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Abstract Conjunctive searchable encryption is an efficient
way to perform multi-keyword search over encrypted data
in cloud storage. However, most existing methods do not
take into account the integrity verification of the search
result. Moreover, existing integrity verification methods can
only verify the integrity of single-keyword search results,
which cannot meet the requirements of conjunctive search.
To address this problem, we proposed a conjunctive key-
word searchable encryption scheme with an authentication
mechanism that can efficiently verify the integrity of search
results. The proposed scheme is based on the dynamic search-
able symmetric encryption and adopts the Merkle tree and
bilinear map accumulator to prove the correctness of set
operations. It supports conjunctive keyword as input for con-
junctive search and gives the server the ability to prove the
integrity of the search result to the user. Formal proofs and
extensive experiments show that the proposed scheme is
efficient, unforgeable and adaptive secure against chosen-
keyword attacks.
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1 Introduction

Cloud computing is an innovative Internet-based computing
paradigm that enables cloud users to move out their data and
applications to a remote cloud in order to deploy scalable
and elastic services on demand without having to provision
a data center. Cloud services have many advantages, and one
of the most popular services is cloud storage. However, data
breaches raise privacy concerns and slow down the improve-
ment of cloud storage. According to a survey launched by
Twin Strata in 2015, only 38% of organizations would like
to put their inactive data stored in public cloud; about 24% of
userswere using cloud storage for data backup, archiving and
disaster recovery. This shows that the issue of data security
[1,2] is one of the major obstacles to the promotion of cloud
storage. Since the user’s data is outsourced to distributed
cloud servers, the service provider can easily access the data.

Data breach statistics launched by Breach Level Index
shows that data records lost or stolen since 2013–2017 are
more than 9 billion times, and only 4% of breaches were
“Secure Breaches” where encryption was used and the stolen
data was rendered useless. Therefore, to prevent data from
being maliciously accessed by cloud providers, data owners
tend to encrypt their private data before outsourcing to the
cloud, and they only share the decryption key to other autho-
rized users. Although this method can protect the privacy of
the data, it brings data retrieval problems. For example, it
prevents the server from searching the content of the data
when responding the users search request, such as searching
in a backup or email archive. This limitation has motivated
much research on advanced searchable encryption schemes
that enable searching on the encrypted data while protecting
the confidentiality of the data and queries.

The solution of searchable encryption that first proposed
by Song et al. [3] provides away to perform efficient keyword
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searches over encrypted data. Promoted by Songs pioneering
work, many efforts have been devoted to construct more effi-
cient searchable symmetric encryption (SSE) schemes, such
as [4–9]. An SSE scheme allows users to encrypt their data
using symmetric encryption, and thenusesfiles andkeywords
to create the encrypted index for further searches. When the
user wants to retrieve some files, he needs to choose a key-
word and use it to generate a search request. After that, the
server uses this special request to search over its internal
data structure. At last, the server finds all the files related
to that keyword and returns the file collection to the user.
Besides performing successful searches, the privacy feature
of the SSE also ensures that, given encrypted files, encrypted
indexes and a series of search requests, the server cannot learn
any useful information about the files and the keywords.

The solutions above are single-keyword oriented, which
are inefficient in practice since the searchesmay return a very
large number of files, such as when searching in a remote-
stored email archive. The works in [10,12–14] extend the
search primitive to the multi-keyword conjunctive search,
which avoid this limitation and are more practical for real-
world scenarios.

However, most of these solutions do not consider the
integrity verification of the search result. In most of exist-
ing works, the threat models of malicious server are often
defined as honest but curious, which are insufficient in deal-
ing with real-world security threats. For example, due to the
storage failure or some other reasons, the service provider
may ignore some special files on purpose during a search
and return the rest of the files to the user. In this case, the
user can only determine if the files he received contain the
keywords he is querying, but cannot examine whether the
file set received is the complete set. Therefore, an authen-
tication mechanism is required to guarantee the correctness
and integrity of search results.

To the best of our knowledge, few works consider the
searchable encryption and the search authentication together.
Kamara et al. [14] presented a dynamic SSE construction
with a search authenticate mechanism that allows user to
verify the integrity of the search results. They used a simple
Merkle tree structure and a precomputed basis to authenticate
the given dataset. Kurosawa et al. [15] introduced the defi-
nition of UC security and proposed a verifiable SSE scheme
that allows the user to detect search results integrity. How-
ever, the authentication methods in these schemes are only
capable for the single-keyword search. They cannot produce
proofs for the conjunctive keyword search results. If a user
wants to perform a conjunctive keyword search using these
schemes, he needs to execute each single-keyword search
respectively, and verify all those result sets, then compute
the intersection at local to get the final result. The draw-
back of this method is evident, because the search may
return very large numbers of files in most situations like

searching in a remote-stored email archive or a database
backup. The communication complexity is linear and may
have performance problems when the data scale is very
large.

Even today, efficient integrity-verifiable conjunctive key-
word search over encrypted data remains a challenging
problem. Hence, in this paper, we focus on enabling search
authentication in conjunctive keyword searchable encryp-
tion schemes to fulfill the practical needs. We reduce the
conjunctive keyword search problem to the single-keyword
case by performing a search for each individual keyword and
doing the intersection between each resultant file sets to get
the final result. To lower the communication overhead dur-
ing a search, the intersection of each keywords search result
should be computed at the server side. The only thing that
the user needs to do is to receive the final result and verify its
integrity. Thus, the new approach should meet the following
requirements: (1) the server should be able to take conjunc-
tive keyword as input, and give the final result directly; (2)
for the server that honestly executes the search algorithm,
a valid proof can be formed and pass the verification; no
one can generate a valid proof for a maliciously modified
search result and still pass the verification. Theoretical basis
of proposed solution is inspired by the authenticated data
structure in [10] to verify set operations on out sourced
sets.

We use dynamic SSE to realize the single-keyword search
and use Merkle tree as the base data structure to prove the
correctness of the intersection. Given a search request that
contains multiple keywords, e.g., {w1, . . . , wn}, the SSE
scheme outputs a set collection {S1, . . . , Sn}, where each
Si is a file set that related to the keyword wi . It is then
straight forward for the server to compute the intersection
I = S1 ∩ · · · ∩ Sn and return to the user the final set I. In the
meantime, for the intersection I = S1 ∩ · · · ∩ Sn , we prove
its correctness in three steps. First, the Merkle tree proof is
used to ensure the integrity of each Si . Second, bilinear map
accumulator is adopted to prove that the set I is the subset
of each Si . Third, to ensure I is the complete set of the inter-
section, we use the extended Euclidean algorithm to give the
completeness proof to ensure that I is not the proper subset
of S1 ∩ · · · ∩ Sn . These procedures can accurately guarantee
the correctness of the intersection. The underlying mathe-
matical assumption of these proofs is the bilinear q-Strong
Diffie–Hellman assumption. If an adversary can forge a fake
intersection proof and pass the verification, it then has the
ability to solve the bilinear q-Strong Diffie–Hellman prob-
lem with non-negligible probability.

Based on these insights, we present a dynamic integrity-
verifiable conjunctive keyword searchable encryption sch-
eme which maintains the adaptive chosen-keyword security
and is unforgeable against adaptive adversaries. The main
contributions of this paper are:
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1. We proposed the first conjunctive keyword searchable
encryption method that is capable for the verification of
search results integrity and allows user to dynamically
add or delete files.

2. We gave the formal mathematical proofs under random
oracle model to claim that our scheme is secure against
the adaptive chosen-keyword attack and cannot be forged
by adaptive adversaries.

3. We implemented our scheme and performed an evalua-
tion using real-world data set. The results show that our
scheme has low communication overhead.

The remainder of this paper is arranged as follows. Sec-
tion 2 lists a few related works in the literature. Section 3 is
the preliminaries of our scheme. Section 4 gives the formal
definition and security models of proposed solution. Section
5 provides the detailed construction of our integrity preserv-
ing searchable encryption scheme. Section 6 gives the formal
security proofs of proposed scheme. Section 7 presents the
experiment results, and Sect. 8 concludes this work.

2 Related works

2.1 Searchable encryption

The question how to do keyword searches on encrypted data
efficiently was first raised by Song et al. [3]. Their scheme
allows a user, given a trapdoor for a word, to test if a cipher
text block contains the word. Their scheme is not secure
against statistical analysis across encrypted data, since their
approach could leak the locations of the keyword in a doc-
ument. Goh [4] introduced the formal security definitions
for searchable symmetric encryption (SSE) and proposed a
construction that is based on Bloom filters. The construction
associates an index to each document in a collection and the
server has to search each of these indexes to answer a query.
The schemes search time is linear in the number of docu-
ments and may return false positives because of the adoption
of Bloom filters. The index-based approach done by Goh
was followed by Chang et al. [5] who gave a simulation-
based definition and a construction with linear search time
but no false positives. It was observed by Curtmola et al.
[6] that previous security definitions are insufficient for the
setting of SSE. They introduced and formalized a stronger
notion of security against adaptive chosen-keyword attacks.
Furthermore, they gave the first construction to achieve sub-
linear search time. Kamara et al. [7] proposed a dynamic
SSE scheme that is adaptive chosen-keyword secure and sup-
ports add and delete dynamically. Cast et al. [8] designed
a dynamic searchable encryption which achieves efficient
searches over large scale databases. Their scheme can sup-
port searches in server-held encrypted databases with tens

of billions of record–keyword pairs. Stefanov et al. [9] pro-
posed a dynamic searchable encryption scheme which has
very small leakage against the untrusted server. The scheme
also supports both updates and searches in sublinear time in
the worst case.

The solutions proposed in [10,12,14] focus on how to do
multi-keyword conjunctive search over encrypted data while
providing privacy guarantees. Computational overheads of
these schemes are linear to the size of the file set. Cash
et al. [8] proposed a solution which reduces the computa-
tional overhead to sublinear and extends the search pattern
to Boolean queries. Cao et al. [13] built a conjunctive key-
word ranked search scheme,which allows privacy preserving
conjunctive keyword searches, and can sort the results in the
order of their relevance to these keywords.

Encryption with keyword search has also been considered
in the public-key setting [16–18] , which is beyond the scope
of this paper.

2.2 Searchable encryption with authentication

There are fewworks that focus on both the searchable encryp-
tion and the search authentication.Kamara et al. [7] presented
a cryptographic cloud storage system which combines an
adaptive secure searchable symmetric encryption scheme
with a search authenticate mechanism to allow the user to
verify the integrity of the search result. Kurosawa et al. [15]
considered the untrusted server as an active adversary and
defined theUCsecurity that enables the user to detectwhether
the files are received correctly. They then proposed a verifi-
able SSE scheme to ensure the search results integrity. The
search authentication techniques in these solutions are all
single-keyword oriented, which are inefficient in the multi-
keyword scenario.

3 Preliminaries

3.1 CPA-secure private key encryption

A private key encryption scheme is defined as SKE =
(Gen,Enc,Dec), in which K ← Gen(1k) and c ←
Enc(K,m) are two probabilistic algorithms and m ←
Dec(K, c) is a deterministic algorithm. A private key encryp-
tion scheme is CPA-secure [19], if the ciphertexts it produces
do not reveal any partial information about the plaintext even
to an adversary that can adaptively query an encryption ora-
cle. Formally, for any probabilistic polynomial time (PPT)
adversary A, the probability:

|Pr [K ← Gen(1k); (m0,m1) ← AEncK (·)(1k);
b ← {0, 1}; c ← EncK(mb); b̂ ← AEncK (·)(c) :
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b̂ = b] − 1/2| ≤ negl(k),

where negl(k) is a negligible function with input k.

3.2 Merkle tree

AMerkle tree [20] is a complete binary treewith hashes in the
internal nodes. The indexed data are assigned to the leaves,
and the values of internal nodes are computed through the
hash function with the value of their two children as input.
After the construction, the root node characterizes all the
leaves, and is possessed by the verifier. Merkle tree can be
used to prove the given data are indeed the data stored in the
leaf. Such proof includes the leaf and all the sibling nodes in
the path from that leaf to the root. Verifier can compute the
hashes in the proof and get a root. By comparing the new root
with the old one, the verifier can determine whether the proof
is valid. The collision-resistant property of the hash function
guarantees that any PPT adversary cannot forge a valid proof
using maliciously altered data.

3.3 Bilinear map accumulator

The bilinear map accumulator [21] is an efficient tool to pro-
vide proofs of membership for elements that belong to a set.
It has a number of attractive properties which are useful to
verify the correctness of the final result I by the user which is
unaware of the value of S1, . . . , Sn . To the best of our knowl-
edge, the bilinear map accumulator has the shortest signature
sizes compared to corresponding previously proposed such
accumulators. We call (p,G,G, e, g) a tuple of admissible
bilinear pairing parameters, produced as the output of a PPT
algorithm that runs on input.

Given the bilinear pairing parameters (p,G,G, e, g), let
s ∈ Z∗

p be a randomly chosen trapdoor. The accumulator
accumulates elements in Zp, and outputs an element in G.
For a set of elements X in s ∈ Z∗

p, the accumulation value
acc(X ) is defined as:

acc(X ) = g
∏

x∈X (x+s) .

Without knowing the trapdoor s, the value acc(X ) can also be
constructed using X and the precomputed (g, gs . . . , gs

q
),

where q ≥ #X . The proof of subset containment of a set
S ⊆ X is the witness (S,WS,X ) where:

WS,X = g
∏

x∈X−S (x+s).

Subset containment of S in X can be verified by checking:

e
(
WS,X , g

∏
x∈S (x+s)

)
= e (acc(X ), g)

The security of the bilinear map accumulator relies on the
bilinear q-Strong Diffie–Hellman assumption. Let (p,G,G,

Fig. 1 Integrity-verifiable conjunctive keyword encrypted search

e, g) be the bilinear pairing parameters with security param-
eter k. The bilinear q-SDH assumption in (p,G,G, e, g) is
defined as follows: Given a (q + 1)-tuple (g, gs, . . . , gs

q
) as

input for some randomly chosen s ∈ Z∗
p, no PPT adversary

can output a pair with non-negligible probability, where a is
an element in Z∗

p.

4 Definition and security model

4.1 Notations and definitions

We consider the scenario that consists of two types of enti-
ties. One of them is the user that owns the data, and the other
is the cloud storage provider, as known as the server, which
provides storage services to the user. Our scheme allows a
user to encrypt his data and outsource the encrypted data to
the server. After uploading the encrypted data, the user only
needs to store a secret key and an authenticated data state,
regardless of the file number and size, i.e., the users stor-
age overhead is constant size. User can later generate search
requests using single or conjunctive keyword and submit to
the server. Given a search request, the server searches over
the encrypted data and returns the set of encrypted files and a
corresponding proof. The correctness of this search result can
be verified by the user, using this result and proof. User can
also dynamically update the file set on demand after the first
uploading. The main system architecture is shown in Fig. 1.

While using conjunctive keyword in a search, we define
the search result to be the intersection of the sets generated
by searching for each individual keyword. Concretely speak-
ing, the question we discussed in this paper is the conjunctive
keyword search. We use token to describe the request sent by
user. For example, to start a search, the user forms a search
token and sends it to the server. The server uses this token as
input to perform the search. Since our scheme is dynamic,
there are two additional tokens, the add token and the delete
token.

We will use the notations in Table 1 and through the rest
of the paper. Various data structures are used including the
linked lists, arrays and the lookup tables. If L is a list, then #L
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Table 1 Notations

Notation Definition

vi or v[i] i th element of a sequence of elements

#v Total number of elements in v

v[i] = v Stores v at location i in v

f = ( f1, . . . , fn) Universal set of files

w Set of all keywords

fw All files contained the word w

#fw Number of files contain word w

w f Set of all words in file f

#w f or # f Number of all keywords in f

| f | Size of file f

id f or id( f ) Identifier of file f

id(w) Identifier of keyword w

δ Inverted index

γ Encrypted index

τs/τa/τd Search/add/delete token

α An authenticated structure MHT

st Root node in MHT

θw Lead node corresponding to w

denotes its total number of nodes. If A is an array, then #A is
its total number of cells, A[i] is the value stored at location i ,
and A[i] = v denotes the operation that stores v at location i
in the array A. The lookup table is a data structure that stores
key/value pairs (σ, v) that if the pair (σ, v) is in the lookup
table T, then T[σ ] denotes the value v associated with the
key σ . #T denotes the number of pairs in the table.

The formal definition of our scheme is defined as follows.

Definition 1 Our scheme is a tuple of eight polynomial time
algorithms and protocols such that:

K ← Gen(1k) is a probabilistic algorithm run by the user
that takes a security parameter 1k as input, outputs a secret
key K .

(γ, c, st, α) ← Setup(K , δ, f): is a probabilistic algo-
rithm run by the user that takes the secret key K , an index
δ and a set of files f as input, outputs an encrypted index γ ,
a set of ciphertexts c, a data state st and an authenticated
structure α.

τs ← SrchToken(K ,W ) is a deterministic algorithm run
by the user that takes as input the secret key K and a set of
words W , outputs search token τs .

(IW , π) ← Search(α, γ, c, τs) is a deterministic algo-
rithm run by the server that takes as input the authenticated
structure α, the encrypted index γ , the set of ciphertexts c
and the search token τs , outputs a set of file identifiers IW ,
and a proof π .

b ← Verify(K , st, τs, I′, π) is a deterministic algorithm
run by the user that takes as input the secret key K , the data

state st , a search token τs , a set of file identifiers I′ and a
proof π , outputs 1 as accept or 0 as reject.

f ← Dec(K , c) is a deterministic algorithm run by the
user that takes as input the secret key K and a ciphertext c,
outputs a plaintext file f .

Generally, there are three phases in the scheme. The ini-
tialization phase contains the first two algorithms, Gen and
Setup. This phase allows the user to encrypt his batch files
and upload the encrypted file set c to the server, along with
the encrypted index γ and the authenticated structureα. After
this phase, the user only possesses the secret key K and the
data state st .

The search phase contains four algorithms, SrchToken,
Search, Verify and Dec. Before a search, the user uses the
SrchToken algorithm to compute a search token τs and sends
it to the server. The server uses this token to search over its
internal data and output a set of file identifiers IW and a proof
π . Given a set I′ and a proofπ , the user can verify its integrity
by running the Verify algorithm. The Dec algorithm is used
to decrypt the files that the user received according to those
identifiers.

The update phase contains two interactive protocols,
Add/Update and Del/Update. This phase is used when the
file set on the server side needs to be updated. The add token
τa and delete token τd are used in the protocols to serve as
the update requests from user to server. After these protocols,
the servers internal data have been updated, along with the
users data state st too.

The correctness of the scheme implies that, for all security
parameter k, for all K generated by Gen(1k), for all f and
δ, for all (γ, c, st, α) outputs by Setup(K , δ, f), and for all
sequences of search, add or delete operations on γ and α,
searches always output the correct results, and the proofs are
always accepted by the user.

4.2 Security model

We consider the server to be an untrusted entity, which may
deliberately steal or sabotage the users data, or ignore some
special files in the search result. Intuitively, an integrity
preserving searchable encryption scheme should meet the
following security features: (1) The encrypted files and data
structures on the server side should not leak any information
about the files to the server; (2) the search requests generated
by the user should not leak any information about the key-
words he uses; (3) for a fallacious result, the server cannot
produce a valid proof and pass the users verification.

However, the first two requirements are difficult to meet
in practice. Most of the known efficient searchable encryp-
tion algorithms more or less leak information such as the
users access pattern. The leakage problem is inevitable in
searchable encryption, which is also the reason why search-
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able encryption scheme is more efficient than ORAM [22].
To give the formal security model in this case, we follow the
methods in [6] and capture which information is leaked in
the scheme by defining a set of leakage functions. The for-
mal security definitions and proofs will be given under the
presence of these functions.

4.2.1 Dynamic adaptive chosen-keyword security

This security requirement characterizes the feature that the
scheme does not leak any information to the adversary
except those defined in the leakage functions. The secu-
rity definition will be parameterized by the four leakage
functions L1, L2, L3, and L4. L1 denotes the information
about the message that is leaked in the Setup algorithm.
L2 denotes id(w) for all w ∈ W that reveals to the server
during the search operation. L3 is the information that the
server can learn in the add protocol. Similarly, L4 repre-
sents the message leaked to the server in the delete protocol.
The adversary is allowed to be adaptive, i.e., its queries
could base on the previous results. This gives the adver-
sary more ability to attack than those selective ones. Let
A be a stateful adversary that executes the server-side
algorithm, game represents the interaction between A and
user or simulator, view represent all the information that
A can collect during the game. We assume that, A can
choose the encryptedmessage, and then generates the queries
by interacting with the user adaptively. Therefore, in our
security definition, the view of A should only contain the
information specified byL1, L2, L3 and L4 in a simulated
way.

The real game RealA(1k) is run between A and the user
using the real scheme. In the real game, user initializes his
data structures using the data provided by A. After that, A
makes at most polynomial times queries to the user. These
queries may be the search, add file or delete file operations
composed in any orderA chooses. Each queries result can be
the input for A to generate the next query. After all q times
queries, all the data that A collects constitute the viewReal,
and A outputs one bit as the games output.

The ideal game IdealA,S(1k) is run betweenA and a state-
ful simulator S. The only difference between the ideal game
and the real game is that, in the ideal game,S does not run the
real scheme, it responds to As queries using randomly gen-
erated data, with these leakage functions as the only input.
After all q times queries, all the data that A collects con-
stitute the viewIdeal, and A outputs one bit as the games
output.

The dynamic adaptive chosen-keyword security requires
that, there exists a PPT simulator S such that no PPT adver-
sary can distinguish between the viewReal and the viewIdeal.
Namely, the adversary should not be able to tell which one

its interacting with, the real user or the simulator. We give
the formal definition as follow.

Definition 2 Given the scheme described in Definition 1,
describe A as a stateful adversary, S as a stateful simulator,
L1, L2, L3, L4 as stateful leakage functions. Consider the
following games:

RealA(1k) :
K ← Gen(1k)
(δ, f) ← A(1k)
(γ, c, st, α) ← Setup(K , δ, f)
for 1 ≤ i ≤ q

{
Wi , fi , f ′

i
} one query←−−−−−

each time
A(α, γ, c, τ1, . . . τi−1, c1, . . . ci−1)

τi
A←− SrchToken(K ,Wi ), or

(U : st ′; A : τi , ci )
A←− Add/Update(U : K , δ f , f, st; A),

or (U : st ′; A : τi )
A←− Del/Update(U : K , δ f , f, st; A)

output b ← A(α, γ, c, τ1, . . . , τq , c1, . . . cq)

IdealA,S(1k) :
(δ, f) ← A(1k)
(α̃, γ̃ , c̃) ← SL1(δ,f)(1k)
for 1 ≤ i ≤ q

{
Wi , fi , f ′

i
} one query←−−−−−

each time
A(α̃, γ̃ , c̃, τ̃1, . . . τ̃i−1, c̃1, . . . c̃i−1)

τ̃i
A←− SL2(δ,f,Wi )(1k), or

(S : st ′; A : τ̃i , c̃i )
A←− Add/Update(SL3(δ,f, fi )(1k); A),

or (S : st ′; A : τ̃i )
A←− Del/Update(SL4(δ,f, f ′

i )(1k); A)

output b ← A(α̃, γ̃ , c̃, τ̃1, . . . , τ̃q , c̃1, . . . c̃q)

Our scheme is (L1,L2,L3,L4)-secure against adaptive
dynamic chosen-keyword attacks if for all PPT adversaryA,
there exist a probabilistic polynomial time simulator S
such that:

∣
∣Pr

[
RealA(1k) = 1

] − Pr
[
IdealA,S(1k) = 1

]∣
∣

≤ negl(1k), where negl(1k) is a negligible function with
input 1k .

4.2.2 Unforgeability

We use game ForgeA(1k) to describe our schemes unforge-
ability. In the unforgeability game, the adversary interacts
with a user that honestly executes the scheme. User ini-
tializes his data structures using the data provided by the
adversary. Aftermaking polynomial times queries, the adver-
sary produces a set of keywords, a wrong search result and
a proof to this result. If these outputs pass the users verifi-
cation algorithm, the game outputs 1, otherwise it outputs 0.
The unforgeability requires that, all PPT adversary have at
most negligible probability to let the game output 1. We give
the formal definition as follow.

Definition 3 Given the scheme described in Definition 1, for
a stateful adversary A, consider the following game:
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ForgeA(1k) :
K ← Gen(1k)
(δ, f) ← A(1k)
(γ, c, st, α) ← Setup(K , δ, f)
for 1 ≤ i ≤ q
{
Wi , fi , f ′

i
} one query←−−−−−

each time
A(α, γ, c, τ1, . . . τi−1, c1, . . . ci−1)

τi
A←− SrchToken(K ,Wi ), or

(τi , ci )
A←− Add/Update(U : K , δ fi , fi , st; A),

or τi
A←− Del/Update(U : K , δ f ′

i
, f ′

i , st; A)(
W, I′, π

) ← A(α, γ, c, τ1, . . . , τq , c1, . . . cq)
τs ← SrchToken(K ,W )

output b ← Verify(K , st ′, τs, I′, π)

where the set I′ 
= IW . We say the our scheme is unforgeable
if for all PPT adversary A, the probability:

Pr[ForgeA(1k) = 1] ≤ negl(1k),

where negl(1k) is a negligible function with input 1k .

5 Integrity-verifiable conjunctive keyword
searchable encryption scheme

In this section, we first construct a conjunctive keyword
searchable encryption scheme, and then add the search
authentication mechanism to it to make the search results
integrity-verifiable.

In our construction, the set of files f alongwith the inverted
indexes δ are the initial input. In contrast to the file index,
an inverted index is a set of lists that lead by keywords, and
each keyword is followed by a set of files that contain that
keyword. The keywords of each file are preselected and can
be considered as the outputs of some other algorithms, which
wont be discussed here.

5.1 Dynamic searchable encryption

In the literature, most searchable encryption schemes use
symmetric encryption to improve performance. We follow
the prior constructions and build our scheme upon the CPA-
secure private key encryption. Figure 2 shows the structure
that constructed based on the inverted index. The lookup table
contains all the keywords in the system, and each keyword
in the table leads a list that stored in the search array. For
example, the list of keyword w2 starts at address 4 in the
array, and the node at address 4 has a pointer that points to
address 7, and then address 8. By traversing this list, all files
that contain the keyword w3 can be retrieved. All the nodes
are stored at random location in the search array. To support
efficient file updating, there are also a deletion table and a
deletion array. They work the same way, except those lists
are led by files.

Fig. 2 The schematic search structure

In order to prevent the server from learning the data, all
the tables entry, all the pointers in the table, and all the nodes
in those arrays are encrypted. During a search, given the
encrypted keywords, the server first decrypts the pointers in
the lookup table and then uses the pointers to find the corre-
sponding file identifiers in the search array. Those keywords
remain encrypted throughout the search. Even if the server
has searched all those keywords, it can only learn the rela-
tionship between the encrypted keywords and the related file
identifiers but cannot obtain any useful knowledge about the
keywords itself. This could prevent the curious server from
learning the files and keywords.

We use pseudo-random functions, collision-resistant hash
functions and XOR operations to encrypt the data inside the
structure. Therefore, the XORs homomorphic nature enables
the server to update the encrypted nodes without decrypting.

Specifically, the construction works as follows. Let F ,
G and P be pseudo-random functions, H1 and H2 be two
collision-resistant hash functions, and K = (K1, K2, K3)

be the private key generated by user. To encrypt a collec-
tion of files f and the inverted index δ, we construct a list
Lwfor each keyword w ∈ w. Each list is composed of
#fw nodes (N1, . . . ,N#fw) , and is stored at random loca-
tions in the search array As . The node is defined as Ni =
〈idi , addrs(Ni−1), addrs(Ni+1)〉, where idi is the unique file
identifier of a file that contains w. The addrs(N) denotes the
location of node N in As . Each node in Lw is encrypted using
H1(PK3(w), ri ), where ri is a random value, and K3 is the
key of the PRF P . The unused nodes in As are padded with
random bits.

For each keyword w, the lookup table Ts stores the
encrypted pointer, which points to the head of Lw , along
the search key FK1(w), where K1 is the key of the PRF F .
The pointer is encrypted using GK2(w), where K2 is the key
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of the PRF G. The array As and the table Ts are regarded
as the encrypted indexes and are stored at the server side.
To search with some keywords W = {w1, . . . wn}, the user
needs to form a search token τs and send to the server. The τs
includes FK1(wi ), GK2(wi ), PK3(wi ) for all wi ∈ W . The
server uses FK1(wi ) as search key in Ts to find the encrypted
pointer, and uses GK2(wi ) to recover the pointer to find the
head of Lwi , and uses PK3(wi ) and the value r stored in each
nodes to decrypt the list, then recovers the identifiers set Si
of the files that contain wi . In other word, Si is equivalent to
fwi . For a series of sets S1, . . . , S#W , the server computes the
intersection I and outputs it as the result.

To dynamically add or delete a file, the server needs
an deletion array Ad that stores for each file f a list
L f of nodes (D1, . . . ,D# f ). Each node Di is associ-
ated with a word w, and a corresponding node N in
Lw. Let N+1 be the node after N in Lw, and N−1 be
the node before N in Lw. The node Di is defined as
Di = 〈addrd(Di+1), addrd(N′−1), addrd(N′+1), addrs(N),

addrs(N−1), addrs(N+1)〉, where N′
i refers to the dual node

of Ni , i.e., the node in Ad that corresponds to the node Ni .
For example, in Fig. 3, the node at address 4 in As has a dual
node at address 3 in Ad . Each node in L f is encrypted using
H2(PK3( f ), r

′
i ), where r

′
i is a random value, and K3 is the

key to the PRF P . Similarly, for each f , the deletion table
Td stores the pointer to the head of L f under the search key
FK1( f ), and the pointer is encrypted using GK2( f ). While
adding or deleting files, user forms add token τa or delete
token τd and sends to the server. The server uses the data in
the token to update those pointers directly usingXORwithout
decrypting them. In this construction, the storage occupied
by the search structure is reasonably small in practice. It is the
file identifiers that are stored in these tables and arrays, not
the files themselves; likewise the keywords. Besides, with the
amount of files increasing, the whole structure may indeed
become large. However, in the search procedure, those nodes
are located based on the pointers, which means the size of
this structure does not affect the search’s performance.

5.2 Making result verifiable

In the following content, we discuss the method to make
result verifiable. This method can allow a server to prove to
a client that it answered a conjunctive keyword search query
correctly.

The method proposed in [11] is a Merkle tree based solu-
tion that it computes the accumulated value for each word
w, and uses these values as leaves to construct the tree. In
a search, the server returns a file set S, and a Merkle tree
proof to this set. The user can compute his own accumulated
value using the files in S, and use it to perform the Merkle
tree verification. If the newly computed root equals to the

original one, then the result is correct and can be accepted by
the user.

However, while switching to the conjunctive keyword set-
ting, this solution is obsolete to prove the correctness of the
intersection of the results. The server could only generate the
proof for each set separately. These sets and proofs must be
transferred to the user side to be verified, and subsequently
the intersection of these sets could be computed by the user.
Obviously, the communication complexity is linear and may
have performance problems when the sets are very large.

The reasonable way to address this problem is to let the
server compute the intersection, and give the user final result
directly. In this case, the correctness of the intersection oper-
ation should be proved.We use the bilinear map accumulator
to realize this functionality. Intuitively, the correctness of the
intersection could be defined as follows: given a set I and
a series of sets S1, . . . , Sn , I is the correct intersection of
S1, . . . , Sn if and only if the following conditions hold:

1. The subset condition: (I ⊆ S1) ∧ · · · ∧ (I ⊆ Sn).
2. The completeness condition: (S1−I)∩· · ·∩(Sn−I) = ∅.

The subset condition is easy to understand, because as
the intersection, the set I must be included in each set Si .
We use Merkle tree to authenticate the value acc(Si ). For
all w ∈ w, the values acc(fw) are computed according to
acc(X ) = g

∏
x∈X (x+s), then the tree is constructed using

these values as leaves.
Since the user does not store those accumulated values,

the server should first generates Merkle tree proofs for each
acc(Si ). Its then straightforward to produce the subset wit-
ness (I,W I,Si ) in WS,X = g

∏
x∈X−S (x+s) for each set Si .

Given the acc(Si ) and the witness (I,W I,Si ), the validity
of the value acc(Si ) should be first verified using Merkle
tree proofs, then the subset containment relationship could
be checked by performing the verifications according to

e
(
WS,X , g

∏
x∈S (x+s)

)
= e (acc(X ), g).

The completeness condition is also necessary since the
set Imust contain all the common elements. To construct the
completeness proof, we define the polynomial:

Pi (s) =
∏

f ∈Si−I
(s + id( f )).

The following result is based on the extended Euclidean
algorithm over polynomials and provides verification for
checking the completeness of set intersection.

Lemma 1 The set I is complete if and only if there exist
polynomials q1(s), . . . , qn(s) such that q1(s)P1(s) + · · · +
qn(s)Pn(s) = 1, where Pi (s) is defined in (5).

Suppose I is not the complete set, then there exist at least
one common factor in P1(s), . . . , Pn(s). Thus there are no
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Fig. 3 An illustrative Merkle tree

polynomials q1(s), . . . , qn(s) to satisfy q1(s)P1(s) + · · · +
qn(s)Pn(s) = 1. The formal proof is given in Sect. 6.

• An illustrative example

Figure 3 is an example that shows a Merkle tree with eight
keywords. The leaf nodes θwi are composed of FK1(w) and

g
∏

f ∈fw (s+id( f )), and permuted in a random order. All other
nodes are the hash values of their children nodes using a
collision-resistant hash function H3. We denote st as the root
value. The tree is stored at the server side, and the user only
needs to store the root value st . When the user generates
a conjunctive keyword search query to retrieve the files that
contains the keywordsw2 andw5, hefirst generates the search
token τs = (τ2, τ5) that contains FK1(w2) and FK1(w5)as
search keys, and then send it to the server.

After the server received the search token, it first retrieves
the twofile sets S2 = {id1, . . . , idt } and S5 = {id1′ , . . . , idt ′ }
that contains the keywords w2 and w5 separately. Then let
IW = S1 ∩ S2 be the intersection of search results, and the
server computes the proof pi = {T ,S, C} in the following
steps:

1. Finds the leaves θ2, θ5 in the tree whose first elements
are FK1(w2) and FK1(w5) in the search token, generates
the proofs t2, t5, which include θ2, θ5 and all the sibling
nodes T = {t2, t5}in the path from the leaf to the root.

2. Compute the subset witness S = {gP2 , gP5} using pub-
lic parameters (g, gs, . . . , gs

q
), where Pi = ∏

f ∈Si−IW
(s + id( f )). Then finds the polynomial q2, q5 that sat-
isfying q2P2 + q5P5 = 1. Let C = {gq2 , gq5} be the
completeness witness.

Given the search result Iw and a proof pi = {T ,S, C},
user verifies as follows:

1. Since θ2, θ5 are the leaf nodes in T = {t2, t5}. Parse
θ2 as (θ2,1, θ2,2), andθ5 as (θ5,1, θ5,2) , verify if θ2,1 =
FK1(w2) and in the search token. Then using the root
value st , verify the proofst2 and t5are both composed of
the sibling nodes in the path from the two leaves to the
root.

2. Perform the subset condition verification by checking:

e
(
g

∏m
k=1 (s+idk ), gP2

)
?= e

(
θ2,2, g

)
,

e
(
g

∏m
k=1 (s+idk ), gP5

)
?= e

(
θ5,2, g

)

where s ∈ Z∗
p is the trapdoor, (id1, . . . idm) is from Iw

and gP2 , gP5 are elements in S.
3. Verify the completeness condition by checking:

e(gP2 , gq2 )
?= e(gP5, gq5)

?= e(g, g),

where gPi are elements inS and gqi are the corresponding
elements in C.

If all the verifications succeed, then the search result Iw is
the correctness of the intersection of the results, and can be
accepted by the user.

5.3 Explicit construction

The explicit construction is given as follows:

• Parameter initialization

Let 	 = (Gen,Enc,Dec) be a private key encryption
system. F : {0, 1}k × {0, 1}∗ → {0, 1}k, G : {0, 1}k ×
{0, 1}∗ → {0, 1}∗, P : {0, 1}k × {0, 1}∗ → {0, 1}k be
pseudo-random functions. Let H1 : {0, 1}∗ → {0, 1}∗,
H2 : {0, 1}∗ → {0, 1}∗ and H3 : {0, 1}∗ → {0, 1}k be
collision-resistant hash functions. Let (p,G,G, e, g) be the
initial size of the free list, and 0 be a series of 0.

Choose bilinear pairing parameters (p,G,G, e, g).

• Gen(1k)

Randomly choose three k−bit strings K1, K2, K3 and
generate K4 ← 	.Gen(1k). Choose at random and out-
put K = (K1, K2, K3, K4, s) as the private keys. Compute
(g, gs, gs

2
, . . . , gs

q
) as public parameters where q should be

large enough, i.e., should at least satisfy q ≥ max {#fw}w∈w.

• Setup(K, δ, f)

1. Let As and Ad be arrays of size |c|/8 + z and let Ts and
Td be dictionaries of size #w and #f , respectively. Use
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free to represent a k−length word not inw.The following
step 2 and step 3 should be performed synchronously to
set up As and Ad at the same time.

2. For every keyword w ∈ w,

(a) Generate a list Lw of #fw nodes (N1, . . . ,N#fw) ran-
domly stored in As , which are defined as

Ni = (〈idi , addrs(Ni−1), addrs(Ni+1)〉
⊕H1(PK3(w),ri ), ri ),

where idi is the identity of the i thfile in fw, ri is a
k−bit stringwhich is generated uniformly at random,
and addrs(N#fw+1) =addrs(N0) = 0log #As .

(b) Store a pointer to the first node of Lw in the
search table by setting: Ts

[
FK1(w)

] = 〈addrs
(N1), addrd(N′

1)
〉 ⊕ GK2(w), where N′

1 is the dual
of N1 in the list L f , which has the same ( f1, w) pair
as node N1.

3. For each file f in f ,

(a) Create a list L f of # f dual nodes (D1, . . . ,D# f )

(N1, . . . ,N#fw) randomly stored in the deletion array
Ad . Each node Di is associated with a word w, and
a corresponding node N in Lw. Let N+1 be the node
after N in Lw, and N−1 be the node before N in Lw.
Define Di as:

Di =
⎛

⎝

〈
addrd(Di+1), addrd(N′−1), addrd(N′+1),

addrs(N), addrs(N−1), addrs(N+1)

〉

⊕H2(PK3( f ), r
′
i ), r ′

i

⎞

⎠,

where r ′
i is a random k−bit string, addrd(D# f +1) =

0log #Ad .
(b) Store a pointer to the first node of L f in the deletion

table by setting:

Td
[
FK1( f )

] = addrd(D1) ⊕ GK2( f ).

(c) Generate the free list Lfree by choosing z unused cells
at random in As and in Ad . Let (F1, . . . ,Fz) and
(F′

1, . . . ,F′
z) be the free nodes in As andAd , respec-

tively. Set:

Ts [free] = 〈
addrs(F1), 0log #As

〉
,

and for 1 ≤ i ≤ z, set

As [addrs(Fi )] = 〈
0log #f , addrs(Fi+1), addrd(F′

i ), 0k
〉
,

where addrs(Fz+1) = 0log #As .

4. Fill the remaining entries of As and Ad with random
strings.

5. For 1 ≤ i ≤ #f , let ci ← 	.EncK4( fi ).
6. For all w ∈ w, form the leaf node by letting

θw =
〈
FK1(w), g

∏
f ∈fw (s+id( f ))

〉
.

Construct a Merkle tree using H3 with leaves L =
{θw}w∈w permuted in a random order.

7. Output (γ, c, st, α), where γ = (As,Ts,Ad ,Td),c =
(c1, . . . , c#f ), st is the root of the tree, and α is the tree
itself.

• SrchToken(K,W)

For W = (w1, . . . , wn), compute each τi = (FK1(wi ),

GK2(wi ), PK3(wi )), and then output τs = (τ1, . . . τn).

• Search(α, γ, c, τs)

1. For each τi in τs , parse τi as (τi,1, τi,2, τi,3),

(a) Recover a pointer to the first node of the list by com-
puting (α1, α

′
1) = Ts[τi,1] ⊕ τi,2.

(b) Lookup node N1 = A[α1] and decrypt it using τi,3,
i.e., parse N1 as (v1, r1) and compute (id1, 0, add
rs(N2)) = v1⊕ H1(τi,3, r1). Let α2 = addrs(N2).

(c) For j ≥ 2, decrypt node N j as above until α j+1 = 0.
(d) Let Si = {id1, . . . , idt } be the file identifiers revealed

in the previous steps.

2. For the sets S1, · · · , Sn generated in step 1, let IW =
{id1, . . . , idm} be the intersection, i.e., IW = S1 ∩ S2 ∩
. . . ∩ Sn . Compute the proofs in the following steps:

(a) For 1 ≤ i ≤ n, find the leaf θi inαwhose first element
is τi,1 and generate the proof ti . The ti includes θi and
all the sibling nodes in the path from the leaf θi to the
root. Let T = {t1, . . . , tn}.

(b) For 1 ≤ i ≤ n, form the polynomial:

Pi = ∏
f ∈Si−IW (s + id( f )),

then use the public parameters (g, gs, gs
2
, . . . , gs

q
)

to compute the value gPi . Let S = {gP1, . . . , gPn } be
the subset witness.

(c) Giving the polynomials {P1, . . . , Pn} generated in
step (b), find the polynomials {q1, . . . , qn} that sat-
isfying q1P1 + q2P2+ · · · + qn Pn = 1. This can be
done using extended Euclidean algorithm over poly-
nomials. Let C = {gq1, . . . , gqn } be the completeness
witness.

3. Output the result IW and the proof π = {T ,S, C}.

• Verify(K, st, τs, I′, π)

1. Parse π as {T ,S, C}and verify these proofs in the fol-
lowing steps:

(a) For each proof ti in T , let θi be the corresponding leaf
node in ti . Parse θi as (θi,1, θi,2), i.e., θi,1 = FK1(wi )
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and θi,2 = g
∏

f ∈fwi
(s+id( f ))

. Verify if the value θi,1
equals to τi,1, where τi,1 is the first element of τi in
τs . Then verify the proof ti using the root st .

(b) For 1 ≤ i ≤ n, parse the leaf node θi in step (a) as
(θi,1, θi,2), then perform the subset condition verifi-
cation by checking:

e
(
g

∏m
k=1 (s+idk ), gPi

)
?= e

(
θi,2, g

)
,

where (id1, . . . idm) is from I′ and gPi is element in
S.

(c) Verify the completeness condition by checking:

∏n
i=1 e(g

Pi , gqi )
?= e(g, g),

where gPi is element inS and gqi is the corresponding
element in C.

2. If all the verifications succeed, then output 1; otherwise
output 0.

• Dec(K, c): Output f = 	.DecK4(c).

• Add/Update(U : K, δf , f, st; S : α, γ, c):

User:
Recover the unique sequence of words (w1, . . . , w# f )

from δ f and compute the set {FK1(wi )}1≤i≤# f and send to
the server.

Server:

1. For 1 ≤ i ≤ # f , traverse the Merkel tree α and:

(a) Find the leaf θi in α whose first element is FK1(wi )

(b) Let ti be the proof in α from θi to the root. The proof
includes the leaf θi , and all the sibling nodes from θi
to the root.

2. Let ρ = (t1, . . . , t# f ) and send it to the user.

User:

1. Verify the proofs in (t1, . . . , t# f ) using st , if fails, output
⊥ and terminate.

2. For 1 ≤ i ≤ # f ,

(a) Let θi be the leaf in ti , parse θi as (θi,1, θi,2).
(b) Compute the new leaf node θ ′

i = (θi,1, (θi,2)
s+id( f )).

3. Update the root hash st using (θ ′
1, . . . , θ

′
# f ) and the infor-

mation in (t1, . . . , t# f ).
4. Compute τa = (FK1( f ),GK2( f ), λ1, . . . λ# f ), where

for all 1 ≤ i ≤ # f :

λi =
(

θ ′
i,1, θ

′
i,2,GK2 (wi ), 〈id( f ), 0, 0〉 ⊕ H1(PK3 (wi ), ri ),

ri , 〈0, 0, 0, 0, 0, 0〉 ⊕ H2(PK3 ( f ), r
′
i ), r ′

i

)

,

where ri and r ′
i are random k−bit strings.

5. Let c f ← 	.EncK4( f ) and send (τa, c f ) to the server,
then output the new root st ′.

Server:

1. Parse τa as (τ1, τ2, λ1, . . . , λ# f ) and return ⊥ if τ1 is
already in Td .

2. For 1 ≤ i ≤ # f ,

(a) Find the first free location ϕ in As , second free
location ϕ+1 in As , first free location ϕ′ in Ad ,
and second free location ϕ′+1 in Ad , by comput-
ing (ϕ, 0) = Ts[free], (0, ϕ+1, ϕ

′) = As[ϕ] and
(0, ϕ+2, ϕ

′+1) = As[ϕ+1].
(b) Update the search table to point to the second free

entry by setting Ts[free] = (ϕ+1, 0).
(c) Recover the first node N1s address α1 by computing

(α1, α
′
1) = Ts[λi [1]] ⊕ λi [3].

(d) Parse N1 = As[α1] as (v1, r1), then update N1s back
pointer point to the new node by setting:

As[α1] = (v1 ⊕ 〈0, ϕ, 0〉, r1).
(e) Store the new node at location ϕ and modify its for-

ward pointer to N1 by setting:

As[ϕ] = (λi [4] ⊕ 〈0, 0, α1〉, λi [5]).
(f) Update the search table by setting:

Ts [λi [1]] = (ϕ, ϕ′) ⊕ λi [3].
(g) Parse D1 = Ad [α′

1] as (v′
1, r

′
1), update the dual of N1

by setting Ad [α′
1] = (v′

1 ⊕ 〈0, ϕ′, 0, 0, ϕ, 0〉, r ′
1).

(h) If i < # f , store the dual of As[ϕ] at position ϕ′ by
setting:

Ad [ϕ′] = (
λi [6] ⊕ 〈ϕ′+1, 0, α

′
1, ϕ, 0, α1〉, λi [7]

)
.

If i = # f , then set:

Ad [ϕ′] = (
λi [6] ⊕ 〈0, 0, α′

1, ϕ, 0, α1〉, λi [7]
)
.

(i) If i = 1 , then update the deletion table by setting
Td [τ1] = ϕ′ ⊕ τ2.

3. Update the ciphertexts by adding c to c.
4. Let θ ′

i = (λi [1], λi [2]), update the tree α by replacing
the leaves (θ1, . . . , θ# f ) with (θ ′

1, . . . , θ
′
# f ).

5. Output (α′, γ ′, c′), where α′ is the updated tree.

• Del/Update(U : K, δf , f, st; S : α, γ, c)

User:
Recover the unique sequence of words (w1, . . . , w# f )

from δ f and compute the set {FK1(wi )}1≤i≤# f and send to
the server.
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Server:

1. For 1 ≤ i ≤ # f , traverse the Merkel tree α and:

(a) Find the leaf θi in α whose first element is FK1(wi )

(b) Let ti be the proof in α from θi to the root. The proof
includes the leaf θi , and all the sibling nodes from θi
to the root.

2. Let ρ = (t1, . . . , t# f ) and send it to the user.

User:

1. Verify the proofs in (t1, . . . , t# f ) using st , if fails, output
⊥ and terminate.

2. For 1 ≤ i ≤ # f ,

(a) Let θi be the leaf in ti , parse θi as (θi,1, θi,2).
(b) Compute the new leaf θ ′

i = (θi,1, (θi,2)
1/(s+id( f ))).

3. Update the root hash st using (θ ′
1, . . . , θ

′
# f ) and the infor-

mation in (t1, . . . , t# f ).
4. Compute τd = (FK1( f ),GK2( f ), PK3( f ), id( f ),

θ ′
1, . . . , θ

′
# f ).

5. Send τd to the server, then output the new root st ′.

Server:

1. Parse τd as (τ1, τ2, τ3, id, θ ′
1, . . . , θ

′
# f ).

2. Find the first node of L f by computing α′
i = Td [τ1]⊕τ2.

3. While α′
i 
= 0,

(a) Parse Di = Ad [α′
i ] as (v′

i , r
′
i ), decrypt Di by com-

puting (α1, . . . , α6) = v′
i ⊕ H2(τ3, r ′

i ).
(b) Delete Di by setting Ad [α′

i ] to a random string.
(c) Find address of the first free node by computing

(ϕ, 0) = Ts[free].
(d) Update the first node of the free list in the Ts point to

Di s dual by setting Ts[free] = (α4, 0).
(e) Free Di s dual by setting As[α4] = (0, ϕ, α′

i ).
(f) Let N−1 be the node before Di s dual. Update N−1s

next pointer by setting As[α5] = (β1, β2, β3 ⊕ α4 ⊕
α6, r−1), where (β1, β2, β3, r−1) = As[α5]. Also,
update the pointers of N−1s dual by setting:

Ad [α2] = (β1, β2, β3 ⊕ α′
i ⊕ α3, β4,

β5, β6 ⊕ α4 ⊕ α6, r ′−1),

where (β1, . . . , β6, r ′−1) = Ad [α2]
(g) Let N+1 be the node after Di s dual. Update N+1s

previous pointer by setting As[α6] = (β1, β2 ⊕
α4⊕α5, β3, r+1), where (β1, β2, β3, r+1) = As[α6].
Also, update N+1s duals pointers by setting:

Ad [α3] = (β1, β2 ⊕ α′
i ⊕ α2, β3, β4,

β5 ⊕ α4 ⊕ α5, β6, r ′+1),

where (β1, . . . , β6, r ′+1) = Ad [α3]
(h) Set α′

i = α1.

4. Remove the cipher text corresponding to id from c.
5. Remove τ1 from Td .
6. Update the tree α by replacing the leaves (θ1, . . . , θ# f )

with (θ ′
1, . . . , θ

′
# f ).

7. Output (α′, γ ′, c′), where α′ is the updated tree.

6 Security analysis

In this section we give an overview of the security property
of our scheme and then give the mathematic proofs in detail.

6.1 Dynamic adaptive chosen-keyword security

As mentioned in Sect. 4, most of the known efficient search-
able encryption algorithms more or less leak information.
The extent to which the practical security of SSE is affected
by this leakage is not well understood, and depends greatly
on the setting in which SSE is used.

We summarize the information that is leaked in the scheme
into leakage functions to describe the chosen-keyword secu-
rity feature. Our goal is to prove that, any PPT adversary can
obtain no information about the data and queries, except the
information in the leakage functions.

In the following, we analyze our scheme and investigate
which information has been leaked during the execution of
these algorithms and protocols. The formal definition will be
given afterward.

In our scheme, for each word , the value FK1(wi ) can be
treated as a unique identifier, and we denote it by id(wi ). For
eachfile fi , there are two identifiers, the id( fi ) in the arrayAs

and the FK1( fi ) in the table Td . Both of them can uniquely
represent a file, so for convenience, we do not distinguish
between them.

Given the encrypted index γ = (Ts,As,Td ,Ad), the
Merkle tree α and the ciphertexts c, the server can learn the
size of As , the set [id(w)]w∈w from Ts , the set [id( f )] f ∈f
and the length of each file [| f |] f ∈f . We denote these by L1,
i.e.,

L1(δ, f) = (
#As, [id(w)]w∈w, [id( f )] f ∈f , [| f |] f ∈f

)
.

The search operation reveals to the server id(w) for all
w ∈ W , and the relationship between id(w) and the iden-
tifiers of all files that contains w. We denote these by L2,
i.e.,

L2(δ, f,W ) = ([id( f )] f ∈fw , id(w)
)
for all w∈W .

In the add protocol, the server can learn the identifier of
the file to be added, the length of the file, and the identifiers
of the words that belong to the file. In addition, it can tell
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whether the word w contained in the file is a new word by
checking the table Ts . We denote these by L3, i.e.,

L3(δ, f, f ) =
(
id( f ),

[
id(w), apprs(w)

]
w∈w f

, | f |
)

,

where apprs(w) is a one bit flag set to 1 if the word w exists
in the index before the file f is added; otherwise, it is set to
0.

Similarly, in the delete protocol, the server can learn the
identifier of the file to be deleted, and know the relationship
between id( f ) and those word identifiers. In addition, for
each w ∈ w f , by removing the word pair ( f, w) from the
list Lw, the server learns the locations of the pairs neighbors
in Lw. We denote these by L4.

L4(δ, f, f ) =(
id( f ),

[
id(w), prev( f, w), next( f, w)

]
w∈w f

)
,

where prev( f, w) and next( f, w) are the file identifiers of the
file before and after f in the word list Lw. For the head and
the tail of the list, the corresponding value is set⊥ to indicate
that there are no more nodes before or after this one.

Now we use the following theorem to claim that the con-
struction in Sect. 5 is dynamic CKA2-secure in the random
oracle model with the leakage functions described above.

Theorem 1 If the 	 scheme is CPA-secure, and the F,
G and P are pseudo-random functions, then our scheme
is (L1,L2,L3,L4)-secure against adaptive chosen-keyword
attacks in the random oracle model.

Proof Theprimarygoal of providing this proof is to construct
a PPT simulator S that can generate the simulated values in
the ideal game using the information given in these leakage
functions. Those simulated values should be indistinguish-
able from ones in the real game to any PPT adversary.

Given the information received from L1, the simulator
could determine the length and the structure of encrypted
index γ , ciphertexts c and tree α. Then it can use randomly
chosen strings to construct these structures and produce these
values as the simulated one (γ̃ , c̃, α̃). If a PPT adversary
can distinguish the tuple (γ̃ , c̃, α̃) from (γ, c, α) with non-
negligible probability then it can break at least one of these
properties with non-negligible probability: the CPA secu-
rity of the encryption scheme; the pseudo-randomness of the
PRFs and the elliptic curve discrete logarithm assumption.

Given the information received from L2, L3 and L4, the
simulator should respond the simulated search token, the
simulated add token and the simulated delete token during
the adversary’s queries. These steps become more complex
due to the fact that simulator needs to track the dependen-
cies between the information revealed by these queries to
ensure consistency among these simulated tokens. We define
additional assisting structures iAs , iAd , iTs and iTd in the
simulator side to maintain consistency during updation. The

simulator uses these assisted structures to record those depen-
dencies that are revealed byL2,L3 andL4 in the queries, and
builds internal relationship in iAs , iAd , iTs and iTd , while the
values in γ̃ = (Ãs, T̃s, Ãd , T̃d) remain random. This gives
the simulator the ability to respond the adversary’s queries
like a real user, except using those simulated values.

The explicit proof is given as follows.
Let S represent the polynomial time simulator. The S ′s

task is to make sure for all PPT adversaries A, the outputs
of RealA(k) and IdealA,S(k) are identical, except with neg-
ligible probability. The simulator S generates the simulated
index γ̃ = (Ãs, T̃s, Ãd , T̃d), the simulated set of cipher-
texts c̃, the simulated Merkle tree α̃ and a sequence of tokens
(τ̃1, . . . , τ̃q) in the following way:

Initialization phase
Given L1(δ, f) defined above, the simulator generates

K4 ← 	.Gen(1k) and chooses s ← Z∗
p at random. Let

iAs , Ã′
s , iAd and Ã′

d be empty arrays of size #As , iTs and
T̃′

s be lookup table of size #w + 1, iTd and T̃′
d be lookup

table of size #f , G be an empty key table of size #f used for
add and delete.

Sets iTs[free] to ⊥. For all w ∈ w, sets iTs[id(w)] to ⊥.
For all f ∈ f , sets iTd [id( f )] to ⊥. Let γs be a bijection
mapping search keys in to search keys in T̃′

s , γd be a bijec-
tion mapping search keys in iTd to search keys in T̃′

d . For
eachword identifier id(wi ), randomly chooses a k−bit string
Kid(wi ) associates with it. For each file identifier id( fi ), ran-
domly chooses a string Kid(wi ) associates with it.

(Simulating Ãs) it generates the array Ãs of size #As , and
fills all cells with random strings. Each cell can be recognized
as the form 〈Ñ, r̃〉 where |Ñ| = 2 log #As + log #f and |r̃ | =
k. Copies the content of Ãs to Ã′

s . Then randomly chooses
z cells in Ãs and marks as free in iAs .

(Simulating T̃s) it generates the lookup table T̃s of size
#w + 1, and fills all cells with random strings. Each cell can
be recognized as a k−bit search key σ̃ along with a 2 log #As

bit string ṽ. Copies the content of T̃′
s to T̃′

s .
(Simulating Ãd ) it generates the array Ãd of size #As , and

fills all cells with random strings. Each cell can be recognized
as the form 〈D̃, r̃〉where |D̃| = 6 log #As and |r̃ | = k. Copies
the content of Ãd to Ã′

d . Then randomly chooses z cells in
Ãd and marks as free in iAd . It then generates a bijection δ

mapping all the cells in iAs to all the cells in iAd , such that
δ(⊥) = ⊥ and free cells in iAs and iAd are mapped to each
other.

(Simulating T̃d ) it generates the lookup table T̃d of size
#f , and fills all cells with random strings. Each cell can be
recognized as a k−bit search key σ̃ along with a log #As bit
string ṽ. Copies the content of T̃d to T̃′

d .
(Simulating c̃) for all f ∈ f , computes c̃ f =	.EncK4(0

| f |).
(Simulating α̃) chooses #w randomnumber (ω1, . . . , ω#w)

from and computes (gω1, . . . , gω#w). Then for all wi ∈ w,
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simulates the leaves by forming θ̃wi = 〈γs(id(wi )),gωi 〉.
Let α̃ be the Merkle tree constructed using the leaves L̃ =
{θ̃w}w∈w.

Query for search token
Given L2(δ, f,W ) defined above, for each wi in W , the

simulator needs to consider the following two cases:

Case 1 For the search key id(wi ), the value iTs[id((wi )] =
(⊥,⊥). This means the id(wi ) has never appeared in previ-
ous queries, or there was no file attached to id(wi ) before.
Then the simulator needs to create a new list for id(wi ). It ran-
domly chooses #fwi unused and non-free cells in and marks
themwith id(wi ). It then stores (id1, . . . id#fwi

) in these cells,
and updates each cells next pointer to form a list, according
to the order given in L2. The lists last cells next pointer is set
to⊥. Let α1 be the address of the first cell in the list, the sim-
ulator updates iTs by setting iTs[id(wi )] = 〈α1, δ(α1)〉. If
iTs[id(wi )] = (α1, δ(α1)), then sets iTs[id(wi )] = (⊥,⊥).

Case 2 For the search key id(wi ), the value iTs[id((wi )] =
(α1, δ(α1)).This means there is already a list and has some
file identifiers in it. Then the simulator needs to traverse the
list from the cell located in α1, and examine these file identi-
fiers to find out the identifiers that in the set (id1, . . . id#fwi

)

but not in the list. It then augments the list to the length #fwi

by randomly choosing unused and non-free cells in and stor-
ing themissing identifiers and pointers in these sells. It marks
the new cells with id(wi ).

For each wi in W , by creating: τ̃i = (γs(id(wi )), T̃′
s

[γs(id(wi ))] ⊕ iTs(id(wi )), Kid(wi )), the simulator finally
generates the token τ̃s = (τ̃1, . . . τ̃n).

Query for add token and ciphertext
Given L3(δ, f, f ) defined above, apprs(w) is set to 1 if

the word w exists in the index before the file f is added;
otherwise, it is set to 0.

If id( f ) ∈ iTd , it means the file has already existed in the
table. According to the algorithm, the simulator must return
⊥ and terminate the simulation.

For the circumstances id( f ) is a new one, the simulator
first checks the consistency of its structures in the following
step.

For all wi ∈ w f , checks if iTs[id(wi )] = (⊥,⊥) and
apprs(wi ) = 1. If so, it means the simulators internal data
structure has not been set properly. To fix this, the simulator
chooses a randomunused andnon-free cell locationα1 in iAs ,
stores id( f ) and id(wi ) in this cell, and sets iTs[id(wi )] =
〈α1, δ(α1)〉.

After the checking the two values above, the simulator
forms the set {γs(id(w1)), . . . , γs(id(w# f ))} and sends it
to the adversary. The adversary is supposed to response the
MHT proof ρ = (t1, . . . , t# f ) to the simulator. The first
element of the leaf node in each ti should equal to the key
γs(id(wi )). If the verification of the proof ρ failed, the sim-
ulator returns ⊥ and terminates the simulation.

The simulator then randomly chooses a k−bit string
Kid( f ). If id( f ) is an entry in G or v is a random
log #As bit string if id( f ) is not in G, it generates v =
G[id( f )]. And for all w ∈ w f , it generates λi =
(γs (id(wi )) , θ ′

wi ,2, T̃′
s
[
γs (id(wi ))

] ⊕ iTs (id(wi )) , ui ,
ri , u′

i , r ′
i ), where ui , ri , u′

i , r
′
i are random strings with the

length of, respectively, (2 log #As+log #f)-bit, 6 log #As-bit,
k-bit and k-bit. Let θwi = (θwi ,1, θwi ,2) be the leaf node in
ti , then θ ′

wi ,2
= (θwi ,2)

s+id( f ).
Then, it returns the token andciphertexts: τ̃a = (γd(id( f )),

v, λ1, . . . , λ#w f ), c̃ f = EncK4(0
| f |).

After returning the token, the simulator needs to update
its internal structures. For all wi ∈ w f :

• Gets α1 by inquiring iTs[id(wi )] = 〈α1, δ(α1)〉, despite
α1 is a valid address or ⊥. Let ϕ and ϕ+1 be the first and
second free location in iAs .

• If α1 
= ⊥, updates Ã′
s(α1) by setting Ã′

s(α1) = (Ñ ⊕
〈0, ϕ, 0〉, r̃).

• Updates Ã′
s(ϕ) by setting Ã′

s(ϕ) = (Ñ ⊕ 〈0, 0, α1〉, r̃),
updates Ã′

d [δ(ϕ)] by setting Ã′
d [δ(ϕ)] = (D̃⊕〈δ(ϕ+1),

0, δ(α1), ϕ, 0, α1〉, r̃).
• Updates the next pointer of the cell at location ϕ in iAs

point to α1.
• Stores id( f ) and id(wi ) in the cell at location ϕ in iAs ,
and tags it as non-free cell.

• Sets iTs[id(wi )] = 〈ϕ, δ(ϕ)〉.

After those updating above, the simulator needs to create the
list of id( f ) in iAd in the following steps:

• Finds all the duals of the cells used above using the map
δ. These cells should be free cells.

• Generates the list by updating each cells next pointer,
according to the order given in L3.

• Marks these cells as used in iAd with id( f ), and tags as
non-free cells.

• Stores the corresponding word identifier id(wi ) in each
of these cells.

• Let h be the head of the list. Sets iTd [id( f )] = h, and
updates T̃′

d [γd (id( f ))] by setting: T̃′
d
[
γd (id( f ))

] =
v ⊕ h.

Query for delete token
Given: L4(δ, f, f ) defined above, the simulator sets the

corresponding value for the head and the tail of the list to ⊥
to indicate that there are no more nodes before or after this
one.

For allwi ∈ w f , the simulator first checks the consistency
of its internal structures as follows:
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• It gets the word list from iTs[id(wi )]. If iTs[id(wi )] =
(⊥,⊥), the list has not been initialized yet. It chooses an
unused and non-free cell in iAs at random and marks it
with id(wi ) and id( f ). Let ϕ be the new location of the
cell. It sets iTs[id(wi )] = (ϕ, δ(ϕ)).

• If iTs[id(wi )] 
= (⊥,⊥), it means there is already a list
for wi . The simulator searches the list for a cell stores
id( f ). If no such cell exists, it chooses an unused and
non-free cell in iAs at random and marks it with id(wi )

and id( f ). It then inserts this newcell into proper position
of the list according to the prev( f, w) and next( f, w)

given in L4.
• If iTd [id( f )] = ⊥, the simulator needs to create a list
for id( f ) by finding the duals of the cells found above,
and modifying the pointers to form the list. The order of
the cells in the list respects the order giving byL4. It then
sets iTd [id( f )] to be the location of the head of the list.

Then, the simulator forms the set {γs(id(w1)), . . . ,

γs(id(w# f ))} and sends it to the adversary. The adversary
is supposed to response the MHT proof ρ = (t1, . . . , t# f )
to the simulator. The first element of the leaf node in each
ti should equal to the key γs(id(wi )). If the verification of
the proof ρ failed, the simulator returns⊥ and terminates the
simulation.

The simulator then returns the token:

τ̃d =
(

γd (id( f )) , T̃′
d
[
γd (id( f ))

] ⊕ iTd [id( f )] ,
Kid( f ), id( f ), θ ′

w1 , . . . , θ
′
w# f

)

,

where for all wi ∈ w f , θ ′
wi

= (θwi ,1, (θwi ,2)
1/(s+id( f ))) is

themodified leaf node to the original one θwi = (θwi ,1, θwi ,2)

in ti .
After returning the token, the simulator sets G[id( f )] =

T̃′
d [γd (id( f ))]⊕ iTd [id( f )]. Then it updates its data struc-

tures as follows:

• Marks the cells in the list id( f ) as free cells in iAd , and
their duals in iAs too.When frees the cells in iAs , updates
their neighbors pointers to point to each other.Modify the
pointers in iTs if necessary.

• Removes the search key id( f ) from iTd , and merges
the newly freed cells in iAs and iAd into the free list,
according to the order given in L4.

AnalysisWenowclaim that no polynomial-time adversaryA
can distinguish betweenRealA(1k) and IdealA,S(1k), except
with negligible probability negl(1k). We argue that this is
not possible by stating that every output of the simulated
experiment IdealA,S(1k) is indistinguishable from its corre-
sponding elements in RealA(1k).

• (As,Ts,Ad ,Td and Ãs, T̃s, Ãd , T̃d )

Recall that each cell in Ãs can be recognized as the
form 〈Ñ, r̃〉 where |Ñ| = 2 log #As + log #f and |r̃ | = k.
The cell in As is Ni = (〈idi , addrs(Ni−1), addrs((Ni+1)〉 ⊕
H1(PK3(w)ri ), ri ), due to the pseudo-randomness of P and
the random oracle H1, all PPT adversaries cannot distin-
guish Ãs fromAs . Similarly, it cannot distinguish Ts,Ad ,Td

with T̃s, Ãd , T̃d if the pseudo-randomness of F , G and P
holds. It means the adversary can distinguish the real index
As,Ts,Ad ,Td from the simulated index Ãs, T̃s, Ãd , T̃d .
Therefore, the probability ε1 is negligible.

• (α and α̃)

Based on the elliptic curve discrete logarithm assumption and
the pseudo-randomness of F , any PPT adversary A cannot
distinguish the real leaf nodes L from the simulated one L̃,
therefore cannot distinguish the tree α̃ from α, since they are
generated by these leaves.

• (θw and θ̃w)

Because the pseudo-randomness of F holds, any PPT adver-
sary cannot distinguish the random bits from the output of
PRF F . So it cannot distinguish the random bits γs (id(wi ))

with FK1(wi ). In addition, due to the discrete logarithm
assumptions, any PPT adversary cannot can distinguish gωi

with g
∏

f ∈fwi
(s+id( f ))

. As we know, the real leaf nodes from
the simulated one are in the forms of:{

L̃ = {θ̃w}w∈w = {(θ̃w,1, θ̃w,2)}w∈w
L = {θw}w∈w = {(θw,1, θw,2)}w∈w

So A cannot distinguish L̃ from L . The tree α̃ and α are
built by the collision-resistant hash function H3 of the leaf
nodes, so the adversary cannot distinguish the tree α̃ and α.

• (c and c̃)

Recall that c̃ is 	 encryption, which is CPA-secure. Since,
all PPT adversariesA, the CPA security of 	 will guarantee
that all PPT adversariesA can distinguish (c̃ and c)with neg-
ligible probability. Because the 	 encryption is proved to be
CPA-secure, so the ciphertexts it produces do not reveal any
partial information about the plaintext. So any PPT adversary
A cannot distinguish the ciphertexts that generated by two
different inputs using the 	 encryption. As we know, c̃ and
c are ciphertexts in the forms of:{

c = (c1, . . . , c#f ), in which ci = 	.EncK4( fi )
c̃ = (c̃1, . . . , c̃#f ), in which c̃i = 	.EncK4(0

| f |) ,

so A cannot distinguish c̃ from c.

• (τs and τ̃s)

Recall that τs and τ̃s are in the forms of:
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{
τi = (FK1(wi ),GK2 (wi ), PK3(wi ))

τ̃i = (γs(id(wi )), T̃′s [γs(id(wi ))] ⊕ iTs(id(wi )), Kid(wi ))

because the pseudo-randomness of F,G, P holds, any
PPT adversary cannot distinguish the random bits from the
output of PRF F,G, P . So it cannot distinguish τs and τ̃s , so
as τs = (τ1, . . . τn) and τs = (τ̃1, . . . τ̃n).

• (τa, τd and τ̃a, τ̃d)

In the sameway, based on the elliptic curve discrete logarithm
assumption and the pseudo-randomness of F,G, P , any PPT
adversary cannot distinguish the random bits from the output
of PRF F,G, P . So it cannot distinguish (τa, τd and τ̃a, τ̃d).

To sum up, we have the conclusion that for all PPT adver-
saries A, the output of RealA(1k) and IdealA,S(1k) are
identical, except with negligible probability negl(1k):

|Pr RealA(1k) = 1] − Pr[IdealA,S(1k) = 1]| ≤ negl(1k).

Therefore our scheme is (L1,L2,L3,L4) -secure against
adaptive chosen-keyword attacks in random oracle model.

6.2 Unforgeability

The method to give the proof for unforgeability is straight-
forward and needs no additional explanations.

Theorem 2 If H3 is collision-resistant hash function and the
bilinear q-SDHassumptionholds thenour scheme is unforge-
able.

Proof The main idea to give the proof is that, if there exists a
PPT adversaryA such that ForgeA(1k) = 1, then there exist
a PPT simulatorS that breaks at least one of the assumptions:

• The collision-resistance property of H3,
• Bilinear q-SDH assumption.

During the game, the simulator S interacts withA using real
algorithm. Assume after q times queries, A outputs a set
of file identifiers I′ 
= IW and a valid proof π . This means
the proof π = {T ,S, C} he produces under query W passes
all three steps of the verification phase. We categorize the
forgery into three types:

• Type I: For some word wi ∈ W , the adversary outputs a
different leaf value θ̃wi in Merkle tree proof t̃i and passes
the verification step 1.

• Type II: For somewordwi ∈ W , I′ 
⊂ Si . The adversary
gives the simulator the real accumulation value in the
proof ti , and outputs a subset witness g̃Pi that passes the
verification step 2.

• Type III: The set I′ is a proper subset of IW . The adver-
sary gives the simulator the real S = {gP1, . . . , gPn } ,

and outputs a completeness witness
�

C which passes the
verification step 3.

It is clear that if I′ 
= IW and proof π is valid then one of
the abovementioned forgeriesmust occur. Next we show that
the simulator S can use type I forgery to break the collision-
resistance property of H3, and use type II or III forgeries to
break the bilinear q-SDH assumption.

(A) The collision-resistance property of H3

The hash function H3 is collision-resistance if it is difficult
for all PPT adversaries to find two different messagesm1 and
m2, such that H3(m1) = H3(m2).

First, given the hash function H3, the simulatorS interacts
with the adversary A according to the game ForgeA(1k).

If A wins the game and the type I forgery occurs, that
means for some word wi ∈ W , A outputs a different leaf
value θ̃wi in Merkle tree proof t̃i .

Then, the simulator S verifies the valueA outputs, which
passes the verification step 1. Let θ̃wi = (θ̃wi , θ̃wi ). Passing
the verification step 1 means the following two conditions
hold:

• The search key FK1(wi ) = θ̃wi ,1.
• The tree verification using the leaf θ̃wi succeeds.

According to the verification step 1, the adversaryAmay
only forge the θ̃wi ,2. Then passing theMerkle tree verification
implies that the adversary is able to find the collision of H3,
because it can generate the same root with the modified leaf.

(B) Bilinear q-SDH assumption
Given the simulatorS an instance of bilinear q-SDH prob-

lem: (p,G,G, e, g) and a (q + 1)-tuple (g, gs, . . . , gs
q
). S

interacts with the adversary A in the following way.
First, since S doesn’t know the value s in the given bilin-

ear q-SDH instance, it needs to reconstruct the following
algorithms which related to s in the game ForgeA(1k):

• Gen: the simulatorS directly uses (g, gs, . . . , gs
q
) as the

public parameters without knowing s, and sends them to
the adversary.

• Setup: for leaf nodes: θw = 〈FK1(w), g
∏

f ∈fw (s+id( f )〉,
the simulatorS computes the value g

∏
f ∈fw (s+id( f )) using

(g, gs, . . . , gs
q
) . It is worth mentioning that, the simula-

tor S needs to construct an extra auxiliary data structure
N . It stores for each leaf nodes θw the polynomial:
nw = ∏

f ∈fw (s + id( f )) , which is used to form the
add/delete tokens later.

• Add/Update: Simulator S cannot directly compute the
value of τa in Add/Update protocol. In the Add/Update
protocols users step 2(b), when computing the value
of the new leaf node θi

′ in τa , it first finds N to find
the polynomials ni that equals θi,2, then computes the
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value gni ·(s+id( f )) using (g, gs, . . . , gs
q
). The value θ ′

i =
(θi,1, gni ·(s+id( f ))) is the updated leaf node.

• Del/Update: Similarly, in the Del/Update protocol, S
finds the ni in N and removes the factor s + id( f )
from ni and then computes the value gni/(s+id( f ))

using (g, gs, . . . , gs
q
) and gets a new leaf node θ ′

i =
(θi,1, gni /(s+id( f ))) .

In the abovemodified game, the values that related to s are
computed in a new way. However, it produces same output
as it was produced by earlier version of algorithm. So in the
view of adversary A, these values are still valid, it cannot
distinguish this game with the original one.

If A wins the game, and the following two types of forg-
eries occur, then the simulator S may solve the given bilinear
q-SDH instance.

1. If the type II forgery occurs, i.e., the adversary A out-

puts a set I′ = {x1, . . . , xm} and a witness
�
g
Pi

for some
wi ∈ W . Let Si = {id1, . . . , idq} be the file identifier
set related to the word wi , then g(s+id1)(s+id2)···(s+idq ) is
the corresponding accumulation value. Since I′ 
⊂ Si ,
there exists some 1 ≤ j ≤ m , such that x j /∈ Si . This
means in the equation: e(g

∏
x∈I′ (s+x), g̃Pi ) = e(g(s+id1)

g(s + id2) · · · (s + idq), g) , (s + x j ) does not divide
(s + id1)(s + id2) · · · (s + idq) .
Therefore there exists polynomial Q(s) of degree q − 1
and constant c 
= 0, such that: (s+ id1)(s+ id2) · · · (s+
idq) = Q(s)(s + x j ) + c . Then the simulator S has

e(g, g̃Pi )
(s+x j )

∏
x∈I′∧x 
=x j

(s+x) = e(g, g)Q(s)(s+x j )+c .
After transformation, it can finally have

e(g, g)
1

s+x j =
(e(g, g̃Pi )

∏
x∈I′∧x 
=x j

(s+x)
e(g, g)−Q(s))1/c.

This means the simulator S can solve the instance of
bilinear q-SDH problem in polynomial time.

2. If the type III forgery occurs, i.e., the adversary A out-
puts a set I′ = {x1, . . . , xm} and the completenesswitness
�

C . Since the set I′ is the proper subset of IW , there exists
at least one common factor in polynomials P1, . . . , Pn .
We use (s + x) to denote the factor, where x /∈ I′.

These values can pass the verification step 3 means the fol-
lowing holds:

∏n
i=1 e(g

Pi , gqi ) = e(g, g). Extract (s + x)
from each Pi by computing gP ′

i = (gPi )1/(s+x) , then∏n
i=1 e(g

Pi , gqi ) = (
∏n

i=1 e(g
P ′

i , gqi )s+x = e(g, g) . Thus
the simulator S can easily form the solution of the instance
of bilinear q-SDH problem by computing:

e(g, g)1/(s+x) = ∏n
i=1 e(g

P ′
i , gqi ).

This means the simulator S can also solve the instance of
bilinear q-SDH problem in polynomial time.

The above analyses show that, if the adversary A could
successfully forge a proof, it must have the ability to break
at least one of these assumptions above. Therefore we have
the conclusion that for all PPT adversariesA, the probability
Pr[ForgeA(1k) = 1] ≤ negl(1k), where negl(1k) is a negli-
gible functionwith input 1k . Thus our scheme is unforgeable.

7 Experiment result

In this section, we describe the implementation of our con-
junctive keyword searchable encryption scheme and discuss
the results of experimentation regarding its practical perfor-
mance.

We implement our scheme in C++ under the 256 bit sys-
tem security parameter. The experiments were run on linux
ubuntu installed on a rotational disk. We chose AES-CBC-
256, SHA256, and HMAC with SHA256 in the OpenSSL
library for the symmetric encryption, the random oracles,
and the pseudo-randomness functions. We use PBC library
to compute the group operations including the pairing and the
point exponentiation calculation. We select the type A pair-
ings in PBC to realize the symmetric pairing, which is based
on the curve over the field Fq for some prime q = 3 mod 4.
The group order is 256 bits and the order of its base field
is 512 bits. We use the NTL library for efficient FFT and
Euclidean algorithms over polynomials.

The dataset was selected from real word. We used Enron
emails dataset at https://www.cs.cmu.edu/ enron/, theAugust
21, 2009 version for evaluation. We chose a subset of 1000
files randomly from those mails as file collection. Each sep-
arate word in the file served as the keyword. We chose the
words that appear in most files as keywords, and performed
conjunctive keyword search from 1 to 5 keywords. As a com-
parison, we used the scheme in [14] to perform multiple
times single-keyword search.Due to the conjunctive keyword
search is unsupported in [14], the server need not to prove the
correctness of the intersection of the searching results, and
the verifications in [14] were executed at the user side, so the
proof phase and verification phase in [11] is uncompareble
with ours.

In order to validate the practicality of our conjunctive
keyword searchable encryption scheme, we implemented
the scheme in a client–server architecture and deployed the
server end to a remote server. The remote server has an Intel
Core i7-2600 Quad-Core Processor 3.4 GHz and 8 GB of
RAM. The cloud server stores not only the set of file cipher-
texts c,but also the encrypted index γ and the Merkle tree
authenticated structure α,after the Setup algorithm. The sto-
tage overhead of the set of file ciphertexts c is up to the size
of the file sets and the encryption algorithm 	.enc. For the
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Fig. 4 Search Time affected by keywords’number for 1 and 6 users

encrypted indexγ , the storage overhead ismainly determined
by the size of the files and the amounts of the keywords. And
the size of the Merkle tree authenticated structure α is only
determined by the size of the files. The clinet in our system
is simulated by several computers. Each computer can sim-
ulate one clinet to interact with the server. The clinet stores
the users secret keys and the root value st of the Merkle tree
authenticated structure α.

Furthermore, we implemented a job allocation mecha-
nism in the server end that acts as the master server, and
used threads to simulate different node servers that do
the actual search jobs. As a result, our experiment envi-
ronment simulates a real-world cloud service: The clients
only communicate with the master server, and the master
server allocates the search jobs dynamically to many node
servers.

Under the experiment environment described above, we
conducted the following experiments. During all the experi-
ments, the network communication time is not recorded since
it is highly depended on the network connection between the
client and the server.

In the first experiment, we tested the search time (includ-
ing proof generation) required to perform conjunctive key-
word search queries with different number of keywords for
both 1 and 6 users, as illustrated in Fig. 4. We used 6 servers
(threads) for this experiment. When testing with 6 users, all
the 6 clients send the search queries to the master server at
the same time, and the time is recorded until every search
query is finished.

Moreover, we focused on how different number of servers
affects the performance of the system, as shown in Fig. 5.
We divided the experiment into two parts. Firstly, we used 3
servers to perform conjunctive keyword search queries with
different number of keywords for 6 users, and the total time
cost is recorded. Then we repeated the experiment with 6
servers, and compared the results.

The communication overhead is affected by the number of
files and the size of the proof.While searching for n keywords
out of the t total distinct keywords that are indexed in the

Fig. 5 Search time affected by keywords’number for 3 and 6 servers

system, the total size is O(m + n log t), where m is the file
number in the search result.

While taking into account the file size, we refer to the
size of id( f ), instead of the size of file itself, since the user
only needs the set of id( f ) to verify the result. We split the
communication size since the result consists of two parts:
the files set, and the proof. In Fig. 6 we show how the size
is affected by the number of keywords in a search. As the
number of keywords increased, the intersection size becomes
smaller, and may eventually come to zero. In this case, the
main factor affecting the size is the proof, which is O(n log t)
to the number of keywords.

7.1 Search and prove overheads

We then measured the time it takes for the server to search
and to compute the proof. Figures 7 and 8 illustrate the
time it takes to search and prove versus number of key-
words. Let Nbe the total size of the keywords inverted lists.
Theoretically, the asymptotic running time at the server is
O(N log2N log log N ) [21]. In practice, the critical compu-
tation at the server is the power operation for group elements,
which is executed to construct the subset and completeness
witnesses.

Its worth mentioning that, the algorithms can be fur-
ther optimized using implementation techniques which can
greatly reduce the prove time at the server side, such as
the multi-thread execution and the precomputed Pi and gPi .
However, in order to honestly reflect the original efficiency
of the algorithm, we hadn’t use any optimize techniques, just
simply let the server do all the computation in single thread
each time.

7.2 Verification overhead

The verifications asymptotic running time on the user side is
O(m+n log t). Figure 9 illustrates the time it takes to verify
all the proofs versus number of keywords. Compares to the
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Fig. 6 Communication time affected by keywords’ number
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Fig. 7 Search time affected by keywords’ number

search and prove operation at the server side, the computation
at the user side is relatively fast.

The most expensive part in the verification algorithm is
the bilinear pairing. While searching for n keywords, user
needs to compute n + 1 pairings to verify the results cor-
rectness. This step could also be further optimized while the
search result is empty. In this case, user only needs to check
whether each gPi equals θi,2 in the verification step 1(b) and
do single pairing operation in step 1(c) to check the com-
pleteness condition.

8 Conclusion

Searchable encryption is an important cryptographic primi-
tive for cloud storage environment. It is well motivated by the
popularity of cloud storage services. At the same time, the
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Fig. 9 Total verification time on user side

authentication methods utilized for the search results ver-
ification is a significant supplement that makes the search
more reliable and it would greatly promote the development
of cloud storage service.

In this paper, we described a searchable encryption
scheme which supports conjunctive keyword search and
authentication. The scheme can greatly reduce the communi-
cation cost during the search. We demonstrated that, taking
into account the security challenges in the cloud storage,
our scheme can withstand the chosen-keyword attack car-
ried out by the adaptive adversaries. Proposed scheme also
prevents the result from being maliciously altered by those
adversaries.

In the future, we will perform a detailed analysis of the
security aspects in this paper and investigate the feasibility of
designing improved security model to enhance the schemes
security features.Moreover, wewill give consideration to the
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authenticate techniques to achieve more efficiency to meet
practical needs.
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