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Abstract

Secure elements store and manipulate assets in a secure way. The most attractive assets are the cryptographic keys stored into
the memory that can be used to provide secure services to a system. For this reason, secure elements are prone to attacks.
But retrieving assets inside such a highly secure device is a challenging task. This paper presents the process we used to gain
access to the assets in the particular case of Java Card secure element. In a Java Card, the assets are stored securely, i.e.,
respecting confidentiality and integrity attributes. Only the native layers can manipulate these sensitive objects. Thus, the Java
interpreter, the API and the run time act as a firewall between the assets and the Java applications that one can load into the
device. Finding a vulnerability into this piece of software is of a prime importance. Finding a vulnerability into a software is
often not enough to develop a complete exploit. Here, we demonstrate at the end that a Java Card applet can call the hidden
native functions used to decipher the secure container that encapsulates a key. Some previous attacks have shown the ability
to get access to the application code area. But the Java Card intermediate byte code detected in the dumps has shown several
differences with regard to the specification, which prevents the reverse engineering of the applicative code. Thus, to avoid the
execution of shell code by a hostile applet, a part of the byte code stored into the card is unknown. The transformation is done
on-the-fly during the upload of an application. We present in this article a new approach for reversing the unknown instruction
set of the intermediate byte code which in turn has led to reverse engineering of the Java classes of the attacked card. We
discovered during the reverse that some method calls have an unusual signature. Without having access to the native code,
we have inferred the semantics of the called methods and their calling convention. These methods have access to the assets of
the card without being restricted by security mechanisms like the firewall. We exploit this knowledge to set up a new attack
that provides a full access to the cryptographic material and allows to reset the state of the card to the initial configuration.
We demonstrate the ability to call these methods at the Java level in an application to retrieve sensitive assets whatever the
protections are. Then, we suggest several possibilities to mitigate these attacks.
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1 Introduction

Smart card is a small tamper-resistant device with few mem-
ory. Since the size constraints restrict the amount of on chip
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viewed as an intelligent data carrier which can store data
in a secured manner and ensure data security during trans-
actions. Smart cards store several assets like PIN, keys and
cryptographic algorithms.
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Most of the cards are based on the Java Card (JC) spec-
ification [22], and some of these cards are able to load and
execute applets after post-issuance. The GlobalPlatfrom (GP)
specification [13] defines the process to load an application
into the card. Due to the possibility to load applets, these
devices are prone to attacks in order to retrieve these assets
using hostile applets.

Many efforts have been made by the smart card industry
to increase the security of cards to mitigate such attacks.
Guidelines [12], certification process [23] and test suites [9]
have been provided for a safe design of such applications and
their run time. As for many industries, an important part of
the security relies on the obscurity [8]. The source code of
the implementation is not public, and thus, the binary code
is not available. This latter is one of the assets of the system.

One of the basic assumptions of such a card is that one
cannot access to the native layers using only applicative pro-
grams written in Java. This restriction is valid under the
assumption that such a program passed the secured loading
process. Some papers [2,17,21] have shown the possibility to
execute hostile Java programs even if they passed this secure
loading process. The two first papers refer to security eval-
uation labs that have been able to execute arbitrary native
code even in the presence of a secure loading process on new
products. The last one refers to the 56-bit symmetric key
used for Over The Air (OTA) applet loading process. In that
case, the author brute-forced the key on real SIM product and
demonstrated the ability to upload any applications.

The main contributions of this paper versus our prior work
are the following:

— In a previous paper [20], we proposed a new attack to
forge illegal references that allows us to dump the mem-
ory. Unfortunately, we have not been able to reverse the
Java byte code due to the presence of unknown instruc-
tions. We propose in this paper a method to infer the
semantics of these instructions.

— In asecond paper [19], we proposed to reuse the concept
of reference forgery to reverse the memory manage-
ment algorithm without having access to the native code,
using only the behavior of the data. We have been able
to understand how the system data were used. In this
paper, we have not yet get access to the native layers, but
while reversing the JC Application Programming Inter-
face (API) we discovered unusual method invocation.
We infer the semantics of these methods by observing
their behavior on the system objects. We also resolved
the dynamic linking process. The discovered methods, of
course, are not documented and provide an efficient and
uncontrolled access to the assets of the card. We demon-
strate that we are able to access to the native layers inside
a JC application.
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— Exploitation of the gained knowledge: we provide sev-
eral exploitation of this access in particular regarding the
ability to reverse the state of the card. The card manages
a life cycle state machine defined by the GP specification
[13]. They are several transitions before reaching the state
SECURED. Once the card is in this state, there is no way
to backtrack to the previous states, e.g., OP_READY or
INITIALIZED. These card life cycle states are intended
for use during the pre-issuance phases of the cards life.
The non-reversibility of these states is strictly controlled
by the system.

— Finally, our last contribution is a proposition in five steps
to mitigate this attack.

The rest of the paper is organized as follows: The first
section presents the different solutions to avoid the reverse
of the embedded code. In the second section, we introduce
our method to disassemble the JC API and to retrieve the
semantics of the missing instructions. The third section is
related to the reverse of the native layers and the discov-
ering of sensitive methods. In that section, we exploit the
reverse engineering information with several examples: read
and write methods without any check, breaking the firewall,
recovering secret containers and changing the status of the
card life cycle automaton. Then, we propose a set of coun-
termeasures related to each step of our methodology. Finally,
we conclude in the last section.

2 Java Card specialization or obfuscation?

In a previous work [20], we have reversed the JC memory
management algorithm and found a new attack vector. We
called it auto-forges, and it provides an access to a memory
fragment which belongs probably to the ROM area. We dis-
covered the packages of the embedded JC API. The next step
is to reverse this API in order to find all the predefined entry
points and also to look for low-level functions, which could
allow us to gain more access rights.

2.1 Dumping the memory

Dumping the NVM can be performed by using two differ-
ent techniques. The first one needs to execute the byte codes
getstatic-putstatic [4,16]. The argument of these
byte codes is a token resolved at link time or dynamically
either by an address, or an offset. If an attacker controls the
token, he can read and write everywhere. It has been demon-
strated in [15] that a simple alteration of the Reference
Location component authorizes the attacker in case of a
link time resolution to have read and write access to the whole
NVM. The second technique consists in increasing the size
of an array by modifying the meta-data of the array as shown
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in [5]. Modifying the meta-data often requires to use the
putstatic instruction, which requires the first technique
to be used.

In [20], we introduced the concept of auto-forge. It con-
sists in parsing the memory for detecting a sequence of
memory cells such that the Java Card Virtual Machine
(JCVM) interprets them as valid meta-data and consequently
as an array. Once the sequence is found, it is possible to read
and write directly into the memory. Then, it becomes obvi-
ous to write new data in the memory, which in turn can be
interpreted as meta-data to read more memory fragments.

The capacity to use data as meta-data relies only on the
probability to find a correct sequence in the memory. The
meta-data are often a sequence of four bytes. The first two
bytes indicate the size of the array, the next byte the type and
the fourth the security context. Suppose that the cardinal of
the domain of the first byte b1 is the high part of the size,
the constraint requires a nonnegative number, so we have a
probability of 0.5 to have a correct value. The second byte
b2 is the low part of the size, and there is no constraint (any
value is valid). The third byte b3 represents the type and the
cardinal of the domain is &, and the fourth byte b4 represents
the security context and the cardinal of the domain says i
corresponds to the number of packages the attacker wants to
load.

Then, the probability p to find a correct sequence in a
memory cell is:

p = P(b1b2b3b4) = P(b1) x P(b2) x P(b3) x P(b4)
p = (k*1i)/(256% % 2).

This is the probability that a valid sequence can be found
at one memory cell. We have to compute the probability to
find this sequence on the whole memory segment. Let N be
the size of the memory, and then the probability to have at
least one valid sequence is:

I—1=pV

If k = 10,i = 10, and the memory size N = 100,000,
then the probability to find at least one valid sequence is
0.999999996 truncated to 1. Moreover, the probability to
have such a pattern in the first 1000 bytes is around 0.67.

N represents the full size of the allocated memory. Non-
allocated memory is sometime filled with zero, whereas for
other cases, it can be filled with random values or the previous
values. We do not have a true random distribution. Neverthe-
less, this parameter is still in the hand of the attacker. He can
upload as many applications as possible, which leads to fill
all the NVM. This attack runs well in practice; there are many
opportunities to find correct meta-data inside the memory.

Then, with the auto-forge attack, it becomes obvious to
read the content of the NVM or the ROM. In the NVM, we
find the applications loaded after the issuance while in the
ROM we should find the JC APL

Constant Pool component

CONSTANT_StaticMethodRef : external:
0x80, 0x10, Ox2

/* 0048, 18 */
On Card Linker

Method Component

method_info[5] // @001b= {
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Fig.1 Link edition while loading a CAP

2.2 Disassembling the dump

We expect to find in the NVM either applications or libraries
and the romized API. The JC API provides a framework of
classes and interfaces that hides the details of the underlying
smart card interface.

The loading format is known as Converted APplet (CAP)
file. It consists of eleven component, such as Header,
Directory, Applet, Import, Constant Pool
Class, Method, Static Field, Reference
Location, Export, and Descriptor.Eachcom-
ponent describes an aspect of the CAP file contents, such as
class information, executable byte code, linking information,
verification information, and so forth.

It is of a paramount importance to locate each package’s
component in the dump, to analyze them, to reverse their
implementations and to look for some alternative attacks.
When a CAP file is loaded into the card, the JCVM provides
a way to link this CAP, and especially a token transla-
tion is performed in the Method component and Class
component with the installed JC API as shown in Fig. 1.
The Reference Location component specifies the offsets (1)
in the Method component where a token should be linked (2)
to a card internal reference (3). In the model of card attacked
in [6], the token used represents a direct physical address, but
in our model of card, the token is resolved at run time. We
consider this as another layer of protection. When a method
is called in the card, the linker resolves the token, to point
and execute the called method.

The specification [22] defines only the external represen-
tation of the CAP file to be loaded into the card and not
the internal format which is often proprietary. In the early
implementation of JC, we had a direct mapping between the
external and internal representation of the code. Nowadays,
it is usual to find on-the-fly byte code transformations in a
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smart card. The problem we have to face is to disassemble
a binary code without knowing the instruction set of the tar-
geted (virtual) processor. It is difficult to recover the logic
of the original program because an examination of the exe-
cuted code reveals only the structure and logic of the byte
code interpreter. Existing techniques for reverse engineer-
ing of code protected by virtualization-obfuscation [25] first
reverse engineer the VM interpreter; use this information
to work out individual byte code instructions; and finally,
recover the logic embedded in the byte code program. In
case of compression, one byte code can represent a sequence
of byte codes with several parameters. Thus, the length of the
instruction is unknown, which adds difficulties while trying
to resynchronize the byte code flow.

2.2.1 Unknown instruction set

In a previous work [18], we have already found unexpected
instructions in the dumped memory. A JC byte code opera-
tion is composed of an instruction, encoded on one byte. The
valid instructions are comprised between the range 0x00 and
0xB8 and potentially a set of bytes as argument. The two val-
ues OXFE, OxFF are defined as implementation dependent
and reserved for internal use only. These two instructions are
intended to provide traps for functionalities implemented in
software or hardware. The remaining values ranging from
0xB9 and OxFD (a set of 68 byte codes) are undefined and
cannot be used in a valid CAP file.

In [18], we have detected in a dump some byte codes that
belong to the undefined byte codes set. The transformation is
made during the on-card linking step. Sometime, the trans-
lation is straightforward: we can compare the external code
and the dumped one and infer the semantics of the unknown
byte code. Sometime it is more complex: The pre- and post-
conditions are not the same. But we have also encountered
the case where one external instruction is translated into dif-
ferent unknown instructions depending on the context.

In such a case, the disassembling process must take into
account the possibility to have unknown instructions. These
instructions have unknown effects on the consumption and
production of data into the memory. In a classic reverse
method using the linear sweep algorithm [26], the process
is to cancel a sequence if one encounters a non-valid instruc-
tion, which means that a sequence of data have been treated
as sequence of code. In this case, we have to continue the
process inferring the effect on the memory.

2.2.2 Code compression
In the previous section, we have presented the code trans-
lation possibility where one instruction is encoded with

different byte codes according to different expected behavior.
It simplifies the decoding of the instruction. But an opposite
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possibility is to encounter byte code compression which is
used when recurrent sequence of instructions is found in a
program. Code compression is a technique that uses extra
byte codes to have a more complex instruction set using the
aggregation of byte code into a single instruction. Code com-
pression proposes to factorize some instruction sequences
with a high occurrence into new instructions, yielding to a
more concise program. It uses an extended instruction set.
The specification only uses 184 byte codes over the 255 pos-
sibilities. By expressing the new instructions as macros over
existing instruction as proposed in [7], the JCVM needs only
to be extended to support generic macro instructions. Such an
approach allows to accept programs with and without com-
pression.

Another approach has been proposed by Bizzotto and Gri-
maud [3] by using global macro instead of standard macro.
The advantage of this approach is to store the macro in the
ROM area saving space in the NVM memory. These two
approaches are valid only if the compressor is embedded
inside the card or it cannot pass the byte code verification
process, part of the secure loading procedure required for
any certification.

2.2.3 Encoding the code

In his Ph.D. thesis, Barbu [1] proposed a counter measure
that prevents the malicious byte code execution. His idea
is to scramble each instruction during the installation step,
such that the code is byte code verifiable before loading it.
For that purpose, each JC instruction i ns performs a xor with
the K, key. The hidden instructions (and their parameters)
perform the following operation:

inSpidden = ins ® Kyor

If an attacker tries to interpret a dump, he cannot read the
code without the knowledge of the K, key. Thus, to find
the xor key, he just should change the Control Flow Graph
(CFQG) of the program to a return instruction. As defined
by the JC specification, the associated opcode is 0x7A. With
a 1-byte xor key, this instruction may have 256 possible
values. A brute force attack offers the way to find the xor
key.

In [24], the authors suggest an improvement by adding
the value of the Java Program Counter (JPC) to execute the
hidden instruction, such that the coding of an instruction is
variable up to its position into the byte array. The same values
at different position do not have the same semantics. The
computation becomes:

inspidden = ins ® Kyor ® JPC
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The JPC value depends to where each instruction is stored
in the smart card memory. Without the knowledge of where
each instruction is stored in the NVM memory, an attacker
has no possibility to decode the byte code stored.

2.3 Conclusion

We have seen in this section the possibility to both, dump
the memory and the difficulty to disassemble its con-
tent. The NVM stores either data or programs used by
the native processor but also the virtual processor hav-
ing different semantics and different object layouts. The
Instruction Set Architecture (ISA) of both native processor
and virtual processor is either totally unknown or partially
unknown. The challenge is to separate the two layers in
terms of data and program and also infer the unknown
instructions.

3 The reverse of the Java Card API
3.1 Reversing the binary dump

We discovered in [19] that the information about all the
applets defined in an installed package which are element
of the static part (Listing 1) is stored in a byte array, which
we called TabPackage.

Structure static_part {
PAID paid
RefPAID refPAID
TabPackage tabPackage
SC8 sc8
StaticHeap stHeap

}

Listing 1 Static part of the package

We analyze the content of this array. On the one hand,
we find the different components kept by the card (List-
ing 2). Among these components, we can list the Applet
component, which contains the Applet IDentifier (AID) of
each defined applet, the Class component that contains all
the classes of all the applet’s classes, the Method compo-
nent that contains all the methods of all applet’s methods.
On the other hand, we find some information added by the
card that facilitate the manipulation of the internal structure,
e.g., offsets toward the beginning of each component. We
notice that the structure of TabPackages is very close
to the CAP representation. However, the resolution of links
between these components is different from the point of
view of a CAP. It uses a dynamic approach for resolving the
tokens.

Structure TabPackage {
u2 applet_component_offset
u2 class_component_offset
u2 method_component_offset
ul package_minor_version
ul package_major_version
union{
u2 undefined
export_component export_cp
}
applet_component applet_cp
class_component class_cp
method_component method_cp
ull undefined
ul static_field_count
ul undefined
ul static_field_ref_count
ulO undefined
}

Listing 2 Structure of the TabPackage

We use this knowledge of the internal structure of an
installed package to reverse the embedded JC API. We can
separate the code of each component. The more interesting
is to characterize this API and to identify the real address of
each class, interface and method. To do this, we have first to
reverse the dynamic linking process used at run time by the
card, to match each token to a physical address.

3.2 Reversing the dynamic linking resolution

The card involved uses tokens to call methods and to instan-
tiate classes instead of direct physical addresses. In order
to reverse the dynamic linking resolution, we install our own
libraries and we analyze how the card manages the resolution
of these tokens. The dynamic linking process of these tokens
can have a direct relation with the tableSC8 found in [19]
and presented in Listing 3 or it can be an offset added to the
current address. This table contains the couples of references
for all pre-installed and installed packages (reference to the
SC8, reference to the TabPackage). There are two ways to
manage the access to all elements of the installed packages,
and the instructions have to discriminate them.

01 00 84 02 02 01 00 58 //Header

//[@SC8 , @tabPackage]
[@0x7782, @Ox7642], //preinst.: java/lang
[@Ox042C, @OX7/D2], //preinst.: sxCsystem

[@0x0460, @OxD762], //preinst.: xxCsecurity
[@0x0484, @Ox0A33], //preinst.: sxsd
[@Ox09CC, @0x0508], //installed Package 1
[@Ox145C, @Ox0D98], //installed Package 2
[@0x0000, @0x0000], //unused entry
[@0x0000, @Ox0000], //unused entry

Listing 3 TableSC8
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2

~~" Table SC8
o caind Method (:Ef) index @SC8~__ @TabPackage
// flags ) e, 1 Ox7782 ox7642
P e shackes A 2, 3 0x0460 & [ ox77D2 |
// nargs -1 4, 5 0x0484 oxD762
// max_locals: ©
invokestatic |0x087B
sreturn
Embedded API
Address Data Names Resuleing Component
address
©x78BC x52 offset to JCSystem.getTransactionDepth(): OXCACE
ox788D | ex12 0x5212 i
0x78§E/ Ox51 | offset to JCSystem.getUnusedCommitCapacity(): OXCAD2 Export
0x78BF ox14 0x5212 x component
0X78C0 ox51 .
Ox78C1 ox68 offset to JCSystem.getVersion() : ©x5168 OxCA28
. ONERTS gx01 Header of the method JCSystem.getVersion()
OxCA29 0x00
OxCA2A ox11 Method
OxCA2B 0x02 component
OxCA2C 0x02
OxCA2D ox78

Fig.2 Dynamic token resolution

To manage these differences, the card uses some addi-
tional instructions that are not specified in the JC specification
to make the process more efficient. For instance, the card
uses some additional instructions to call methods, e.g.,
invokestatic (0xC6). These additional instructions
are used by the card to manage internal! and external® meth-
ods calls. The token’s resolution method changes according
to the choice of the instruction. Then, for each kind of method
invocation, there is a specific resolution.

3.2.1 The instruction invokestatic

This instruction is generated by the compiler with the opcode
0x8D, but inside the card it can be represented by two differ-
ent opcodes. These opcodes are changed during on-the-fly
loading. If the invoked method is internal to the package, it
uses a 0xC6 opcode, and if the invoked method is external to
the package, the opcode remains unchanged. The token used
for each representation is resolved in different manners.

! Internal call: the called method is in the same package as the caller.

2 External call: the method called is in a different package that the caller
method.
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invokestatic external call format: 0x8D

The resolution of the token (Fig. 2) has a direct relation
with the talb1eSC8. It is used to extract two kinds of infor-
mation. The first one is an index on the tableSC8 where
we can locate the TabPackage ' s reference of the package
where belongs the called method. The second one is used as
an offset which is added to the reference of the TabPackage
table. The resulting address is a reference to the item table
static_method_offsets([] in the export component
of the targeted package. The entry in this reference represents
a direct offset to the method, which is added to the current
address where it is stored. The resulting reference represents
the physical (direct) address to the header of the method.
Format : 0x8D bytel byte2
Resolution: bytel and byte2 are used to construct a short
token. InFig. 2, the instructionis invokestatic 0x08
0x7B which is an external call to the getVersion ()
method, of the javacard.framework.JCSystem.
Thus, the token has the value 0x087B. From this token,
we extract the index in the tableSc8 to the corresponding
package using the inferred formula:



Reverse engineering Java Card and vulnerability exploitation: a shortcut to ROM 91

'b(\"p%e
@ Q
] gg size ,,ﬁ,"@
3 o
21 80 type o
g 08 context @é""’
= 03 owner
5 | 09 | index_package
g
E gg offset to class

Fig.3 Link instance to class using meta-data

(1) index_package=((token/0x0800) *2)+1.
At that step, the index has the value 3. Then, the linker
retrieves the address of the package.

(2) @Package=tableSC8[index_package] -8.
We have retrieved the address of the package: 0x77CA
(0x77D2-8). With the already obtained token, we extract
the offset to add to the package’s address found using
the formula: offset_export_component=token %
0x0800. In that case, the offset is 0x7B.

(3) @Offset_to_method=@Package+ (2*0Offset
_export_component). These two information are used
to find an entry in the item static_method off
sets[] in the Export component of the targeted pack-
age. The offset stored at the address 0x78CO0 is added to
this address to get the physical address of the static invoked
method.

(4) @method_invoked=@Offset_to_method+
Offset_to_method; In our example at 0x78C0, we
find the two bytes 0x51 0x68 which are concatenated to
obtain a short value. Thus the method getVersion () is
located at the address 0xCA28.

invokestatic internal call format: 0xC6
Format : 0xC6 bytel byte2

Resolution: bytel and byte2 are used to build a short
shortOffset. This shortOffset represents a direct
offset to the called method, from the current address of this
shortOffset using the following formula:
@method_invoked=@current address+l+short
Offset.

3.2.2 The instruction invokespecial

The external call format of this instruction is 0x8C. Itis trans-
formed into several instructions depending on the targeted
method. If the method refers to a private instance method, the
internal call is changed to 0xCC and is resolved in the same
way as the invokestatic for internal call. If the method
is an instance initialization method, we get two cases. If it

+ 00 falgs and interface_count

00

o7 super_class_ref

16 declared_instance_size
FF first_reference_token
00 reference_count

class_info

01 public_.method_table_base
02 public_method_table_count
00 package_method_table_base
00 | package method_table_count

6 public_virtual_method_table[]

is an internal method, it is changed to 0xCC and treated like
the previous case. If the method is external, the call of the
invokespecial instruction is changed on-the-fly by the
value 0x8D and it is resolved in the same way as the exter-
nal invokestatic. The last case concerns any super class
method. In that case, there is no change for the instruction
and the treatment is similar to invokevirtual.

3.2.3 The instruction invokevirtual

The invokevirtual is not changed, whether the call is
internal or external. The invokevirtual instruction uses
the object (instance class reference pushed in the stack) and
its parameters to locate the method’s class. It uses the first
byte argument of the token as a number of arguments to
pop from the top of the stack. The second byte argument is
used to locate the index of the offset of the called method in
the item public_virtual_method_tablel] in the
class_info of the Class Component of the targeted
class, or hierarchical class.

Format : 0x8B bytel byte2

Resolution: To locate the class of the called method, we
use the meta-data of the class instance (objectref). In [20],
we saw that the meta-data of an instance holds an index to
the reference of the TabPackage in the tableSCS8, but in
our case this is not enough. We want to get the reference to
class’s instance. We analyze the meta-data of an instance and
find that the last two bytes represent an offset that are added
to the reference of the TabPackage. The resulting address
represents a reference to an entry item class_info in the
Class component of the targeted package (Fig. 3). We can
use this understanding of the meta-data and the dynamic res-
olution to forge our own instances to get access to private
classes and call private methods of the API.

The dynamic linking process collects and combines vari-
ous pieces of information at run time. The reverse engineer-
ing of this process allows us to characterize the embedded
APL
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//0n Board Methods Token

BasicService

BasicService.processCommand 0202
BasicService.processDataln 0201
BasicService.processDataOut 0203

BasicService.receivelnData 0204

BasicService.Class 021B
Java Program

JavaCard
Memory Dump

Human reading

Link Resolution result

Fig.4 Automating the characterization of the API

3.3 Reverse engineering of the API

Before starting this process, we have had to succeed with
several preliminary steps that consisted of:

— Understanding of the internal structure of the packages;
— Reverse engineering the dynamic link resolution;
— Characterization of all the tokens of the JC API.

Then, we locate precisely the code of all classes, interfaces
and methods defined in all the packages of the JC API in the
various dumps we got. To complete this characterization, we
apply the same process to the GP API to locate the imple-
mentation of all the classes, interfaces and methods of this
APL In these pre-installed packages,’ we find the following
packages:

— java/lang, which contains the package: java.lang

— **Cgystem, which contains the packages: javacard.
framework, java.io, java.rmi, javacard
x.framework, org.globalplatform

— **Csecurity, which contains the packages:
javacard. security, javacardx.crypto

— **gsd: System’s applet.

We developed a Java program, which transforms the raw
data of the dump into a structured view of the different meth-
ods. The inputs are a JC dump and the list of all the API
tokens. This program generates the list of all packages and

3 Part of the package’s name has been obfuscated.
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.
I . '
| |Address | Data Re;zltlng Name 1
I address |
I [ ex7A32 | o1 class BasicService '
1 | ©x7A33 | 00 extends Object 1
| [ex7A34 | o7 |
| 0x7A35 H declared instance size I
0x7A36 | FF first reference token 1
1 Ox7A37 | 00 reference count 1
I [ox7A38 public_method_table_base
I [ @x7A39 public_method table count !
1 | ©x7A3A package_method_table_base 1
' \} Ox7A3B | 00 package_method_table_count I
‘1 Ox7A3C | @7 0x8178 |BasicService.processDataIn(..) | |
Ox7A3D | 3C 1
| Ox7A3E | 07 0x817C |BasicService.processCommand(..) |
I [[ex7A3F | 3E
1 | ©x7A40 | 07 0x8180 |BasicService.processDataOut(..) !
| [[ex7A41 | 40 !
| |L@x7A42 | @7 0x8184 |BasicService.receiveInData(..) | |
| Ox7A43 | 42 I
1 I

name’s attribution for all public interfaces, classes and meth-
ods of the API. A human readable format is reported with
the packages found in the JC dumped memory in Fig. 4;
this figure shows the result of the program analysis for the
class BasicService of the API. We have now access to
the binary code of all the implementations of the API. This
access allows us to:

Get fake instance: Theembedded JC APIuses some
specific classes, which are not public. In order to instan-
tiate these classes and have access to their methods, we
use the knowledge of the dynamic resolution to calculate
an instance with tailored meta-data (calculate the size of
the instance, the index_package and the offset to
class (Fig. 3)) which allows us to point directly the tar-
geted class and invoke its virtual methods.

Invoke specific and private methods: In
addition to specific classes, the JC API uses some specific
and private methods. In order to access to these methods,
we calculate the corresponding token toward the tab1SC8,
which allows us to invoke the targeted method. Moreover, we
can now directly write a rich shell code that contains calls to
all the methods available in the API, e.g., 0x8D 0x08C5
which invokes a specific method used by the card to create
an array with key container feature.

3.4 Reverse engineering of the additional
instructions

During the reverse engineering of the API, we noticed the
presence of some extra opcodes in addition to those pre-
sented in Sect. 3.2. The JCVM specification indicates that
the allowed opcodes are ranging from 0x00 to 0xB8, and
two reserved opcodes OxFE and OxFF for internal use by a
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JCVM implementation. All the other opcodes are undefined,
and the specification does not define the behavior for this
opcodes.

However, we discovered that in the targeted card 16 new
opcodes are used; some of them have described previously
as specialization of the invoke instructions. At that step, we
have to infer the condition of use of the instruction (the pre-
condition) and the memory production (post-condition) on
the stack or in the memory. The JCVM is a stack-oriented
machine which executes all operation on the stack. But here,
we are in a situation where we compose several byte codes
in one. This instruction can have memory effect. Once we
know the pre and post of this instruction, we have to under-
stand its semantics. For that purpose, we can either try to
infer it by reading the specification of the function or gen-
erate an applet that uses this instruction and observe the
effects.

3.4.1 Inferring the pre- and post-condition

The approach is to use the technique used by the JC byte
code verifiers using abstract execution on types instead of
values to analyze the raw data. The execution of the code
is performed at the type level instead of the values as in
normal execution. For each instruction, we check that the
stack before the execution of the instruction contains enough
entries and that these entries are of the expected types for
the instruction. We simulate the effect of the instruction
on the operand stack, popping the arguments, pushing back
the types of the results. We explain this using the reversed
function i sCommandChainingCLA (). We provide in the
Listing 4 a fragment of the method. The signature of the
method is void for the parameter and boolean for the
return. If one observes the header, he remarks that the func-
tion has one local variable and is non-static due to the implicit
argument this.

At line 8, we have a branch to the label L1. A property
of Java is that at each label, the stack is empty, which is the
case at label L1. We push a short on top and the method
returns a short value which is the boolean 0. At that point,
we have inferred that the stack is empty at line 9. We then
execute the instruction at line 9 that produces a reference,
and the instruction at line 10 which produces a short on the
stack.

We have the pre-condition for this unknown instruction at
line 10; We have to infer its production. We backtrack from
a known state, at line 15 after the instruction sreturn the
stack is empty, but this instruction needs as pre-condition a
short. The previous instruction at line 14 produces a short
and does not require anything. At line 13, we have an
if_scmpne which produces nothing but consumes two
shorts. At line 12, we produce a short. This implies that the
production of the unknown instruction is a short.

1 public boolean isCommandChainingCLA () {
2 02 //flags: 0 max_stack: 2

3 20 //nargs: 1 max_locals: 1

4 ...

5 O0x11 0x7412 sspush  0x7412

6 0x2C astore_1

7 ...

8 0x61 OxOE ifne Ll OX7E7TE

9 0x19 aload_1

10 0x03 sconst_0

11 0xBB 0x10 unknown O0x10
12 0x10 0x10 bspush  0x10

13 0x6B 4 if_scmpne L2 Ox7E7C
14 0x04 sconst_1

15 0x78 sreturn

16 ...

17 L1

18 0x0 sconst_0

19 0x78 sreturn

20 }

Listing 4 Type inference for i sCommandChainingCLA () method

Stack
..., ref, short
=
..., short

We can refine this inference with a manual code analysis.

At line 5, we have a strange sequence, the method pushes
on top of the stack the short 0x7412 and store it in local
1 using an astore_1 instruction. We have here clearly an
illegal sequence, where a short is stored into a reference. This
proves that this API has not passed the byte code verification
process which would have detected the default. We know that
0x7412 is the fixed address of the Application Protocol Data
Unit (APDU) buffer.

3.4.2 Inferring the semantics

We have now to infer the transformation done by this instruc-
tion. It uses three parameters: Two of them are passed through
the stack, the address of the APDU buffer and a short having
the value 0. The third parameter is provided as an argument, a
short having the value 0x10. The specification expresses that
this method Returns whether the current APDU command is
the first or part of a command chain. Bit b5 of the CLA byte
if set, indicates that the APDU is the first or part of a chain
of commands.

The CLA byte has the position O inside the buffer, and
the byte b5 can be logically coded as 0x10. According to
the value produced by this instruction, the method returns
true or false. To confirm our hypothesis that the short
pushed on top of the stack is the position in the buffer, and
the argument is the mask tested at this position, we write on
our own application to check this instruction. This confirmed
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that this instruction is a combination of a saload, bspush
and sand.
Stack
..., ref, short
= saload
..., value = bspush 0x10
..., value, value
= sand
.., Short
This stack usage is the same as the one inferred in the
previous section.

3.4.3 The set of unknown commands

We reverse all the additional instructions (Tablel); some
of them represent compressed instructions, for instance the
instruction 0xBB, some others are specialized instruction to
access element on the stack, and others are used for a speci-
fied purposes, i.e., to call native methods.

4 Native calls

In the previous section, we described how we locate each
class, interface and method of the API. We analyze and
reverse the code of these methods. Some of the called
methods use some specific headers (Fig. 5) and additional
instructions as described in Listing 6. These headers diverge
to those specified in [22]. We demonstrate hereafter that we
are in the presence of native method headers. They can be dis-
tinguished from the other headers by their non-standardized
flag values (the second least significant bit is set to 1), these
native headers are used by the JC API to call native methods.
Thus, we discover the mechanism to call native methods.

4.1 Specific headers
The JCVM specification [22] defines amethod asamethod__

header_info, described in the Listing 5, and its associ-
ated byte code.

method_header_info {
ul bitfield {
bit[4] flags
bit[4] max_stack
}
ul bitfield {
bit[4] nargs
bit[4] max_locals

}

Listing 5 Java Card method header info

The £1lag item is a mask of modifiers valid for the current
method. The max_stack defines the maximum number of
elements required on the operand stack during the execution
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Address |Header [ Name

g;g; i: Util.arrayCompare(..)

g;gi ;1\; Util.arrayCopyNonAtomic(..) i
g;gz ig Util.arrayFilNonAtomic(..) ;f
g;g; i; Util.arrayCompare(..) é‘
g;gi /i\i Util.makeShort(..) "g
g;gg ii Util.getShort(..) -
EZZE ii Util.setShort(..)

Fig.5 Headers of native methods

of the method. The narg item corresponds to the number of
parameters passed to the function, and max_locals is the
number of local variables declared by the method.

For the flag value, three defined possibilities are expected:

0x0 : Tt is a regular method

— 0x4 (ACC_ABSTRACT): The method represents an
abstract method

0x8 : (ACC_EXTENDED): The method represents an
extended method

— All other flag values are reserved

Each method listed in Fig. 5 represents a header of the
API’s methods found during the characterization process
of the API, and it contains non-standardized flag values
(0x2, 0xA, OxE, ...). Moreover, there is no body for these
methods. The card uses these headers to represent native
methods.

4.2 Specific instructions

As we have seen previously, the card uses some specific head-
ers to represent native methods. Moreover, it uses a specific
instruction to call the native methods. Listing 6 depicts a
reversed code of the method getStatusWord () of the
javacard. framework.service.BasicService
from the JC API class.

The instruction 0xCD in the Listing 6 at line (7) is used
by the card to call native method, and the low nibble of the
high byte of the token used by the card 0x221A represents
the number of arguments of the called method. We notice
that the token used in this native call 0x221A is the same
as the definition of the header of the method getShort ()
in Fig. 5. We hypothesize that this call represents a call to
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public short getStatusWord(APDU apdu) {

1

2 Ox8ICF 02 //flags: 0 max_stack: 2
3 0x81D0 20 //nargs: 2 max_locals: 0
4 ...

5 Ox8IDC 11 74 12 // sspush O0x7412

6 O0x81DF 05 // sconst_2

7 Ox81E0 (D 22 1A // invoke native Ox221A
8 Ox8IE3 78 // sreturn

9

}

Listing 6 Call to native method

the getShort () method. To prove our assumption, we try
to call directly the method getShort (), by replacing the
original call, which was 0x8D 0x08E4, with a native call
0xCD 0x221A in our installed applet. The original opcode
and the modified are described in Table 2.

We use the instruction 0xCD with the right arguments
to call the getShort () method, the card executes the
instruction and returns the value from the given array, which
confirms our assumption. We succeed to call a native method
from the user applicative area.

As we successfully called native methods, we try to use the
native calls as the getShort (), to have access to objects
which do not belong to our context. Surprisingly, this does
not give any privileges, because the verification of context is
performed in the native layers.

4.3 Characterization of the native methods

In order to characterize the native methods, we analyze the
methods and the headers of the API to construct Table 3 of
all native calls. But, as we can see in that table, we cannot
find all the names of all the native methods; some of them
are not specified in the public APL

The challenge now is to find the function’s names of the
unknown native headers and tokens (Table 3). Our method
consists in analyzing the external API, as it uses some classes
that declare some native methods, for instance methods
in the com.sun.javacard.impl.NativeMethods
class, which are native methods called by the external
API. Listing 7 gives an instance of these calls in the
JCSystem.getPreviousContextAID () which calls
the NativeMethods.getPreviousContext ().

To analyze the equivalent code used in the card, we
reversed the embedded method getPreviousContext
AID(), and we find that it uses a native call, 0xCD
0x2180, whichrepresents the call of the Nat iveMethods .
getCurrentContext () method. To confirm it, we call
this native method in our installed applet, and it returns the
value of the previous context. This method is implemented
in a different way, because as we can see in its numarg, it
takes a value which is used to specify if we want to return
the current context or the previous context. Theoretically, we
can get the name of each unknown native function, but there

Table 1 Reverse of the illegal

instructions Illegal instruction Arguments Stack Description
0xBA / ..., arrayref, index = ..., value baload
bspush OxFF
sand
0xBB byteArg ..., arrayref, index = ..., value baload
bspush byteArg
sand
0xBC / .,value — ... sstore 0x4
0xBD / ..,value — ... sstore 0x5
0xCO / . —> ..., value sload 0x4
0xCl1 / . — ..., value sload 0x5
Table 2 Call native method from user area
Original opcode Modified opcode
19 aload_1 19 aload_1
03 sconst_0 03 sconst_0
8D 08 E4 invokestatic OxO8E4 //getShort(...) CD 22 1A invoke native 0x221A // getShort(...)
TA sreturn TA sreturn
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Table 3 Headers and tokens of native methods

Table 4 Characterization native methods

Headers/token native Function’s name

Native Token Function’s name

0x6111 APDU.getBuffer()

0x6010 APDU.getInBlockSize()
0x6050 APDU.getOutBlockSize()
0xE51B Util.arrayCopy()

0xAS1B Util.arrayCopyNonAtomic()
0x241C Util.arrayFillNonAtomic()
0x251B Util.arrayCompare()
0xA21A Util.makeShort()

0x221A Util.getShort()

0x231A Util.setShort()

0x2180 ?

0x2202 ?

0x3302 ?

0x2242 ?

public static AID getPreviousContextAID ()
{ byte prevCtx = NativeMethods. getPreviousContext() ;
if (prevCtx = 0)
{ return null;
l}'eturn thePrivAccess.getAID((byte) (prevCtx & OxF));
}

Listing 7 Call native methods in the external API

is a possibility that the card uses some specific function, for
instance native call to switch the card mode (development or
production mode).

4.4 Native read and write bytes method

In the class com.sun.javacard.impl.Native
Methods, we can find two interesting methods, public
static native byte readByte
short paramShort) andpublic static native
void writeByte (int paramInt,
Short, byte paramByte).These methods are used to
read and write anywhere in the memory without any control.
We analyze the reverse engineered API codes. We find that
several methods of the API calls these native methods, with
the instructions OxCD 0x2202 and 0xCD 0x3302.

We use these two methods in our applets. We notice that
the system does not make any check related to the security
context. With the readByte, we have access to each byte
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(int paramInt,

short param

0x2100 readByteRam(byte index)
0x2200 writeByteRam(short index, byte value)
0x2140 readShortRam(byte index)
0x2240 writeShortRam(short index, short value)
0x2202 readByte(short address, short index)
0x3302 writeByte(short address, short index, byte value)
0x2242 readShort(short address, short index)
0x3342 writeShort(short address, short index, short
value)
0x2180 readByte VMSTACK (byte index) or
readByteVmStack(byte index)
0x2280 writeByte VMSTACK (byte index, byte value)
0x21C0 readShortVMSTACK (byte index)
0x2280 writeShort VMSTACK (byte index, short value)
0x25AB encrypt(short valuel, byte[] tabPlain, short
offset, byte[] tabEncrypt, short offset2)
0x252B decrypt(short valuel,byte[] tabEncrypt, short
offset, byte[] tabPlain, short offset2)
0x7342 xorify(short address, short index, byte value)
0x6242 dexorify(short address, short index)
0xA11D isAppletActive(byte owner)
EEPROM ROM RAM
0x0000 0x0000 0x0000
OxFFFF OxFFFF OxCCF
0x0000 0x0000
0x3535 OxFFFE IS Fek
0x0000 Ll

Fig.6 Memory layout

of the NVM and ROM memories. This provides an access to
the part of the ROM that was not accessible with the auto-
forges. In addition, with the method writeByte, we can
write at any address in the NVM memory. This provides us
the privileges of the system for reading and writing in mem-
ory. We also inferred some others native methods (Table 4).
Using these native methods, we can have access to all of the
memories presented in Fig. 6.

5 Exploitation of the vulnerabilities

In this paper, we found several vulnerabilities and particularly
the possibility for an ill-typed applet to call directly native
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methods. The most important question is about a potential
exploitation by a legal applet of these vulnerabilities. We
present hereafter three use cases of this exploitation. They
all rely on the classic hypothesis of bypassing the secure
download. The last one can be used to put the card in a pre-
defined state (OP_READY) which allows to gain access to
new resources.

5.1 Breaking the firewall: security context

A JCVM frame contains a set of local variables, an operand
stack and all needed data (frame header) to reconstruct the
previous frame. A frame header usually contains the security
context. Many underflow attacks can gave us an access to
this context and maliciously modify it. This is the reason
why designers choose to separate the frame header from the
stack to prevent the access to these assets.

However, despite this separation, the authors in [10] have
found a way to get access to these assets using a frame over-
flow, which leads to a collision between the separated parts
and once again with an underflow attack the frame’s header
is changed.

We have observed that in the involved card the context
used in the Java stack can be modified and does not cor-
respond to the one checked at run time. We analyze all
the RAM, and we do not find any value which acts like a
context. To understand how the system manages the secu-
rity context, we analyze the implementation of the method
javacard. framework.JCSystem.getApplet

ShareableInterfaceObject () inthe embedded API.

This method performs an explicit context switch to return
the server applet’s shareable interface object in four steps :

Recover the context and the owner of the server’s applet;
Save the current context and owner;

— Replace the current context and owner by those of the
server’s applet and call the getShareableInter
face () on the server;

Resume the original context and owner.

This method uses a specific memory (VM stack), where
the current owner and the context are stored. This memory
is accessible only by a native call. The API uses the native
call 0xCD 0x2180 to read from this memory and the call
0xCD 0x2280 to write on it (see Table 4). We can find
in this memory other important information as the assigned
channel, the reference of the current applet’s instance and the
nested contexts. We use these methods to modify the context
and access to any applet objects and methods.

The access to the native layers breaks the segregation pro-
vided by the firewall.

5.2 Secure containers for key and OwnerPin

The JC API provides different classes to store in a secure
way the sensitive data. These classes are containers for cryp-
tographic keys and Personal Identification Number (PIN)
codes. Authors in recent publications [27], Farhadi and Lanet
[11] demonstrated that some cards do not implement any
integrity and confidentiality protection for these contain-
ers. This is not the case in the targeted card, where the
containers are properly implemented (confidentiality and
integrity). Reversing the API allowed to characterize these
containers, particularly the key container (e.g., 3DES, AES,
KoreanSEEDKey).

5.2.1 PIN container

An ownerPIN instance must contain several fields that we
have to retrieve :

— The PIN value stored securely;

— The Try limit which is the maximum number of times an
incorrect PIN can be presented before the PIN is blocked;

— The Max PIN size, the maximum length of PIN allowed;

— The Try counter, the remaining number of times an
incorrect PIN presentation is permitted before the PIN
becomes blocked;

— The Validated flag set to true if a valid PIN has been pre-
sented during the current session, must be implemented
into the volatile memory.

The method is to create an applet with such an object and
a call to all the methods of the API. Then, we can reverse
engineer both the methods of the API and understand the
data structure used to store the secure container as shown in
Listing 8.

Structure ownerPin{

u2 reference to the PIN container

u2 reference to transient array of the flag
u2 max Try

u2 Try left

u2 max Pin size

u2 Pin size

}

Listing 8 Characterization of the OwnerPIN

This structure contains a reference to two objects: the
secure container and the volatile array. This later contains
the flag indicating that the PIN has been validated, and it
is implemented using a transient array. The secure container
(see Listing 9) is an array with a particular type 0x89, which
is different from all of the predefined types. This header is
a weakness because a simple search of this specific pattern
allows an attacker to find it in a dump. In fact, this type is not
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only used for PIN but for all the secure container including the
key containers. After these two references, an object contains
the remaining fields. Two fields max Try and Try left
are protected for integrity using a simple XOR. An arbitrary
change in these values kills the card.

Structure Pin container{
ul constant

ul pin size

ul[pin size] encrypted Pin
u2 checksum

}

Listing 9 Secure container

The PIN value is stored encrypted to be protected against
confidentiality with a checksum to be protected against
integrity.

5.2.2 Key container

We used the same approach to reverse engineer key con-
tainer shown in Listing 10. The structure is quite similar to
the ownerPin, and it starts with a reference on a secure
container and then the expected fields. None of these fields
are protected for integrity.

Structure key{

u2 reference to key container
ul type of algorithm

ul key length

u2 key type

Listing 10 Key container

The secure container for keys (Listing 11) shares similarity
with the secure container for ownerPin. Its type is also
0x89, and any array in a dump with this value refers to
such a sensitive data. Then, the key is stored encrypted and a
checksum protects the container against any illegal changes.

Structure Key container{
ul key encryption

ul container length

ul key length

ul[] encrypted key

u2 checksum

}

Listing 11 Key container

5.2.3 Deciphering the secure container

We have in the previous step reverse engineered the data, and
now we analyze the code of the API in order to understand the
different methods used. With this analysis, we find that the
API uses native calls to encrypt the container using the native
call 0xCD 0x25AB for ciphering and 0xCD 0x252B to
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decrypt these containers. It uses the same method’s call for
all type of encryption algorithm and for PINs container. The
only difference relies on the first argument of the native calls,
which represents the type of the used algorithm for key con-
tainer.

We use this knowledge to search for containers in the
memory dump. We find a Cardholder Verification Method
(CVM) object, and we can change its PIN value or get its
plain text value without having the relevant privilege and this
can be done for any installed applet. We have also found the
Secure Channel key set that contains the 3 double length DES
Keys (S-ENC, S-MAC and DEK). We believe that, whatever
the security degree of these containers is, once an attacker
has the hand on the API, he can find a way to decrypt these
containers and figure out more exploitation.

This attack offers the ability for an attacker to break the
confidentiality and the integrity of the secure containers even
object that does not belong to its security context.

5.3 Change card life cycle state

The GP defines a card life cycle state which allows to con-
trol access to some functionalities. The main purpose is to
increase the security for each state by reducing the avail-
able functionalities. The specification states that some of the
transitions between the states are not reversible (Fig. 7a). For
instance, the transition from OP_READY to INITIALIZED
is irreversible.

The GP provides two methods to change the card’s state,
i.e., GPSystem.lockCard () and GPSystem. term-
inateCard () which lock and terminate the card. But it
does not provide a method to manipulate the state. We still
can use the APDU SET STATUS COMMAND to change the
life cycle, but obviously this throws an exception. The state
is stored in a secure way. It is protected basically against
integrity using a XOR.

Thanks to the characterization of the GP’s API, we
find the implementation of all the methods’ classes of the
GPSystem. We reverse these methods, and we find where
the card stores this state. We cannot modify it directly since

.{ OP READY

.I INITIALIZED

.{ SECURED " :I LOCKED

v v 2

.{ TERMINATED

TE

v v v

A-

.I OP READY INITIALIZED SECURED |' q LOCKED }
TF
. I L I l v [r
2

TERMINATED

_B-

Fig.7 Card life cycle state. a Original Card life cycle. b Hijacked Card
life cycle
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this value is XORed. To do that, we use the native call 0xCD
0x7342 (see Table 4) which is a call to XORing method.
Thanks to this call, we can change the state (Fig. 7b) such
that an irreversible state can be reached. We are able to go
back to the initial state OP_READY. If the state value is not
XORed, an attacker can use a fault injection to modify it.

The ability to reverse the state of a card to reach an initial
state offers the possibility to execute commands that are only
allowed in the OP_READY state

5.4 Countermeasures

To exploit all these vulnerabilities, we had to go through mul-
tiple steps. Each of them could be mitigated by one or more
countermeasures. We propose hereafter different possibili-
ties related to the step a vulnerability is used, to avoid such
exploits.

Step 1 The first vulnerability is related to the possibility to
get an access to the NVM'’s code. This has been possible
due to the use of the forges as presented in [20]. It is based
on the illegal use of the meta-data as applet fields in an
ill-typed applet. This is basically mitigated by forcing
the use of an Byte Code Verifier (BCV). If this scheme,
known as secure download process, is effectively used
for uploading applet in a product, there is currently no
possibility to force its usage on development cards. The
only way is to embed the verification process into the card
or to add enough tests that could detect all the ill-typed
applets.

Step 2 It corresponds to reverse engineering the NVM’s
code. It allows us to find the memory layout of this card,
through the usage of Table tableSC8 as discovered
in [19]. This gives us access to all the references of all
installed or pre-installed packages. The analysis of this
table allows us to understand how the card accesses these
different memory areas. A countermeasure would be to
hide it using a lightweight mechanism like a XOR of this
table. This would only make this discovery more difficult.
Step 3 We got an access to the various memory areas of
the card. This raises a new issue by exploiting an attack
based on the concept of auto-forges presented in
[19]. It consists of search for an exploitable meta-data
through all the memories. Then, we can use it as a valid
object to read from the targeted memory. To counter this
attack, the card must ensure that the object (object or
array) that is about to be read is part of the linked list
of all the objects of the card. The cost is related to the
number of objects contained in the different applets and
the way they are managed. Using a linked list of different
kind of object could reduce its cost.

Step 4 It consists of reverse engineering the code con-
tained in the different memories, especially the ROM.
We have been able to find the JC and GP APTI’s. This
allows us to analyze their implementations. A mitigation
technique should be to obfuscate the code of these API’s
using the technique described in [24].

Step 5 This step exploits the different vulnerabilities and
allows a privilege escalation. In this step, we look at how
the card manages the native calls. As a result, we can
exploit this knowledge to perform privilege escalation
(by changing the security context or retrieving the crypto-
graphic keys in plain text,. . .). One possibility to mitigate
it should be to verify the origin of the native call. In par-
ticular, it should not be possible if the call to these native
methods is made from a user applet. This requires a stack
introspection to check the security context of the caller
and thus to identify the origin of the call.

It is surprising that none of these techniques have been
used in this development card. Obviously, the ultimate coun-
termeasure is to refuse to sell development cards to academic
researchers, which is the case for most of the major European
smart card manufacturers.

6 Conclusion and future works

In this paper, we evaluate the security of a development smart
card. We demonstrate the possibility to retrieve assets, to
access to the native code which should not be possible even in
the case where the secure download process is not respected.
In particular, we obtain a full access to the native layer from
the application layer which seems to not be acceptable.

The targeted system uses object-oriented mechanisms.
From the attacker point of view, this adds a difficulty due
to the dual semantics of the embedded programs [native and
Java Virtual Machine (JVM)]. The attacker has to differenti-
ate between these two languages. But we demonstrated here
that the attacker can also take advantage of the OO paradigm.
We used the Java meta-data of the instance to perform pat-
tern matching in the dump data that could be interpreted as
meta-data. This new attack is general and can be applied to
every device that uses meta-data for representing objects.

Our approach is to discover several vulnerabilities, which
individually do not provide access to the targeted resources,
but combined, they give a complete access to every objects
in the system, whatever the current countermeasures are. In
particular, we discovered the complete ISA used by the JVM.
This knowledge allows to reverse the JC APIL In turn, this
reverse engineering phase allows to understand the native
call mechanism. Then, we get access to most of the native
methods of the card. Finally, this last step allows to get a full
access to most of the assets and resources of the card.
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We propose a set of countermeasures to mitigate all these
scenarios. Some of these proposals are obvious to integrate
into a card development (e.g., stack introspection).

The lesson learn from this Ph.D. student work is that secur-
ing a device is a difficult task. The evaluation labs try to attack
these devices in a limited amount of time (a couple of weeks)
and can prove its resistance having a complete knowledge
of the internals. We have worked in a complete black box
approach, with a couple of cards and with a proper method-
ology. Thus, we have been able to get a complete access to
assets of the card. This raises the question about the time an
attacker could spend on a device to break its security.

This approach can be used for any secure element which
allows secure download of applets. For example, the eSIM
(Embedded-SIM) is mostly used in connected objects or
automotive application for eCall capability. These tokens are
based on secure cores like the smart cards. The GSMA (GSM
Association) protection profile [14] suggests that the embed-
ded system could be a Java Card. In that case, this kind of
devices should also be an interesting target for our approach.
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