
International Journal of Information Security (2019) 18:257–284
https://doi.org/10.1007/s10207-018-0415-3

REGULAR CONTRIBUT ION

Dynamic malware detection and phylogeny analysis using process
mining

Mario Luca Bernardi1 ·Marta Cimitile2 · Damiano Distante2 · Fabio Martinelli3 · Francesco Mercaldo3

Published online: 29 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In the last years, mobile phones have become essential communication and productivity tools used daily to access business
services and exchange sensitive data. Consequently, they also have become one of the biggest targets of malware attacks. New
malware is created everyday, most of which is generated as variants of existing malware by reusing its malicious code. This
paper proposes an approach for malware detection and phylogeny studying based on dynamic analysis using process mining.
The approach exploits process mining techniques to identify relationships and recurring execution patterns in the system call
traces gathered from a mobile application in order to characterize its behavior. The recovered characterization is expressed in
terms of a set of declarative constraints between system calls and represents a sort of run-time fingerprint of the application.
The comparison between the so defined fingerprint of a given application with those of known malware is used to verify:
(1) if the application is malware or trusted, (2) in case of malware, which family it belongs to, and (3) how it differs from
other known variants of the same malware family. An empirical study conducted on a dataset of 1200 trusted and malicious
applications across ten malware families has shown that the approach exhibits a very good discrimination ability that can be
exploited for malware detection and malware evolution studying. Moreover, the study has also shown that the approach is
robust to code obfuscation techniques increasingly being used by nowadays malware.

Keywords Malware detection · Malware evolution · Malware phylogeny · Security · Process mining · Linear temporal logic ·
Declare

1 Introduction

Over the last years, the growth in the number of applications
for mobile phones has changed the way to communicate and
to access information. Given their increasing capabilities,
mobile phones are currently used to access sensitive data,

B Marta Cimitile
marta.cimitile@unitelmasapienza.it

Mario Luca Bernardi
m.bernardi@unifortunato.eu

Damiano Distante
damiano.distante@unitelmasapienza.it

Fabio Martinelli
fabio.martinelli@iit.cnr.it

Francesco Mercaldo
francesco.mercaldo@iit.cnr.it

1 Giustino Fortunato University, Benevento, Italy

2 University of Rome Unitelma Sapienza, Rome, Italy

3 Institute for Informatics and Telematics, CNR, Pisa, Italy

such as personal information and email, and to perform a
wide range of activities, like paying a bill and checking a
bank account. As a consequence, they have become target of
continuous attacks obtained through an increasing number
of malicious software that becomes everyday more aggres-
sive and sophisticated [23]. This malicious code is usually
generated from existing malicious software [23] using some
automatic tools that generate newmalware from libraries and
code borrowed from robust networks used for malware code
exchange. In response to this phenomenon, a wide range of
antimalware programs have been developed to perform mal-
ware detection and to study malware phylogeny. Malware
detection aims to identify malware (i.e., malicious software)
in software applications [8].

Malware phylogeny analysis is meant to extract a model,
inspired by biological research, that highlights similarities
and relationships between a set of malware [19]. This model
can then be used to support the identification ofmalware evo-
lution trends, the individuation of new strategies to dissect
malware samples, and the discovery of software vulnerabil-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-018-0415-3&domain=pdf

258 M. L. Bernardi et al.

ities (e.g., the vulnerabilities present in an application may
be inherited by applications derived from it) [23,30].

In this paper, starting from the assumption that any mali-
cious behavior is implemented by specific sequences of
system calls, we propose an approach for malware detection
and malware phylogeny analysis that adopts process mining
techniques for the analysis of the system call traces generated
by an application. ProcessMining (PM) is a process manage-
ment technique for the analysis of business processes based
on event logs [43]. In our approach, we use PM to analyze
the system call traces of a mobile application, assuming that
similarities and derivations between system calls can be dis-
covered and modeled in the system call traces similarly to
what applies for business process activities in business pro-
cess logs. According to this, in our approach, we use PM
to derive a characterization of the behavior of a (trusted or
malware) mobile application from a set of system call traces
gathered from it in response to a set of operating system
events.

Weuse a tool calledDeclareMiner1 that allows to discover
a model from a set of traces collected from different runs
of the trusted/malware applications. This model captures the
behavior of the application characterizing and discriminating
the malware and supporting the study of its phylogeny.

Such model is expressed as a set of declarative constraints
between system calls using the Declare process modeling
language [34] and is named System Calls Execution Finger-
print (SEF).

Even if the proposed approach can be applied to all the
existing mobile platforms, in this work the focus is on the
Android platform as, according to recent survey [29], it is the
favorite target ofmobile threats. This is not surprising consid-
ering that in the smartphone operating system (OS) market,
Google’s Android extended its lead by capturing more than
80% of the total market in the fourth quarter of 2016 and
that in the same period the sales of smartphones worldwide
totaled 431 million of units [18]. Moreover, current solutions
to protect Android users are still inadequate. For example,
several antimalware adopt a signature-based malware detec-
tion approach requiring antimalware vendors to be aware of
newmalware code in order to identify their signatures (in the
form of fixed strings and regular expressions) and to send out
updates regularly. Furthermore, there are new techniques that
evade signature-based- detection approaches by including
various types of source code transformation and simple forms
of polymorphic attacks [37]. Malware detection in Android
is also affected by another problem: differently from antimal-
ware software on desktop operating systems, Android does
not permit to monitor file system operations. An Android
application, indeed, can only access its own disk space; as
such, an Android antimalware cannot access and verify the

1 http://www.win.tue.nl/declare/declare-miner/.

malicious code eventually downloaded and run at run-timeby
another application installed in the device. This problem has
been mitigated but not solved by Google with the introduc-
tion of Bouncer [33].When a new application is submitted to
the Google Play Store, Bouncer executes it in a sandbox for
a fixed-time window before making it available to users on
the official store. Consequently, Bouncer can detect malware
actions that happen in this time interval but cannot detect
the other malware actions that happen after this observation
period. However, since signature-based detection techniques
are evaded by attackers with new malware which is increas-
ingly aggressive, new techniques that go beyond to detect
malware software in Android devices are required.

With respect to existing approaches to malware detection
and phylogenymodel extraction, our approach introduces the
following novelties:

– the SEF model extracted to characterize a malware
behavior is obtained using a declarative constraint-based
language that allows exploiting a much wider range of
properties and relationships between system calls in sys-
tem call traces;

– the same model can be effectively used as a malware
fingerprint for both malware detection and phylogeny
analysis.

Finally, the approach is particularly suitable to be used as
an automatic verification step in the approval process per-
formed by application stores to ensure the security of the
published applications.

This paper is an extension of our earlier work presented
in [8,30]. With respect to these works, this paper presents:

– an integrated approach for both phylogeny analysis and
malware detection;

– a wider experimentation involving a larger set of appli-
cations belonging to an increased number of malware
families;

– a robustness analysis aimed at assessing the impact of
behavioral-preserving code transformations on the detec-
tion capability of our approach.

The rest of the paper is organized as follows. Section 2
describes the relatedwork. Section 3 presents the background
of our study. Section 4 presents the proposed approach. Sec-
tion 5 evaluates the effectiveness of the approach by testing
it on a dataset of 10 malware families and 1200 malicious
and trusted applications. Section 6 evaluates the robustness
of the approachwith regard to a set ofwell-known code trans-
formation techniques. Section 7 discusses threats to validity.
Finally, Sect. 8 provides some conclusive remarks for our
work.

123

http://www.win.tue.nl/declare/declare-miner/

Dynamic malware detection and phylogeny analysis using process mining 259

2 Related work

2.1 Malware detection

Several studies about malware detection have been presented
in the last years. They differ from each other for the features
(or characterization) used to discriminate between malware
and trusted applications. These features can be obtained with
static or dynamic analysis techniques.

2.1.1 Static methods

Static methods capture suspicious patterns from the code
or related artifacts (e.g., metadata) and consist in analyz-
ing malicious software without executing it. Some common
patterns used in static analysis include string signature, byte-
sequence n-grams, control flow graph, syntactic library call,
operational code frequency distribution. An approach which
considers control flow has been proposed in [39]. It is based
on AndroGuard [1], a tool that starting from the extraction
of mobile applications features allows training a one-class
Support Vector Machine and to extract permissions and con-
trol flow graphs from packaged Android applications. This
method has been tested on a collection of 2081 trusted appli-
cations and 91 malicious ones. The results show a very low
false negative rate but also a high false positive one. This
is due to the considered features i.e., permissions and con-
trol flow graph, that are susceptible to the trivial obfuscation
techniques. As demonstrated in [2,37] attackers are able to
write malicious code with the ability to evade the detec-
tion based on these kinds of features. This is the reason
why we resort to a dynamic approach system call based,
evaluating the proposed method on a real-world mobile mal-
ware dataset and using an obfuscated version of the samples
generated with the common morphing techniques. In [16],
the control flow to detect application communication vul-
nerabilities are also considered. In this study, ComDroid, a
tool to examine inter-application communication inAndroid,
is proposed. The tool is applied to analyze 20 applications
founding 34 exploitable vulnerabilities (12 of the 20 analyzed
applications have at least one vulnerability). The authors pre-
sented also several classes of potential attacks on mobile
applications: outgoing communication can put an applica-
tion at risk of Broadcast theft (including eavesdropping and
denial of service), data theft, result modification, and Activ-
ity and Service hijacking. An incoming communication can
put an application at risk of malicious Activity and Service
launches and Broadcast injection. With respect to the pro-
posed method, ComDroid is focused on the data-leakage
identification, i.e. the data exfiltration process. Differently,
we propose a mobile malware detector: as a matter of fact,
mobilemalware usually gather information from the infected
devices, but it also able to perform a plethora of harmful

actions (i.e., download at run-timemalicious packages and/or
send SMS to premium-rate numbers) that are not data leak-
age related. In addition, we evaluate a dataset composed of
1200 trusted andmalicious applications, while the ComDrod
tool is evaluated using 20 applications. Recently, the possibil-
ity of identifying the malicious payload in Android malware
using a model checking-based approach has been explored
in [5,31,32]. Starting from payload behavior definition, the
authors formulate logic rules and then test them by using a
real-world dataset composed ofRansomware,DroidKungFu,
Opfake families, and update attack samples. Despite these
approaches obtain high ratio in mobile malware detection,
authors starting from the payload behavior definition define
a set of logic rules that need themalware analyst experience in
order to be formulated. This is the reason why these methods
are not fully automated. Differently, the proposed method,
combining process mining and machine learning, does not
require the knowledge of the malware internals in order to
build a classifier. Several alternative techniques, considering
other features derived from static analysis, have been recently
investigated. For example, in [52], a signature-based analytic
system for Android malware automatic management, collec-
tion, analysis, and extraction, is proposed.

The approach is supported by a tool, called DroidAn-
alytics, that works at opcode level. In the testing phase,
DroidAnalytics detects 2475 Android malware from 102
different families with 327 of them being zero-day mal-
ware samples belonging to six families found in a dataset of
150,368Android applications. They also proposed amethod-
ology to detect zero-day malware that allowed them to
discover other three new malware families: AisRs (with 77
samples), AIProvider (with 51 samples) and G3app (with 81
samples). All families discovered are repackaged samples
from legitimate applications. As demonstrated in [49], the
opcode level based techniques are not able to reach a high-
performance detection ratio, for this reason, we propose a
method based on dynamic analysis able to be resistant to
the common obfuscation techniques and to obtain a higher
detection ratio. Starting from the consideration that mobile
malware is usually employed to gather sensitive information
from device, authors in [17] propose a compiler to uncover
usage of phone identifiers and locations. Here, a large set
of Android applications collected from the market are ana-
lyzed to identify a set of dataflow, structure, and semantic
patterns. As previously explained, DroidMOSS [53] adopts
a fuzzy hashing technique to effectively localize and detect
possible changes from app repackaging. The app similar-
ity measurement system developed by authors shows that a
range from 5 to 13% of app hosted on several third-party
marketplaces and the official Android Market are repack-
aged. In addition to this, 200 samples from each third-party
marketplace have been analyzed. Moreover, authors detect
whether the applications are repackaged from some official

123

260 M. L. Bernardi et al.

Android Market apps. These approaches focus on the differ-
ences between a trusted application and the same onewith the
malicious payload embedded. As discussed in [4,54] several
malware families are standalone, i.e., they do not derive from
trusted applications with the malicious payload embedded,
this is the reason why this approach cannot be able to detect
these kinds of threats. Concerning the static approaches,
even trivial obfuscation techniques (for example, junk code
insertion or code reordering) can be used to evade the detec-
tion techniques of this type of antimalware. The limits of
the static approaches are overcome by dynamic detection
approaches, which are usually more robust with respect to
the code obfuscation techniques currently employed by mal-
ware developers.

2.1.2 Dynamic methods

Dynamic methods observe the behavior of a malicious appli-
cation, while it is being executed in a controlled environment
(virtual machine, emulator, sandbox etc.) or using a real
device. These methods are more effective with respect to the
static ones and do not require the executable to be disassem-
bled. There are several studies proposing malware detection
techniques based on dynamic analysis of mobile applica-
tions and some of them are focused on the analysis of system
calls [11,13,21,24,38,40,42]. In [11], a method for detect-
ing mobile malware is proposed. The method is based on
three metrics respectively evaluating the (i) occurrences of a
reduced subset of system calls; (ii) a function of a subset of
permissions which the application requires and (iii) the set of
combinations of permissions. The experimentation considers
a sample of 200 real-worldmalicious apps and200 real-world
trusted apps scoring a precision of 74%. Another approach
to the malware detection based on the system calls analy-
sis is proposed by CopperDroid [38]. Authors customize the
Android emulator to track syscalls. With respect to these
methods, our proposed approach does not require any cus-
tomization of the Android kernel, this is the reason why this
method is applicable immediately by the user. In addition,
our method is able to track mobile malware phylogeny. Sim-
ilarly, in [47], the authors use an emulator to analyze syscalls.
The method was validated on a set of 1600 malicious apps
and was able to find the 60% of the malicious apps belong-
ing to one sample (the Genoma Project) and the 73% of the
malicious apps included in the second sample (the Contagio
dataset). Differently, we evaluate our method using the most
recent Android malware dataset available for research pur-
pose i.e., the Drebin one [4,41] obtaining a precision equal to
0.94 in the identification of themost recent threats inAndroid
malware landscape. Also in [24] read/write operations sys-
tem calls are checked in order to detect malicious behavior.
The authors used a customized kernel on a real device but

the evaluation is performed on a synthetic dataset composed
of 2 malicious applications developed by the authors.

In [42], the response of an application is based on a subset
of system calls generated from bad activities in background
that are activated by user interfaces events. The experimenta-
tion is based on the use of an Android emulator and included
2 malicious samples of the DroidDream family.

An approach aiming at detecting anomalies in theAndroid
system is also proposed in [40]. Here, the authors use the
view fromLinux-kernel such as network traffic, system calls,
and file system logs. Basically, authors take a look on how
Android-based smartphones can be secured. Starting from
the assumption that the Android kernel is derived from the
Linux one, they evaluate a set of Linux executable files (not
Android samples), i.e., authors do not evaluate Android mal-
ware. In [21], amethodbasedon the analysis of an application
log and of a set of system calls related to management of file,
I/O and processes is introduced. The evaluation phase consid-
ers 230 applications mostly downloaded from Google Play.
From these, 37 applications steal personal sensitive data, 14
applications execute exploit code and 13 applications aim
to damage the system. Differently, from our approach, the
above discussed one depends on the Android version (an
Android 2.1 based modified ROM image is used). This lim-
its the applicability of the approach since requires a patch to
running kernel.

DroidScope [50] uses a customized Android kernel to
reconstruct semantic views with the aim to collect detailed
applications execution traces. The obtained detection rate is
of 100%, but it is evaluated only on two Android malicious
applications. Also, in this case, anAndroid kernel customiza-
tion is required limiting the applicability.

Authors in [48] propose an Android malware detection
mechanism which is based on feature-network. The usage
of these features (i.e., ingoing and outgoing information) is
more related to the data-leakage information than to solve
the malware detection issue.

Arora et al. [3] analyze the network traffic features build-
ing a rule-based classifier to detect Android malware. Their
experimental results suggest that the approach is accurate and
it detects more than 90% of the traffic samples. The work is
focused only on Android malware which is remotely con-
trolled or leaks information to some remote server, for a total
of 27 different families.

In [14], a method for detecting Android malware is pre-
sented. The method is based on the analysis of system calls
sequences and is tested obtaining an accuracy of 97% in
mobile malware identification. They use machine learning
to automatically learn 1, 2 and 3-gram from syscall traces.
Conversely, the proposed approach considers, using process
mining techniques, a richer behavioral model based on rela-
tionships and recurring execution patterns among system call
within traces. Moreover, our method is also able to track

123

Dynamic malware detection and phylogeny analysis using process mining 261

the malware phylogeny and is robust with respect to code
obfuscation techniques, increasingly being used by nowa-
days malware.

Looking at the discussed dynamic malware detection
methods, we can generalize that dynamic analysis is time
intensive and resource consuming, thus increasing the scal-
ability issues.

In order to mitigate this limitation, we gather only the
system calls generated by the application under analysis in
response to system events.

Finally and differently from our approach, all the dis-
cussed methods (with the exception of the one in reference
[14]) require to recompile the kernel.

2.2 Malware phylogeny

Several studies are focused on malware phylogeny. As an
example, in [26] a method to realize phylogeny models is
introduced. In this method, some features, called n-perms,
are used to match possibly permuted code and allow to
obtain a malware tree. Looking to the obtained malware
tree authors suppose that phylogeny models based on n-
permsmay support the identification of newmalware variants
and the reconciliation of inconsistencies in malware naming.
Compared with our proposed approach, this method is static
and hence does not require malware execution. Moreover,
with respect to the proposed approach, this method is less
robust to code modifications that cannot be represented as
permutations.

In [46], a framework defining malware evolution relations
in terms of path patterns on derivation graphs is proposed.
The limitation of this approach is that the model’s definition
of source code excludesmachine-generated code.This is very
restrictive considering that usually malicious code is auto-
matically generated from the existingmalicious applications.
Our method considers the syscall gathered from the applica-
tion under analysis keeping trace of the machine-generated
code behavior.

Another approach allowing to find similarities and dif-
ferences between malware variants and strains is proposed
in [15]. It uses some clustering algorithms to obtain a tax-
onomy of the malware at hand. Unfortunately, a formal
comparison to a reference phylogeny is missed. In [28], a
data-centric approach based on packets inspections aiming to
automatically identify and quantify the shellcode similarity,
is proposed. This approach is used to create a shellcode phy-
logeny for a given vulnerability and differs fromours because
it is mainly based on a behavior analysis. Researchers in [27]
collect logs derived from instructions executed, memory and
register modifications in order to build the phylogenetic tree.
In addition, they show that network resources weremore use-
ful for visualizing short nop-equivalent code metamorphism
than trees. They consider execution traces of alternatingAPIs

and user procedures, whereas system calls traces consid-
ered in our method are not affected by API version. In [2],
a dynamic and static analysis approach based on multiple
kernels learning to define a new malware classification is
proposed. This framework places a similarity metric in some
different view adopting a kernel. Moreover, it employs mul-
tiple kernels learning to discover a weighted combination of
data sources achieving the best classification accuracy of a
support vector machine classifier. This approach cannot be
directly compared to our one since it proposes a framework
to improve classification accuracy rather than a detection
approach. However, it can be effectively integrated with our
approach in order to obtain better results.

3 Background

3.1 Mobile malware families

Malicious programs are frequently related to previous pro-
gramversions throughevolutionary relationships.Theknowl-
edge of these relationships can be useful for both construct-
ing a phylogeny model and supporting malware detection
through the analysis of newmalware based on the similarities
with the known ones [26]. In particular, malware applications
can be grouped into families. Each family defines a set of
behaviors and properties that, to a certain extent, are com-
mon to all its members. Starting from the analysis of security
announcements, threat reports, articles in researchers’ blogs,
and data published by existing mobile antimalware compa-
nies, in [54] a list of 49 Android malware families, with
their characteristics, is reported. The list of top 10 malware
families (i.e., the list of known malware families having the
highest number of known samples) is reported in Table 1,
with theirmain properties. For eachmalware family, the table
shows (i) the name of the family (first column), (ii) a brief
description (second column), (iii) the installation type (third
column), which refers to the way the malicious payload is
installed (’r’ for repackaging, ’s’ for standalone, and ’u’ for
the update attack), and (iv) the activation mechanism (fourth
column), i.e., the system events that activate the malicious
behavior.

Table 2 shows a list of the most relevant system events
that an application can receive during its life cycle and that,
according to several studies [25,54], are known to trigger
a malware payload most frequently. Looking at the table,
the first row represents the BOOT event, the most used
within existing Androidmalware. This is not surprising since
this event will be triggered and sent to all the applications
installed on an Android device as the system finishes its
booting process, a perfect time for a malware to kick off its
background services. By listening to this event, a malware

123

262 M. L. Bernardi et al.

Table 1 The top 10 malware families

Family Description IT AE

DroidKungFu 1–4 It installs a backdoor that allows attackers to access
the smartphone when they want and use it as they
please

r BOOT, BATT, SYS

Opfake It demands payment for the application content
through premium text messages

r MAIN

GinMaster It contains a malicious service with the ability to root
devices to escalate privileges, steal confidential
information and install applications

r BOOT

AnserverBot It repackages into the host app with two hidden apps r,u BOOT, NET, CALL

BaseBridge It sends information to a remote server running one
or more malicious services in background

r,u BOOT, SMS, NET, BATT

Kmin It is similar to BaseBridge, but does not kill
antimalware processes

s BOOT

Pjapps It is a Trojan horse that has been embedded on the
third-party applications and opens a back door on
the compromised device

r BOOT, SMS, BATT

Geinimi It has the potential to receive commands from a
remote server that allows the owner of that server
to control the phone

r MAIN

Adrd It is close to Geinimi but with less server side
commands

r BOOT, CALL

DroidDream It gains root access to device to access unique
identification information

r MAIN

can start itself without any intervention or interaction of the
user with the system.

Other events frequently used by malware writers are
the ACTION_ANSWER and NEW_OUTGOING_CALL events
(second row in Table 2): these events will be sent in broadcast
to the whole system (and all the running applications) when
a call is received or started.

Starting from existing malware, new variants are released
by malware writers to get as much mileage as possible from
the original code and to create new undetectable malware.
Therefore, malware variants are new strains and slightly
modified versions of a malware belonging to the same mal-
ware family. These malware variants include increasingly
sophisticated techniques for obfuscating malicious behavior
in order to elude detection strategies employed by current
antimalware products [54]. In particular, polymorphism is
one of the obfuscating techniques that are rapidly spreading
among malware targeting mobile applications [36].

For instance, the first version of DroidKungFu malware
was detected in June 2011. Successively, security researchers
detected the second version DroidKungFu2 and the third ver-
sion DroidKungFu3 in July and August 2011, respectively.

Finally, the fourth version DroidKungFu4 was detected
in October 2011. Similarly, to the previous generations of
DroidKungFu, the latest version is able to install a backdoor
that gives hackers full control of the mobile device. There-
fore, while previous versions of DroidKungFu retrieved

instructions from a remote “command and control” server
and stored theURL for the server in plain text,DroidKungFu3
and DroidKungFu4 encrypt the URL, making it harder
to identify and block them. Moreover, starting from this
version, the vulnerable code is encrypted, making more dif-
ficult to identify the malware [54]. Finally, starting from
DroidKungFu3, after installing the embedded payload, it is
masked as an official Google update, thus increasing its dif-
fusion and reducing users’ diffidence.

3.2 Declare

This work is based on the initial assumption that any mali-
cious behavior is implemented by a specific sequence of
system calls. For this reason, we analyze system calls traces
produced by a mobile application in response to some sys-
tem events (listed in Table 2) to abstract a process model
of the malware behavior in which the process activities are
system calls. In this work, the Declare language and its sup-
porting tools (ProM 6.1 tool and the Declare Miner plug-in)
are used respectively to mine and to represent the malware
behavioral model (defined as a set of system calls and their
relationships) describing the behavior of a malware fam-
ily. Declare is a declarative constraint language proposed
by Pesic and van der Aalst and largely diffused in the Pro-
cess Mining domain [34] that allows representing a process
as a set of rules constraining all the events to be executed

123

Dynamic malware detection and phylogeny analysis using process mining 263

Table 2 System events used to
activate the malicious payload

Event Description

1 BOOT_COMPLETED Able to catch the boot completed

2 ACTION_ANSWER,NEW_OUTGOING_CALL Incoming and Outgoing call

3 ACTION_POWER_CONNECTED Battery status in charging

4 ACTION_POWER_DISCONNECTED Battery status discharging

5 BATTERY_OKAY Battery full charged

6 BATTERY_LOW Battery status at 50%

7 BATTERY_EMPTY Battery status at 0%

8 SMS_RECEIVED Reception of SMS

9 AIRPLANE_MODE The user has switched the phone into or
out of Airplane Mode

10 BATTERY_CHANGED Battery status changed

11 CONFIGURATION_CHANGED The current device Configuration
(orientation, locale, etc) has changed

12 DATA_SMS_RECEIVED A new data based SMS message has been
received by the device

13 DATE_CHANGED Receives data changed events

14 DEVICE_STORAGE_LOW Free storage on device is less than 10% of
total space

15 DEVICE_STORAGE_OK Free storage on device is adequate

16 INPUT_METHOD_CHANGED An input method has been changed

17 PROVIDER_CHANGED Providers publish new events or items that
the user may be especially interested in

18 PROXY_CHANGE Variation of proxy configuration

19 SCAN_RESULTS An access point scan has completed, and
results are available from the supplicant

20 SENDTO Send a message to someone specified by
the data

21 SIM_FULL The SIM storage for SMS messages is full

22 SMS_SERVICE CDMA SMS has been received containing
Service Category Program Data

23 STATE_CHANGED The state of Bluetooth adapter has been
changed.

24 WAP_PUSH_RECEIVED A new WAP PUSH message has been
received by the device

in a given order and implicitly describing all the possible
workflows. Differently from procedural approaches which
explicitly specify the interactions between process events
(the produced models are “closed”, i.e., activities that are not
explicitly specified in the model are forbidden) in declarative
models all the workflows that do not violate the specified
constraints are allowed (the produced models are “open”).
For this reason, declarative approaches are suitable to rep-
resent complex processes with high flexibility [7]. Another
advantage of using Declare is that it is a process modeling
language more understandable for end-users and provides an
executable and verifiable formal semantics. ProM 6.1 [44]
is a tool supporting a wide variety of process mining tech-
niques. In particular, the Declare Miner ProM 6.1 plug-in
is able to extract from a set of log traces a model repre-
senting trends, patterns, and details related to an observed

phenomenon. The obtained model is represented using the
Declare language. In this work, the Declare Miner is used to
extract, from a set of system call traces, the set of constraints
holding between system calls in all the traces. According to
this, the Declare Miner can extract the malware model and
the application model from a set of traces collected during
the application running in response to some system events.

Declare constraints can be seen as concrete instantiations
of templates. A template is an abstract entity that defines
parametrized classes of properties through a usable and sim-
ple graphical representation connected to a formal semantics
based on the adoption of Linear Temporal Logic (LTL) for-
mulas.

LTL formulas can be translated in non-deterministic Finite
State Automatons (FSA) that represent all the traces satisfy-
ing the constraint. The temporal operators used to describe

123

264 M. L. Bernardi et al.

Table 3 Graphical notation and
LTL formalization of the declare
templates

Template Formalization Notation

Init(A) A
init

A

Existence(A) ♦A
1..∗
A

Existence2(A) ♦(A ∧◦(♦A))

2..∗
A

Existence3(A) ♦(A ∧◦(♦(A ∧◦(♦A))))

3..∗
A

Absence(A) ¬♦A
0

A

Absence2(A) ¬♦(A ∧◦(♦A))

0..1

A

Absence3(A) ¬♦(A ∧◦(♦(A ∧◦(♦A))))

0..2

A

Exactly1(A) ♦A ∧ ¬♦(A ∧◦(♦A))

1

A

Exactly2(A) ♦(A ∧◦(♦A))∧
2

A

¬♦(A ∧◦(♦(A ∧◦(♦A))))

Choice(A,B) ♦A ∨ ♦B A −− ♦−− B

Exclusive Choice(A,B) (♦A ∨ ♦B) ∧ ¬(♦A ∧ ♦B) A −− �−− B

Responded Existence(A,B) ♦A → ♦B A •−−−− B

Co-Existence(A,B) ♦A ↔ ♦B A •−−−• B

Response(A,B) �(A → ♦B) A •−−−� B

Precedence(A,B) ¬BW A A −−−�• B

Succession(A,B) �(A → ♦B) ∧ (¬BW A) A •−−�• B

Alternate Response(A,B) �(A → ◦(¬AUB)) A •���� B

Alternate Precedence(A,B) (¬BW A) ∧ �(B → ◦(¬BW A)) A ����• B

Alternate Succession(A,B) (¬BW A) ∧ �(B → ◦(¬BW A)) A •���• B

∧ �(A → ◦(¬AUB))

Chain Response(A,B) �(A → ◦B) A •�−�−�−� B

Chain Precedence(A,B) �(◦B → A) A �−�−�−�• B

Chain Succession(A,B) �(A → ◦B) ∧ �(◦B → A) A •�−�−�• B

Not Co-Existence(A,B) ♦A → ¬♦B A •−−−•‖ B

Not Succession(A,B) �(A → ¬♦B) A •−−�•‖ B

Not Chain Succession(A,B) �(A → ¬◦B) A •�−�−�•‖ B

the semantics of theDeclare templates are reported inTable 3.
Let be, ϕ andψ the LTL formulas, in the table,◦ϕ is used to
indicate that ϕ has to hold in the next position in a trace. �ϕ

means that ϕ is always in the subsequent positions in a trace.
♦ϕ indicates that ϕ has to hold eventually in the subsequent
positions in a trace. ϕUψ means that ϕ has to hold at least
until ψ holds in a trace. Moreover, ψ must hold in a future
or in the current position. Finally, ϕ W ψ means that ϕ has

to hold in the subsequent positions at least until ψ holds. If
ψ never holds, ϕ must hold everywhere.

Looking at the table, the response constraint �(a → ♦b)
indicates that if a occurs, b must eventually follow. Accord-
ing to this, the response constraint is satisfied for traces such
as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉 and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the
second instance of a is not followed by a b. Some consider-

123

Dynamic malware detection and phylogeny analysis using process mining 265

Fig. 1 Declare model derived from the traces of a malware application execution

Fig. 2 An example trace log of the process in Fig. 1

ations apply to t2, where the response constraint is satisfied
only because a never occurs. In this case, the constraint is
called vacuously satisfied according to the notion introduced
in [10]. Moreover, according to [10], a constraint is non-
vacuously satisfied in a trace when it is activated in that
trace. Moreover, a constraint is activated in a trace when its
occurrence imposes some obligations. For example, for the
response constraint �(a → ♦b), a is an activation because
the execution of a forces b to be eventually executed. There
are two kinds of constraint activation: the fulfillment and the
violation. When every constraint activation in a trace leads to
a fulfillment the trace is perfectly compliant with respect to a
constraint. For example, the response constraint�(a → ♦b)
in trace t1 is activated and fulfilled twice, whereas, in trace
t3, it is activated and fulfilled only once. On the other hand,
there are both a fulfillment and a violation of an activation
of a constraint when a trace is not compliant with respect to
this constraint (at least one activation leads to a violation).
For example, looking at the trace t4, the response constraint
�(a → ♦b) is activated twice: the first activation leads to a
fulfillment (eventually b occurs) while the second activation
leads to a violation (b does not occur subsequently). For clar-
ity, we report in Fig. 1 an example of a declarative process
obtained from a set traces of the execution of an application
infected with the DroidKungFu4 malware. It consists of six
activities (syscalls) and the constraints between them. The
considered activities are listed and described in the follow-
ing:

– rename: change the name or location of a file;
– fork: create a child process;
– recvmsg: receive a message from a socket;
– sigprocmask: examine and change blocked signals;
– getppid: get process identifier;
– rt_sigtimedwait: synchronously wait for queued signals.

For example, the precedence rule between rt_sigtimewait
and sigprocmask means that whenever sigprocmask hap-
pens rt_sigtimewait happens before it. Figure 2 shows an
excerpt from an execution trace for the process in Fig. 1.
For example, according to the precedence constraint between
rt_sigtimewait and sigprocmask, the sigprocmask event
occurs one time and the rt_sigtimewait happens before it.

Finally, in Fig. 3, we report for completeness a finite state
automaton (FSA) for the constraint
co-existence(rt_sigtimedwait, sigprocmask) considering for
simplicity a reference alphabet composed of three syscalls:
rt_sigtimedwait, sigprocmask, and fork. The figure shows
an automaton with the states 0, 1, 2, 3. The state 0 has an
incoming arrow without a source state, which means that it
is an initial state. Moreover, it is represented with a dou-
ble border meaning that it is also an accepting state. The
automaton remains in the initial state 0 until one of the
syscalls rt_sigtimedwait, sigprocmask occurs. If the syscall
rt_sigtimedwait occurs the automaton moves in the state 1
where it remains until the occurrence of syscall sigprocmask.
Conversely, if in the initial state 0, the syscall sigprocmask

123

266 M. L. Bernardi et al.

Fig. 3 An excerpt of the automaton obtained for the constraint co-
existence(rt_sigtimedwait, sigprocmask) of the declare process depicted
in Fig. 1

occurs, the automaton moves in state 2where it remains until
the occurrence of syscall rt_sigtimedwait occurs. Hence,
from both states 1 and 2, the automaton moves to the state 3
when the co-existence constraint is satisfied: in fact the tran-
sition to state 3means that the trace contains both the syscalls
rt_sigtimedwait and sigprocmask. In the proposed exam-
ple, syscalls are always considered instantaneous. Moreover,
transitions between states are reported with labeled directed
arrows.

4 Approach

This section describes the proposed approach for Android
malware detection and phylogeny tracking.

As mentioned in Sect. 1, the approach exploits process
mining techniques to extract a characterization of a mal-
ware or trusted application from its system call traces. The
produced characterizations can be profitably used to (i) rec-
ognize amalicious behavior at run-time, (ii) identifymalware
variants within the same family, and (iii) identify similarities
across malware families. Moreover, the study of malware
behavior can be used to support malware phylogeny by
building “family trees” based on a similarity metric between
malware characterizations.

The approach is based on two assumptions: (a) system call
traces (or logs) captured from the execution of amobile appli-
cation can be used to characterize the application, including
its malware behavior, if present; (b) system events reported
in Table 2 and associated with the Android operating sys-
tem represent the activation mechanism for malicious code
present in Android mobile malware.

It is important to note that such characterization is not
aimed at recovering a complete behavioral model of the
application or malware payload since our aim is to obtain

an effective fingerprint for malware detection. For this rea-
son,we refer to systemcalls. The application code (especially
malware payload in infected applications) is muchmore sub-
ject to obfuscation, whereas the sequence of run-time system
calls executed to accomplish a (malicious) task is muchmore
difficult to hide. This is the reason why our characterization
is based on relationships among system calls as recovered
from run-time traces. Starting from the above assumptions,
the proposed approach mines system call traces produced by
an application in response to system events listed in Table 2
with the aim to find recurring execution patterns and relation-
ships between system calls characterizing the application or
malware behavior. Such information represented as aDeclare
model [34] is named SEF—Syscalls Execution Fingerprint.
SEFs can be compared with each other for malware detection
and phylogeny analysis.

In the rest of the section, we describe (i) the formal defini-
tion of SEF, (ii) the malware detection process, and (iii) the
process to build a phylogeny model for a family of malware.

4.1 Formal definition and notation for a SEF

We introduce here the formal definitions for the SEF asso-
ciated to a mobile application and a malware family, and
specify the notation we use to represent the two models.

Definition 1 (Declare model) Let be,

– T a set of system call traces;
– Cuh = {SA, R} a unary constraint specifying a condition
R, contained in Table 3, that holds for the occurrences of
system call SA over traces in T ;

– Cbk = {SA, SE , R} a binary constraint specifying a rela-
tionship R, contained in Table 3, that holds between the
occurrences of two system calls (i.e., SA and SE) over
traces in T .

The Declare model associated to traces in T is defined as a
set of h unary and k binary constraints:

D = {Cu1, . . . ,Cuh ,Cb1 , . . . ,Cbk }

�
Definition 2 (SEF of an application a) Let be,

– E the set of the n system events that can be sent to an
application;

– t j the execution trace (system calls trace) generated by
the application a, in response to the event j ;

– Daj the Declare model of the application a for the event
j, mined from the set of traces {t j1, . . . , t jr }where r is the
number of runs of the application.

123

Dynamic malware detection and phylogeny analysis using process mining 267

Fig. 4 The SEF construction for a malware family (a) and a single application (b)

The SEFa of the application a is the set of the declare models
for all the system events, defined as follows:

SEFa = {Da1, . . . , Dan }

�
Definition 3 (SEF of a malware family M) Let be,

– A the set of m applications infected with the malware
family M ;

– E the set of the n system events that can be sent to an
application;

– t j i the execution trace generated by the i-th application
of the set A in response to the j-th event of the set E ;

– DMj the Declare model mined from the set of traces
{t j1, . . . , t jm}

We define:

SEFM = {DM1, . . . , DMn }

�
To better clarify the difference between the SEF of a mal-

ware family and theSEFof a single applicationwe introduced
Fig. 4. The upper side of the figure depicts the traces col-
lected by different applications (i.e., app A, app B, app C)
in response to the system event e ∈ E . Since the traces
are generated by different applications, they contain differ-
ent sequences of system calls (represented in the figure as
black squares in different positions). Different applications
infected with a given malware X share a common part corre-
sponding to themalwareXpayload. Since theDeclaremining

process generates constraints that hold on each trace, the
resulting model, in this case, will be a Declare model of the
malware X payload in response to the event e. Conversely,
the SEF of a single application D (infected or not) is gener-
ated as shown in the bottom of the Fig. 4. In this case, the
traces are generated by the same application D. Hence, the
common part corresponds to the entire trace. This means that
the resulting model is a representation of the entire applica-
tion in response to the event e. Please note that the number
of traces used for Definitions 2 and 3 are different. The SEF
of an application is recovered using, for each system event
e, a set of r traces of the application. This is required since,
in this case, we are mining the model of the entire applica-
tion and hence several traces are needed to characterize its
behavior usingDeclare rules. Conversely, we refer to the SEF
of a malware as the model of the malicious payload that is
common to a set of different applications infected with the
same malware family. This means that, even with a single
run for each application, we are able to mine the rules char-
acterizing the common behavior among the applications, i.e.
the malware payload.

4.2 Distance among SEFs

In order to define a distance for SEFs, we need to define a
distance for Declare models. Given two Declare models Di

and Dj , we define the distance d(Di , Dj) between them as
follows:

d(Di , Dj)

= α(| ⋃(Di , Dj)| − | ⋂(Di , Dj)|)
α(| ⋃(Di , Dj)| − | ⋂(Di , Dj)|) + (1 − α)(| ⋂(Di , Dj)|)

123

268 M. L. Bernardi et al.

Fig. 5 The malware detection approach in brief

where α ∈ [0.5, 1] is a parameter that allows to weigh dif-
ferently constraints presence with respect to absence when
evaluating the distance. In particular, for α = 0.5 constraints
presence and absence is equally weighted. The distance is
proportional to the number of constraints that are not present
in bothmodelswith respect to the total number of constraints.
It represents a normalized measure of similarity among two
models: when the two models have the same constraints the
ratio is equal to zero, whereas whenmodels have no common
constraints the distance is one (i.e. maximum distance).

Starting from the definition of distance between Declare
models reported above, we define the distance between two
SEFs, SEFA and SEFB , as follows:

d(SEFA,SEFB) =
∑n

i=1 d(DAei
, DBei

)

n

where n = |E | is the cardinality of the considered set of
system events.

To evaluate the distance between the SEF of a malware
family and the SEF of a single application, the Declare rules
that should be taken into account must be restricted to the
set of rules that are present in the SEF of the malware. This
is important since the SEF of a single application, even if
infected with a malware includes the behavior of the origi-
nal application in addition to that of the malicious code of
the malware. The restriction step filters out, during distance
evaluation, declare constraints between activities that are not
present in the SEF model of the malware.

4.3 Malware detection

Figure 5 depicts how malware detection is accomplished. At
the core of the approach is the definition of SEF reported in
Sect. 4.1.

SEFs are used to characterize the behavior of an applica-
tion to be checked. The matrix of distances between the SEF
of the application and the SEFs of known malware families
is calculated. This matrix is then provided as input to our
malware classifier which, as a final result, indicates if the
application is infected with a malware of a known family.

The malware classifier is based on the Weka data mining
toolkit2 and adopts different algorithms to classify the SEF

2 http://www.cs.waikato.ac.nz/ml/weka/.

of an application by looking at its distance from the SEFs of
known malware families.

Several classification algorithms, available in the litera-
ture, are effective in performing the proposed classification
[20]. Aswewill discuss in Sect. 5, in this work, six classifica-
tion algorithms are used for generalizing and strengthening
the internal validity of the obtained results.

In the rest of this subsection, we describe (i) the process
to compute the SEF characterizing an application, (ii) the
process to compute the SEF characterizing a family of mal-
ware, (iii) the process to build our malware classifier used
for detection.

4.3.1 Computing of the SEF of an application

As more formally defined in Sect. 4.1, the SEF of an appli-
cation (or APK3), is a collection of Declare models each
of which characterizes the behavior of the application in
response to one of the system events listed in Table 2. Such
behavior ismined fromsyscall traces captured from the appli-
cation in response to the specific system event. The process to
compute the SEF associated with an application is depicted
in Fig. 6. The main steps of the process are the following:

– Syscall Traces Extraction In this step syscalls traces gen-
erated by theAPK in correspondence to the systemevents
listed in Table 2 are captured and stored in a textual for-
mat. The APK is first installed and run on an Android
device emulator prepared for the purpose. Then, a sys-
tem event from the list in Table 2 is generated and sent
to the emulator and the sequence of system calls made
by the APK (syscall trace) in correspondence is gathered.
We recall that system events listed in Table 2 are assumed
to be the mechanism for a malware payload potentially
present in an APK to get activated. Each event of the
list is sent more than once in order to have a number of
syscall traces from which to extract by factorization the
behavior (in terms of syscalls) associated with it. Each
time an event is sent, the APK is reinstalled and run in
order to reduce as much as possible the influence of the
APK state in the generated syscall trace. The step ends
when the list of system events in Table 2 has been fully

3 APK is the file format for an Android executable application. So, in
the paper, we use the term APK as a synonym of Android application.

123

http://www.cs.waikato.ac.nz/ml/weka/

Dynamic malware detection and phylogeny analysis using process mining 269

Fig. 6 The process for computing the SEF of an application

scanned. The step is handled by a set of shell scripts that
perform the following actions:

1. start the target Android device emulator;
2. install and start the APK of the application on the

device emulator;
3. wait until a stable state of the device is reached;
4. start the capture of syscall traces;
5. select one of the activation system events in Table 2
6. send the selected event to the application;
7. capture syscalls made by the application until a stable

state is reached;
8. stop the syscall capture and save the captured syscall

trace;

9. reinstall the APK and repeat the capturing for the
selected event a fixed number of times (ten times in
our evaluation);

10. select a new system event and repeat the steps above
to capture syscall traces for this event;

11. repeat the step above until all system events in Table 2
have been considered.

12. stop the Android device and revert its disk to a clean
baseline snapshot.

The script exploits the official Android emulator released
by Google 4. This emulator is able to simulate various
Android smartphones, tablets and also wearable devices.
It is able to provide almost all the capabilities of a real

4 https://developer.android.com/studio/run/emulator.html.

123

https://developer.android.com/studio/run/emulator.html

270 M. L. Bernardi et al.

Fig. 7 An excerpt of a syscall trace log (left side) and the corresponding XES (right side)

Android device (for instance, it simulates phone calls,
text messages, localization service and different network
speeds). After the device is started (step 1), the script
installs and starts the application (step 2) and waits for a
stable state (when in step 3, epoll_wait is executed and
the application waits for user input or a system event to
occur). An important step of this script deals with device
application system event handling (each system event is
related to an application handler). When an event is sent
to the application (step 6), the handler gets executed and
produces a stream of syscall in the strace log. The script
is responsible to capture the syscall stream from the event
sending up to the exit from the application handler, when
a stable state is reached (step 8). Despite achieving a
stable state, it is possible that syscalls are not related to
the malicious payload (since they belong to the specific
application). To mitigate this risk and be able to filter
out such syscalls, for each application under analysis, we
consider the syscall traces collected from ten different
runs. From these ten executions, only the common part
of the strace log is extracted.

– XES-based Event Stream Generation In this step syscall
traces collected and saved in textual format in the previ-
ous step are converted into an eXtensible Event Stream
(XES) log format [43], an XML-based standard for event

logs5. This conversion step is required as the Declare
Miner generates Declare models taking as input process
logs encoded in the XES format. Syscall traces extracted
from the operating system are in a textual format. An
excerpt of a syscall trace is shown in the left side ofFig. 7),
while the corresponding XES event stream obtained after
the conversion step is reported in right side of Fig. 7.
This is accomplished by the Strace2XES converter, a tool
implemented as an Eclipse application. During this con-
version, only useful information available in the trace is
kept. This includes attributes associated with the entire
trace (e.g., the id of the application from which the trace
has been generated) and attributes associated to a sin-
gle system call occurrence (e.g., the executed system
call, its timestamp, a list of arguments, if present, and
the id of the process requesting the call). This informa-
tion is useful during the following constraint mining step
of the process to correlate events and extract a Declare
model from syscall traces. For example, consider the
trace excerpt of Fig. 7, t0 =< wri tev, ioctl, wri tev,

ioctl > (highlighted in blue in the left side of the figure)
and the constraint response(writev,ioctl): it is impos-
sible to determine which of the two instances of the
syscall ioctl should be associated to the first occurrence

5 Visit http://www.xes-standard.org/.

123

http://www.xes-standard.org/

Dynamic malware detection and phylogeny analysis using process mining 271

Fig. 8 The process for computing the SEF for a malware family

of the syscall wri tev in the excerpt. Such ambiguity
prevents a correct evaluation of constraints in terms of
satisfaction/violation. For data correlation, we adopted a
reference-based correlation approach similar to the one
proposed in [6,9]: two events correlate if they satisfy a
correlation function that depends on a set of attributes
of the first event (the identifier attributes) and on a set of
attributes of the second event (the reference attributes). In
our context, the identifier and the reference attributes are
the process id (pid) and the event timestamp, respectively,
and they coincide. For example, in Fig. 7, the second
writev syscall is considered the same instance as the first
one since its identifier and reference attributes are the
same and the same happens for ioctl.
The correlation function requires that the pids of the two
events are equal, whereas the timestamp of the second
event is greater than the timestamp of the first one. This
allows the mining algorithm to keep the identification

of constraints separate for each process execution of a
given application and avoids the detection of fake rules
mined from the wrong correlation of system call events
belonging to different processes.

– Syscalls Execution Fingerprints (SEF) Computation In
this step, the SEF associated to the application provided
as input to the process is computed. For each system
event in Table 2 the associated XES logs are selected.
The logs of each set are firstly processed in order to filter
out useless ones, e.g., those shorter than a given threshold
(calculated by evaluating the Gaussian distribution of the
logs sizes and filtering out all the logs that are outside the
80th percentiles).
Such logs are mined using the Declare Miner, a plug-
in for the ProM Process Mining Toolkit, in order to
obtain a Declare model from them. The collection of the
so obtained Declare models represents the SEF of the
APK and the characterization that the approach uses for

123

272 M. L. Bernardi et al.

malware detection. Each model consists of a set of con-
straint rules expressed in the Declare language [34] that
describes relationships among system calls holding in all
the traces.

4.3.2 Computing of the SEF of a family of malware

As formally defined in Sect. 4.1, the SEF of a family of mal-
ware is a set of Declare models, each of which characterizes
the behavior of the malware family in correspondence to one
of the system events in Table 2. Each of these models is
mined from a dataset of syscall traces generated from dif-
ferent applications infected with a specific malware family
when ’stimulated’ with one of the system events reported in
Table 2. Since each model contains the constraints among
system calls that hold in all the captured traces (no matter of
the application they were captured from), it can be regarded
as a representation of the malicious payload behavior in cor-
respondence to a particular system event of the list.

Indeed, the behavior of the malicious payload is expected
to be the only shared behavior among the variety of infected
applications used to compute the SEF of the malware family.
It is worth noting that, while the SEF of a malware family
describes only the behavior of themalicious payload, the SEF
computed for an infected application will include constraints
deriving fromboth the application behavior and themalicious
payload.

Figure 8 shows the process for computing the SEF asso-
ciated to a malware family. The process looks similar to that
for computing the SEF for a single application.

In this case, the mined Declare model is derived from a
set of different applications infected with the same malware
family. Each application of the set has only one part in com-
mon with the others: the malware payload. This means that
syscall traces derived from such applications share only the
part of the behavior associated with such malware payload.
As a consequence, the mining process generates a model that
retains the behavior of the malware payload (for which the
Declare constraints support tends to be high) and discards the
one that is specific to each application (for which the Declare
constraints support is very low)6.

The main steps of the process are the following:

– Extraction of Syscall Traces for the Malware Family
In this step, a syscall trace is collected for each of theAPK

6 There are two notions of support that can be defined by Declare lan-
guage: one based on the percentage of constraints activations that leads
to a fulfillment (called event-based constraint support) and the other
based on the percentage of traces in which the constraint is satisfied
(trace-based support). In our context, we considered trace-based sup-
port since we are interested in mining the behavior that is shared by all
the traces (having assumed that, for different applications, such behavior
models the malicious payload).

Fig. 9 Building of the malware classifier

in the dataset of APKs provided as input for each of the
system event in Table 2. All the APKs in the dataset must
be verified in advance to be infectedwith amalware of the
family Mh under analysis. In detail, this step is executed
in a similar way to the step described in Sect. 4.3.1 for
collecting syscall traces for an application, except that (i)
it is repeated for several APKs, and (ii) for each APK and
each system event in Table 2 only one trace is collected.

– XES-based Event Stream Generation Similarly to what
happens in the process for computing the SEF of an appli-
cation, in this step, the syscall traces collected and saved
in textual format in the previous step are filtered and con-
verted into an XES log format.

– Syscalls Execution Fingerprint (SEF) construction XES
logs produced from the previous step groups together
syscall traces associated with a given system event. Each
group of XES logs is parsed using the Declare Miner.
The so generated Declare model consists of a set of con-
straints expressed in the Declare language that describe
the relationships between system calls that hold in all the
analyzed traces. As such, the model describes the com-

123

Dynamic malware detection and phylogeny analysis using process mining 273

Fig. 10 Malware phylogeny process

mon behavior between the set of applications, which is
expected to be the behavior of the malicious code associ-
ated with the malware. The collection of Declare models
associated with the different system events in Table 2 are
defined to be the SEF of the malware family. This model
represents a characterization of the behavior of the mal-
ware family and hence is exploitable for detection and
phylogeny tracking tasks.

4.3.3 Building of the malware classifier

Our malware classification is performed using a Weka data
mining toolkit. In particular, Fig. 9 shows the process for
training it. SEFs are computed for a dataset of trainingAPKs,
for the all knownmalware families, and for a test set ofAPKs.
Then, the training process is started and repeated with an
increased number of training APKs until the best values pos-
sible for precision and recall are obtained using the classifier
over the testingAPKs. The training is accomplished calculat-
ing the matrices of distances between the SEFs of the known
malware families and the SEFs of the training APKs and the
testing APKs. Several classification algorithms are used over
these matrices.

4.4 Phylogeny tracking approach

The proposed approach for malware phylogeny tracking is
reported in Fig. 10. The approach is based on the computation
of a malware phylogeny model according to the following
main activities:

– Compute SEFs of a set of malware families This activ-
ity shares the SEF construction process already shown
in Sect. 8. In this case, the built SEFs are used to eval-
uate a dissimilarity matrix to be used in the subsequent
clustering step.

– Dissimilarity matrix evaluation This activity takes as
input the SEF models for the set of malware families
and constructs a symmetric dissimilarity matrix in which
each entry i, j reports the dissimilarity between the SEF

model of the family i and that of the family j . It is based
upon the distance definition given in Sect. 4.2.

– Clustering The final activity is aimed to recover a
phylogeny model by applying the Hierarchical Agglom-
erative Clustering (HAC) algorithm described in [22]
over the dissimilarity matrix computed in the previous
step. This algorithm is commonly used in phylogeny
model construction for both malware and biologic phy-
logeny classification and, in our context, provides very
good results with the best trade-off with respect to per-
formances. The resulting phylogeny model, however, is
unable to representmultiple inheritances. Thismeans that
the lineage is always a linear path. For this reason, when
a malware derives from several parents, the model allows
only to select the closest parent.

5 Evaluation

The effectiveness and efficiency of the proposed approach
have been evaluated using a dataset of 1200 malicious and
trusted applications belonging to ten malware families7. The
evaluation starts from the collected syscall traces structured
in three sets (training, test and trusted sets) as specified in
Sect. 4.

5.1 Dataset construction

The dataset used to empirically evaluate our approach
includes malware and trusted applications that were col-
lected as follows. Malware applications characterized by
different nature and malicious intents (wiretapping, selling
user information, advertisement, spam, stealing user creden-
tials, ransom) have been downloaded from bothGenoma [54]
and Drebin [4] datasets. Trusted applications are the most
downloaded from the Google Play store from July 2012
to September 2014 for different categories (call, contacts,
education, entertainment, travel, Internet, lifestyle, news,

7 An excerpt is available at https://github.com/mlbresearch/syscall-
traces-dataset.

123

https://github.com/mlbresearch/syscall-traces-dataset
https://github.com/mlbresearch/syscall-traces-dataset

274 M. L. Bernardi et al.

Table 4 The malware families of the dataset

Family IT #DS #AS

Adrd r 91 78

DroidDream r 81 81

DroidKungFu1 r 34 34

DroidKungFu2 r 30 30

DroidKungFu3 r 304 67

DroidKungFu4 r 97 66

Fakeinstaller s 925 101

Geinimi r 92 42

Kmin s 147 112

Opfake r 613 428

Trusted r 200 200

productivity, utilities, business, communication, messaging,
fun, health and personalization). All the applications labeled
in the dataset as trusted or malware were checked by the
dataset producers. Moreover, trusted applications were also
checked by Google Bouncer [33]. Additionally, we also per-
formed a quality analysis to confirm that all the applications
that were considered as trusted did not contain any malicious
code and that all the applications considered as infected with
a given malware family were indeed infected with that mal-
ware family. This quality analysis was performed by using
57 antimalware (running onVirusTotal service [45]) to check
all the applications of the dataset. For malware applications,
we filtered out all the applications that were not recognized
as infected with the studied malware by at least five antimal-
ware over the set of 57 ones. Similarly, we excluded from
the dataset all the applications that were labeled as trusted
but were not recognized as trusted by all the 57 antimal-
ware. In this way, we strongly reduced the possibility to have
wrong labeled applications in the considered dataset. The
training set was used to generate the SEF model for each
malware family. These families were obtained by grouping
malware applications sharing common characteristics (i.e.,
payload installation, type of attack, and set of system events
that trigger the malicious payload [54]). The list of the mal-
ware families considered in this study is reported in Table 4.
We classified the applications contained in both Genoma and
Debrin datasets in two groups according to the number of
samples. We performed a random selection of the applica-
tions in each group. The test set is used to verify that the
malicious applications’ behavior of a given malware fam-
ily is correctly represented by the SEF model obtained from
the training set. In particular, the correctness is verified by
analyzing the distribution of the distances between SEFs of
applications belonging to the same malware family of the
model itself. The distance has been evaluated by fixing α to
0.5. This allows to consider constraints presence and absence

in syscall traces as equally weighted. Table 4 provides some
descriptive statistics on our evaluation dataset specifying for
each of the considered malware family the installation type
(IT) (repackaging (r) or standalone (s)), the number of down-
loaded samples (#DS), and the number of analyzed samples
(#AS) recognized as malware during the quality analysis.
Following the process described in Sect. 4, the detection
process is based on the evaluation and analysis of the dis-
tributions of intra-family distances, whereas the phylogeny
model construction requires an inter-family similarity anal-
ysis by comparing malware family models with each other.

5.2 Intra-family distances distributions analysis

The distribution of intra-family distances for the families
DroidKungFu1−2 and Geinimi and for the three most dis-
criminating events is shown in Fig. 11. We consider as
discriminating all the system events for which we obtain
statistically separated distance distribution. The results high-
light how the SEF model can be used as a fingerprint
of the malicious behavior, effectively. Looking at the fig-
ure, we can observe that for the described three events
(BOOT_COMPLETED, BATTERY_LOW, and
INPUT_MEDIA_CHANGED), the SEF for DroidKungFu1
and DroidKungFu2 is quite discriminating. Moreover, the
boxplots show that for these events the median values of the
distance distributions are well discerned: the value is 0.2 for
the infected applications and 0.7 for the trusted applications.
Even if the results on test applications are less consistent than
on trusted distances, the medians value never overlap. Look-
ing at the Geinimi family, the BOOT and SMS events are
shown to be discriminating. This result is also confirmed by
the first two boxplots of the third column of the matrix rep-
resented in Fig. 12. In this figure, the last boxplots show that
for the SYS event nothing can be claimed since both medians
overlap and the distance between the test and trusted mod-
els is close to the maximum. Finally, the results obtained for
the other analyzed families are consistent and comparable,
showing that they are well discriminated by at least one sys-
tem event. This can be observed from the boxplots in Fig. 13.
This figure highlights how different events show a different
discriminating power (the figure shows only the most dis-
criminating event across the considered families).

5.3 Inter-family similarity: distances among family
models

In Fig. 14, the dissimilarity matrices for the set of considered
families and the three most discriminating system events are
reported. Each discriminating system event is used to relate
similar families based on their behavior, that is expressed by
the constraints among system calls executed in response to
that event. The malware lineage can be determined by the

123

Dynamic malware detection and phylogeny analysis using process mining 275

Fig. 11 The distance distributions among SEFs for the DroidKungFu3 malware over six events

validation of the cluster recovered from the SEF distance
matrices using the malware discovery dates. The clusters of
the dissimilarity matrices of the discriminating events are
obtained using the following weights:

wi, j = #discriminative events

#total events

if the event j is discriminating for the family i ,whilewi, j = 0
if it is not.

The most discriminating event is the BATT event. It is
also interesting to observe that in response to the BOOT
event, the system calls execution relationships show that
DroidKungFu4 is more similar to DroidKungFu1 than to
DroidKungFu3. With regards to the other families, the SEFs
show that they are quite different (the agglomerative clus-
tering step puts them together behind the cut). Figure 15
shows the dendrogram derived from the clustering step
applied to the weighted dissimilarity matrix in Fig. 14.
The dendrogram indicates that the three most discrim-
inating events (BOOT_COMPLETED, BATTERY_LOW,
and INPUT_MEDIA_CHANGED events) provide effective
results by grouping together all the variants of DroidKungFu.

Moreover, looking at the dendrogram, we can observe that
GinMaster and DroidDream are more similar in terms of

system calls execution relationships with respect to Geinimi,
even if the values are not discriminating.

5.4 Classification results

The classification has been performedusing the six classifica-
tion algorithms listed in the second column of Table 5. Two
kinds of classification are executed: the first is based on a
single binary classifier discriminating malware and trusted
applications; the second uses a binary classifier for each
family and identifies the particular family of a malicious
application. The results obtained for these two kinds of clas-
sification are summarized in Table 5. The first column of
the table reports the malware family (including a single “All
families” classifier trainedwithmalware samples from all the
families included in the dataset). The second column lists the
adopted classification algorithms for each family, while the
four remaining columns report the classification results. The
quality of the classification is evaluated by calculating pre-
cision (column three) and recall (column four) based on the
following definitions. Let be:

– TP : # of true positives (# of correctly classified occur-
rences, i.e., applications classified as malware, being
actually malware),

123

276 M. L. Bernardi et al.

Fig. 12 The distances distributions among SEFs models for three malware families

– FP : # of false positives (# of incorrectly classified occur-
rences, i.e., applications classified asmalware, while they
are trusted),

– FN : # of false negatives (# of not classified occurrences,
i.e., applications classified as trusted, while they are mal-
ware).

Precision is defined as the ratio of correctly classified occur-
rences to all occurrences provided by the algorithms and is
given by:

Precision = TP
TP + FP

Recall is the ratio of correctly classified occurrences to all
correct occurrences and is given by:

Recall = TP
TP + FN

The Gold Standard (GS) used as reference is the set of all
correctly classified occurrences. Finally, the ROC Area [35]
(column five) is evaluated. It is the area under the ROC curve
(AUC) and is defined as the probability that a randomly cho-

sen positive occurrence is ranked above a randomly chosen
negative one.

Observing the first row of the table related to a “catch-all”
classifier for “All families”, Precision and Recall values are
0.903 and 0.938 (with the NBTree algorithm), respectively.
The table also highlights that there is at least one classifi-
cation algorithm for each considered malware family giving
values of Precision and Recall greater than 0.85. Moreover,
the ROC value shows that the probability of scoring mal-
ware applications higher than trusted ones is 0.9 (with the
NBTree algorithm) and for all the malware families there is
at least one classification algorithm resulting in a ROC value
greater than 0.88. The obtained results are very promising
if compared to similar approaches available in the literature
(the most relevant are discussed in Sect. 2). Moreover, our
approach is better suited to perform malware family identi-
fication. This is discussed in Sect. 6.

6 Robustness analysis

In order to demonstrate the effectiveness of our method in
malware identification, we applied a set of well-known code
transformations techniques [12,37,51] to the applications in

123

Dynamic malware detection and phylogeny analysis using process mining 277

Fig. 13 The distance distributions among SEFs according to the most discriminating system event for each family

Fig. 14 The dissimilarity matrices associated to each of the events of the considered SEFs and the resulting weighted dissimilarity matrix

our dataset. Such techniques are used by malware writers to
evade the signature-based detection approaches adopted by
current antimalware.

In particular, in our experiment, we used the following
code transformation techniques:

1. Disassembling & Reassembling The compiled Dalvik
Bytecode in classes.dex of the application package may
be disassembled and reassembled through apktool. This
allows various items in a .dex file to be represented in
another manner. In this way, signatures relying on the

123

278 M. L. Bernardi et al.

Fig. 15 The resulting classification dendrogram associated to the weighted dissimilarity matrix in Fig. 14

order of different items in the .dex file are likely to be
ineffective with this transformation.

2. Repacking Every Android application has a developer
signature key that will be lost after disassembling and
reassembling the application. Using the signapk8 tool,
it is possible to embed a new default signature key in
the reassembled application in order to avoid detection
signatures that match the developer keys.

3. Changing package name Each application is identified
by a unique package name. The aim of this transforma-
tion is to rename the application package name in both
the Android Manifest file and all the classes of the appli-
cation.

4. Identifier renaming This transformation renames each
package name and class name by using a random string
generator, in both the Android Manifest file and smali
classes, handling renamed classes invocations.

5. Data Encoding Strings could be used to create detection
signatures to identify malware. To elude such signatures,
this transformation encodes strings with aCaesar cipher.
The original string is restored during application execu-
tion with a call to a smali method that knows the Caesar
key.

6. Call indirectionsSome detection signatures could exploit
the call graph of the application. To evade such signa-
tures, a transformation is designed to mutate the original
call graph of the application by modifying every method
invocation in the smali code with a call to a new method
inserted by the transformation which simply invokes the
original method.

7. Code Reordering This transformation is aimed at modi-
fying the instructions order in smali methods. A random
reordering of instructions has been accomplished by
inserting goto instructions with the aim of preserving the
original run-time execution trace.

8 https://code.google.com/p/signapk/.

8. Defunct Methods This transformation adds new methods
that perform defunct functions to smali code, while not
changing the logic of the original source code.

9. Junk Code Insertion These transformations introduce
those code sequences that have no effect on the function
of the code. Detection algorithms relying on instructions
(or opcodes) sequences may be defeated by this type of
transformations. This type of transformations provides
three different junk code insertions: (i) insertion of nop
instructions into each method, (ii) insertion of uncon-
ditional jumps into each method, and (iii) allocation of
three additional registers on which garbage operations
are performed.

10. Encrypting Payloads and Native Exploits In Android,
native code is usuallymade available as libraries accessed
via JNI. However, some malware, such as DroidDream,
also pack native code exploits meant to run from a
command line in non-standard locations in the applica-
tion package. All such files may be stored encrypted in
the application package and be decrypted at run-time.
Certain malware such as DroidDream also carry pay-
load applications that are installed once the system has
been compromised. These payloads may also be stored
encrypted. Payloads are categorized and encryption as
DSA is exploited because signature-based static detec-
tion is still possible based on the main application’s
bytecode. These are easily implemented and have been
observed in practice as well (e.g., DroidKungFumalware
uses encrypted exploit).

11. Function Outlining and Inlining In function outlining, a
function is broken down into several smaller functions.
Function inlining involves replacing a function call with
the entire function body. These are typical compiler opti-
mization techniques. However, outlining and inlining can
also be used for call graph obfuscation.

123

https://code.google.com/p/signapk/

Dynamic malware detection and phylogeny analysis using process mining 279

Table 5 Classification results:
precision, recall and ROC area
for classifying Malware samples
and families computed with
different algorithms

Family Algorithm Precision Recall ROC area % ROC area decrease in
transformed apps

All families J48 0.819 0.979 0.809 2.05

HoeffdingTree 0.944 0.861 0.894 1.44

NBTree 0.903 0.938 0.9 1.01

RandomForest 0.872 0.928 0.883 0.67

RandomTree 0.915 0.89 0.867 1.23

RepTree 0.832 0.966 0.854 1.27

Adrd J48 0.902 0.648 0.762 2.47

HoeffdingTree 0.899 0.873 0.887 0.78

NBTree 0.877 0.704 0.818 1.39

RandomForest 0.955 0.296 0.824 2.84

RandomTree 0.868 0.465 0.617 9.54

RepTree 0.877 0.704 0.799 2.7

DroidDream J48 0.965 0.696 0.769 2.53

HoeffdingTree 0.798 0.949 0.956 2.88

NBTree 0.938 0.949 0.96 1.8

RandomForest 1 0.38 0.869 2.61

RandomTree 0.956 0.544 0.608 8.99

RepTree 0.982 0.709 0.81 0.51

DroidKungFu1 J48 1 0.688 0.846 4.85

HoeffdingTree 0.595 0.781 0.839 1.18

NBTree 0.926 0.781 0.917 1.24

RandomForest 0.919 0.990 0.871 3.1

RandomTree 0.88 0.688 0.842 0.34

RepTree 0.96 0.75 0.857 2.52

DroidKungFu2 J48 0.923 0.75 0.949 4.14

HoeffdingTree 0.925 0.835 0.844 1.73

NBTree 0.938 0.938 0.938 1.52

RandomForest 0.889 0.5 0.953 2.43

RandomTree 0.818 0.563 0.878 7.37

RepTree 0.917 0.688 0.877 2.05

DroidKungFu3 J48 0.98 0.845 0.911 3.04

HoeffdingTree 0.754 0.845 0.901 0.35

NBTree 0.825 0.897 0.915 1.13

RandomForest 0.92 0.793 0.96 0.23

RandomTree 0.978 0.759 0.914 11.5

RepTree 0.98 0.862 0.935 0.5

DroidKungFu4 J48 0.82 0.79 0.88 3.2

HoeffdingTree 0.932 0.845 0.898 0.28

NBTree 0.81 0.788 0.88 2.3

RandomForest 0.82 0.72 0.734 0.43

RandomTree 0.95 0.784 0.904 8.3

RepTree 0.92 0.87 0.91 1.2

FakeInstaller J48 0.734 0.783 0.827 4.18

HoeffdingTree 0.852 0.867 0.928 1.46

NBTree 0.831 0.9 0.935 1.3

123

280 M. L. Bernardi et al.

Table 5 continued Family Algorithm Precision Recall ROC area % ROC area decrease in
transformed apps

RandomForest 0.93 0.667 0.93 1.97

RandomTree 0.914 0.533 0.817 8.87

RepTree 0.758 0.833 0.868 0.63

Geinimi J48 0.72 0.67 0.7 3.12

HoeffdingTree 0.81 0.75 0.78 1.15

NBTree 0.78 0.71 0.75 1.33

RandomForest 0.83 0.87 0.84 1.81

RandomTree 0.81 0.85 0.833 2.72

RepTree 0.77 0.833 0.862 0.88

Kmin J48 0.968 0.741 0.866 4.01

HoeffdingTree 0.971 0.827 0.911 1.21

NBTree 0.946 0.864 0.913 1.74

RandomForest 0.961 0.914 0.959 1.01

RandomTree 0.938 0.926 0.966 2.93

RepTree 0.955 0.79 0.893 1.05

Opfake J48 0.797 0.953 0.861 3.44

HoeffdingTree 0.909 0.943 0.882 1.95

NBTree 0.908 0.933 0.913 1.63

RandomForest 0.834 0.966 0.917 1.83

RandomTree 0.833 0.939 0.895 2.48

RepTree 0.821 0.939 0.897 2.87

12. Reflection This transformation converts any method call
into a call to that method via reflection. This makes it dif-
ficult to statically analyze which method is being called.
A subsequent encryption of the method name can make
it impossible for any static analysis to recover the call.

6.1 Dataset construction for robustness analysis

We apply the full transformation set to our samples with
the Droidchameleon [37] and the ADAM [51] tools. Fur-
thermore, we use an obfuscation engine9 able to inject six
different obfuscation techniques in Android applications.
Table 6 shows the obfuscation techniques implemented by
the three tools.

The robustness analysis was performed following the pro-
cess depicted in Fig. 16. As the figure shows, we combined
together all the twelve transformations earlier discussed in
this section in order to obtain an obfuscated dataset. The
applications in the test set have been transformed to make
detection much more difficult. The aim is to verify that our
approach is insensitive to behavior-preserving static code
transformations that do not alter the system calls sequences
that are used by the malware payload to accomplish its mali-

9 https://github.com/faber03/AndroidMalwareEvaluatingTools.

Table 6 Comparison between the transformation techniques imple-
mented in the three tools

Code Transfor-
mation

Obfuscation
engine

DroidChamelon
tool

ADAM
tool

Dissassembling X X X

Repacking X X X

Changing package
name

X X

Identifier renaming X X

Data Encoding X X

Call indirections X X

Code Reordering X X

Defunct Methods. X

Junk Code
Insertion

X X

Encrypting
Payloads

X

Function Outlining X

Reflection X

cious tasks. This experiment aims at verifying that such
assumption holds on obfuscated real malware making our
classifiers robust to code transformations that are typically
exploited by malware developers to avoid detection. As
shown in the process in Fig. 16, from the test set used in

123

https://github.com/faber03/AndroidMalwareEvaluatingTools

Dynamic malware detection and phylogeny analysis using process mining 281

Fig. 16 Robustness to code-transformation assessment process

Sect. 5 to validate the approach, we derive a transformed set
by applying the code transformations. The validation step is
executed on both the original and transformed sets to assess
the performance loss of the classifiers on obfuscated appli-
cations.

6.2 Discussion of results

Figure 12 reports the distances distributions among SEFs
models, including the transformed set. The comparisons
between distances distributions of the test sets highlights, as
expected, a small deterioration in the distribution parameters
of the transformed ones. However, the deterioration in almost
all the cases consists of a small increase of the inter-quartile
range for transformed applications with respect to test appli-
cations that never causes an overlapping of median values
with trusted applications. This means that the mined SEF
models maintain the same discriminative properties assessed
for the test applications. Looking at the boxplots for the trans-
formed set, we can see that in most cases the third quartile is
more stable than the first one across both events and families.
This means that the transformed SEF models have distances,
with respect to family models, that are greater if compared
to test models, but still lower than the first quartile of the
trusted models. The transformed set has been exploited to
validate the classifier built with the original training set and
the detection quality has been evaluated in order to assess the
robustness of the approach with respect to code transforma-
tions.

The results of the family classifiers reported in Table 5
include in the last column the percentage decrease of theROC

Area (of each classifier) for the transformed applications.
The decrease ranges between 0.34 and 11.5%, depending on
the malware family and the classification algorithm, but on
average, it is equal to 2.6%. This means that the ROC Area
maximum decrease for transformation is lower than 0.1 (in
the worst case). The first interesting thing to observe is that
the worst decrease relate to classifiers that were already per-
forming poorly (ROC is less than 0.6): they were already bad
classifiers with test set and they remain bad on transformed
samples. This is confirmed as a trend across all classifiers
since decreases are higher for classifiers that have worse per-
formances (lower ROC area). This can be seen looking at
Fig. 17 that shows a direct comparison between the ROC
area for test and transformed applications (Plain and Trans-
formed bars). As it can be easily observed from the bar chart,
most of the decreases are in correspondence with the lowest
“Plain” values. To summarize, our analysis shows that, out of
the total 60 classifiers10, for 9 classifiers ROC decreases to a
value less than 0.9, whereas for 3 classifiers it becomes lower
than 0.8. The other classifiers (48) remain almost unchanged.
These are very good results confirming that the approach is
quite insensitive to code transformation techniques since it is
based on a fingerprint of the application and malware behav-
ior, which is left unchanged by behavior-preserving code
transformations. More investigation could be performed on
the individual learning algorithm sensitivity in order to reveal
whyweobtained theworst results for two specific algorithms:
J48 (3.4%) and RandomTree (6.6%).

7 Threats to validity

The construct validity analysis showed that the syscall traces
extraction could be imprecise in some circumstances. This
is due to the trace capturing script that starts to capture the
trace when an system event occurs (i.e., when it is sent by
the sandbox to the application) and stops to capture when a
new stable state is reached. The source of imprecision lies
in the trace automatic cut which does not take into account
what happens to the application during the capturing time.
This entails that some incomplete traces could be captured
and should be discarded from the set: for example, if an
application is shut down due to an illegal behavior, an incom-
plete trace is captured. This issue was revealed performing
outliers analysis and allowed to improve the approach intro-
ducing a trace validation step that is able to filter out incorrect
traces from the dataset. Another source of imprecision is
related to traces captured from malware applications that
do not trigger the malicious behavior in response to some
system events. However, this kind of issues are effectively

10 The classifiers are 60 since we have 10 malware families classifiers
plus a single “catch-all” classifier, multiplied by 6 learning algorithms.

123

282 M. L. Bernardi et al.

Fig. 17 Area under ROC curve variation between plain and transformed malware

detected during the training process looking at the distribu-
tion of distances among test and trusted applications. For
example, looking at the boxplots of Fig. 11, we recog-
nize that DroidKungFu malware is triggering the malicious
behavior for BOOT_COMPLETED, BATTERY_LOW and
INPUT_MEDIA_CHANGED events allowing an effective
detection. For malware not triggering malicious behavior for
any of the system events, our approach is not able to perform
the detection but this eventuality can be revealed during the
training phase.

Another construct validity threat lies in theway the dataset
is obtained. It is assumed that the considered applications are
malicious on the base of the response of some antivirus soft-
ware that do not provide any assurance. To reducemistakes, a
combination of several antimalware is adopted for the quality
verification step and the application is considered as infected
if the infection is recognized by at least five different anti-
malware.

For what concerns the external validity threats and the
generalization of our findings, our evaluation validates the
approach implementation on more than 1200 applications of
ten malware families. Even if this allows to obtain statisti-
cally significant results, an extension of these results to more
malware families and to a larger set of applications is still
desirable.

8 Conclusions

In this paper, we proposed an approach for dynamic mal-
ware detection and malware phylogeny tracking based on
process mining techniques. It extracts a declarative model,
named SEF, from system calls traces of malware and trusted

applications, which represents a fingerprint of their respec-
tive dynamic behavior. Based on the distances between the
mined SEF models, similarities across malware families are
identified and several malware variants are characterized.

In terms ofmalware detection, the approach has been eval-
uated on a dataset of more than 1200 infected applications
across tenmalware families. The obtained results are encour-
aging and show that the approach is effective in detecting
malware, thanks to the capability of the SEF models to ade-
quately represent malware behaviors.

In order to assess the effectiveness and the efficiency of
the approach in phylogeny tracking, we applied it to the same
dataset of applications. The results show the capability to
effectively discriminate the ten studied malware families and
recognize variants of the same family of malware.

Finally, a robustness analysis against most common code
obfuscation techniques has been performed on the same
dataset of applications. In this study, SEF models have
shown to be quite insensitive to behavioral-preserving code
transformations techniques. As a consequence, the proposed
malware detection and phylogeny tracking approach signifi-
cantly reduce the false negatives in the presence of obfuscated
malware and variants of malware families.

Acknowledgements This work has been partially supported by H2020
EU-funded projects NeCS and C3ISP and EIT-Digital Project HII.

References

1. Androguard. https://code.google.com/p/androguard/, last visit 24
November 2014

2. Anderson, B., Storlie, C., Lane, T.: Improving malware classifi-
cation: bridging the static/dynamic gap. In: Proceedings of the 5th

123

https://code.google.com/p/androguard/

Dynamic malware detection and phylogeny analysis using process mining 283

ACMWorkshop on Security and Artificial Intelligence, AISec ’12,
pp. 3–14, New York, NY, USA. ACM (2012)

3. Arora, A., Garg, S., Peddoju, S.K.: Malware detection using net-
work traffic analysis in android based mobile devices. In: 2014
Eighth International Conference on Next GenerationMobile Apps,
Services and Technologies (NGMAST), pp. 66–71 (Sept 2014)

4. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.:
DREBIN: efficient and explainable detection of android malware
in your pocket. In: Proceedings of 21th Annual Network and Dis-
tributed System Security Symposium (NDSS) (2014)

5. Battista, P.,Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.:
Identification of android malware families with model checking.
In: International Conference on Information Systems Security and
Privacy. SCITEPRESS (2016)

6. Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi,
F.M.: Do activity lifecycles affect the validity of a business rule
in a business process? Inf. Syst. 62, 42–59 (2016)

7. Bernardi, M.L., Cimitile, M., Di Lucca, G.A., Maggi, F.M.: Using
declarative workflow languages to develop process-centric web
applications. In: 16th IEEE International Enterprise Distributed
Object Computing Conference Workshops, EDOC Workshops,
Beijing, China, September 10–14, 2012, pp. 56–65 (2012)

8. Bernardi, M.L., Cimitile, M., Mercaldo, F., Distante, D.: A
constraint-driven approach for dynamicmalware detection. In: 14th
IEEE Annual Conference on Privacy Security and Trust (2016)

9. Bose, R.P., Maggi, F.M., Aalst, W.M.P.: Enhancing Declare Maps
Based on Event Correlations, chapter Business Process Manage-
ment: 11th International Conference, BPM 2013, Beijing, China,
August 26–30, 2013. Proceedings, pp. 97–112. Springer, Berlin
(2013)

10. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online dis-
covery of declarative process models from event streams. IEEE
Trans. Serv. Comput. 8(6), 833–846 (2015)

11. Canfora, G.,Mercaldo, F., Visaggio, C.A.: A classifier of malicious
android applications. In: 2013 Eighth International Conference on
Availability, Reliability and Security (ARES), pp. 607–614 (Sept
2013)

12. Canfora, G., Di Sorbo, A., Mercaldo, F., Visaggio, C.A.: Obfusca-
tion techniques against signature-based detection: a case study. In:
2015 Mobile Systems Technologies Workshop (MST), pp. 21–26.
IEEE (2015)

13. Canfora, G.,Medvet, E.,Mercaldo, F., Visaggio, C.A.: Availability,
Reliability, and Security in Information Systems: IFIPWG8.4, 8.9,
TC5 InternationalCross-DomainConference,CD-ARES2014and
4th International Workshop on Security and Cognitive Informat-
ics for Homeland Defense, SeCIHD 2014, Fribourg, Switzerland,
September 8–12, 2014. Proceedings, chapter Detection of Mali-
cious Web Pages Using System Calls Sequences, pp. 226–238.
Springer, Cham (2014)

14. Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C.A.: Detecting
android malware using sequences of system calls. In: Proceedings
of the 3rd International Workshop on Software Development Life-
cycle forMobile, DeMobile 2015, pp. 13–20, NewYork, NY,USA,
2015. ACM (2015)

15. Carrera, E., Erdélyi, G.: Digital genome mapping—advanced
binary malware analysis. In: Virus Bulletin Conference, Vol. 11
(2004)

16. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-
application communication in android. In: Proceedings of the 9th
International Conference on Mobile Systems, Applications, and
Services, MobiSys ’11, pp. 239–252, New York, NY, USA, 2011.
ACM (2011)

17. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of
android application security. In: Proceedings of the 20th USENIX
Conference on Security, SEC’11, pp. 21–21, Berkeley, CA, USA,
2011. USENIX Association (2011)

18. Gartner Report of February 2017. http://www.gartner.com/
newsroom/id/3609817 (2017)

19. Hayes, M., Walenstein, A., Lakhotia, A.: Evaluation of malware
phylogeny modelling systems using automated variant generation.
J. Comput. Virol. 5(4), 335–343 (2008)

20. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learn-
ing workbench. In: Proceedings of the Second Australia and New
Zealand Conference on Intelligent Information Systems, pp. 357–
361. Citeseer (1994)

21. Isohara, T., Takemori, K., Kubota, A.: Kernel-based behavior anal-
ysis for android malware detection. In: Proceedings of the 2011
Seventh International Conference on Computational Intelligence
and Security, CIS ’11, pp. 1011–1015, Washington, DC, USA,
2011. IEEE Computer Society (2011)

22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review.
ACM Comput. Surv. 31(3), 264–323 (1999)

23. Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing
malware for scalable triage and semantic analysis. In: Proceedings
of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pp. 309–320, NewYork, NY, USA, 2011. ACM
(2011)

24. Jeong, Y., Lee, H., Cho, S., Han, S., Park, M.: A kernel-based
monitoring approach for analyzing malicious behavior on android.
In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pp. 1737–1738, New York, NY, USA, 2014.
ACM (2014)

25. Jiang, X., Zhou, Y.: Android Malware. Springer, New York (2013)
26. Karim, M.E., Walenstein, A., Lakhotia, A., Parida, L.: Malware

phylogeny generation using permutations of code. J. Comput.
Virol. 1(1–2), 13–23 (2005)

27. Khoo,W.M., Lió, P.:Unity in diversity: phylogenetic-inspired tech-
niques for reverse engineering and detection of malware families.
In: 2011 First SysSec Workshop (SysSec), pp. 3–10. IEEE (2011)

28. Ma, J., Dunagan, J.,Wang, H.J., Savage, S., Voelker, G.M.: Finding
diversity in remote code injection exploits. In: Proceedings of the
6th ACM SIGCOMM Conference on Internet Measurement, IMC
’06, pp. 53–64, New York, NY, USA, 2006. ACM (2006)

29. Mobile Threat Report. https://www.f-secure.com/documents/
996508/1030743/Threat_Report_H1_2014.pdf, last visit 26
February 2016

30. Mario, F.M., Bernardi, L., Cimitile,M.: Process miningmeets mal-
ware evolution: a study of the behavior of malicious code. In: 2015
Fourth International Symposium on Computing and Networking
(CANDAR) (Dec 2016)

31. Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Down-
load malware? No, thanks. How formal methods can block update
attacks. In: Proceedings of the 4thFMEWorkshoponFormalMeth-
ods in Software Engineering, pp. 22–28. ACM (2016)

32. Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Ran-
somware steals your phone. Formal methods rescue it. In: Interna-
tional Conference on Formal Techniques for Distributed Objects,
Components, and Systems, pp. 212–221. Springer (2016)

33. Oberheide, J., Mille, C.: Dissecting the android bouncer. In: Sum-
merCon (2012)

34. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full
support for loosely-structured processes. EDOC 2007, 287–300
(2007)

35. Picinbono, B.: On deflection as a performance criterion in detec-
tion. IEEE Trans. Aerosp. Electron. Syst. 31(3), 1072–1081 (1995)

36. Rastogi, V., Chen, Y., Jiang, X.: Catch me if you can: evaluating
android anti-malware against transformation attacks. IEEE Trans.
Inf. Forensics Secur. 9(1), 99–108 (2014)

37. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: evaluating
android anti-malware against transformation attacks. In: Pro-
ceedings of the 8th ACM SIGSAC Symposium on Information,

123

http://www.gartner.com/newsroom/id/3609817
http://www.gartner.com/newsroom/id/3609817
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf

284 M. L. Bernardi et al.

Computer and Communications Security, ASIACCS ’13, pp. 329–
334, New York, NY, USA, 2013. ACM (2013)

38. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analy-
sis and stimulation technique to automatically reconstruct android
malware behaviors. In: Proceedings of EuroSec (2013)

39. Sahs, J., Khan, L.: A machine learning approach to android mal-
ware detection. In: Proceedings of the European Intelligence and
Security Informatics Conference (2012)

40. Schmidt, A.-D., Schmidt, H.-G., Clausen, J., Yuksel, K.A., Kiraz,
O., Camtepe, A., Albayrak, S.: Enhancing security of linux-
based android devices. In: Proceedings of 15th International Linux
Kongress (2008)

41. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann,
J.:Mobile-sandbox: having a deeper look into android applications.
In: Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, pp. 1808–1815, New York, NY, USA, 2013.
ACM (2013)

42. Tchakounté, F., Dayang, P.: System calls analysis of malwares on
android. Int. J. Sci. Tecnol. (IJST) 2(9), 669–674 (2013)

43. van der Aalst, W.: Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, Berlin (2011)

44. van Dongen, B.F., de Medeiros,A.K.A., Verbeek, H.M.W., Wei-
jters, A.J.M.M., van der Aalst, W.M.P.: The prom framework: a
new era in process mining tool support. In: Proceedings of the
26th International Conference on Applications and Theory of Petri
Nets, ICATPN’05, pp. 444–454,Berlin,Heidelberg, 2005. Springer
(2005)

45. Virustotal. https://www.virustotal.com/, last visit 1 March 2016
46. Walenstein, A., Lakhotia, A.: A transformation-based model of

malware derivation. In: 2012 7th International Conference onMali-
cious andUnwanted Software (MALWARE), pp. 17–25 (Oct 2012)

47. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Detecting software theft
via system call based birthmarks. In: Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC ’09,
pp. 149–158, Washington, DC, USA, 2009. IEEE Computer Soci-
ety (2009)

48. Wei, T.-E., Mao, C.-H., Jeng, A.B., Lee, H.-M., Wang, H.-T.,
Wu, D.-J.: Android malware detection via a latent network behav-
ior analysis. In: Proceedings of the 2012 IEEE 11th International
Conference on Trust, Security and Privacy in Computing and Com-
munications, TRUSTCOM ’12, pp. 1251–1258, Washington, DC,
USA, 2012. IEEE Computer Society (2012)

49. Xiao, X., Zhang, S., Mercaldo, F., Hu, G., Sangaiah, A.K.: Android
malware detectionbasedon systemcall sequences andLSTM.Mul-
timedia Tools and Applications (Sept 2017)

50. Yan, L.K., Yin, H.: DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic android malware analy-
sis. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, pp. 29–29, Berkeley, CA, USA, 2012.
USENIX Association (2012)

51. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and
extensible platform to stress test android anti-virus systems. In:
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. pp. 82–101. Springer (2012)

52. Zheng, M., Sun, M., Lui, J.C.S.: Droid analytics: a signature based
analytic system to collect, extract, analyze and associate android
malware. In: Proceedings of the 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Com-
munications, TRUSTCOM ’13, pp. 163–171, Washington, DC,
USA, 2013. IEEE Computer Society (2013)

53. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged
smartphone applications in third-party android marketplaces. In:
Proceedings of the Second ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY ’12, pp. 317–326, New
York, NY, USA, 2012. ACM (2012)

54. Zhou, Y., Jiang, X.: Dissecting android malware: characterization
and evolution. In: Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pp. 95–109, Washington, DC, USA,
2012. IEEE Computer Society (2012)

123

https://www.virustotal.com/

	Dynamic malware detection and phylogeny analysis using process mining
	Abstract
	1 Introduction
	2 Related work
	2.1 Malware detection
	2.1.1 Static methods
	2.1.2 Dynamic methods

	2.2 Malware phylogeny

	3 Background
	3.1 Mobile malware families
	3.2 Declare

	4 Approach
	4.1 Formal definition and notation for a SEF
	4.2 Distance among SEFs
	4.3 Malware detection
	4.3.1 Computing of the SEF of an application
	4.3.2 Computing of the SEF of a family of malware
	4.3.3 Building of the malware classifier

	4.4 Phylogeny tracking approach

	5 Evaluation
	5.1 Dataset construction
	5.2 Intra-family distances distributions analysis
	5.3 Inter-family similarity: distances among family models
	5.4 Classification results

	6 Robustness analysis
	6.1 Dataset construction for robustness analysis
	6.2 Discussion of results

	7 Threats to validity
	8 Conclusions
	Acknowledgements
	References

