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Abstract
Recently, a few pragmatic and privacy protecting systems for authentication in multiple systems have been designed. The
most prominent examples include Pseudonymous Signatures for German personal identity cards and Anonymous Attestation.
The main properties are that a user can authenticate himself with a single private key (stored on a smart card), but nevertheless
the user’s IDs in different systems are unlinkable. We develop a solution which enables a user to achieve the above-mentioned
goals while using more than one personal device, each holding a single secret key, but different for each device. Our solution
is privacy preserving: it will remain hidden for the service system which device is used. Nevertheless, if a device gets stolen,
lost or compromised, the user can revoke it (leaving his other devices intact). In particular, in this way we create a strong
authentication framework for cloud users, where the cloud does not learn indirectly personal data. Our solution is based on a
novel cryptographic primitive, called Pseudonymous Public Key Group Signature.

Keywords Signature schemes · Privacy · Pseudonyms · Group signatures · Authentication

1 Introduction

So far most authentication systems for web services or cloud
servers were designed having in mind a single user or a
group of users and a single service provider. Today such
systems become increasingly popular, and the number of
systems used per user is rapidly growing. If authentication is
taken seriously (not based just on a login and a password),
then for each service we get an independent authentication
environment that requires generation and distribution of the
secret keys for the users. Such a framework has serious dis-
advantages: the necessity of managing secret/public keys
among certain parties, constant updates of user secret keys
and maintaining large and costly PKI infrastructures. The
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task of switching between password-based authentication
and strong cryptographic authenticationmechanisms ismade
even more difficult by the growing amount of mobile devices
used by a single user. As studied in [10], cryptographic
authentication schemes usually fail to provide reasonable
usability to the user, what is especially the case whenwe con-
sider users carrying a dynamically changing set of devices.
Thus, it seems that replacing passwords by public key cryp-
tography is a hard task basically because of complicated key
management.

In this paper, we develop a framework which aims to pro-
vide a cryptographically sound authentication scheme to a
dynamically growing set of services,which preserves privacy
for groups of devices and their users and does not require
expensive, time and resource-consuming infrastructures as
well as key management procedures.

Application scenario

In order to be more specific, we consider an application sce-
nario ofMultipleMobileDevices andAuthentication forWeb
Services, called below domains: Informally, we put the fol-
lowing requirements for our system:

– A user creates a single secret key on a secure token (e.g.,
smart card).
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– The user registers to a given domain only once using his
secure token and might derive a unique public key, called
pseudonym, in each domain he registers in.

– Using the secure token, the user may personalize his
mobile devices.

– Having a personalized device, the user may authenti-
cate himself to each domain to which he has registered a
pseudonym. Moreover,

– in case the user registers to a new domain, no device
needs to be updated in order to authenticate to the
new domain, and

– adding a new devices does not require updating any
public key information in any service nor any other
device.

– Finally, we also require that a user must be able to revoke
each of his devices in case of theft, key leakage, etc.

For usability reasons, we assume that a user registers once
in a domain by providing his public key for this domain.
Moreover, no party except for the user and the service domain
should be involved.

After registration, without any updates or interaction with
any party, the participant should be able to delegate the right
to run the authentication protocol on behalf of the user and
sign digitally challenges in order to authenticate the user.

Privacy and unlinkability issues

One of themajor threats in amulti-system environment is that
the authentication means from one domain can be misused
for getting unlawful access into user’s accounts in another
domain. For password-based systems, this is a severe threat
as the users tend to use the same password in multiple places.
Many recent examples are known where compromise of one
system resulted in compromising users’ accounts in another
system.

Apart from unlawful access, it might be necessary to pro-
tect the information that a given physical person is a user in a
domain. Therefore, after the phase of registration the user’s
identity should be anonymized. Moreover, the pseudonyms
in different domains should be unlinkable, even when the
data from authentication sessions are at hand. In this case,
a potential data leakage is not threatening the principles of
personal data protection.

Previous attempts to replace passwords

Over time there were several proposals to replace password-
based authentication mechanisms to Web Services. An early
idea was to run a trusted identity server which confirms user
identity. The concept is called federated single sign-on and
is utilized in systems like Kerberos [24] which is based on

the Needham–Schroeder protocol [27]. Another prominent
example for federated authentication is the OpenID proto-
col [31], where any server might act as an identity provider.
In practice however, only a few web services are willing to
accept user authentication relying on third parties [33]. Thus,
one of our requirements is the resignation from third parties
between a user and the service to which the user authenti-
cates.

Another type of solutions is to use hard tokens like RSA
SecurID or solutions based on smartphones [29]. Although
these systems offer a strong authentication mechanism, they
suffer from a few important drawbacks. A user needs to carry
these tokens wherever he goes and needs to type in one-
time passwords generated by the token each time he wants
to login to a web service. Moreover, the tokens need to be
synchronized with a web service and only a few tokens are
designed to handle multiple services.

Comprehensive surveys of the above-mentioned tech-
niques and including biometric identification can be found
in [10,28,32].

We may observe that our framework shares some similar-
ities with hardware tokens. In particular, we assume a user
to have a single token for device personalization and domain
registration. In contrast to existing hardware tokens, in our
framework we need to use the token only in two situations:
in order to register in a service, to personalize a device and
to revoke a device. Besides these situations, a user does not
need to carry or use the token whenever he wants to login.

Group signatures

We noticed that a primitive called group signatures may fit
our application scenario, but, as we explain later, group sig-
natures do not cover all necessary functionalities. Thus, we
briefly recall the notion of group signatures below, and then
we discuss some drawbacks of this primitive in the context
of our application.

Group signatures as defined in [3] or [5] are signature
schemes inwhich a groupmanager admits users to the group.
Each group member may sign data anonymously on behalf
of the group. Only an entity called an opener may “open”
a signature and derive the signer’s real identity. Informally,
a group signature scheme has to fulfill the following proper-
ties:

anonymity: it is infeasible to establish the signer of a mes-
sage. To be more specific, having two signatures one
cannot even say whether they originate from one signer
or from two different signers.

unframeability: it is infeasible, even for a coalition of mali-
cious group members, to forge a signature which would
open to the identity of a group member not belonging to
the coalition.
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traceability: it is infeasible to produce a signature which
would open to an identity not added to the group by the
group manager.

Group signatures is a well-studied cryptographic primi-
tive. There are many variants of them, with security proofs
based either on the random oracle model (e.g., [8]), or on
the standard model (e.g., [11]). Many variants of group
signatures have been developed, like Verifier Local Group
Signatures [9], Traceable Signatures [22], Hierarchical [34],
Attribute [1] and Identity-Based Group Signatures [19].

Ad hoc solution based on group signatures

At a first look, group signature schemes address our practical
problem pretty well. The user plays the role of the group
manager for group signatures, while his devices play the role
of group members (admitted by the manager). Note that this
construction gives some functionalities for free:

– the user can delegate his rights to authenticate on behalf
of him to any number of his devices—indeed, the number
of group members is typically unlimited,

– the devices are indistinguishable from the point of viewof
the verifier—this is the basic feature of group signatures,

– in case of a misbehavior, the user may open a signature
and find which device has created it.

Unfortunately, there are also some drawbacks that have
to be addressed. The main problem is that we have to create
separate and unlinkable authentication means for different
domains. Creating a new independent group for each domain
separately would solve this problem; however, this would
require installing separate keys for each domain on each sin-
gle device. For practical reasons, this is not really acceptable.

Unfortunately, existing group signature schemes have
been designed having in mind single groups or a hierar-
chy of groups with central authorities. In particular, existing
schemes assume that a group of such a hierarchy is identi-
fied by a public key determined by the scheme setup. This
makes such schemes unsuitable for our application. Our aim
is therefore to design a group signature scheme in which
group public keys may be derived spontaneously from a
domain specific bit string (e.g., www.some-service.dom), a
secret key of the group manager, and with no involvement of
PKI and/or trusted authorities.

Moreover, group public keys or, as we will call it, domain
pseudonyms must be unlinkable, what means that having
two or more domain pseudonyms from distinct domains it
is infeasible to tell whether the pseudonyms correspond to a
group manager.

Such an anonymity notion is known from Domain
Pseudonymous Signature schemes (see, e.g., [13]), (see, e.g.,
Direct Anonymous Attestation [12]) and Anonymous Cre-

dential Systems (see, e.g., [14]). What is important, creating
new public keys by a group manager does not require from
group members to update their secret keys or any other infor-
mation and theymight automatically sign data corresponding
to the new public key.

Contribution and paper overview

Our main technical contribution is a new concept of group
signatures, where group public keys are domain pseudonyms
whichmight be derived spontaneously. The particular setting
is tailored for the above-mentioned application of delegating
authentication chores to multiple devices of a user.

In Sect. 3, we give a formal definition for our new prim-
itive. This is followed in Sect. 4 by a relatively efficient
construction based on pairings. In Sect. 4.2, we evaluate the
efficiency of our construction. We give also some additional
remarks, and we show how to apply our scheme to solve our
practical problem. In Sect. 5, we formulate theorems corre-
sponding to the security of our scheme and give formal proofs
of these theorems. The proofs of these theorems are based
on the random oracle model assumption, which is dictated
mainly by efficiency and practical needs of the construction.
Finally, in Sect. 6 we describe and analyze a Σ-protocol on
which the construction of our scheme is based.

Previous versionThis is the full version of the paper that
has been presented in NSS 2016 [23]. The main differences
from the conferenceversion are as follows: Firstly,wepresent
additional related work on authentication schemes based on
federated identity management and secure hard tokens. Fur-
thermore, we give a comprehensive efficiency evaluation and
comparison with VLR group signature schemes. Secondly,
we add the formal security analysis of our scheme in Sect. 5.
Finally, we included the description of an honest verifier
zero-knowledge proof of knowledge protocol which forms
the basis of our signature scheme. Moreover, we proved the
zero-knowledge and proof of knowledge properties of the
proposed protocol.

2 Preliminaries

In this section, we recall some preliminaries necessary for
understanding the rest of the paper. In particular, we recall the
definition of groups with bilinear maps, and assumptions and
techniques necessary for the security analysis of our scheme.

2.1 Bilinear groups

Let G1, G2 be cyclic groups of a prime order p, generated
by g1 ∈ G1 and g2 ∈ G2. In our scheme, we make use of
bilinear maps e : G1 × G2 → GT , which are:
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– bilinear: fora, b ∈ Zp,wehave e(ga1 , g
b
2) = e(g1, g2)a·b,

– non-degenerate: the element e(g1, g2) ∈ GT is a gener-
ator of GT .

Additionally, we require that e and all group operations are
efficiently computable.

Throughout the paper, we will use Type-3 pairing accord-
ing to the classification from [17].Wecall a pairing ofType-3,
if G1 �= G2 and no efficiently computable homomorphism
between G1 and G2 is known.

2.2 Forking lemma

In this paper, we are mainly interested in signature schemes,
hence we briefly recall the forking lemma from [4]. The fork-
ing lemma, as stated in [4], tells us that having a forger of
a signature scheme who outputs a valid forge with probabil-
ity ε after qH hash queries (counted together with signature
queries), we may run the experiment again, change the out-
put of a random hash query, and obtain a forge for the same
message with probability

f rk ≥ ε2/qH − 1/2�

where � is the bit length of the output of the hash function.

2.3 Security assumptions

Definition 1 (Discrete Logarithm Problem (DLP)) Let G be
a cyclic group of prime order p with a generator g ∈ G. An
algorithm A has advantage ε in solving the DLP if

Pr
[
A

(
g, gα

) → α
] ≥ ε,

where the probability is taken over the random choice of the
generator g ∈ G, the random choice of α ∈ Zp, and the
random bits of A.

We say that the (t, ε)-DL assumption holds inG if no time
t algorithm has advantage ε in solving DLP in G.

Definition 2 (Decisional Diffie–Hellman Problem (DDH))
Let G be a cyclic group of order p with a generator g ∈ G.
An algorithm A has advantage ε in solving the DDH problem
if

∣∣Pr
[
A

(
gα, gβ, gα·β) → 1

]−Pr
[
A

(
gα, gβ, gγ

) → 1
]∣∣≥ε,

where the probability is taken over the random choice of
g ∈ G, the random choice of (α, β, γ ) ∈ Z

3
p, and the random

bits of A.
We say that the (t, ε)-DDH assumption holds in G, if no

time t algorithm has advantage at least ε in solving the DDH
problem in G.

Definition 3 (Symmetric eXternal Diffie–Hellman assump-
tion (SXDH)) Let G1, G2 be cyclic groups of a prime order
and e : G1 × G2 → GT be a bilinear map. The SXDH
assumption says that the DDH assumption holds in both G1

and G2.

Definition 4 (Bilinear Decisional Diffie–Hellman Assump-
tion) Let G be a cyclic group of a prime order and e :
G×G → GT be a bilinearmap.An algorithmA as advantage
ε in solving the BDDH problem if

∣∣Pr
[
A

(
gα, gβ, gγ , e(g, g)α·β·γ ) → 1

]

−Pr
[
A

(
gα, gβ, gγ , e(g, g)δ

) → 1
]∣∣ ≥ ε,

where the probability is taken over the random choice of
g ∈ G, the random choice of (α, β, γ, δ) ∈ Z

3
p, and the

random bits of A.
We say that the (t, ε)-BDDH assumption holds in G, if

no time t algorithm has advantage at least ε in solving the
BDDH problem in G.

Definition 5 (Collusion attack algorithm with q traitors (q-
CAA)) Let G1 and G2 be groups of a prime order p and
generated by g1 ∈ G1 and g2 ∈ G2. Let e : G1 ×G2 → GT

be a bilinear map which maps into a target group GT .
An algorithm A has advantage ε in solving the q-CAA

problem, if

Pr

⎡

⎢⎢
⎣

A
(
g1, g

z
1,

(
m1, g

1
z+m1
1

)
, . . . ,

(
mq , g

1
z+mq
1

)
,

g2, g
z
2

) →
(
m, g

1
z+m
1

)
∧ m /∈ {

m1, . . . ,mq
}

⎤

⎥⎥
⎦ ≥ ε,

where the probability is taken over the random choice of
(g1, g2) ∈ G1 × G2, the random choice of z ∈ Zp, the
random choice of (m1, . . . ,mq) ∈ Z

q
p, and the random bits

of A.
We say that (q, t, ε)-CAA assumption holds in (G1,G2),

if no time t algorithm has advantage at least ε in solving the
q-CAA problem in (G1,G2).

3 Formal model of Pseudonymous Public
Key Group Signature

A Pseudonymous Public Key Group Signature scheme con-
sists of the following procedures:

Setup(1λ): On input a security parameter λ, it outputs global
parameters param.
CreateUser(param):On input the global parameters param,
it creates and outputs the user’s master secret key mSK .
ComputePseudonym(param,mSK ,dom): On input the
global parameters param, the master secret key mSK and
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a domain name dom, it returns a pseudonym nym within
domain dom for the user holding mSK .
AddDevice(param,mSK , i): On input the global param-
eters param, the master secret key mSK and a device
identifier i , this procedure returns a device secret key uSKi .
CreateRevocationToken(param,mSK ,dom, i, j): On
input the global parameters param, user index i and his
secret key mSK , the domain name dom and a device
identifier j , this procedure computes and outputs a device
revocation token uRTi, j,dom within the domain dom.
Sign(param, uSK ,dom,m): On input the global parame-
ters param, a device secret key uSK , a domain name dom
and a message m, it returns a signature σ on the message m.
Verify(param, nym,dom, σ,m, uRT ): On input the global
parameters param, a pseudonym nym with regard to a
domain name dom, a signature σ on a message m, and a
revocation token uRT , this algorithm returns 1 (accept), or
0 (reject).

Below we discuss the required properties of Pseudonymous
Public Key Group Signatures.

CorrectnessAPseudonymous Public KeyGroup Signature is
correct, if for every λ ∈ N, param ← Setup(1λ), domain
name dom ∈ {0, 1}∗, and message m ∈ {0, 1}∗, if

mSKi ← CreateUser(param)

uSKi, j ← AddDevice(param,mSKi , j)

nym ← ComputePseudonym(param,mSKi ,dom)

uRTi, j,dom∗ ← CreateRevocationToken(param,

mSKi ,dom
∗, j)

σ ← Sign(param, uSKi, j ,dom,m)

then

Verify(param, nym,dom, σ,m, R) = 1

f or R �= uRTi, j,dom∗

Verify(param, nym,dom, σ,m, uRTi, j,dom∗) = 0 .

In order to define the remaining properties, we use the
following notation: USET stands for the list of users and
their secret keys, DSET contains triples (i, j, uSK ), where
i denotes a user index, j is a device index and uSK is its
secret key, CD is a list pointing to corrupted devices and S is
a list of signature query records. Thenwedefine the following
oracles used by the adversary during the security games:

OCreateUser: On input i , if there exists an entry (i, .) in
USET , the oracle aborts. Otherwise the oracle runsmSKi

← CreateUser(param) and adds the pair (i,mSKi ) to
USET .

OGetNym: On input dom and i , the oracle finds the secret
key mSKi in USET corresponding to i . If no such
entry exists, then the oracle aborts. Otherwise the oracle
computes nymi,dom ← ComputePseudonym(param,
mSKi , dom) and returns nymi,dom.

OAddDevice: On input a user index i and a device identifier j ,
the oracle finds an entry (i,mSKi ) ∈ USET and checks
that (i, j, ·) /∈ DSET . If (i, j, ·) /∈ DSET , then the oracle
aborts. Then the oracle computes uSKi, j ← AddDe-
vice(param,mSKi , j) anduSKi, j ←AddUser(param,
mSK , j) and adds the tuple (i, j, uSKi, j ) to DSET .

OAddCorruptedDevice: On input a user identifier i and a
device identifier j , the oracle finds (i,mSKi ) ∈ USET

and checks that (i, j, ·) /∈ DSET (if this is not the
case, then the oracle aborts). Otherwise the oracle runs
uSKi, j ← AddDevice(param,mSK , j), adds the tuple
(i, j, uSKi, j ) to DSET and CD, and outputs uSKi, j .

OGetRT: On input a user identifier i and his master key
mSKi , a device identifier j and a domain name dom,
the oracle checks that (i, j, ·) ∈ DSET , (if this is not the
case, then the oracle aborts). Then the oracle computes
uRTi, j,dom ← CreateRevocationToken(param,mSKi ,
dom, j) and returns uRTi, j,dom.

OSign: On input a user identifier i , a device identifier j , a
domain name dom and a message m, the oracle finds the
corresponding secret key uSKi, j in DSET , (if such an
entry does not exist, then the oracle aborts). Otherwise,
the oracle runs σ ← Sign(param, uSKi, j , dom, m),
adds (σ , m, dom, j , i) to S and returns σ .

OCorruptDevice: On input a user identifier i and a device iden-
tifier j , the oracle finds the secret key uSKi, j in DSET

corresponding to i and j . (If such an entry does not exist,
then the oracle aborts.) Then the oracle returns uSKi, j

and adds (i, j) to CD.

UnforgeabilityThis property says that no coalition of mali-
cious devices of a user can forge a signature on behalf
of a device not belonging to the coalition. We define the
unforgeability property by the following experiment:
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Experiment UNFSA(λ):

- (param) ← Setup(1λ).
- O ← {OCreateUser, OGetNym, OAddDevice, OGetRT, OSign,
OCorruptUser}.

- (σ ∗,m∗,dom∗, nym∗) ← AO(param).
- If

– Verify(param, nym∗,dom∗, σ ∗,m∗,⊥) = 1 and
– There exists (i,mSKi ) ∈ USET , (i, j, ·) ∈ DSET such that

– nym∗ = ComputePseudonym(param, mSKi ,
dom∗),

– uRTi, j,dom∗ ← CreateRevocationToken(param,
mSKi , dom∗, j),

– Verify(param, nym∗, dom∗, σ ∗,m∗, uRTi, j,dom∗ ) =
0,

– (i, j) /∈ CD and (σ ∗,m∗,dom∗, j, i) /∈ S,
then the challenger returns 1.

- Otherwise the challenger returns 0.

Definition 6 A Pseudonymous Public Key Group Signa-
ture S is (t, ε)-unforgeable if Pr[UNFS

A (λ) = 1] ≤ ε for
any adversary A running in time t .

Seclusiveness Seclusivenessmeans that it is infeasible to pro-
duce a signature on behalf of the user and that does not
correspond to any device of the user. In other words, it is
infeasible to create a signature that corresponds to none of
the revocation tokens. Seclusiveness is formally defined by
the following experiment.

Experiment SECS
A(λ):

- (param) ← Setup(1λ).
- O ← {OCreateUser, OGetNym, OAddCorruptedDevice, OGetRT}.
- (σ ∗,m∗,dom∗, nym∗) ← AO(param).
- If

– Verify(param, nym∗,dom∗, σ ∗,m∗,⊥) = 1 and
– there exists (i,mSKi ) ∈ USET such that

– nym∗ = ComputePseudonym(param, mSKi ,
dom∗),

– for all j such that (i, j, ·) ∈ DSET : uRTi, j,dom∗
← CreateRevocationToken(param, mSKi , dom∗,
j) and Verify(param, nym∗, dom∗, σ ∗, m∗,
uRTi, j,dom∗ ) = 1

the challenger returns 1.
- Otherwise the challenger returns 0.

Definition 7 We say that a Pseudonymous Public Key Group
Signature S is (t, ε)-seclusive, if Pr[SECS

A(λ) = 1] ≤ ε for
any adversary A running in time t .

AnonymityWe require that it is infeasible to correlate two
signatures of the same device (unless its revocation token is

used). For the anonymity experiment, we define an additional
oracle:

OChallenge: This oracle takes as input a bit b, a user index
i∗, a domain name dom∗, two device indexes
j∗0 , j∗1 and a message m∗. If

– (i∗, ·) /∈ USET or j∗0 = j∗1 , or
– (i∗, j∗0 , ·) /∈ DSET or (i∗, j∗1 , ·) /∈ DSET , or
– (i∗, j∗0 ) ∈ CD or (i∗, j∗1 ) ∈ CD, or
– the OGetRT oracle was called on input (i∗, j∗0 ,dom∗) or

(i∗, j∗1 ,dom∗),

then the oracle returns ⊥ and aborts. Otherwise, the ora-
cle computes σ ← Sign(param, uSKi∗, j∗b , dom

∗, m∗) and
returns σ .

After calling the OChallenge oracle, the adversary cannot
call theOGetRT on input (i∗, j∗0 ,dom∗) or (i∗, j∗1 ,dom∗), and
the OCorruptUser on input (i∗, j∗0 ) or (i∗, j∗1 ).

Experiment AnonSA:

- (param) ← Setup(1λ).
- choose b ∈ {0, 1} at random,
- O ← {OCreateUser, OGetNym, OAddDevice, OGetRT, OSign,
OCorruptUser, OChallenge(b, ·, ·, ·, ·)}.

- b̂ ← AO(param).
- If b̂ = b, then output 1, otherwise output 0.

Definition 8 A Pseudonymous Public Key Group Signa-
ture S is (t, ε)-anonymous if |Pr[AnonSA(λ) = 1] − 1

2 | ≤ ε

for any adversary A running in time t .

Domainunlinkability Informally, domainunlinkabilitymeans
that it is infeasible to correlate two domain pseudonyms with
a single user. We will give a simulation based definition for
the domain unlinkability property.

First we need to define the following data structures: D
denotes a set of domain names, U I

SET is the set of user
indexes, K denotes an associative map which maps a pair
(dom, i) ∈ {0, 1}∗ × N into a master secret key from the
secret key space USK. Then we define an associative map
UK which maps a tuple (dom, i, j) ∈ {0, 1}∗ × N

2 into a
device secret key.

Thenwe define the following oracleswhich implement the
ideal functionality, where the keys of the user for different
domains are independent (note that for Pseudonymous Public
Key Group Signature they are the same):

O I deal
CreateUser: The query requests to create a secret key for the
i th user. If i /∈ {1, . . . , n} or i ∈ U I

SET , then the oracle
aborts. Otherwise, the oracle adds i to U I

SET and for each
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dom ∈ D, the oracle chooses a secret key mSKi,dom at
random from USK and sets K[(i,dom)] ← mSKi,dom.

O I deal
AddDevice: The query requests to create the j th device
for user i . For each dom ∈ D the oracle obtains
mSKi,dom ← K[(i,dom)] and runs uSKdom,i, j ←
AddDevice(param, mSKdom,i , j), and sets UK[(dom,
i , j)] ← uSKdom,i, j .

O I deal
GetNym: The query requests the pseudonym of the i th user

with regard to a domain name dom. If i /∈ U I
SET ,

then the oracle aborts. If K[(i,dom)] is undefined, then
the oracle chooses a secret key mSKi,dom ∈ USK at
randomand setsK[(i,dom)]←mSKi,dom. Then the ora-
cle runs nymi,dom ← ComputePseudonym (params,
mSKi,dom, dom) and outputs nymi,dom.

O I deal
GetRT: The query requests a revocation token for the
j th device of user i with regard to a domain name
dom. If i /∈ U I

SET , then the oracle aborts. If the
entry UK[(dom, i, j)] is undefined, then the oracle
runs the procedure uSKdom,i, j ← AddDevice(param,
mSKdom,i , j), and sets UK[(dom, i, j)] ← uSKdom,i, j .
Then the oracle runs uRTi, j,dom ← CreateRevoca-
tionToken(param, mSKdom,i , dom , j) and outputs
uRTi, j,dom.

O I deal
Sign : The query requests to sign a message m by the j th
device of user i with regard to a domain name dom.
If i /∈ U I

SET , then the oracle aborts and returns ⊥.
If UK[(dom, i, j)] is undefined, then the oracle runs
uSKdom,i, j ← AddDevice(param,mSKdom,i , j), and
sets UK[(dom, i, j)] ← uSKdom,i, j . Finally, the ora-
cle runs σ ← Sign(param, uSKdom,i, j ,dom,m) and
returns σ .

Definition 9 We say that a Pseudonymous Public Key Group
Signature S is (t, ε)-domain unlinkable if for any adversary
A running in time t we have

∣
∣∣Pr

[
(param) ← Setup

(
1λ

) ; AOReal (param)
]

−Pr
[
(param) ← Setup

(
1λ

) ; AOI deal (param)
]∣∣∣ ≤ ε,

where OReal = {OCreateUser, OAddDevice, OGetNym, OGetRT,
OSign} and OI deal = {O I deal

CreateUser, O I deal
AddDevice, O I deal

GetNym,

O I deal
GetRT, O I deal

Sign }.

4 Efficient construction

4.1 Scheme specification

In this section,wedescribe our implementationof aPseudony-
mous Public Key Group Signature.

The idea behind the construction is as follows. First a
user chooses a secret key for the Boneh–Boyen signature
scheme [7], i.e., z ∈ Zp chosen at random. This key is then
used to compute “pseudonymized” public keys as nym ←
H0(dom)z , where H0 is a hash function and dom is a domain
name (a bit string identifying the domain). The same key is

then used to issue Boneh–Boyen signatures A j ← g
1/(z+u j )

1
on a secret key u j ∈ Zp of his device j . Note that according
to our security definition from Sect. 3, the user generates all
secret keys for his devices and we do not define a Join/Issue
procedure to ensure exculpability.1 We intentionally defined
our group signature scheme in this way due to our specific
use case.

Now, a device j holding a “certified” secret key (u j , A j ),
computes a signature of knowledge which is based on a Σ-
protocol and turned into a signature scheme using the Fiat–
Shamir paradigm. Informally, the signature carries a proof
that the signer knows a secret key with a certificate which
verifies correctly with a “pseudonymized” public key nym.
This signature of knowledge may be summarized using the
Camenisch–Stadler notation as follows:

SoK
{(
u j , A j

) : e (
A j , nym · ĝ2u j

) = e
(
g1, ĝ2

)}

The tricky part of our construction is that the signer does not
know the “pseudonymized” public key to which his certifi-
cate verifies. The only information which allows to sign with
regard to a pseudonymized public key is the basis of the pub-
lic key, i.e., ĝ2 ← H0(dom). Additionally, the signature of
knowledge reveals enough information to be able to blacklist
a device with a domain specific revocation token.

Bellow, we describe our scheme more formally.

Setup(1λ):

1. Choose groups G1, G2 of a prime order p, a bilinear
map e : G1 × G2 → GT , and choose a generator

g1
R← G1 at random.

2. Define a hash function H0 which maps intoG2 and a
hash function H which maps into Zp.

3. Output the global parameters param = (p, G1, G2,
e, g1, H0, H).

CreateUser(param):

1. Choose z ∈ Zp at random and output mSK ← z.

ComputePseudonym(param,mSK ,dom):

1. Compute ĝ2 ← H0(dom) and output nym ← ĝ2
z .

AddDevice(param,mSK , i):

1 The exculpability property is known from dynamic group signatures
[5] and assures that even the group manager cannot forge signatures on
behalf of a user.
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1. Choose ui ∈ Zp at random.2

2. Compute Ai = g1/(ui+z)
1 , return uSK [i] ← (Ai , ui )

and store ui for future use.

CreateRevocationToken(param,mSK ,dom, i):

1. Retrieve the user secret key ui , compute ĝ2 ←
H0(dom) and return uRT ← ĝ2

ui .

Sign(param, uSK ,dom,m):

1. Compute ĝ2 ← H0(dom).
2. Choose (r1, r2) ∈ Z

2
p at random and compute R1 ←

Ar1
i , R2 ← gr21 and R3 ← e(R2, ĝ2)ui .

3. Compute the following signature of knowledge:

S ← SoK {(α, β, γ ) : R1 = gβ/(z+α)
1 ∧

R2 = gγ
1 ∧ R3 = e(g1, ĝ2)

α·γ }(m)

(a) Choose t1, t2, t3 ∈ Zp at random and compute

T1 ← e
(
Ai , ĝ2

)−t1·r1 · e (
g1, ĝ2

)t2 ,

T2 ← gt31 and

T3 ← e
(
R2, ĝ2

)t1 .

(b) Compute the challenge c = H(param, m, dom,
T1, T2, T3).

(c) Compute s1 ← t1 + c · ui , s2 ← t2 + c · r1 and
s3 ← t3 + c · r2.

(d) Set S = (c, s1, s2, s3)
4. Output the signature σ = (S, R1, R2, R3).

Verify(param, nym,dom, σ,m, uRT ):

1. Compute ĝ2 ← H0(dom).
2. Parse the signature as σ = (S, R1, R2, R3), where

S = (c, s1, s2, s3).
3. Restore the values

T̃1 = e (R1, nym)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2

T̃2 = gs31 · R−c
2

T̃3 = e
(
R2, ĝ2

)s1 · R−c
3

4. If c �= H(param,m,dom, T̃1, T̃2, T̃3), then return 0
(reject).

5. If e(R2, uRT ) = R3, then return 0 (reject).
6. Return 1 (accept).

Theorem 1 Pseudonymous Public Key Group Signature is
correct.

2 This value may be derived in a deterministic way, e.g., ui ← H(z, i).

Proof The proof is simply due the inspection of the following
equations:

T̃1 = e (R1, nym)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2

=
(
e
(
R1, ĝ2

)−t1 · e (
g1, ĝ2

)t2
)

· e (R1, nym)−c · e (
R1, ĝ2

−c·ui ) · e (
gc·r11 , ĝ2

)

= T1 · e (
Ar1
i , ĝ2

−c·z · ĝ2−c·ui ) · e (
gc·r11 , ĝ2

)

= T1 · e (
g1, ĝ2

)−r1·c · e (
g1, ĝ2

)r1·c = T1

T̃2 = gs31 · R−c
2 = gt31 · gc·r21 · g−c·r2

1 = T2

T̃3 = e
(
R2, ĝ2

)s1 · R−c
3

= e
(
R1, ĝ2

)t1 · e (
g1, ĝ2

)r2·c·ui · e (
g1, ĝ2

)−r2·c·ui = T3

For the revocation procedure, let uRT ← ĝ2
ui be a revo-

cation token. Then we have

e (R2, uRT ) = e
(
gr21 , ĝ2

ui
) = R3.

��

4.2 Notes on the construction

In this section, we discuss some efficiency and imple-
mentation details. Moreover, we point also some potential
modifications which may be valuable in a real-world deploy-
ment.

4.2.1 Efficiency and optimizations

Creating a signature as described in Sect. 4 takes 3 exponen-
tiations in G1, 4 exponentiations in GT , 1 multiplication in
GT and 3 pairing operations. However, we may optimize the
scheme by computing only e(A, ĝ2) and e(g1, ĝ2), what also
may be precomputed, but then we have to store this values
for all domains separately. Then, the values R3 and T3 may
be computed as R3 ← e(g1, ĝ2)r2·u and T3 ← e(g1, ĝ2)r2·t1 .
Thus, the number of pairing evaluations may be reduced to
2 pairings, or zero pairings in case the values corresponding
to a domain are precomputed.

Signature verification, as described in Sect. 4, takes 2
exponentiations and 1 multiplication in G1, 5 exponentia-
tions and 3 multiplications inGT , and 4 pairing evaluations.
We may get rid of one pairing evaluation if e(g1, ĝ2), what
is quite likely in a real-world implementation. We also may
reduce the amount of exponentiations in GT , by computing
e(R−c

1 , nym), e(R−s1
1 , ĝ2) and e(Rs2

2 , ĝ2). Later, the revo-
cation part of the signature verification takes one pairing
evaluation per revocation token. Unfortunately, we need to
check all revocation tokens corresponding to the pseudonyms
nym. Hence the revocation procedure runs in time O(|RT |),
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where |RT | stands for the number of revocation tokens pub-
lished the owner of nym in the domain.

4.2.2 Implementation

Now we will describe the efficiency of our scheme in a con-
crete implementation. We consider Barreto–Naehrig (BN)
curves. In our setting, the group G1 is instantiated over Fq ,
the group G2 is instantiated over Fq2 and the target group
over Fq12 , where q is the size of the underlying finite field
Fp. BN curves are of the form E : y2 = x3+b, for b �= 0. For
our tests, we chose the Fp256BN curve which has been stan-
dardized by ISO/EIC [20] and specified in IETF draft [21].
However, due to recent results [2], it provides approximately
100-bit security.

We did our tests on a proof-of-concept implementation
using the Java Pairing-Based Cryptography Library v.2.0.0
[15], a Java port of the PBC library written in C [25,30]. We
run our tests on a machine with Intel i7-2670QM 2.20GHz
CPU and 8GB of random access memory.

Although our tests give some intuition on the concrete
timings, they may differ depending on the quality of the
implementation, underlying hardware, etc. In order to high-
light the timing differences between different groups, wewill
additionally use the framework given in [18]. We will nor-
malize the operations made in every group by estimating the

cost in multiplications made in Fq what we denote as Mq .
So, according to [18] one exponentiation (scalar multiplica-
tion) inG1 costs approximately 2738 ·Mq , exponentiation in
G2 costs approximately 6590 · Mq and inGT approximately
9252 · Mq . Similarly, multiplication (point addition) costs
11 · Mq inG1, 29 · Mq inG2 and 54 · Mq inGT . Computing
a pairing costs approximately 16,336 · Mq .

Since we introduce a new notion for group signatures
which aims to fit an application for which previous group
signature scheme where not designed for, it cannot directly
be compared with previous work. Despite this, we compare
our solution with verifier-local revocation group signature
schemes (VLR group signatures) from [6,9,26] since these
primitives share some functionalities with our proposed solu-
tion. VLR group signatures are group signatures which
provide a revocation functionality,whichdoes not require any
groupmember (device in our setting) to update its state.How-
ever, we emphasize that the above-mentioned VRL group
signatures do not support pseudonymous group public keys
as in our scheme. We compare the signature size in Table
1, the complexity of signature generation in Table 2 and the
complexity of signature verification in Table 3. For the sig-
nature size, we give the bit length according to the chosen
parameters, and for signature generation and verification we
provide the timings in milliseconds.

Table 1 Signature size

Scheme G1 G2 GT Zq Bit size

Our 2 0 1 4 4608

[9] 2 – – 5 1792

[6] 3 – – 2 1280

[26] 3 – 1 8 5888

Table 2 Computational cost of signature generation

Scheme Exp. Mul. Pairing ψ : G2 → G1 Mp Impl. (ms)

Our 3 · G1 + 4 · GT 1 · GT – – 45,276 176

[9] 6 · G1 + 2 · G2 2 · G1 + 1 · G2 + 1 · GT 2 2 62,385 482

[6] 3 · G1 + 1 · GT – – – 35,970 165

[26] 13 · G1 + 4 · GT 6 · G1 + 2 · GT 1 – 89,062 477

Table 3 Computational cost of signature verification

Scheme Exp. Mul. Pairing ψ : G2 → G1 Mp Impl. (ms)

Our 6 · G1 + 1 · GT 2 · G1 + 2 · GT 3 – 74,818 457

[9] 6 · G1 + 2 · G2 + 1 · GT 2 · G1 + 3 · GT 3 2 88,052 552

[6] 3 · G1 1 · G1 + 1 · GT 4 – 73,623 442

[26] 12 · G1 + 2 · G2 + 3 · GT 7 · G1 + 2 · G2 + 4 · GT 2 – 106,815 667

123



190 K. Kluczniak et al.

As shown in Table 1, the size of our signatures is between
the solutions from [6,9,26]. As for signature generation and
verification, we may observe that our scheme is faster than
[9,26]. However, it is slightly slower than the solution LRSW
based solution [6].

4.2.3 Additional procedures and scheme variants

Here we describe briefly some additional procedures and
variations of our scheme, which may be useful for certain
practical situations.

First, note that the signing device needs only to know
its private key consisting of an SDH pair (u, g1/(z+u)

1 ) and
nothing else, in order to create a signature. In particular, the
signing device does not need to know the public key, a.k.a. the
pseudonym, with which the signature will later be verified.
Moreover, it seems that the signing device alone is not even
able to compute the pseudonym by itself. However, in some
cases it may be desirable that the signing device can compute
a pseudonym, what in our case may be nym′ = e(Z , ĝ2),
assuming the user also issues the value Z = gz1. Such nym′
may serve as a temporal pseudonym, until the owner of the
device confirms this pseudonym by proving his knowledge
of the secret key z ∈ Zp.

Proving the knowledge of the master key may be required
as a part of user registration. This may be simply done by
designing aΣ-protocol [16] which will prove the knowledge
of logg1(nym). Such standard protocol may be transformed
into a zero-knowledge proof of knowledge protocol or into
its non-interactive version in the random oracle model.

5 Security analysis

In this section, we formally proof the security properties of
our proposed scheme. In order to facilitate the understanding
of the proofs, we will first informally outline the proof and
then give the full formal proof of the corresponding theorems.

Zero-knowledge and witness extractionOur construction is
based on a known technique of using a Σ-protocol con-
verted into a signature scheme via the Fiat–Shamir heuristic.
For such a construction, we may show that, in the random
oracle model, there is a witness extractor (so the protocol
is a proof of knowledge) and a simulator (so the proto-
col is zero-knowledge). Using the witness extractor, from
a forged signature for a pseudonym nym within domain
dom, we may extract values ũ, r̃1, r̃2 and Ã, such that
gr̃21 = R2, e(R2,H0(dom))ũ = R3 and e(g1,H0(dom)) =
e( Ã,H0(dom)ũ ·nym). Using the simulator, wemay generate
a correct signature having only g1, ĝ2, nym and a revocation
token H0(dom)ũ .

In this section, we will use the zero-knowledge and wit-
ness extraction properties as subprocedures. We describe the
underlyingΣ-protocol and proof the above-mentioned prop-
erties in Sect. 6

5.1 Unforgeability

Theorem 2 If DLP is (ε′, t ′)-hard inG2, then the Pseudony-
mous Public Key Group Signature is (ε, t)-unforgeable,
where ε ≈ qU · n · √

qH(ε′ + 1/p) and t ≈ t ′, and n, qU
and qH are the upper bounds on the number of invocations
of, respectively, OCreateUser, OAddDevice and hash queries.

The unforgeability property relies on the DLP problem.
Here we put a DL problem instance Λ ∈ G2 into the revoca-
tion tokens of a chosen device. We may program the random
oracle to output grdom2 ← H0(dom), and then we may com-
pute the revocation tokens as uRT ← Λrdom . If the adversary
successfully forges a signature for that device, we use the
extractor and extract the discrete logarithm α = logg2(Λ).

Proof Let A be an adversary breaking the unforgeability of
our scheme. We will construct a solver B, which exploits A
to compute logg2(Λ).

The solver creates randomoraclesH,H0 and sets the public
parameters as param = (p,G1,G2, e, g1,H0,H). Then the
solver chooses a user index i ′ ∈ {1, . . . , n} and a device index
j ′ ∈ {1, . . . , qU } at random. The solver starts the adversary
giving him as input the public parameters param.

Then B handles the queries as follows:

– Hash Queries: In case the adversary queries the H hash
oracle, B responds with a random value and saves the
response for a future call. In case the adversary queries the

H0 hash oracle on input dom, the solver chooses r
R← Zp

at random, programs the oracle to return gr2 and saves the
pair (r ,dom) for a future call.

– OCreateUser: The adversary requests to create the i th user.
The solver runs mSKi ← CreateUser(param) as in the
protocol description and adds the pair (i,mSKi ) toUSET .

– OGetNym: The adversary requests the pseudonym of
the i th user with regard to domain dom. The solver
runs nymi,dom ← ComputePseudonym(param, dom,
mSKi ) and returns nymi,dom.

– OAddDevice: The adversary requests to add a device j by
the i th user. If i �= i ′, then B runs uSKi, j ← AddDe-
vice(param, mSK , j) as in the original protocol. If
i = i ′, then B acts as follows:

– if j �= j ′, thenB runsuSKi ′, j ←AddDevice(param,
mSK , j) as in the original protocol.

– if j = j ′, then B sets uSKi ′, j ′ ←⊥ (the solver will
later simulate the signatures for this device).
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Finally, the solver adds the tuple (i, j, uSKi, j ) toDSET .
– OGetRT: The adversary requests the domain revocation
token of the i th user, j th device with regard to domain
dom. If i = i ′ and j = j ′, then the solver restores the pair
(r ,dom) from theH0 hash oracle, computes uRT ← Λr ,
and outputs uRT . Otherwise, the solver computes uRT
← CreateRevocationToken(param, mSK , dom, i) as
in the protocol description and returns uRT .

– OSign: The adversary requests a signature for the i th user,
j th device within domain dom and message m. If i = i ′
and j = j ′, then B simulates the signature of knowl-
edge. Otherwise, the solver computes σ ← Sign(param,
uSKi, j , dom, m) as in the protocol description. Finally,
the solver outputs σ .

– OCorruptDevice: The adversary requests a secret key of the
i th group manager and j th user. If i = i ′ and j = j ′,
then the solver aborts. Otherwise, B returns uSKi, j .

At some point, the adversary returns a signature σ ∗, a
message m∗, a domain string dom and a pseudonym nym∗.

First, the solver restores the pair (r ,dom) from the H0

hash oracle. With probability at least 1/n, the solver choose
the index i properly; thus, nym∗ corresponds to the i ′th user.
Then, with probability at least 1/qU , the signature corre-
sponds to the j ′th device. If the signature corresponds to
another device, then the solver aborts. Otherwise, B runs the
extractor of the signature of knowledge and obtains values
(ũ, r̃1, r̃2) ∈ Z

3
p and Ã ∈ G1 which satisfy R2 = gr̃11 ,

R3 = gr̃1·ũ1 e( Ã, gr ·ũ2 · nym), and the revocation equa-
tion e(R2,Λ

r ) = e(R3, gr2) holds. Thus, we have that

e(gr11 ,Λ) = e(gr1·ũ1 , g2) and, what follows, ũ = logg2(Λ).
Simulating, the signature of knowledge may cause abor-

tion due to a collision in the hash oracle H. Since the hash
oracle takes three independently chosen random values T1,
T2 and T3, the probability of a collision is at most 2 · q2H/p3.
Assuming qH << p, this probability is negligible hence we
omit it for readability.

Finally, the solver obtains a signature forged for the i ′th
user and j ′th device with probability ε′′ = ε

qU ·n . By applying
the forking lemma from [4], the solver may extract logg2(Λ)

with probability at least ε′′2/qH − 1/p. ��

5.2 Seclusiveness

Theorem 3 If q-CAA is (ε′, t ′)-hard inG1, then thePseudony-
mous Public Key Group Signature is (ε, t)-seclusive, where
ε ≈ n ·√qH(ε′ + 1/p), t ≈ t ′, and n, q and qH are the upper
bounds on the number of, respectively,OCreateUser,OAddDevice

and hash queries.

Seclusiveness follows from the fact that device secret keys
are CAA instances, i.e., they consist of pairs (u, g1/(u+z)

1 ) ∈

Zp ×G1. If an adversary would forge a signature, then from
the extractor we may obtain a pair (ũ, Ã). If the forged sig-
nature cannot be revoked, then from the revocation equation
e(R2, ĝ2

ui ) �= R3 follows that ũ �= ui for each device secret
key ui issued by the user holding z. Thus, (ũ, Ã) is the solu-
tion to the CAA problem instance.

Proof Let A be an adversary breaking the seclusiveness of
our scheme. We construct a solver B, which exploits A to
solve the CAA problem instance.

The solver obtains (g1,g
z
1,g2,g

z
2) ∈ G

2
1 × G

2
2 and q pairs

(A j ,u j ) ∈ G1 × Zp form the problem instance. Then, the
solver creates random oracles H and H0, sets the global
parameters as param = (p,G1,G2,e,g1,H0,H) and chooses a
user index i ′ ∈ {1, . . . , n} at random. The solver programs the
H0 hash oracle such that on input dom, the solver chooses

r
R← Zp at random, programs the oracle to return gr2 and

saves the pair (r ,dom) for a future call.
The crucial observation is that the pairs (A j ,u j ) formvalid

device secret keys. Hence, for the i ′th call of the OCreateUser

oracle the solver adds the pair (i ′,⊥) toUSET . It is easy to see
that all oracle queries, except those involving the i ′th user,
are handled according to the protocol description.

For the i ′th user, the solver handles the OGetNym queries
with domain string dom by computing nymi ′,dom ← (gz2)

r ,
where r ∈ Zp is recovered from the H0 hash oracle for input
dom. ThenB returns nymi ′,dom. In case ofOAddCorruptedDevice
oracle query for a device j and the i ′th user, the solver simply
returns the pair (A j , u j ) from the problem instance. If the
adversary calls the OGetRT oracle for a user j and the i ′th
user, then the solver obtains ĝ2 ← H0(dom) and returns
uRTi, j ← ĝ2

u j .
At some point the adversary returns a signature σ ∗, a mes-

sage m∗, a domain string dom and a pseudonym nym∗. The
solver obtains the pair (r ,dom) from the hash oracle H0.
Then the solver may check whether the forge was made for
the i ′th user by inspecting the equation (gz2)

r = nym. If this
is not the case then the solver aborts. The solver does not
abort with probability 1/n.

Then, the solver applies the extractor of the signature of
knowledge and obtains (ũ, r̃1, r̃2) ∈ Z

3
p and Ã ∈ G1 which

satisfy R2 = gr̃11 , R3 = gr̃1·ũ1 e( Ã, gr ·ũ2 ·nym). Then, for each
i ∈ {1, . . . , q}, we have

e
(
R2, g

ui ·r
2

) = e
(
gr̃11 , gui ·r2

)
�= e

(
gr1·ũ1 , gr2

)
.

Thus, ũ �= ui and the pair ( Ã, ũ) are the solution to the CAA
problem instance.

So, the solver obtains a forged signature for user i ′ with
probability at least ε′′ = ε/n. By applying the forking lemma
from [4], the solver may extract ( Ã, ũ) with probability at
least ε′′2/qH − 1/p. ��
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5.3 Anonymity

Theorem 4 If BDDH is (ε′, t ′)-hard in G1,G2, then the
Pseudonymous Public Key Group Signature is (ε, t)-anony-

mous, where ε ≈ ε′2
n·qH·q2U

, t ≈ t ′, and n, qU and qH are upper

bounds on the number of, respectively,OCreateUser,OAddDevice

and hash queries.

In order to proof anonymity, we describe a sequence of
games. We will start with a game where the challenge signa-
ture is returned by the device j∗0 (bit b = 0). Then in each
game we change the protocol execution so that the adver-
sary has only a negligible chance of noticing these changes.
Finally, we will end up in a game where the challenge signa-
ture is computed for device j∗1 (bit b = 1).

The strategy of changing the protocol is as follows. First
we need to simulate the signatures for all devices. Then, for
the j∗0 th device, under the BDDH assumption, we choose
these values independently at random. Next, instead of
choosing R1, R2, R3 independently we compute these values
as for device j∗1 . Below, we shed some light on the step of
changing the values of R1, R2, R3 into random values.

Let (ga2 , g
b
2 , g

c
1) be a BDDH problem instance and let

dom∗ denote the domain from the challenge oracle. In all
domains dom �= dom∗ we choose rdom at random, program
the hash oracle to output grdom2 ← H0(dom) and we com-
pute uRT ← (ga2 )

rdom and R3 ← e(grdom1 , ga2 )
r2 for device

j∗0 . In domain dom∗, we program the hash oracle to return

gb2 ← H0(dom∗). Then, we choose r2
R← Zp at random,

compute R2 ← gc·r21 and R3 ← e(g1, g2)abc·r2 (the current
game) or R3 is chosen at random (the next game). Note that
if an adversary would be able to distinguish whether R3 =
e(g1,g2)abc·r2 or R3 is random, then itwould break theBDDH
assumption.

Proof The proof of anonymity the sequence of games
described below.

Game 0. This is the game where we run our scheme.
Game 1. From this gamewe assume that the adversary calls

the challenge oracle on the dth domain string,
where d is chosen at random from {1, . . . , qH} and
qH is the upper bound of domain strings. It is easy
to see, that the solver guesses d with probability
1/qH.

Game 2. From now on, we assume that the adversary calls
the challenge oracle for the i th user, where i is
chosen at random from {1, . . . , n}. The probabil-
ity that the solver guesses this index is 1/n. We
denote as nym the pseudonym of the i th user in
the dth domain.

Game 3. We assume that the adversary calls the challenge
oracle for the j th and j ′th devices, where j and

j ′ are randomly chosen from {1, . . . , qU }. The
probability that the solver guesses this indexes is
1/qU (qU − 1) ≈ 1/q2U .

Game 4. The H0 oracle calls are handled as follows. First

we choose r
R← Zp at random, and then we pro-

gram the oracle to return gr2. Then we save the
value r for a future call with the same input.

Game 5. For devices j0 ∈ { j, j ′}, we let the add device
oracle compute uSKi, j0 ← g

ui, j0
1 . Queries for

revocation tokens are handled by restoring r ∈ Zp

from the H0 oracle and computing uRTi, j0 ←
(g

ui, j0
2 )r . We simulate the signatures for this

devices as follows: We choose (r1, r2)
R← Zp

at random and compute R1 ← gr11 , R2 ←
gr21 and R3 ← e(g

ui, j0
2 , gr2)

r2 . Then we choose

(c, s1, s2, s3)
R← Z

4
p and compute the values T1,

T2 and T3 according to the simulator described
in Sect. 6. Simulating, the signature of knowl-
edge may cause abortion due to a collision in the
hash oracle H what may happen with probability
at most qs(qH + qs)/p3.

Game 6. In domain dom∗ for the j th device, we choose the

value R3
R← GT at random. Note, that in all other

domains for the j th device we compute R3 ←
e(g

ui, j
2 , gr2)

r2 .

Claim If the BDDH problem is (ε′, t)-hard, then the adver-
sary has ε′′ ≈ ε′ advantage in distinguishing between Game
5 and Game 6.

Proof Given (ga2 , g
b
2 , g

c
1, X) ∈ G

2
2 ×G1 ×GT , we construct

a solver which uses an efficient distinguisher to determine
whether X = e(g1, g2)abc or X is random.

In all domainsdom �= dom∗, the solver computesuRT ←
(ga2 )

r , where r is the exponent stored by the H0 hash oracle,
and R3 ← e(gr1, g

a
2 )

r2 . All other values are computed as in
Game 5.

Then, within domain dom∗, the solver programs the H0

hash oracle to return gb2 . Finally, for device j the solver

chooses r2
R← Zp at random and computes R2 ← gc·r21

and R3 ← Xr2 .
Now, if the distinguisher outputs that he is in Game 5, the

solver outputs that X = e(g1, g2)abc. Otherwise, the solver
outputs that X is random.

Game 7. In domain dom∗ for the j ′th user, we choose the

value R3
R← GT at random.

Claim If the BDDH problem is (ε′, t)-hard, then the adver-
sary has ε′′ ≈ ε′ advantage in distinguishing between Game
6 and Game 7.
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Proof The proof is exactly the same as the proof of
claim 5.3. ��

Finally, we end up with a system, where the signatures
of the devices from the challenge phase are independent of
their secret keys. Thepart of the signature consistingof values
R1, R2, R3 are chosen independently at random, and we may
write R3 = e(gu1 , g

r
2)

r2 for each device from the challenge
phase. Thus, an adversary may only guess the bit and win
with probability 1/2.

5.4 Domain unlinkability

Theorem 5 If SXDHis (ε′, t ′)-hard inG2, then thePseudony-
mous Public Key Group Signature is (ε, t)-domain unlink-
able, where ε ≈ ε′ ·qH(qU +n), t ≈ t ′, and n, qU and qH are
the upper bounds on the number of, respectively,OCreateUser,
OAddDevice and hash queries.

Domain unlinkability follows from the fact that we may
simulate the signatures for each device and that in each
domainwe have a distinct base ĝ2 ← H0(dom). Note that the
device revocation tokens are computed as uRTi, j,dom = ĝ2

u j

for a device secret key u j ∈ Zp. In a given domain we may
choose uRTi, j,dom at random. It is easy to see that if an
adversary would recognize this change, he would serve as a
distinguisher for the SXDH problem. In the proof, we need
to choose revocation tokens of all devices in all domains at
random. Finally, we may use the same reasoning to choose
pseudonyms nym = H0(dom) at random in each domain,
finally ending up in an ideal system as defined in Sect. 3.

Proof Below we describe the sequence of games, starting
from the Pseudonymous Public Key Group Signature and
ending up with a game with the ideal scheme.

Game 0. We run our scheme in the domain
anonymity environment.

Game 1. The H0 oracle calls are handled by

choosing r
R← Zp at random, and then

programming the oracle to return gr2.
Then we save the value r for a future
call with the same input.

Game 2. If the adversary requests to sign a mes-
sage m, by the j the device of the i th
user with regard to a domain string dom
(domain pseudonym nymi, j ), we simu-
late the signature as follows.
First, the simulator obtains the scalar
r ∈ Zp from the H0 hash oracle. Then

the simulator chooses (r1,r2)
R← Zp at

random and computes R1 ← gr11 , R2

← gr22 and R3 ← e(g1,g
ui, j ·r
2 )r2 . Then

the simulator chooses (c, s1, s2, s3)
R←

Z
4
p, computes the values T1, T2 and T3

according to the simulator described in
Sect. 6.

Game (3, j ′, d): Let us first note that we may assign a
unique number to each device, which
is upperbounded by the number add
device oracle calls qU . For simplic-
ity, we will denote a device secret key
as u j ′ instead of ui, j having in mind
that all j ′ ∈ {1, . . . , qU } represent all
devices of all users in the system.Also as
the number of domain strings is upper-
bounded by the number of hash queries
qH, we may assign a number to all
domain strings in the system. So, we
will denote as d ∈ {1, . . . , qH} the dth
domain string. Denote, as domd the dth
domain string. Now, we will incremen-
tally change the game, starting from the
first device and the first domain. So
instead of computing uRT ← g

u j ′ ·rd
2

and R3 ← e(g1, g
u j ′ ·rd
2 )r2 , for rd ∈ Zp

such that H(domd) = grd2 in Game (3,
j ′, d), we choose a random u j ′,d and

compute uRT ← g
u j ′,d
2 and R3 ←

e(g1, g
u j ′,d
2 )r2 in Game (3, j ′, d + 1).

Note, that between Game (3, j ′, qH) and
Game (3, j ′ + 1, 1), there is no change.
Finally, we will end up with Game (3,
qU , qH), where all device secret keys are
independently chosen for each domain
string.

Claim If SXDH is (ε′, t)-hard, then the adversary has ε′′ ≈ ε′
advantage in distinguishing between Game (3, j ′ ,d) and
Game (3, j ′, d + 1).

Proof Given (gα
2 , gβ

2 , gγ
2 ) ∈ G

3
2, we construct a solver which

uses a distinguisher to distinguish whether γ = α · β or γ is
random.

InGame (3, j ′,d) The solver computesuRT ← (gα
2 )r and

R3 ← e(g1, (gα
2 )r )r2 in all domains d ′ ≥ d. Then in Game

(3, j ′, d + 1) for domain domd the solver programs the H0

oracle to return gβ
2 on input domd , For domd and device j ′

the solver computes uRT ← gγ and R3 ← e(g1, g
γ
2 )r2 . All

other values are computed as in Game (3, j ′, d).
Now, note that if γ = α · β, we have uRT ← (gα·β

2 ) and

R3 ← e(g1, (g
α·β
2 ))r2 , and the distinguisher will output that

he is in game Game (3, j ′, d) with advantage ε′. Otherwise,
we may write uRT ← gα′·β and R3 ← e(g1, g

α′·β
2 )r2 , for
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a random α′ and the distinguisher will output that he is in
Game (3, j ′, d + 1). ��
To sum up, we execute Game 3 for all devices of all users in
all domains. Having that there may be at most qU users and
qH domain strings, we have that an adversarymay distinguish
between Game 2 and Game (3, qU , qH) with advantage ε′ ·
qU · qH.

Game (4, i , d): Similarly, as in the previous sequence of games,
here we will iterate for each user i ∈ {1, . . . , n}
and each domain d ∈ {1, . . . , qH}.

In Game (4, i , d) we compute nym ← gzi ·rd2 , where rd is
the scalar from the H0 hash oracle for domd , and zi stands
for the i th user secret key. In Game (4, i , d + 1) we choose

nym
R← G2 at random.

Finally, we will end up with Game (4, n, qH) in which
each group manager will have a separate secret key in each
domain.

Claim If the SXDHproblem is (ε′, t ′)-hard then an adversary
has ε′′ ≈ ε′ advantage in distinguishing between Game (4,
i , d) and Game (4, i , d + 1).

Proof Given (gα
2 , gβ

2 , gγ
2 ) ∈ G

3
2, we construct a solver which

uses a distinguisher to distinguish whether γ = α · β or γ is
random.

In Game (4, n, d) we compute the pseudonym as nym ←
(gα

2 )r , where r is obtained from the H0 hash oracle. Then in
Game (4, n, d + 1) we will program the H0 hash oracle to
return gβ

2 for input domd , and we set nym ← gγ
2 .

Now, note that if γ = α · β, then we have nym ← gα·β
2 ,

and the distinguisherwill output that he is in gameGame (4, i ,

d) with advantage ε′. Otherwise, wemaywrite nym ← gα′·β
2

for a random α′ and the distinguisher will output that he is
in Game (4, i , d + 1). ��

As noted before, we iterate for all users, which is at most
n, in all domain, which is at most qH. Hence, the advantage
of distinguishing between Game (5, qU , qH) and Game (4, n,
qH) is ε · (n · qH).

Finally, we end up with a system where secret key of all
users are chosen independently at randomwith regard to each
domain string, and each secret key of all devices are chosen
independently at random with regard to each domain string,
which is exactly the case of the ideal simulator.

6 TheΣ-protocol

Below we describe the Σ-protocol on which our scheme
from Sect. 4 is based. The Σ-protocol is a three move

zero-knowledge proof of knowledge between a Prover and a
Verifier.

Common Input: The common input to the Prover and
VerifierCV consists of groupsG1 andG2 of prime order
p, group generators g1 ∈ G1 and ĝ2 ∈ G2, and a bilinear
map e : G1×G2 → GT . Furthermore, there is an element
Z ∈ G2.
Private Input: The private input of the Prover consists
of a pair (A, u) ∈ G1 × Zp, such that e(A, ĝ2

u · Z) =
e(g1, ĝ2).
The protocol:

1. (Prover) The Prover chooses (r1, r2)
R← Z

2
p at ran-

dom and computes R1 ← Ar1 , R2 ← gr21 and
R3 ← e(R2, ĝ2)u .

2. (Prover → Verifier) The Prover and Verifier execute
the following proof of knowledge:

PoK
{

(α, β, γ ) : R1 = gβ/(z+α)
1 ∧ R2 = gγ

1 ∧
R3 = e

(
g1, ĝ2

)α·γ }

(a) The Prover chooses (t1, t2, t3)
R← Z

3
p and com-

putes

T1 ← e
(
A, ĝ2

)−t1·r1 · e (
g1, ĝ2

)t2 ,

T2 ← gt31 and

T3 ← e
(
R2, ĝ2

)t1 .

Then the Prover sends R1, R2, R3, T1, T2 and T3
to the Verifier.

(b) (Verifier → Prover) The Verifier chooses c
R←

Zp and sends c to the Prover.
(c) (Prover → Verifier) The Prover now computes

s1 ← t1+c·u, s2 ← t2+c·r1 and s3 ← t3+c·r2.
3. (Verifier) The Verifier accepts if the following equa-

tions hold:

T1 = e (R1, Z)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2

T2 = gs31 · R−c
2

T3 = e
(
R2, ĝ2

)s1 · R−c
3

Theorem 6 The protocol described above is a Public-Coin
Honest Verifier Zero-Knowledge Proof of a pair (A, u) ∈
G1 × Zp, such that e(A, ĝ2

u · Z) = e(g1, ĝ2).

The proof follows from the lemmas below.

Lemma 1 The protocol is complete.
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Proof Suppose that a prover holds a pair (u, A) ∈ Zp × G1

where A = g1/(z+u)
1 and follows the protocol. In this case

e (R1, Z)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2

=
(
e
(
R1, ĝ2

)−t1 · e (
g1, ĝ2

)t2
)

· (
e (R1, Z)−c · e (

R1, ĝ2
−c·u)) · e (

gc·r11 , ĝ2
)

= T1 · e (
Ar1 , ĝ2

u · Z)−c · e (
gr11 , ĝ2

)c

= T1 · e (
g1, ĝ2

)−r1·c · e (
g1, ĝ2

)r1·c = T1.

Then we have

gs31 · R−c
2 = gt31 · gc·r21 · g−c·r2

1 = T2

and

e
(
R2, ĝ2

)s1 · R−c
3

= e
(
gr21 , ĝ2

)t1 · e (
gr21 , ĝ2

)c·u · e (
gr21 , ĝ2

)−c·u = T3

��
Lemma 2 The protocol has an extractor.

Proof Supposewecan rewind theProver to themomentwhen
he is given the challenge c. The Prover will send R1, R2, R3,
T1, T2 and T3 and respond with the challenge c and s1, s2 and
s3. Then we rewind to the step when the Prover obtains c and
send a different challenge c′ �= c. The Prover will answer
with s′

1, s
′
2 and s′

3 satisfying the verification equations. Let
Δsi = (si − s′

i ) for i = 1, 2, 3 and Δc = (c − c′). From the
equality

T1 = e (R1, nym)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2

= e (R1, nym)−c′ · e (
R1, ĝ2

)−s′1 · e (
g1, ĝ2

)s′2

we have that

e
(
R1, ĝ2

)−Δs1 · e (
g1, ĝ2

)Δs2 = e (R1, nym)Δc

e
(
R1, ĝ2

)−Δs1/Δc · e (
g1, ĝ2

)Δs2/Δc = e (R1, nym)

e
(
g1, ĝ2

)Δs2/Δc = e
(
R, ĝ2

Δs1/Δc · nym
)

e
(
g1, ĝ2

) = e
(
R(Δs2/Δc)−1

1 , ĝ2
Δs1/Δc · nym

)

Then from T2 = gs31 · R−c
2 = g

s′3
1 · R−c′

2 we have

gΔs3
1 = RΔc

2

gΔs3/Δc
1 = R2

So, we may compute ũ = Δs1/Δc, and r̃1 = Δs2/Δc, r̃2 =
Δs3/Δc and Ã = Rr̃1

−1
such that gr̃21 = R2 and e(g1, ĝ2) =

e( Ã, ĝ2
ũ · nym).

Finally, from T3 = e(R2, ĝ2)s1 · R−c
3 = e(R2, ĝ2)s

′
1 · R−c′

3
we have

e
(
R2, ĝ2

)Δs1 = e
(
R3, ĝ2

)Δc

e
(
g1, ĝ2

)r̃2·ũ = R3.

��

Lemma 3 The protocol is Zero-Knowledge.

Proof Given the common input (G1, G2, e, g1, ĝ2, nym),
where ĝ2 = H0(dom) and nym = ĝ2

z for some z ∈ Zp, the

simulator works as follows. Choose R3
R← G1 and R2

R←
G1. Note that now the value of Ai is fixed by the choice of
R3 and R2. In order to highlight this we may denote R2 =
gr21 and R3 = e(R2, ĝ2)ui for some ui ∈ Zp, hence we

have A = g1/(ui+z)
1 . Choose R1

R← G1 at random. See that
R1 = Ar1/(u+z) for some r1, thus the values R1, R2, R3 are
distributed as in a real protocol. Now, the simulator chooses

(c, s1, s2, s3)
R← Z

4
p and computes

T1 ← e (R1, nym)−c · e (
R1, ĝ2

)−s1 · e (
g1, ĝ2

)s2 ,

T2 ← gs31 · R−c
2 and T3 ← e

(
R2, ĝ2

)s1 · R−c
3 .

Obviously, T1, T2 and T3 along with the values c, s1, s2, s3
satisfy the verification equations. Moreover, R1, R2, R3, c,
s1, s2, s3 are uniformly distributed as in the real executions,
so the simulation is perfect. ��

7 Conclusions

Beyond the concrete application case of delegating the rights
by a user to multiple own devices, we have introduced a
novel notion for group signature schemes. It expands the
functionality of group signatures by adding the feature that
group public keys may be pseudonyms derived ad hoc.

We have introduced a security framework for our scheme
supporting strong privacy protection on one hand, and revo-
cation capabilities on the other hand.

Finally, we have designed a scheme based on bilinear
groups which implements such a system. Even if it uses
bilinear groups and pairings, it is relatively simple and
implementable. As our tests and efficiency comparison have
shown, our solution is comparable with the most efficient
schemes which offer only a limited functionality. Note that
the user’s root of trust may be a relatively weak device, since
no procedure executed by it requires computation of pairings.
They are needed for signature creation (this can be done by
smart phones) and verification (on strong servers).
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