match_policy(_, PS, _, Q)}1.

Using above specifications for combining algorithms, the
matching of a policy is defined as

match_policy(P, PS, E, Q) ← request(Q), policy(P, PS, ALG),

match_target(P, Q),

match_policy_alg(P, ALG, E, Q).

We use a similar approach to specify the matching of a policy
set. It isworth noting that the specification of thematchings is inde-
pendent of any specific XACML program as we utilize variables
for referring to the policy elements. Moreover, our specification
provides detailed witnesses for each matching request. In other
words, it reports the identifier of the matched rule, the identifiers
of the policies, and the identifiers of the policy sets holding the
matched rule in the hierarchical of the XACML policy. This can
help the policy administrator to debug the policy for finding any
possible error. Moreover, an administrator can employ the above
specification to find the results of a query matching over a part of a
XACML policy. For example, the administrator may be interested
in finding all policy sets matched an access request. Clearly, this
can be simply done by filtering the output of the solving process
accordingly.

4 The combining algorithms are more complex, as described in [1], and
we simplified them to show the main parts of our specifications.

4 Policy analysis

In this section, we employ our policy translation to analyze various
properties proposed in the literature. To this end, each property is
first specified as an ASP program, then, it is combined by the
programs obtained from the above specifications, and finally, an
ASP solver is used to verify the property.

4.1 Query analysis

In Sect. 3.2, we presented an encoding of a simple access request
as a conjunction of attribute values. In practice, it is necessary to
find policy responses for more complex queries.We define a query
as a set of simple requests in which some attributes are left as a
wildcard. In this section, we show that our framework allows an
administrator to define all possible complex queries and verify the
policy for such queries.

An important query used for defining other policy properties
is to generate all possible access requests. To define this query,
we need to determine the domain of each attribute type. Clearly,
the domain of an attribute type is the set of all possible values
for the attribute. In order to obtain the attribute type, we parse the
XACML policy and extract a set of all values existing for each
attribute in the policy as the domain of the attribute. Moreover,
a policy administrator may need to customize this module of our
approach by clearly defining the domain of each attribute type. For
example, the following ASP program, denoted as �all_requests ,
generates all possible request for a XACML policy where the first
three lines of the program specify the domain of three attribute
type used in this policy.

subject_dom(administrator; developer; programmer).

resource_dom(codes; reports).
action_dom(read; wri te).

request(X , Y , Z) ← subject_dom(X), resource_dom(Y),

action_dom(Z).

Likewise, we verify the policy for a complex query. For exam-
ple, an administratormaywant to checkwhether the policy forbids
any action of a developer on source codes. We define this query
by the following ASP program, denoted as �query :

request(X , Y , Z) ← subject(developer),

resource(codes), action_dom(Z).

scenarios(X , Y , Z) ← match_policyset(ps0, _,deny, Q).

Now, an ASP solver can find the scenarios which satisfy the query,
by returning the answer sets of program�xacml∪�match∪�query .

4.2 Policy anomaly detection

Al-Shaer et al. [5] introduced four types of pairwise anomalies
among rules in a network policy: Shadowing, Correlation, Gen-
eralization, and Redundancy. Basi et al. [9] also classified the
anomalies into two categories: conflict where a request is matched
with multiple rules with conflicting actions, and suboptimality

123

472 M. Rezvani et al.

where there is a rule such that its removal has no effect on the
policy.

Since both policies and policy sets match based on the com-
bining algorithms, a conflict is automatically resolved using these
combining algorithms. However, reporting the conflicts can help
the administrator to discover the hidden errors in the policy.More-
over, the conflicts in a XACML policymay lead to several security
problems such as safety problem (where a user can access to
resources which truly forbidden for the user in the policy) [19,32]
and attribute hiding attacks (where a user is able to obtain more
favorable authorization decision by hiding some of her attributes)
[12,33].

The response time of an access request evaluation largely
depends on the number of rules, policies, and policy sets in a
XACML policy [17,25]. Redundancy in a policy can adversely
affect the efficiency of the policy evaluation as it increases the
policy length. The complex syntax of XACML policies raises the
chanceof redundancy among rules, policies, andpolicy sets.More-
over, detection and removal of such redundancies are probably
very complicated due to the fact that one rule (policy or pol-
icy set) may overlap with multiple other rules (policies or policy
sets).

In this section, we employ our framework to define two pair-
wise anomalies in anXACMLpolicy: conflict and redundancy.We
concentrate on intra-policy anomalies where there is an anomaly
between two rules within the same policy. Similarly, we extend
our solution to analyze inter-policy anomalies. Rule r1 is conflict-
ing with rule r2 if there are some requests that match both rules
while they have different effects. Rule r1 is redundant with rule
r2, if every request that could match r1 is matched by r2. Accord-
ingly, the definition of conflicting and redundancy is based on two
pairwise rule relationships subset and overlap, respectively. Now
using above definitions, we define the conflicting and redundancy
among rules within a policy as

no_subset_rule(R1, R2) ← rule(R1, P,) , rule(R2, P,) ,

request(Q),

R1 �= R2,match_rule(R1, _, _, Q),

not match_rule(R2, _, _, Q),

redundancy(R1, R2) ← rule(R1, P, E1), rule(R2, P, E2),

R1 > R2, E1 = E2,

not no_subset_rule(R1, R2),

conflict(R1, R2) ← rule(R1, P, E1), rule(R2, P, E2),

request(Q), R1 �= R2, E1 �= E2,

match_rule(R1, _, _, Q),

match_rule(R2, _, _, Q),

where term no_subset_rule defines pairwise non-inclusive rules
within a policy. This helps us to detect inclusive rules which forms
the redundancy anomaly. Solving a combination of the above pro-
gram with �xacml ∪ �match ∪ �all_requests generates all existing
pairwise conflicts and redundancies in theXACMLprogram.Note
that the pairwise redundancy and conflict between policies (policy
sets) are specified by a similar method.

4.3 Total redundancy and reachability

In the previous section, we defined mutual (simple) anomalies
between two rules within a policy.More generally, an anomaly can
occur between a rule and a set of other rules, called total anomaly
[8,30]. We define that a rule is totally redundant if a subset of
higher priority rules covers this rule. In otherwords, a rule is totally
redundant if every request matched by this rules is also matched
by other rules in the policy. We formulate this definition in ASP as

match_by_others(R, Q) ← rule(R, P, _), rule(R2, P, _),

request(Q), R > R2,

match_rule(R, _, _, Q),

match_rule(R2, _, _, Q).

no_total_redundancy(R) ← rule(R, _, _), request(Q),

match_rule(R, _, _, Q),

not match_by_others(R, Q).

total_redundancy(R) ← rule(R, _, _),

not no_total_redundancy(R).

Now we generalize such redundancy by defining unreachabil-
ity. A rule is unreachable if there is no request matched by it.
Clearly, a redundant rule is unreachable, but an unreachable rule
may not be redundant as we defined the redundancy in the scope
of a policy. We specify an unreachable rule in ASP as

reachable_rule(R) ← rule(R, _, _), request(Q),

match_policyset(ps0, _, _, Q),

unreachable_rule(R) ← rule(R, _, _), not reachable_rule(R).

We use a similar method to detect unreachable policies and
policy sets. Removing an unreachable rule (policy and policy set)
has no effect on the semantics of a policy. Thus, the discovery
of such rules (policies and policy sets) helps the administrator to
remove them and improve the efficiency of the policy analysis.

4.4 Usefulness and completeness

A rule (policy/policy set) is useful if there is a request matched by
such rule (policy/policy set). For example, if the conjunction of the
condition and target components of a rule is a contradiction, such
a rule never matches any request and is useless. Note that there
is a subtle difference between uselessness and unreachability. An
unreachable rule might be useful but covered by other rules. We
formally define a useful and useless rule as

useful_rule(R) ← rule(R, _, _), request(Q),

match_rule(R, _, _, Q).

useless_rule(R) ← rule(R, _, _), not useful_rule(R).

A XACML policy is complete if it matches every request gen-
erated by �all_requests . Similarly, a XACML policy is incomplete
if there is a request which is not matched by the policy. An incom-
plete policy might lead to a security problem when an attacker
can compromise such incompleteness to gain unauthorized access

123

Analyzing XACML policies using answer set programming 473

[28]. For example, an attacker can obtain an access by generating a
query such that there is no response to the query in the policy. Con-
sequently, an application with a default policy of Permit will allow
the attacker to access the system. Thus, although the completeness
property of a policy seems to be an excessive requirement, a pol-
icymaker needs to know the incompleteness of the policy. We
express the completeness and incompleteness properties as

incomplete(Q) ← request(Q),not match_policyset(ps0, _,, Q),

complete ← not incomplete(_),

where term incomplete(Q) presents thewitnesses of incomplete-
ness as a list of requests which are not matched by the XACML
policy.

4.5 Policy subsumption, morphism, and disjointness

Hughes and Bultan [20] define a partial ordering relation among
XACMLpolicies, called subsumption. Accordingly, XACMLpol-
icy p1 subsumes policy p2 if and only if policy p2 always returns a
decision identical to the decision provided by p2 [33].We formally
express the subsumption relation between two policies specified
using our framework as

no_subsume(P1, P2, Q) ← request(Q), P1 �= P2, E1 �= E2,

match_policyset(P1.Root, _, E1, Q),

match_policyset(P2.Root, _, E2, Q),

subsume(P1, P2) ← P1 �= P2,

not no_subsume(P1, P2, _),

where terms P1.Root and P2.Root defines the identifiers of the
root policy set in p1 and p2, respectively. Also, if there is no
subsumption relation between two policies, the term no_subsume
shows all requests for which the decisions returned by p1 and p2
are different.

Two XACML policies are isomorphic if and only if they return
identical decision for every request. The main difference between
isomorphic and subsumption is that two isomorphic policies must
have the same coverage, while in subsumption, the coverage of
the first policy is a subset of the second. Thus,

isomorphic(P1, P2) ← subsume(P1, P2), subsume(P2, P1).

Two XACML policies are disjoint if and only if they always
return different decisions for every access request. In other words,
two policies are disjoint if and only if there is no request such that
the policies return an identical decision for such request. Like-
wise the previous properties, we first specify the negation of the
property and then if there is no evidence for proving its negation,
the property is satisfied. We specify the disjointness between two
XACML policies as

no_disjoint(P1, P2, Q) ← request(Q), P1 �= P2, E1 = E2,

match_policyset(P1.Root, _, E1, Q),

match_policyset(P2.Root, _, E2, Q).

dis joint(P1, P2) ← P1 �= P2,

not no_disjoint(P1, P2, _).

Note that we decouple the specifications of a policy from the
matching procedure. Thus, in order to check the subsumption,
isomorphism, and disjointness of two XACML policies, we first
transform the policies into ASP using the method described in
Sect. 3.3 to obtain two programs �xacml1 and �xacml2. Now
we solve a combination of the above definitions with �xacml1 ∪
�xacml2 ∪ �match ∪ �all_requests to verify the property. More-
over, for solving subsumption, isomorphism, and disjointness
programs, we must assign a different set of identifiers to the
rules/policies/policy sets within two XACML policies during the
policy transformation.

4.6 Change impact detection

Once an access control policy is defined for an organization,
administrators often need to update the policy because of new
requirements. Thus, administrators need to analyze any uninten-
tional effect of the changes in the policy. The main objective of
a change impact detection problem is to present all differences
of the decisions returned by the original policy after applying the
changes.

We convert the change impact detection problem into the
subsumption problem discussed in the previous section. To this
end, we generate two XACML policies, the original without the
changes and the new policy including the changes. Solving the
subsumption problem for these two policies reports all requests
that the decisions of the original policy have been changed for
them.

5 Implementation and evaluation

In this section, we detail the steps taken to implement the pro-
posed framework and evaluate the performance of our approach
for analyzing various properties in XACML policies.

5.1 Prototype implementation

We have implemented our policy analysis framework in Java. As
shown in Fig. 2, the framework consists of two main components:
policy translation and property analysis. The translation module
takes either a XACML policy (supports both versions 2.0 and 3.0)
or a request context in XML format as an input and generates
the corresponding ASP programs, as described in Sect. 3. This
module utilizes the Java Architecture for XML Binding (JAXB)
API5 to parse the policies and construct the corresponding ASP
programs. The property analysis module takes the ASP programs
obtained from the translation module and utilizes Clingo to verify
the properties described in Sect. 4. We specified all of these prop-
erties with around 70 ASP rules in 300+ lines of ASP code. The
result of the verification is shown as a set of witnesses in the form
of answer sets.

5 https://jaxb.java.net/.

123

https://jaxb.java.net/

474 M. Rezvani et al.

5.2 Experimental environment

We assume that a policy administrator employs our tool to vali-
date the properties for a policy update. The main objective of the
experiments is to investigate the efficiency and effectiveness of
our tool for validating the policy properties. We divide the prop-
erties described in Sect. 4 in six categories: (1) query matching
which checks the policy against a simple request specified by val-
ues for attributes; (2) scenario finding which checks the policy
against a complex query; (3) intra-policy anomaly which checks
the anomalies for a rule with other rules within a policy. These
anomalies consist of simple shadow, simple redundancy, correla-
tion, generalization, total redundancy, usefulness, and reachability
of a rule; (4) inter-policy anomaly which checks these anomalies
for a policy with other policies within a policy set; (5) refinement
which checks the subsumption and isomorphism between two
XACML policies. Note that the change impact detection property
can be evaluated using the refinement category as such property
can be simply converted into the subsumption (as we discussed in
the previous section.); and (6) redundancywhich reports all rules
totally covered by others in a XACML policy.

In all experiments, we evaluate the processing time of ground-
ing and solving for checking the above properties over each
XACML policy. We also conduct our experiments by using both
real-world datasets and synthetic datasets generated with param-
eters similar to the real-world dataset. All the experiments were
conducted on UNSW Leonardi Cluster6 in which each node con-
sists of a 2.30 GHz processor core with 8 GB memory running
CentOS Linux. We also utilize Clingo 4.5.4 for both the ground-
ing and solving the ASP programs.

5.3 Efficiency of policy analysis

In order to evaluate the efficiency of our policy analysis approach,
we generate synthetic policies based on a real-world security
policy called Continue-a, used in [14] and designed for a real-
world Web application for conference management. It consists
of 298 rules, 266 policies, and 111 policy sets. We also con-
duct all the experiments over both XACML 2.0 and 3.0. Note
that the Continue-a policies for two versions are not identical as
we obtained them from different sources. We generate the syn-
thetic policies by randomly removing and replicating the rules,
policies, and policy sets within the original policy. Each experi-
ment is repeated over 100 randomly generated policies, and then,
the results are averaged. For each policy, the translation module in
our tool generates the corresponding ASP programs for both the
policy and all the six properties. Since there are some parameters
in the properties, such as attribute values, rule number, or policy
number, we again repeat the experiment 100 times to randomly
assign values to these parameters and average the results.

Figure 3a, b, respectively, shows the processing time of the
matching properties for XACML 2.0 and 3.0. As one can see, in
both versions our approach performs the query matching faster
than the scenario finding. This is due to the fact that the number of
requests in a scenario is more than the number in a simple query.
Note that the scenario finding reports every request whichmatches

6 http://leonardi.unsw.wikispaces.net/.

200 400 600 800 1000
0

1

2

3

(a)

200 400 600 800 1000
0

1

2

3

(b)

Fig. 3 Performance of matching a simple and complex query. a
XACML V2. b XACML V3

0 500 1000
0

5

10

15

0 500 1000
0

5

10

15

(a) (b)

Fig. 4 Performance of detecting intra- and inter-policy anomalies. a
Intra-policy anomalies. b Inter-policy anomalies

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

(a) (b)

Fig. 5 Performance of policy refinement and total redundancy. a Policy
refinement. b Total redundancy

the scenario. Thus, the tool needs to check all requests specified
in the scenario. Comparing two plots in Fig. 3 shows that the
querymatching inXACML2.0 is significantly faster than 3.0. This
can be explained by the fact that the target structure in XACML
3.0 is more complex than the construct in 2.0 which allows an
administrator to define its own attribute types. The figure also
shows that the processing time of the scenario finding in XACML
2.0 raises more sharply than the processing time in 3.0. This is
because the fact that the number of attribute values in Continue-a
2.0 is around double that of the number in the version 3.0. This
considerably raises the number of requestswithin a scenariowhich
leads to a significant increase in the number of atoms generated
during the grounding process. For example, the number of atoms
obtained for a policy with 900 rules in version 2.0 is several orders
of magnitude more than the atoms for the same policy in version
3.0.

Figure 4a, b illustrates the processing time of detecting intra
and inter-policy anomalies, respectively. The results show that the
processing time of the anomaly detection for XACML 2.0 signifi-

123

http://leonardi.unsw.wikispaces.net/

Analyzing XACML policies using answer set programming 475

cantly rises as the number of rules increases in the policy. This is an
artifact of a large number of attribute values in this version. Note
that increasing the number of attribute values exponentially raises
the number of requests generated in the �all_requests program.

Figure 5a, b shows the results of checking the policy refinement
and total rule redundancy properties, respectively. Since the trend
is similar to Fig. 4, we instead show the cumulative distribution
function (CDF) when the policy length increases.

5.4 Effectiveness of policy analysis

In this section, we evaluate the effectiveness of our approach
for detecting unnecessary rules, policies, and policy sets in sev-
eral real-world XACML policies: FreeCS, Pluto, Continue-a, and
Continue-b used in [4], KMarket [3], and AU2EU [2]. A rule
(policy or policy set) is unnecessary if it is shadowed, redundant,
useless, or unreachable, as described in Sect. 4. Clearly, an unnec-
essary rule (policy or policy set) can be removed from a policy
without changing the intention of the policy. Note that discovery
and removal of the unnecessary elements can directly improve the
performance of policy evaluation as the response time of evaluat-
ing an access request significantly depends on the policy length,
as shown in Fig. 3. Another objective of the effectiveness analysis
in this section is to detect isomorphic policy sets within a XACML
policy. This can help an administrator to detect some hidden errors
including the replicated segments.

Table 1 reports the number of unnecessary rules (policies or pol-
icy sets) and isomorphisms in the real-world policies. The results
show that around one-third of the rules and half of the policies are
unreachable in both Continue-a and Continue-b. These unreach-
able policies are well distributed within the policy sets as there is
no unreachable policy set in these policies. The existence of such
large number of unreachable rules and policies is often due to an
administrator inserting general rules in the middle of the policy
to implement some update requirement. The results also report 16
shadowed policies in Continue-b and eight redundant rules in both
Continue-a and Continue-b. In order to resolve the unreachability,
redundancy, and shadow anomalies, an administrator can simply
remove the elements. Note that our policy analysis tool reports
these anomalies along with all details about the elements involved
to facilitate the resolution procedure.

In order to evaluate the number of Isomorphic policy sets,
we check the isomorphic property (specified in Sect. 4.5) for
all possible permutation of the XACML policy with two policy
sets. For example, since the number of policy sets in Continue-a
(and similarly in Continue-b) is 111, we need to check the iso-
morphic property for 111 ∗ 110 = 12210 permutations for this
policy. Table 1 reports that around 28% (one can see in table that
there are 3486 isomorphic pairs and the isomorphic percentage is
3486/12210 ∗ 100 = 28.5%) of the policy sets in Continue-a and
Continue-b are mutually isomorphic. This shows that there are
many replicated segments in both policies and administrator can
reduce the policies’ lengths by removing the replicated segments.
Finally, the results show that these two policies are incomplete as
they have no decision for 72 requests. An administrator can take
the advantage of the completeness analysis to improve the pol-
icy by defining a clear response for these 72 access requests and
consequently complete the policy.

5.5 Efficiency of policy transformation

In this section, we compare the efficiency of our policy translation
against two other approaches proposed for translating a XACML
policy into ASP. There are several attempts to utilize the expres-
siveness of ASP for XACML analysis [4,7,22,28,29]. Lee et al.
[22] extend the translation method proposed by [4] for XACML
3.0, and they have used a very similar approach for the policy
translation. The translation method proposed in [7,28] is techni-
cally similar to [29], and the authors only extend the translation for
a few policy properties. Therefore, we compare our policy transla-
tion method against two methods proposed in [22,29], and we call
them Ramli and Lee, respectively. To this end, we employed the
XACML2ASP7 tool which is an implementation of Lee published
by authors. For theRamli policy translation, there is no implemen-
tation proposed by authors. Thus, we have implemented the policy
translation and used our implementation in the experiments.

In order to compare the performance of our policy translation
against Ramli and Lee, we generate synthetic XACML policies
using a similar method presented in Sect. 5.3. After creating each
policy, we utilize these three policy translation methods to obtain
the corresponding ASP programs for the XACML policy. We then
use Clingo to ground and solve the ASP programs. The efficiency
metrics we collected during the grounding and solving contain all
the time parameters reported by Clingo and some metrics related
to the size of the grounded program including the number of atoms
and the number of rules. We also measured the translation time
and the number of lines in the ASP program generated for each
policy translation method.

Figure 6 reports the comparison between the performance
results of our algorithm against Lee and Ramli based on vari-
ous performance metrics extracted during policy translation, ASP
grounding, and solving. As we mentioned, the first step of this
experiment is to translate a XACML policy into an ASP pro-
gram. The performance of this step is evaluated based on the
lines of code in the ASP program and the elapsed time of the
translation. The performance results of this step based on this two
metrics are shown in Fig. 6a, b, respectively. As one can see in the
results, our method outperforms both Lee and Ramli in terms of
translation efficiency. Moreover, Ramli generates ASP programs
with a huge number of lines comparing to other methods. This is
because the fact thatRamli employs an inefficient method to trans-
late the first-applicable combining algorithm. More specifically,
such translation for the first-applicable rule combining algorithm
in each policy needs n rules and O(n) terms in the body of each
rule, where n is the number of rules in the policy. This generates
an enormous number of rules in ASP programs as there are many
first-applicable terms in the original XACML policy. We can also
observe in Fig. 6b that the translation time for Lee dramatically
increases as the number of rules increases in the XACML policies.
This is due to the fact that Lee employs a policy translation algo-
rithm with a quadratic time complexity while both Ramli and our
translation algorithm are in linear time complexity. It is worth not-
ing that we cannot translate any policy with more than 5000 rules
using the XACML2ASP tool for Lee. Thus, we limit our experi-
ments to XACML policies with less than this number of rules.

7 http://reasoning.eas.asu.edu/xacml2asp/.

123

http://reasoning.eas.asu.edu/xacml2asp/

476 M. Rezvani et al.

Table 1 Effectiveness of our policy analysis over real-world XACML policies

Base policy Rules Policies Policy sets
SH RE UR # RE UR # UR IS IC

FreeCS 2 1 0 1 1 0 0 1 0 0 ×
KMarket 5 4 6 1 1 0 0 1 0 0 ×
AU2EU 6 0 6 4 3 1 1 1 0 0 ×
Pluto 21 0 0 0 1 0 0 1 0 0 ×
Continue-a 298 0 8 197 266 10 165 111 0 3486 72

Continue-b 306 16 8 205 266 10 165 111 0 3486 72

The number of rules (policies, policy sets) is indicated as #, shadow anomalies (SH), redundancies (RE), unreachable elements (UR), isomorphisms
(IS), and incompleteness (IC)

In the next step of this experiment, we used Clingo to ground
and solve the ASP programs generated in the first phase (policy
translation step). The results reported in the remaining plots in
Fig. 6c–i are extracted from the output of the Clingo tool when
we ground and solve the ASP programs. As one can see in the
figures, our method outperforms both Lee and Ramli in all effi-
ciency metrics for grounding and solving except for the reading
and ground times where our method and Lee provides very sim-
ilar performance values. It is clearly shown that Ramli presents
an inefficient grounding and solving comparing other methods.
This can be explained by the fact that Ramli uses a very inefficient
policy translation, particularly for the first-applicable combining
algorithm. Such issue is also illustrated in Fig. 6a where the lines
of code in the ASP programs generated by Ramli dramatically
increase as the number of rules in the policies raises.

6 Discussion

An important benefit of the proposed approach is to specify a wide
range of policy properties. However, some security properties,
such safety and availability, need a dynamic analysis framework.
An interesting research issue is to investigate the possibility of
applying our method for dynamical analysis of XACML policy
properties. Since our approach provides amodular specification by
decoupling the policy specification from policy evaluation, there
is a potential to supplement our approach for such analysis.

As shown in Sect. 4.2, our approach can detect various types of
anomalies including redundancies and conflicts by generating all
possible pairwise anomalies in a XACML program. However, an
administrator still needs a mechanism to resolve such anomalies.
One idea to provide such mechanism is to leverage the expressive-
ness of the ASP language to obtain the optimum and anomaly-free
policy from an anomalous XACML policy. It is clear that defining
such an optimization problem is the main challenge in developing
such a mechanism that we leave for future work.

An intrinsic problem in ASP is to express arithmetic con-
straints which can lead to generating a large number of clauses.
We addressed this challenge by resorting to an external Python
implementation. More specifically, we employed a general func-
tion implemented in Python for supporting wildcard symbols, the
complex composition operators, and various matching functions
introduced in XACML 3.0, such as regular expressions and both

integer and real linear arithmetic (as explained in Sect. 3.4). One
can argue that using such external implementation reduces the
formality of our specification and verification model. It is to be
noted that such an issue is only in the case a non-deterministic
external function is employed in the specification [16]. Moreover,
all of our external functions implemented in Python are deter-
ministic in which when each function is called multiple times
with the same arguments during grounding, it returns the same
values.

7 Related work

Policy analysis including anomaly detection in traditional access
control policies, such as firewalls, has been extensively studied in
the research community [5,18,34]. Al-Shaer and Hamed present a
set of algorithms to discover simple pairwise anomalies in cen-
tralized and distributed Firewall rules [5]. Inconsistencies and
inefficiencies amongmultiple rules are treated in [30,34]. Recently
we proposed an anomaly-free network policy composition for
software-defined networking (SDN) [31]. Due to the complex-
ity of the syntax of the XACML policies, directly applying these
approaches to XACML is not suitable [19].

Many research efforts have been devoted to XACML policy
analysis [10,14,19,24,26,27]. Fisler et al. [14] proposed a policy
analysis tool, called Margrave which represents the policies by
multi-terminal binary decision diagrams (MTBDDs) to check two
properties: change impact analysis and query evaluation. XAna-
lyzer [19] is another BDD-based solution to detect and resolve
policy anomalies including redundancy and conflicts. Bauer et al.
[10] proposed a data mining approach to detecting and resolving
inconsistencies in access control policies. EXAM [24] is a policy
analyzer toolwhich integrates the SAT-solver-based andMTBDD-
based approaches to checking XACML policy properties such as
query analysis and policy similarity. Comparedwith our approach,
these solutions are limited to a subset of policy properties. More-
over, theBDD-based approaches are limited toXACML2.0, while
our approach supports both versions 2.0 and 3.0.

There are several works presenting XACML policy analysis
by using different types of formal languages. Turkmen et al. [33]
employed satisfiability modulo theories (SMT) as the reasoning
mechanism to check various properties in policies. Kolovski et
al. [21] specified XACML using description logics to analyze

123

Analyzing XACML policies using answer set programming 477

0 1000 3000 5000
0

0.5

1

1.5

2

2.5 105

(a)

0 1000 3000 5000
0

50

100

150

200

(b)

0 1000 3000 5000
0

500

1000

1500

2000

(c)

0 1000 3000 5000
0

0.01

0.02

0.03

0.04

0.05

(d)

0 1000 3000 5000
0

500

1000

1500

2000

(e)

0 1000 3000 5000
0

0.1

0.2

0.3

0.4

0.5

(f)

0 1000 3000 5000
0

0.1

0.2

0.3

0.4

0.5

(g)

0 1000 3000 5000
0

5

10

15 104

(h)

0 1000 3000 5000
0

5

10

15 104

(i)

Fig. 6 Performance of the policy translation methods. a ASP lines of code. b Translation time. c Reading time. d Preprocessing time. e Grounding
time. f Solving time. g Unsat time. h Number of atoms. i Number of rules

properties such as policy comparison, verification, and query-
ing. Arkoudas et al. [6] proposed an SMT-based framework to
specify access control policies, such as XACML. The framework
checks various properties in a policy including consistency, cov-
erage, observational equivalence, and change impact. Although
these proposals show the potentiality of SMT for XACML analy-
sis, we employed ASP which provides a higher-level mechanism
for policy specification and verification.

There are several attempts to utilize the expressiveness of ASP
for XACML analysis [4,7,22,28,29]. The pioneering work pro-
posed by Ahn et al. [4] translates a XACML policy to an ASP
program. The work is restricted to XACML 2.0 and a few policy
properties such as query analysis. Ramli et al. [29] proposed a for-
mal representation of XACML3.0 inASP. They also extended this
work to analyze policies including completeness, conflicting, and
reachability [28]. Ayed et al. [7] provided a concrete implementa-
tion ofXACMLanalysis usingASP. Lee et al. [22] also formulated
XACML 3.0 in ASP and used ASP solvers to perform automated
reasoning about XACML policies. This work is restricted to only

query analysis. Our approach is different from these works in
four aspects. First, we provided a modular specification for both
XACML2.0 and3.0, inwhich the policy specification is decoupled
from policy evaluation. Second, we proposed a compact policy
transformation approach which largely improves the efficiency of
the policy analysis. For example, the translation method proposed
in [7,22,28,29] for the first-applicable rule combining algorithm
in each policy needs n rules and O(n) terms in the body of each
rule, where n is the number of rules in the policy. However, our
translation approach needs only two rules with exactly six terms
in the body of each rule, as shown in Sect. 3.3. This compact trans-
lation provides a promising efficiency for our policy analysis, as
presented in Sect. 5. Third, we specified a wide range of policy
properties proposed in the literature at the top of our framework.
Finally, a concrete implementation of the proposed solution and an
extensive evaluation demonstrate the efficiency and effectiveness
of our method. Thus, our methodmakes an additional step to show
the applicability of ASP for analyzing the security properties of
XACML policies.

123

478 M. Rezvani et al.

8 Conclusions

In this paper, we proposed a novel and formal framework to ana-
lyze XACML policies. We first presented a transformation of a
policy into an ASP program. Then, we specified a wide range of
policy properties using ASP which helps us to verify the proper-
ties against a XACML policy specified in ASP. We also showed
that our framework is general enough to express various proper-
ties in policies, such as query analysis, anomaly (redundancy and
conflict) detection, reachability, usefulness, completeness, sub-
sumption, morphism, and disjointness.

For future work, we plan to extend our approach to resolving
anomalies in a policy. This can find an optimal subset of the policy
which is anomaly-free while keeps the semantics of the original
policy. We also would like to extend our framework for analyzing
dynamic properties, such as safety and availability. Finally, we
plan to construct a formal semantics of XACML 3.0 and prove
that our transformation defines the XACML semantics in terms of
ASP semantics.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. eXtensible Access Control Markup Language (XACML) Version
3.0 (2013). http://docs.oasis-open.org/xacml/30/xacml-30-core-
spec-os-enpdf. Accessed Sept 2018

2. AU2EU: Authentication and authorisation for entrusted unions
(2015). http://www.au2eu.eu/. Accessed Sept 2018

3. WSO2 balana: The open source XACML 3.0 implementation
(2015). http://xacmlinfo.org/category/balana/. Accessed Sept 2018

4. Ahn, G.J., Hu, H., Lee, J., Meng, Y.: Representing and reason-
ing about web access control policies. In: Proceedings of the 2010
IEEE 34th Annual Computer Software and Applications Confer-
ence, COMPSAC ’10, pp. 137–146 (2010)

5. Al-Shaer, E.S., Hamed, H.H.: Discovery of policy anomalies in dis-
tributed firewalls. In: INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies,
vol. 4, pp. 2605–2616 (2004)

6. Arkoudas, K., Chadha, R., Chiang, J.: Sophisticated access control
via SMT and logical frameworks. ACM Trans. Inf. Syst. Secur.
16(4), 17:1–17:31 (2014)

7. Ayed, D., Lepareux, M.N., Martins, C.: Analysis of XACML
policies with ASP. In: 7th International Conference on New Tech-
nologies, Mobility and Security (NTMS) (2015)

8. Basile, C., Cappadonia, A., Lioy, A.: Geometric interpretation of
policy specification. In: Proceedings of the 2008 IEEE Workshop
on Policies for Distributed Systems and Networks, POLICY ’08,
pp. 78–81 (2008)

9. Basile, C., Cappadonia, A., Lioy, A.: Network-level access control
policy analysis and transformation. IEEE/ACMTrans. Netw. 20(4),
985–998 (2012)

10. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and resolving policy
misconfigurations in access-control systems. ACMTrans. Inf. Syst.
Secur. (TISSEC) 14(1), 2 (2011)

11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming
at a glance. Commun. ACM 54(12), 92–103 (2011)

12. Crampton, J., Morisset, C.: PTaCL: a language for attribute-based
access control in open systems. In: International Conference on
Principles of Security and Trust, pp. 390–409. Springer (2012)

13. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a
primer. In: ReasoningWeb. Semantic Technologies for Information
Systems, Lecture Notes in Computer Science, vol. 5689, pp. 40–
110 (2009)

14. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.:
Verification and change-impact analysis of access-control policies.
In: Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pp. 196–205 (2005)

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence
andMachineLearning.Morgan andClaypool Publishers, San Fran-
cisco (2012)

16. Gebser,M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo =ASP
+ control: Preliminary report. CoRR arXiv:1405.3694 (2014)

17. Griffin, L., Butler, B., de Leastar E, Jennings, B., Botvich, D.: On
the performance of access control policy evaluation. In: 2012 IEEE
International Symposium on Policies for Distributed Systems and
Networks (POLICY), pp. 25–32 (2012)

18. Hu, H., Ahn, G.J., Kulkarni, K.: Detecting and resolving firewall
policy anomalies. IEEE Trans. Dependable Secur. Comput. 9(3),
318–331 (2012)

19. Hu,H.,Ahn,G.J.,Kulkarni,K.:Discovery and resolution of anoma-
lies in web access control policies. IEEE Trans. Dependable Secur.
Comput. 10(6), 341–354 (2013)

20. Hughes, G., Bultan, T.: Automated verification of access control
policies using a SAT solver. Int. J. Softw. Tools Technol. Transf.
10(6), 503–520 (2008)

21. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control
policies. In: Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, pp. 677–686 (2007)

22. Lee, J., Wang, Y., Zhang, Y.: Automated reasoning about xacml 3.0
delegation using answer set programming. In: CEUR Workshop
Proceedings, CEUR-WS, vol. 1433 (2015)

23. Lifschitz, V.: What is answer set programming? In: Proceedings of
the 23rd National Conference on Artificial Intelligence, vol. 3, pp.
1594–1597 (2008)

24. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: EXAM: a compre-
hensive environment for the analysis of access control policies. Int.
J. Inf. Secur. 9(4), 253–273 (2010)

25. Liu, A.X., Chen, F., Hwang, J., Xie, T.: XEngine: a fast and scalable
XACML policy evaluation engine. SIGMETRICS ’08, 265–276
(2008)

26. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A rigorous frame-
work for specification, analysis and enforcement of access control
policies. IEEE Trans. Softw. Eng. 99, 1–1 (2017)

27. Mejri, M., Yahyaoui, H.: Formal specification and integration of
distributed security policies. Comput. Lang. Syst. Struct. 49, 1–35
(2017)

28. Ramli, C.D.P.K.: Detecting incompleteness, conflicting and
unreachability XACML policies using answer set programming.
CoRR, arXiv:1503.02732 (2015)

29. Ramli, C.D.P.K., Nielson, H., Nielson, F.: XACML 3.0 in answer
set programming. In: Logic-Based Program Synthesis and Trans-
formation, Lecture Notes in Computer Science, vol. 7844, pp.
89–105 (2013)

30. Rezvani, M., Aryan, R.: Analyzing and resolving anomalies in fire-
wall security policies based on propositional logic. In: IEEE 13th
International Multi Topic Conference, INMIC (2009)

123

http://docs.oasis-open.org/xacml/30/xacml-30-core-spec-os-enpdf
http://docs.oasis-open.org/xacml/30/xacml-30-core-spec-os-enpdf
http://www.au2eu.eu/
http://xacmlinfo.org/category/balana/
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1503.02732

Analyzing XACML policies using answer set programming 479

31. Rezvani, M., Ignjatovic, A., Pagnucco, M., Jha, S.: Anomaly-free
policy composition in software-defined networks. In: IFIP Net-
working 2016 Conference (Networking 2016), Vienna, Austria
(2016)

32. Tschantz, M.C., Krishnamurthi, S.: Towards reasonability prop-
erties for access-control policy languages. In: Proceedings of the
Eleventh ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’06, pp. 160–169 (2006)

33. Turkmen, F., den Hartog, J., Ranise, S., Zannone, N.: Formal analy-
sis of XACMLpolicies using SMT. Comput. Secur. 66(Supplement
C), 185–203 (2017)

34. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.N., Mohapatra, P.:
FIREMAN: a toolkit for firewall modeling and analysis. In: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy,
pp. 199–213 (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Analyzing XACML policies using answer set programming
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 XACML policy language
	2.2 XACML 2.0 versus 3.0
	2.3 Answer set programming

	3 Mapping XACML into ASP
	3.1 Solution overview
	3.2 Request transformation
	3.3 Policy elements transformation
	3.4 Match transformation

	4 Policy analysis
	4.1 Query analysis
	4.2 Policy anomaly detection
	4.3 Total redundancy and reachability
	4.4 Usefulness and completeness
	4.5 Policy subsumption, morphism, and disjointness
	4.6 Change impact detection

	5 Implementation and evaluation
	5.1 Prototype implementation
	5.2 Experimental environment
	5.3 Efficiency of policy analysis
	5.4 Effectiveness of policy analysis
	5.5 Efficiency of policy transformation

	6 Discussion
	7 Related work
	8 Conclusions
	References

