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Abstract LaMacchia, Lauter and Mityagin presented a
strong security model for authenticated key agreement,
namely the eCK model. They also constructed a protocol,
namely the NAXOS protocol, that enjoys a simple security
proof in the eCKmodel. However, the NAXOS protocol uses
a random oracle-based technique to combine the long-term
secret key and the per session randomness, so-calledNAXOS
trick, in order to achieve the eCK security definition. For
NAXOS trick-based protocols, the leakage of per session ran-
domness modeled in the eCK model is somewhat unnatural,
because the eCK model leaks per session randomness, while
the output of the NAXOS trick computation remains safe.
In this work, we present a standard model eCK-secure pro-
tocol construction, eliminating the NAXOS trick. Moreover,
our protocol is a generic construction, which can be instan-
tiated with arbitrary suitable cryptographic primitives. Thus,
we present a generic eCK-secure, NAXOS-free, standard
model key exchange protocol. To the best of our knowledge
this is the first paper on generic transformation of a CCA2-
secure public-key encryption scheme to an eCK-secure key
exchange protocol in the standard model.

Keywords Public-key cryptography · Key exchange
protocols · eCK model · Standard model

1 Introduction

In 1976, Diffie andHellman introduced a key exchange prim-
itive [10], which enables two parties to exchange a secret key
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(session key) by communicating over a public channel. Users
Alice and Bob agree on a group G of prime order q and on a
generator g of this group. This is done before executing the
rest of the protocol, and g and q are assumed to be public.

Alice picks a random integer a
$←Zq and computes A ← ga

and sends it to Bob. ThenBob picks a random integer b
$←Zq

and computes B ← gb and sends it to Alice. After that,
Alice computes Ba = (gb)a = s ∈ G and Bob computes
Ab = (ga)b = s ∈ G. Thus, both Alice and Bob end up
with the same value s ∈ G. An eavesdropper who watches
this communication can see A and B values, but should be
unable to determine the values of s (assuming CDH holds).

Many key exchange protocols have been created based
on the Diffie–Hellman key exchange primitive [7,11,14]. In
these key exchange protocols, different types of keys may
be used to compute session keys: long-term secret keys are
the static secrets belonging to the protocol participants which
are often used to add authentication to the session key, and
ephemeral keys are the session-specific secrets belonging to
protocol participants which are used to add freshness to the
session key. There are a number of known security features
for key exchange protocols:

Implicit key authentication If a protocol provides a guarantee
that no party apart from the protocol participants can com-
pute the session key, that key exchange protocol is said to
provide implicit key authentication. If a key exchange proto-
col provides implicit key authentication, that protocol is said
to be an authenticated key exchange protocol.

Key confirmation If a key exchange protocol provides a guar-
antee that each party is assured that all other participants
possess the session key, that key exchange protocol is said to
provide key confirmation.
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Known key security The knowledge of a session key should
not enable the adversary to learn the session keys in other
sessions; all session keys should not depend on the session
keys of other sessions.

Unknown key share (UKS) security It should not happen that
a party A shares a session keywith some party B, but believes
that it is sharing the session key with some one else C . That
means public keys and identities of the parties should be cer-
tified and confirmed or incorporated into protocol execution.

Key compromise impersonation (KCI) resistance Knowing
the long-term secret key of a party A should not enable the
adversary to impersonate other honest parties to A.

Forward secrecy An adversary who knows the long-term
secret keys of parties should not be able to compute the
session keys of past sessions between those two particular
parties.

1.1 Key exchange security models

In order to analyze the security of key exchange protocols,
a formal methodology is needed. Therefore, key exchange
security models have been created. A security model is a for-
mal security statement of certain security features. Generally,
security models are designed to reflect real-world adversarial
capabilities, addressing the known security features (men-
tioned earlier). It is natural to design security models with
theoretical adversaries which have more capabilities than
real-world adversaries, because that way it is possible to
address more powerful attacks which may exist in the future.
Following is the general structure of a security model.

– Definition of the algorithm: Inputs, outputs and abstract
description of the algorithm.

– Adversary capabilities: How the adversary can interact
with the system and which information the adversary is
allowed to learn, usually in the formof queries. As a usual
practice the adversary is made as strong as possible by
giving more capabilities to the adversary.

– Security game: The way in which the adversary performs
queries.

– Security goal: The requirement for the adversary to win
the security game.

In a security model, there is a predefined list of queries
that an adversary can perform (adversary capabilities). Those
queries reveal information such as session keys, ephemeral
keys and long-term secret keys. Even after performing the
queries, within the constraints defined in the security model,
if the adversary’s advantage of distinguishing the real session
key from a random key chosen from the same distribution is

Table 1 Security features of different security models

Security feature BR 93 BR 95 CK eCK

Implicit key
authentication

Yes Yes Yes Yes

Known key security Yes Yes Yes Yes

Key confirmation Yes Yes Yes Yes

UKS Yes Yes Yes Yes

KCI No No No Yes

Forward secrecy No No Yes Weak forward
secrecy

negligible, the protocol is said to be secure in the particular
security model. The session in which the adversary tries to
distinguish the real session key from a random key is known
as the target session.

The Bellare–Rogaway models (BR93 [4], BR95 [6]), the
Canetti–Krawczyk (CK)model [8] and the extendedCanetti–
Krawczyk (eCK) model [17] are a few such security models,
and protocol designers use them to analyze the security of
key exchange protocols. Security features like implicit key
authentication, key confirmation, known key security and
UKS security are addressed in themodels such asBRmodels,
CK model and the eCK model.

In the BR models and the CK model, the adversary is not
allowed to learn the long-term secret key of the owner of
the target session, before it expires. Therefore, those models
are not capable of addressing the key compromise imperson-
ation attacks, whereas the eCK model allows the adversary
to learn the long-term secret key of the owner of the target
session. Therefore the eCKmodel addresses the KCI attacks.
Moreover, the BR models and the CK model do not allow
the adversary to reveal the session states or ephemeral keys
of the target session or its partner session. Therefore, those
models are not capable of addressing the ephemeral key leak-
age attacks, whereas the eCK model allows the adversary to
reveal both of the ephemeral keys of the target session, as long
as the owner and the partner principals to the target session
are not corrupted. Therefore the eCK model addresses the
ephemeral key reveal attacks. In the CK model, after the tar-
get session has expired, the adversary is allowed to learn the
long-term secret keys of the protocol participants of the target
session, regardless of whether the adversary actively inter-
fered with the target session, whereas the eCK model only
allows the adversary to learn the long-term secret keys of both
protocol participants of the target session when the adversary
has not actively interfered with the target session. There-
fore, the CK model addresses the perfect forward secrecy,
while the eCK model only addresses the weak perfect for-
ward secrecy. Table 1 summarizes the security features of
above discussed security models.
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Table 2 Basic characteristics of
few eCK-secure key exchange
protocols

Protocol NAXOS trick Proof model DH assumption Generic/concrete

NAXOS [17] Yes Random oracle GDH Concrete

CMQV [21] Yes Random oracle GDH Concrete

MO [18] No Standard DDH Concrete

KFU P1 [16] No Random oracle GDH Concrete

KFU P2 [16] No Random oracle CDH Concrete

Yang P1 [22] No Standard Bilinear DDH Concrete

Yang GC-KKN [22] No Standard DDH Generic

ASB [2] No Random oracle GDH Concrete

Protocol P1 (this paper) No Standard DDH Generic

Likewise, the eCKmodel is clearly defined to capturemost
of the demanding security features of key exchange protocols
and thus widely used as a strong security model to analyze
the security of key exchange protocols. We explain the eCK
model in detail in Sect. 3.

1.2 eCK-secure key exchange protocols

The initial effort of constructing the eCK-secure key
exchange protocols is combining the long-term secret key
and the ephemeral secret key using a random oracle func-
tion [5] to obtain a pseudo-ephemeral value. This trick is
first introduced by LaMacchia et al. [17] in their proto-
col, named NAXOS, and now it is widely known as the
NAXOS trick. A “pseudo”-ephemeral key ˜esk is computed
as the random oracle function of the long-term key lsk
and the actual ephemeral key esk: ˜esk ← H(esk, lsk).
The value ˜esk is never stored, and thus, in the eCK model
the adversary must learn both esk and lsk in order to be
able to compute ˜esk. Note however, that in the NAXOS
protocol, the initiator must compute ˜esk = H(esk, lsk)
twice: once when sending its Diffie–Hellman ephemeral
public key g˜esk and once when computing the Diffie–
Hellman shared secrets from the received values. This is
to avoid storing a single value that, when compromised,
can be used to compute the session key. There are some
key exchange protocols created using the NAXOS trick
[17,21].

Recently, some researchers worked on constructing eCK-
secure key exchange protocols without NAXOS trick [2,16,
18,22]. The motivation for such research can be explained
as follows: the eCK model addresses the leakage of the
ephemeral secret key. It is unnatural to assume that the
ephemeral secret key is leaked, while the exponent of the
ephemeral public key (e.g., the pseudo- ephemeral value
in the NAXOS protocol) remains safe, without leaking.
Therefore, it seems that there is an unnatural and indirect
assumption of a leakage-free exponentiation computation
or leakage-free random source, in the eCK-security proof

of the NAXOS-style key exchange protocols. Therefore,
eliminating the NAXOS trick and still preserving the eCK
security would be more realistic. Moreover, the NAXOS
trick is a random oracle-based technique. Favorable things
on random oracle-based constructions are that, the schemes
are efficient, proofs are clean and the random oracles can
be replaced with suitable hash functions in the real- world
implementations. On the other hand, random oracle proofs
are considered as ideal-world proofs, rather than real-world
proofs. Therefore, perhaps cryptographers tend to construct
cryptographic schemes which are proven secure in the stan-
dard model.

1.3 Our contribution

In this paper our aim is to present a generic eCK-secure,
NAXOS-free, standardmodel key exchangeprotocol, namely
the protocol P1. Thus, our generic protocol is a strongly
secure and realistic framework for real-world instantia-
tions. Our protocol is a Diffie–Hellman-style key exchange
protocol, and we assume on the hardness of the deci-
sional Diffie–Hellman (DDH) problem. Moreover, our pro-
tocol uses an arbitrary CCA2-secure public-key encryption
scheme to encrypt Diffie–Hellman public ephemeral values
and exchange them between the protocol principals. An arbi-
trary pseudo-random function is used to derive the secret
session key using the ephemeral Diffie–Hellman shared
key, long-term Diffie–Hellman shared key and the message
flow. Since our protocol is a generic protocol, this can be
instantiated with an arbitrary CCA2 public-key encryption
scheme and an arbitrary pseudo-random function. Therefore,
it is possible to instantiate our protocol with more efficient
CCA2-secure public-key encryption schemes and pseudo-
random functions in future and achieve better performance.
In Table 2, we look at the basic characteristics of few eCK-
secure key exchange protocols in the literature, comparing
with our new protocol. Table 2 shows that our protocol cap-
tures all of the desired features that we discussed here.
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Table 3 Cost analysis of few
standard model eCK-secure key
exchange protocols

Protocol Overall cost Instantiation details

MO [18] 3Exp, 1Multi-exp, 1CR, 1πPRF Concrete

Yang P1 [22] 2Exp, 4Multi-exp, 4Pair, 1PRF, 2TCR Concrete

Yang GC-KKN [22] 7Exp, 2Multi-exp, 3PRF, 2TCR Factoring-based KEM

Protocol P1 (this paper) 6Exp, 4Multi-exp, 2PRF Cramer–Shoup PKE

The protocol execution cost of our protocol is one
encryption, one decryption, three exponentiations and two
pseudo-random operations. Table 3 shows the protocol exe-
cution costs of the standard model protocols that mentioned
in Table 2. The generic GC-KKN protocol is instantiated
with a factoring-based key encapsulationmechanism asmen-
tioned by Yang [22], and our protocol is instantiated with
Cramer–Shoup public-key encryption scheme [9]. In Table 3,
CR denotes collision-resistant hash functions, TCR denotes
target collision-resistant hash functions, Exp denotes expo-
nentiations, Multi-exp denotes multi-exponentiations, Pair
denotes pairings, PRF denotes pseudo-random functions,
and π -PRF denotes pseudo-random function with pairwise
independent random source. Compared to other protocols
mentioned in Table 3, Cramer–Shoup-based instantiation of
our protocol needs relatively simple multi-exponentiations
and additionally two pseudo-random functions.

To the best of our knowledge, this is the first paper on
generic transformation of aCCA2-secure public-key encryp-
tion scheme to an eCK -secure key exchange protocol in the
standard model.

2 Preliminaries

In this section we review the preliminaries that we use in this
paper.

2.1 Pseudo-random functions

We now describe the security definition of pseudo-random
functions according to Katz and Lindell [15].

Definition 1 (Pseudo-random functions) Let F : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ be an efficient, length preserving, keyed
function. F is a pseudo-random function if for all PPT adver-
saries B, there is a negligible function AdvPRF(B) in k such
that:
∣

∣

∣ Pr[BF(key,·)(1k) = 1] − Pr[B frnd(·)(1k)=1] ≤ AdvPRF(B)

∣

∣

∣,

where the first probability is taken over uniform choice of
key ∈ {0, 1}k and the randomness ofB, and the second prob-
ability is taken over uniform choice of frnd and randomness
of B, and B is not given a key key.

2.2 Indistinguishability against adaptive chosen
ciphertext attacks (CCA2)

A public-key encryption scheme consists of three algorithms
as follows:

– KG: This is a PPT algorithm that takes as input the
security parameter and outputs a public/secret key pair
(pk, sk). This also specifies themessage (plaintext) space
M and the ciphertext space C.

– Enc: This is a PPT algorithm that takes as input m ∈ M
and a public-key pk, and outputs a ciphertext c ∈ C.

– Dec: This is a deterministic algorithm that takes as input
a ciphertext c ∈ C and a secret key sk, and outputs either
a message m ∈ M or the error symbol ⊥.

A public-key encryption scheme must satisfy the correctness
property: for all valid key pairs (pk, sk), if c = Encpk(m)

for any m ∈ M, then Decsk(c) = m.
We now review a strong security notion for public-key

encryption schemes: indistinguishability against adaptive
chosen ciphertext attacks (CCA2), referring Bellare et al.
[3].

Definition 2 (Indistinguishability against adaptive chosen
ciphertext attacks (CCA2)) Let A = (A1,A2) be any PPT
adversary in the security parameter k, against a public-key
encryption scheme PKE = (KG,Enc,Dec). The CCA2
security experiment for the public-key encryption scheme
PKE, ExpCCA2PKE,A(1k), is defined as follows:

1. (pk, sk)
$←KG(1k)

2. (m0,m1, state) ← ADec(sk,c)
1 (pk) such that |m0| =

|m1|
3. b

$←{0, 1}
4. c∗ ← Enc(pk,mb)

5. b′ ← ADec(sk,c)c∗ 	=c
2 (pk, c∗, state)

6. A wins if b′ = b

Decryption Oracle

– Dec(sk, c) → m where m is the corresponding plaintext
c.

– returns m to A
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The public-key encryption scheme PKE is CCA2-secure,
if for every PPT adversary A the advantage of winning the
security experiment ExpCCA2PKE (A): AdvCCA2PKE (A), is negligi-
ble in the security parameter k.

2.3 Diffie–Hellman assumptions

We now describe two Diffie–Hellman assumptions which
form the basis of security for many cryptographic primitives.
Let k be the security parameter, G be a group generation
algorithm and (G, q, g) ← G(1k), whereG is a cyclic group
of prime order q and g is an arbitrary generator of G.

Definition 3 (Computational Diffie–Hellman (CDH)
assumption) We say that computational Diffie–Hellman
assumption holds inG if for all PPT algorithmsA, the prob-
ability of solving the CDH problem in G given as:

PrCDHg,q (A) = Pr
(A(G, g, q, ga, gb) = gab

)

is negligible for a given security parameter k.

Definition 4 (Decisional Diffie–Hellman (DDH) assump-
tion) Consider the following two distributions: DHG =
{(g, ga, gb, gab); a, b

$←Zq} and RG = {(g, ga, gb, gc);
a, b, c

$←Zq} . It is said that DDH assumption holds in G

if for all PPT algorithms A, the advantage in distinguishing
the two distributions DH and R given as:

AdvDDHg,q (A) =
∣

∣

∣ Pr[A(DHG) = 1] − Pr[A(RG) = 1]
∣

∣

∣

is negligible for a given security parameter k.

3 Extended Canetti–Krawczyk model (eCK)

Themotivation of LaMacchia et al. [17] in designing the eCK
model was that an adversary should have to compromise both
the long-term and ephemeral secret keys of a party in order
to recover the session key.

Parties and long-term keys Let U = {U1, . . . ,UNP } be a set
of NP parties. Each partyUi where i ∈ [1, NP ] has a pair of
long-term public and secret keys, (pkUi , skUi ). Each party
Ui owns at most NS number of protocol sessions.

Sessions Each party may run multiple instances of the pro-
tocol concurrently or sequentially; we use the term principal
to refer a party involved in a protocol instance and the term
session to identify a protocol instance at a principal. The nota-
tion Π s

U,V represents the sth session at the owner principal
U , with intended partner principal V . The principal which
sends the first protocol message of a session is the initiator

of the session, and the principal which responds to the first
protocol message is the responder of the session. A session
Π s

U,V enters an accepted state when it computes a session
key. Note that a session may terminate without ever entering
into the accepted state. The information of whether a session
has terminated with or without acceptance is public.

Partnering Legitimate execution of a key exchange protocol
between two principals U and V makes two partnering ses-
sions owned by U and V , respectively. Two sessions Π s

U,V

andΠ s′
U ′,V ′ are said to be partners if all of the following hold:

1. both Π s
U,V and Π s′

U ′,V ′ have computed session keys;
2. messages sent from Π s

U,V and messages received by

Π s′
U ′,V ′ are identical;

3. messages sent from Π s′
U ′,V ′ and messages received by

Π s
U,V are identical;

4. U ′ = V and V ′ = U ;
5. Exactly one of U and V is the initiator, and the other is

the responder.

The protocol is said to be correct if two partner sessions
compute identical session keys.

Adversarial powers The adversaryA is a probabilistic poly-
nomial time algorithm in the security parameter k that has the
control over the whole network. A interacts with set of ses-
sions which represent protocol instances. A can adaptively
ask following queries.

– Send (U, V, s,m) query—This query allows A to run
the protocol. It sends the messagem to the session

∏s
U,V

as coming from the session
∏s′

V,U .
∏s

U,V will return toA
the next message according to the protocol conversation
so far or decision on whether to accept or reject the ses-
sion. A can also use this query to initiate a new protocol
instance with blank m. This query captures capabilities
of active adversary, who can initiate sessions and modify
or delay protocol messages.

– SessionKeyReveal (U, V, s) query—If a session
∏s

U,V has accepted and holds a session key, A gets the
session key of

∏s
U,V . A session can only accept a session

key once. This query captures the known key attacks.
– EphemeralKeyReveal (U, V, s) query—Gives all

the ephemeral keys (per session randomness) of the ses-
sion

∏s
U,V to A.

– Corrupt (U ) query—A gets all the long-term secrets
of the principalU . But this query does not reveal any ses-
sion keys toA. This query captures the key compromise
impersonation (KCI) attacks, unknown key share (UKS)
attacks and forward secrecy.
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– Test (U, s) query—Once a session
∏s

U,V has accepted
and holds a session key, A can attempt to distinguish it
from a random key. When A asks the Test query, the
session

∏s
U,V first chooses a random bit b ∈ {0, 1} and if

b = 1, the actual session key is returned toA; otherwise,
a random session key is chosen uniformly at random from
the same session-key distribution and is returned to A.
This query is only allowed to be asked once.

Freshness A session
∏s

U,V is said to be fresh if and only if
all of the following hold:

1. The session
∏s

U,V and its partner (if it exists),
∏s′

V,U have
not been asked the Session- Key reveal query.

2. If partner
∏s′

V,U exists none of the following combina-
tions have been asked:

(a) Corrupt(U ) and EphemeralKeyReveal
(U, V, s)

(b) Corrupt(V ) and EphemeralKeyReveal
(V,U, s′)

3. If partner
∏s′

V,U does not exist, none of the following
combinations have been asked

(a) Corrupt(V )

(b) Corrupt(U ) and EphemeralKeyReveal
(U, V, s)

Security game

– Stage 0: The challenger generates the keys by using the
security parameter k.

– Stage 1: A is executed and may ask any of Send,
SessionKeyReveal, EphemeralKeyReveal,
Corrupt queries to any session at will.

– Stage 2: At some point A chooses a fresh session and
asks the Test query.

– Stage 3: A continue asking Send,
SessionKeyReveal, EphemeralKeyReveal,
Corrupt queries. The only condition is that A cannot
violate the freshness of the test session.

– Stage 4: At some point A outputs the bit b′ ∈ {0, 1}
which is its guess of the value b on the test session. A
wins if b′ = b.

Definition of security Let SuccA be the event that the adver-
sary A wins the eCK game.

Definition 5 A protocol (π ) is said to be secure in the eCK
model if there is no PPT adversary A who can win the eCK
game with non-negligible advantage in the security parame-
ter k. The advantage of an adversary A is defined as:

AdveCKπ (A) = |2Pr(SuccA) − 1| .

4 Generic eCK-secure key exchange in the
standard model

In thisworkwe construct a generic eCK-secure key exchange
protocol, in the standard model, using an arbitrary CCA2-
secure public-key encryption schemeandan arbitrary pseudo-
random function.We prove the security of our protocol in the
standardmodel, assuming the hardness of the DDH problem.

4.1 Construction of the generic protocol P1

The protocol P1 shown in Table 4 is a Diffie–Hellman-style
[10] key agreement protocol. Let k be the security parameter
and group G be generated using a group generation algo-
rithmwhich takes k as an input, whereG be a group of prime
order q with generator g. We use an arbitrary CCA2-secure
public-key encryption scheme PKE = (KG,Enc,Dec) to
encrypt protocol messages. Given the security parameter k,
KG computes a pair of secret/public keys. Let skAlice, pkAlice
be the secret/public encryption keys of Alice and skBob,
pkBob be the secret/public encryption keys of Bob. Let a,
A and b, B are the Diffie–Hellman long-term secret and pub-
lic keys of Alice and Bob, respectively, while x , X and y,
Y are the Diffie–Hellman ephemeral secret and public keys
of Alice and Bob, respectively. After exchanging the pro-

tocol messages (X̄
$←EncpkBob(X) and Ȳ

$←EncpkAlice(Y )),
both principals decrypt the incoming messages and compute
a Diffie–Hellman-style shared secrets (Y x , Ba and X y , Ab)
and then compute the session key using a pseudo-random
function PRF.

4.2 Security analysis of the protocol P1

Theorem 1 If G is a group of a prime order q and a
generator g, where the Diffie–Hellman (DDH) assumption
holds, the underlying public-key encryption scheme PKE is
CCA2-secure and PRF is a pseudo-random function, then
the protocol P1 is secure in the eCK model.

LetU = {U1, . . . ,UNP } be a set of NP parties. Each party
Ui owns at most Ns number of protocol sessions. Let A be
any adversary against the eck challenger of the protocol P1.
Then, the advantage ofA against the eCK security challenge
of the protocol P1, AdveCKP1 is:

AdveCKP1 (A) ≤ N 2
P N

2
s max

(

(

AdvDDHq,g (C) + AdvPRF(B)
)

,

(

AdvPRF(B) + AdvCCA2PKE (D)
)

)

.

where C is the algorithm against a DDH challenger, B is the
algorithm against the underlying pseudo-random function
PRF andD is the algorithm against the CCA2 challenger of
the underlying public-key encryption scheme PKE.
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Table 4 Protocol P1
Alice (initiator) Bob (responder)

Initial setup

a
$←Z

∗
q , A ← ga b

$←Z
∗
q , B ← gb

skAlice, pkAlice
$←KG(1k) skBob, pkBob

$←KG(1k)

Protocol execution

x
$←Z

∗
q , X ← gx y

$←Z
∗
q , Y ← gy

X̄
$←EncpkBob (X)

Alice,X̄→ Ȳ
$←EncpkAlice (Y )

Bob,Ȳ←
Y ← DecskAlice (Ȳ ) X ← DecskBob (X̄)

Z1 ← Y x , Z2 ← Ba Z ′
1 ← X y, Z ′

2 ← Ab

K ← PRF(Z1, Alice‖X̄‖Bob‖Ȳ )⊕ K ← PRF(Z ′
1, Alice‖X̄‖Bob‖Ȳ )⊕

PRF(Z2, Alice‖X̄‖Bob‖Ȳ ) PRF(Z ′
2, Alice‖X̄‖Bob‖Ȳ )

K is the session key

Proof We split the proof of Theorem 1 into two main cases:
when the partner to the test session exists and when it does
not. �

1. A partner to the test session exists.

(a) Adversary corrupts both the owner and the partner
principals to the test session—Case 1a

(b) Adversary corrupts neither the owner nor the partner
principal to the test session—Case 1b

(c) Adversary corrupts the owner to the test session, but
does not corrupt the partner to the test session—Case
1c

(d) Adversary corrupts the partner to the test session, but
does not corrupt the owner to the test session—Case
1d

2. A partner to the test session does not exist: the adversary
is not allowed to corrupt the peer to the target session.

(a) Adversary corrupts the owner to the test session—
Case 2a

(b) Adversary does not corrupt the owner to the test
session- Case 2b

Case 1a Adversary corrupts both the owner and partner
principals to the test session.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 1a(A). (1)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

bers s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on a
principal. The sessionΠ s∗

U∗,V ∗ is chosen as the target session,

and the session Π t∗
V ∗,U∗ is chosen as the partner to the target

session. If the test session is not the sessionΠ s∗
U∗,V ∗ or partner

to the session is not Π t∗
V ∗,U∗ , the Game 2 challenger aborts

the game. Unless the incorrect choice happens, the Game 2
is identical to the Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (2)

Game 3: Same as Game 2 with the following exception: the

Game 3 challenger randomly chooses z
$←Z

∗q and computes
K ← PRF(gz, ·‖X̄‖ · ‖Ȳ ) ⊕ PRF(CDH(U, V ), ·‖X̄‖ · ‖Ȳ ).
When the adversary asks theTest(U∗, V ∗, s∗) query,Game
3 challenger will answer with K (· is used as a placeholder
since either U∗ or V ∗ can be put there depending on the
initiator and responder roles).

Note 1 LetU, V be the two long-termDiffie–Hellmanpublic
keys of the protocol principalsU∗, V ∗, respectively, such that
U = gu, V = gv and CDH(U, V ) = guv .

We construct an algorithm C against a DDH challenger,
using the adversary A as a subroutine. C sets all the long-
term secret/public key pairs (Diffie–Hellman and encryption
key pairs) to all protocol principals. The algorithm C runs a
copy of A and interacts with A such that A is interacting
with either Game 2 or Game 3. The DDH challenger sends

values (gx , gy, gz) such that either z = xy or z
$←Z

∗
q , as the
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inputs to the algorithm C. Algorithm C simulates answers to
the adversarial queries as follows:

– Send(U, V, s,m) query:

– If U∗ is the initiator, C sends the ciphertext X̄
$←

(pkV ∗ , X) to A as the first message of the test
session. Upon receiving the second protocol mes-

sage (Ȳ
$←(pkU∗ ,Y )) from V ∗ to U∗, C computes

the session key K ← PRF(gz,U∗‖X̄‖V ∗‖Ȳ ) ⊕
PRF(CDH(U, V ),U∗‖X̄‖V ∗‖Ȳ ).

– If U∗ is the responder, upon receiving the first pro-

tocol message (X̄
$←(pkU∗ , X)) from V ∗ to U∗,

C sends Ȳ
$←(pkV ∗ ,Y ) to A as the second pro-

tocol message of the test session and computes
the session key K ← PRF(gz, V ∗‖X̄‖U∗‖Ȳ ) ⊕
PRF(CDH(U, V ), V ∗‖X̄‖U∗‖Ȳ ).

Note 2 For clarity we consider X̄
$←(pk·, X) as the first

protocol message and Ȳ
$←(pk·,Y ) as the second protocol

message, in the target session.

– For all the other cases of Send queries, C can decrypt
incoming protocol messages and execute the protocol
normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or the partner of the target session. C can com-
pute all the other session keys by executing the protocol
normally.

– EphemeralKeyReveal(U, V, s) query: U = U∗,
V = V ∗, s = s∗ and U = V ∗, V = U∗, s = t∗ are
prohibited since the adversary is allowed to corrupt both
the owner and the partner to the target session. For all
other EphemeralKeyReveal queries C can answer
correctly, because C has the ephemeral keys.

– Corrupt(U ) query: Algorithm C can answer all the
Corrupt queries, since C has all the long-term keys.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If C’s input is a Diffie–Hellman triple, simulation con-
structed by C is identical to Game 2; otherwise, it is identical
to Game 3. If A can distinguish the difference between
games, then C can answer the DDH challenge. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvDDHq,g (C). (3)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.

If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key, or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The following describesB?s procedure of
answering queries.

– Send(U, V, s,m) query:

– If U∗ is the initiator, upon receiving the second
protocol message (Ȳ ) computes the session key
K ← OraclePRF(U∗||X̄ ||V ∗||Ȳ ) ⊕ PRF(CDH(U,

V ),U∗||X̄ ||V ∗||Ȳ ).
– If U∗ is the responder, upon receiving the first

protocol message (X̄ ) computes the session key
K ← OraclePRF(V ∗||X̄ ||U∗||Ȳ ) ⊕ PRF(CDH(U,

V ), V ∗||X̄ ||U∗||Ȳ ).
– For all the other cases ofSend queries,B can execute
the protocol normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or its partner. B can compute all the session keys
by executing the protocol normally.

– EphemeralKeyReveal(U, V, s) query: U = U∗,
V = V ∗, s = s∗) and U = V ∗, V = U∗, s = t∗ are
prohibited since the adversary is allowed to corrupt both
the owner and the partner to the target session. For all
other EphemeralKeyReveal queries B can answer
correctly, because B has the ephemeral keys.

– Corrupt(U ) query: B can answer all other Corrupt
queries, since B has all the long-term secret keys.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (4)

Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-
dently from all other values, A does not have any advantage
in Game 4. Hence,
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AdvGame 4(A) = 0. (5)

Using Eqs. (1)–(5) we find,

AdveCKP1,Case 1a(A) ≤ N 2
P Ns

2
(

AdvDDHq,g (C) + AdvPRF(B)
)

.

Case 1b Adversary corrupts neither the owner nor the part-
ner principals to the test session.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 1b(A). (6)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

bers s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on a
principal. The sessionΠ s∗

U∗,V ∗ is chosen as the target session,

and the session Π t∗
V ∗,U∗ is chosen as the partner to the target

session. If the test session is not the sessionΠ s∗
U∗,V ∗ or partner

to the session is not Π t∗
V ∗,U∗ , the Game 2 challenger aborts

the game. Unless the incorrect choice happens, the Game 2
is identical to the Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (7)

Game 3: Same as Game 2 with the following exception: the

Game 3 challenger randomly chooses c
$←Z

∗
q and computes

K ← PRF(CDH(X,Y ), ·‖X̄‖ · ‖Ȳ ) ⊕ PRF(gc, ·‖X̄‖ · ‖Ȳ ).
When the adversary asks theTest(U∗, V ∗, s∗) query,Game
3 challenger will answer with K .

Note 3 Let X,Y be the two ephemeral Diffie–Hellman pub-
lic keys (unencrypted) of the protocol principals in a session,
such that X = gx ,Y = gy and CDH(X,Y ) = gxy .

We construct an algorithm C against a DDH challenger,
using the adversary A as a subroutine. The DDH challenger

sends values (ga, gb, gc) such that either c = ab or c
$←Z

∗
q ,

as the inputs to the algorithm C. C sets U ← ga as the long-
term Diffie–Hellman public key of U∗, and V ← gb as the
long-term Diffie–Hellman public key of V ∗. Moreover, C
sets all the other long-term Diffie–Hellman secret/public key
pairs and all the encryption key pairs of protocol principals.
The algorithm C runs a copy of A and interacts with A such

thatA is interactingwith eitherGame2orGame3.Algorithm
C simulates answers to the adversarial queries as follows:

– Send(U, V, s,m) query:

– If U∗ is the initiator, C can start the protocol
normally. Upon receiving the second protocol mes-
sage from V ∗ to U∗, C computes the session key
K ← PRF(CDH(X,Y ),U∗‖X̄‖V ∗‖Ȳ ) ⊕ PRF(gc,
U∗‖X̄‖V ∗‖Ȳ ) (consider X is from the initiator and Y
is from the responder, and X̄ and Ȳ are the encrypted
X and Y , respectively, which are computed in normal
protocol run).

– If U∗ is the responder, upon receiving the first
protocol message from V ∗ to U∗, C executes the
protocol normally, sends the second protocol mes-
sage of the test session and computes the session
key K ← PRF(CDH(X,Y ), V ∗‖X̄‖U∗‖Ȳ ) ⊕ PRF
(gc, V ∗‖X̄‖U∗‖Ȳ ).

– For all the cases of Send queries, C can decrypt
incoming protocol messages and execute the proto-
col normally. In the places where bothU∗ and V ∗ are
involved, C uses gc in key derivation.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or the partner of the target session. C can compute
all the other session keys by executing the protocol nor-
mally. In the places where both U∗ and V ∗ are involved,
C uses gc in key derivation.

– EphemeralKeyReveal(U, V, s) query: Algorithm
C can answer all the other EphemeralKeyReveal
queries, since C has all the ephemeral keys.

– Corrupt(U )query:Corrupt(U∗) andCorrupt(V ∗)
are prohibited since the adversary is allowed to reveal the
ephemeral keys of the test session and its partner. Algo-
rithm C can answer all the other Corrupt queries, since
C has all the long-term keys.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If C’s input is a Diffie–Hellman triple, simulation con-
structed by C is identical to Game 2; otherwise, it is identical
to Game 3. If A can distinguish the difference between
games, then C can answer the DDH challenge. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvDDHq,g (C). (8)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.
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If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The following describesB?s procedure of
answering queries.

– Send(U, V, s,m) query:

– If U∗ is the initiator, upon receiving the second
protocol message computes the session key K ←
PRF(CDH(X,Y ),U∗||X̄ ||V ∗||Ȳ ) ⊕ OraclePRF(U∗
||X̄ ||V ∗||Ȳ ).

– If U∗ is the responder, upon receiving the first
protocol message computes the session key K ←
PRF(CDH(X,Y ), V ∗||X̄ ||U∗||Ȳ ) ⊕ OraclePRF(V ∗
||X̄ ||U∗||Ȳ ).

– When bothU∗ and V ∗ involve in a session query the
OraclePRF to compute the session key upon receiving
protocol messages.

– For all the other cases ofSend queries,B can execute
the protocol normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or its partner. B can compute all the session keys
as explained under the Send query description.

– EphemeralKeyReveal(U, V, s)query:B can answer
all EphemeralKeyReveal queries correctly, because
C has the ephemeral keys.

– Corrupt(U )query:Corrupt(U∗) andCorrupt(V ∗)
are prohibited since the adversary is allowed to reveal the
ephemeral keys of the test session and its partner. Algo-
rithm C can answer all the other Corrupt queries, since
C has all the long-term keys.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (9)

Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-

dently from all other values, A does not have any advantage
in Game 4. Hence,

AdvGame 4(A) = 0. (10)

Using Eqs. (6)–(10) we find,

AdveCKP1,Case 1b(A) ≤ N 2
P Ns

2
(

AdvDDHq,g (C) + AdvPRF(B)
)

.

Case 1c Adversary corrupts the owner to the test session,
but does not corrupt the partner.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 1c(A). (11)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

bers s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on
a principal. The session Π s∗

U∗,V ∗ is chosen as the target ses-

sion, and the session Π t∗
V ∗,U∗ is chosen as the partner to the

target session. If the test session is not the session Π s∗
U∗,V ∗ or

partner to the session is not Π t∗
V ∗,U∗ , the Game 2 challenger

aborts the game. Unless the incorrect choice happens, Game
2 is identical to Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (12)

Game 3: Same as Game 2 with the following exception: the
Game 3 challenger randomly chooses C from the ciphertext
space as encryption of the public ephemeral value X of the
session Π s∗

U∗,V ∗ and sends it to the session Π t∗
V ∗,U∗ as having

come from the session Π s∗
U∗,V ∗ .

We introduce an algorithm D which is constructed using
the adversaryA. IfA can distinguish the difference between
Game 2 and Game 3, then D can be used against the CCA2
challenger of underlying public-key cryptosystem, PKE. The
algorithm D uses the public key of the CCA2 challenger as
the public key of the protocol principal V ∗ and generates all
other public/secret key pairs (Diffie–Hellman and encryp-
tion keys) for protocol principals. D runs a copy of A and
interacts with A, such that it is interacting with either Game

2 or Game 3. D picks two random strings, X0, X1
$←Z

∗
q

and passes them to the CCA2 challenger. From the CCA2
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challenger, D receives a challenge ciphertext C such that

C
$←(pkV ∗ , Xθ ) where Xθ = X0 or Xθ = X1.D uses X1 as

the decryption of C when answering queries. The following
describes the procedure of answering queries:

– Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:
• IfU∗ is the initiator,D sends the ciphertext C to

A as the first message of the test session. Upon
receiving the second protocolmessage computes
the session key K ← PRF(CDH(X1,Y ),U∗
‖C‖V ∗‖Ȳ )⊕PRF(CDH(U, V ),U∗‖C‖V ∗‖Ȳ )

(consider Y is from the responder, and Ȳ is the
encrypted Y ).

• If U∗ is the responder, upon receiving the
first protocol message sends C to A and com-
putes the session key K ← PRF(CDH(X1,Y ),

V ∗‖Ȳ‖U∗‖C) ⊕ PRF(CDH(U, V ), V ∗‖Ȳ‖U∗
‖C) (consider Y is from the initiator, and Ȳ is
the encrypted Y ).

– U = U∗, V = V ∗, s 	= s∗: Executes the protocol
normally.

– U = U∗, V 	= V ∗: Executes the protocol normally.
– U = V ∗:

• If this is the initiator and it is the first message,
then it executes the protocol normally.

• If this is the initiator and the second protocol
message, or the responder:

· IfC has come as the incomingmessage uses
X1 as the decryption of the incoming mes-
sage.

· Else uses the decryption oracle to decrypt
incoming messages.

– U, V 	= U∗ or V ∗: Executes the protocol normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the tar-
get session or the partner of the target session. D can
compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the
incoming message to V ∗ is the same message which
has come to V ∗ in the target session, uses X1 as the
decryption.

– For other sessions involving the principal V ∗, D can
decrypt the incoming messages to V ∗ by using the
decryption oracle.

– Otherwise,D can decrypt all the other incomingmes-
sages to protocol principals by its own.

Then compute the session key using the PRF.
– EphemeralKeyReveal(U, V, s)query:D can answer
all EphemeralKeyReveal queries allowed in the

freshness condition correctly, because D has the
ephemeral keys.

– Corrupt(U ) query: Except for Corrupt(V ∗), algo-
rithm D can answer all other Corrupt queries. In this
case we consider the situation in which the adversary is
not allowed to corrupt the partner principal of the target
session, so in fact,D can answer all legitimate Corrupt
queries.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the value C is the encryption of the value X1, the simu-
lation constructed byD is identical to the Game 2; otherwise,
it is identical to Game 3. If A can distinguish the difference
between games, thenD can answer the CCA2 challenge suc-
cessfully. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvCCA2PKE (D). (13)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.

If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The following describes B’s procedure of
answering queries.

– Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:
• If U∗ is the initiator, upon receiving the sec-
ond protocol message computes the session key
K ← OraclePRF(U∗||X̄ ||V ∗||Ȳ ) ⊕ PRF(CDH
(U, V ),U∗||X̄ ||V ∗||Ȳ ) (consider X is from the
initiator and Y is from the responder, and X̄ and
Ȳ are the encrypted X and Y , respectively, which
are computed in normal protocol run).

• If U∗ is the responder, upon receiving the
first protocol message computes the session
key K ← OraclePRF(V ∗||X̄ ||U∗||Ȳ ) ⊕ PRF
(CDH(U, V ), V ∗||X̄ ||U∗||Ȳ ).

– U = U∗, V = V ∗, s 	= s∗: Executes the protocol
normally.

– U = U∗, V 	= V ∗: Executes the protocol normally.
– U = V ∗:

• If this is the initiator and it is the first message,
then it executes the protocol normally.
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• If this is the initiator and the second protocol
message, or the responder:

· If the same message that came to V ∗ in
the test session has come as the incoming
message computes the session key using the
OraclePRF.

· Otherwise, executes the protocol normally.
– U, V 	= U∗ or V ∗: Executes the protocol normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or its partner. B can compute all the session keys
by executing the protocol.

– For sessions involving the principal V ∗, and the
incoming message to V ∗ is the same message which
has come toV ∗ in the target session,B usesOraclePRF

to compute the session key.
– For all other sessions, B computes the session key by

using the PRF.

– EphemeralKeyReveal(U, V, s)query:B can answer
allEphemeralKeyRevealqueries,which are allowed
by the freshness condition, because B has the ephemeral
keys.

– Corrupt(U ) query: Except for V ∗, algorithm B can
answer all other Corrupt queries. In this case we con-
sider the situation in which the adversary is not allowed
to corrupt the partner principal of the target session, so
in fact, B can answer all legitimate Corrupt queries.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (14)

Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-
dently from all other values, A does not have any advantage
in Game 4. Hence,

AdvGame 4(A) = 0. (15)

Using Eqs. (11)–(15) we find,

AdveCKP1,Case 1c(A) ≤ N 2
P Ns

2
(

AdvPRF(B) + AdvCCA2PKE (D)
)

.

Case 1d Adversary corrupts the partner to the test session,
but does not corrupt the owner.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 1d(A). (16)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

bers s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on
a principal. The session Π s∗

U∗,V ∗ is chosen as the target ses-

sion, and the session Π t∗
V ∗,U∗ is chosen as the partner to the

target session. If the test session is not the session Π s∗
U∗,V ∗ or

partner to the session is not Π t∗
V ∗,U∗ , the Game 2 challenger

aborts the game. Unless the incorrect choice happens, Game
2 is identical to Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (17)

Game 3: Same as Game 2 with the following exception: the
Game 3 challenger randomly chooses C from the ciphertext
space as encryption of the public ephemeral value X of the
sessionΠ s∗

U∗,V ∗ , and sends it to the sessionΠ s∗
U∗,V ∗ as having

come from the session Π t∗
V ∗,U∗ .

We introduce an algorithm D which is constructed using
the adversaryA. IfA can distinguish the difference between
Game 2 and Game 3, then D can be used against the CCA2
challenger of underlying public-key cryptosystem, PKE. The
algorithm D uses the public key of the CCA2 challenger as
the public key of the protocol principal U∗ and generates all
other public/secret key pairs (Diffie–Hellman and encryp-
tion keys) for protocol principals. D runs a copy of A and
interacts with A, such that it is interacting with either Game

2 or Game 3. D picks two random strings, X0, X1
$←Z

∗
q

and passes them to the CCA2 challenger. From the CCA2
challenger, D receives a challenge ciphertext C such that

C
$←(pkV ∗ , Xθ ) where Xθ = X0 or Xθ = X1.D uses X1 as

the decryption of C when answering queries. The following
describes the procedure of answering queries:

– Send(U, V, s,m) query:

– U = V ∗, V = U∗, s = t∗:
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• If V ∗ is the initiator,D sends the ciphertext C to
A as the first message of the test session. Upon
receiving the second protocolmessage computes
the session key K ← PRF(CDH(X1,Y ), V ∗
‖C‖U∗‖Ȳ )⊕PRF(CDH(U, V ), V ∗‖C‖U∗‖Ȳ )

(consider Y is from the responder, and Ȳ is the
encrypted Y ).

• If V ∗ is the responder, upon receiving the
first protocol message sends C to A and com-
putes the session key K ← PRF(CDH(X1,Y ),

U∗‖Ȳ‖V ∗‖C)⊕PRF(CDH(U, V ),U∗‖Ȳ‖V ∗‖
C) (consider Y is from the initiator, and Ȳ is the
encrypted Y ).

– U = V ∗, V = U∗, s 	= t∗: Executes the protocol
normally.

– U = V ∗, V 	= U∗: Executes the protocol normally.
– U = U∗:

• If this is the initiator and it is the first message,
then executes the protocol normally.

• If this is the initiator and the second protocol
message, or the responder:

· IfC has come as the incomingmessage uses
X1 as the decryption of the incoming mes-
sage.

· Else uses the decryption oracle to decrypt
incoming messages.

– U, V 	= U∗ or V ∗: Executes the protocol normally.

– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the tar-
get session or the partner of the target session. D can
compute all the session keys by executing the protocol.

– For sessions involving the principal U∗, and the
incoming message to U∗ is the same message which
has come to U∗ in the target session, uses X1 as the
decryption.

– For other sessions involving the principal U∗, D can
decrypt the incoming messages to U∗ by using the
decryption oracle.

– Otherwise,D can decrypt all the other incomingmes-
sages to protocol principals by its own.

Then compute the session key using the PRF.
– EphemeralKeyReveal(U, V, s)query:D can answer
all EphemeralKeyReveal queries allowed in the
freshness condition correctly, becauseD has the ephemeral
keys.

– Corrupt(U ) query: Except for Corrupt(U∗), algo-
rithm D can answer all other Corrupt queries. In this
case we consider the situation in which the adversary is
not allowed to corrupt the partner principal of the target
session, so in fact,D can answer all legitimate Corrupt
queries.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the value C is the encryption of the value X1, the simu-
lation constructed byD is identical to the Game 2; otherwise,
it is identical to Game 3. If A can distinguish the difference
between games, thenD can answer the CCA2 challenge suc-
cessfully. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvCCA2PKE (D). (18)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.

If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key, or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The following describes B’s procedure of
answering queries.

– Send(U, V, s,m) query:

– U = V ∗, V = U∗, s = t∗:
• If V ∗ is the initiator, upon receiving the sec-
ond protocol message computes the session key
K ← OraclePRF(V ∗||X̄ ||U∗||Ȳ ) ⊕ PRF(CDH
(U, V ), V ∗||X̄ ||U∗||Ȳ ) (consider X is from the
initiator and Y is from the responder, and X̄ and
Ȳ are the encrypted X and Y , respectively, which
are computed in normal protocol run).

• If V ∗ is the responder, upon receiving the
first protocol message computes the session
key K ← OraclePRF(U∗||X̄ ||V ∗||Ȳ ) ⊕ PRF(

CDH(U, V ),U∗||X̄ ||V ∗||Ȳ ).
– U = V ∗, V = U∗, s 	= t∗: Executes the protocol

normally.
– U = V ∗, V 	= U∗: Executes the protocol normally.
– U = U∗:

• If this is the initiator and it is the first message,
then it executes the protocol normally.

• If this is the initiator and the second protocol
message, or the responder:

· If the same message that came to U∗ in the
test session has come as the incoming mes-
sage, computes the session key using the
OraclePRF.

· Otherwise, executes the protocol normally.
– U, V 	= U∗ or V ∗: Executes the protocol normally.
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– SessionKeyReveal(U, V, s) query:
SessionKeyReveal query is not allowed to the target
session or its partner. B can compute all the session keys
by executing the protocol.

– For sessions involving the principal U∗, and the
incoming message to U∗ is the same message which
has come toU∗ in the target session,B usesOraclePRF

to compute the session key.
– For all other sessions, B computes the session key by

using the PRF.

– EphemeralKeyReveal(U, V, s)query:B can answer
allEphemeralKeyRevealqueries,which are allowed
by the freshness condition, because B has the ephemeral
keys.

– Corrupt(U ) query: Except for U∗, algorithm B can
answer all other Corrupt queries. In this case we con-
sider the situation in which the adversary is not allowed
to corrupt the partner principal of the target session, so
in fact, B can answer all legitimate Corrupt queries.

– Test(U, V, s) query: WhenU = U∗, V = V ∗, s = s∗,
answers with the K which is computed as explained in
the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (19)

Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-
dently from all other values, A does not have any advantage
in Game 4. Hence,

AdvGame 4(A) = 0. (20)

Using Eqs. (16)–(20) we find,

AdveCKP1,Case 1d(A) ≤ N 2
P Ns

2
(

AdvPRF(B) + AdvCCA2PKE (D)
)

.

Case 2a Adversary corrupts the owner to the test session.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 2a(A). (21)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

ber s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on a
principal. The sessionΠ s∗

U∗,V ∗ is chosen as the target session,

and the session Π t∗
V ∗,U∗ is chosen as the peer session. If the

test session is not the sessionΠ s∗
U∗,V ∗ , the Game 2 challenger

aborts the game. Unless the incorrect choice happens, Game
2 is identical to Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (22)

Game 3: Same as Game 2 with the following exception: the
Game 3 challenger randomly chooses C from the ciphertext
space as encryption of the public ephemeral value X of the
sessionΠ s∗

U∗,V ∗ , and sends it to the sessionΠ t∗
V ∗,U∗ as having

come from the session Π s∗
U∗,V ∗ .

We introduce an algorithm D which is constructed using
the adversaryA. IfA can distinguish the difference between
Game 2 and Game 3, then D can be used against the CCA2
challenger of underlying public-key cryptosystem, PKE. The
algorithm D uses the public key of the CCA2 challenger as
the public key of the protocol principal V ∗ and generates all
other public/secret key pairs (Diffie–Hellman and encryption
keys) for protocol principals.D runs a copy ofA and interacts
withA, such that it is interactingwith either Game 2 or Game

3. D picks two random strings, X0, X1
$←Z

∗
q and passes

them to the CCA2 challenger. From the CCA2 challenger,D
receives a challenge ciphertext C such that C

$←(pkV ∗ , Xθ )

where Xθ = X0 or Xθ = X1.D uses X1 as the decryption of
C when answering queries. Theway of answering the queries
is the same as in the Game 3 of Case 1c.

If the value C is the encryption of the value X1, the simu-
lation constructed byD is identical to the Game 2; otherwise,
it is identical to Game 3. If A can distinguish the difference
between games, thenD can answer the CCA2 challenge suc-
cessfully. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvCCA2PKE (D). (23)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.
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If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key, or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The way of answering the queries is the
same as in the Game 4 of Case 1c.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (24)

Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-
dently from all other values, A does not have any advantage
in Game 4. Hence,

AdvGame 4(A) = 0. (25)

Using Eqs. (21)–(25) we find,

AdveCKP1,Case 2a(A) ≤ N 2
P Ns

2
(

AdvPRF(B) + AdvCCA2PKE (D)
)

.

Case 2b Adversary does not corrupt the owner to the test
session.

Game 1: This is the original game. When Test query
is asked the Game 1 challenger will choose a random bit

b
$←{0, 1}. If b = 1, the real session key is given to A; oth-

erwise, a random value chosen from the same session-key
space is given. Hence,

AdvGame 1(A) = AdveCKP1,Case 2b(A). (26)

Game 2: Same as Game 1 with the following excep-
tion: before A begins, two distinct random principals

U∗, V ∗ $←{U1, . . . ,UNP } are chosen and two random num-

bers s∗, t∗ $←{1, . . . Ns} are chosen, where NP is the number
of protocol principals and Ns is the number of sessions on a
principal. The sessionΠ s∗

U∗,V ∗ is chosen as the target session,

and the session Π t∗
V ∗,U∗ is chosen as the peer session. If the

test session is not the sessionΠ s∗
U∗,V ∗ , the Game 2 challenger

aborts the game. Unless the incorrect choice happens, the
Game 2 is identical to the Game 1. Hence,

AdvGame 2(A) = 1

NP
2N 2

s

AdvGame 1(A). (27)

Game 3: Same as Game 2 with the following exception: the

Game 3 challenger randomly chooses c
$←Z

∗
q and computes

K ← PRF(CDH(X,Y ), ·‖X̄‖ · ‖Ȳ ) ⊕ PRF(gc, ·‖X̄‖ · ‖Ȳ ).
When the adversary asks theTest(U∗, V ∗, s∗) query,Game
3 challenger will answer with K .

Note 4 Let X,Y be the two ephemeral Diffie–Hellman pub-
lic keys (unencrypted) of the protocol principals in a session,
such that X = gx ,Y = gy and CDH(X,Y ) = gxy .

We construct an algorithm C against a DDH challenger,
using the adversary A as a subroutine. The DDH challenger

sends values (ga, gb, gc) such that either c = ab or c
$←Z

∗
q ,

as the inputs to the algorithm C. C sets U ← ga as the long-
term Diffie–Hellman public key of U∗ and V ← gb as the
long-term Diffie–Hellman public key of V ∗. Moreover, C
sets all the other long-term Diffie–Hellman secret/public key
pairs and all the encryption key pairs of protocol principals.
The algorithm C runs a copy of A and interacts with A such
thatA is interacting with either Game 2 or Game 3. The way
of answering the queries is the same as in the Game 3 of Case
1b.

If C’s input is a Diffie–Hellman triple, simulation con-
structed by C is identical to Game 2; otherwise, it is identical
to Game 3. If A can distinguish the difference between
games, then C can answer the DDH challenge. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ AdvDDHq,g (C). (28)

Game 4: Same as Game 3 with the following exception: the

Game 4 challenger randomly chooses K
$←{0, 1}k and sends

it to the adversaryA as the answer to the Test(U∗, V ∗, s∗)
query.

If A can distinguish the difference between Game 3 and
Game 4, then A can be used as a subroutine of an algorithm
B, which is used to distinguish whether the session-key value
K is computed using the real PRF with a hidden key, or using
a random function. The adversary A is given a K , such that
it is computed using the PRF or randomly chosen from the
session-key space. The way of answering the queries is the
same as in the Game 4 of Case 1b.

If the oracle is using the real PRF with a hidden key, the
simulation is identical to Game 3, whereas if the oracle is
using a random function, the simulation constructed is iden-
tical to Game 4. If A can distinguish the difference between
Game 3 and Game 4, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the
PRF challenger is real or random. Hence,

|AdvGame 3(A) − AdvGame 4(A)| ≤ AdvPRF(B). (29)
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Semantic security of the session key in Game 4: Since the
session key K of Π s∗

U∗,V ∗ is chosen randomly and indepen-
dently from all other values, A does not have any advantage
in Game 4. Hence,

AdvGame 4(A) = 0. (30)

Using Eqs. (26)–(30) we find,

AdveCKP1,Case 2b(A) ≤ N 2
P Ns

2
(

AdvDDHq,g (C) + AdvPRF(B)
)

.

Combining all the above cases.
According to the analysis we can see the adversary A’s

advantage of winning against the eCK challenger of the pro-
tocol P1 is:

AdveCKP1 (A) ≤ N 2
P N

2
s max

(

(

AdvDDHq,g (C) + AdvPRF(B)
)

,

(

AdvPRF(B) + AdvCCA2PKE (D)
)

)

.

5 Conclusion and future works

In this paper we presented a generic eCK-secure, NAXOS-
free, standard model key exchange protocol, namely the
protocol P1. Thus, our generic protocol is a strongly secure
and realistic framework for real-world instantiations. The
protocol execution cost of our protocol is one encryption,
one decryption, three exponentiations and two pseudo-
random operations. Cramer–Shoup-based instantiation of
our protocol needs relatively simple multi-exponentiations
and additionally two pseudo-random functions.

As a future work authors would like to focus on leakage-
resilient improvements on the protocol P1. The essen-
tial modification would be replacing the CCA2 public-
key encryption scheme with a suitable leakage-resilient
CCA2-secure public-key encryption scheme and using a
leakage-resilient mechanism to compute the exponentiation
operations, in places where the long-term Diffie–Hellman
secret keys are used as exponents. Several strong eCK-style
leakage-resilient security models have been introduced in
the literature [1,19], which would be useful to analyze the
leakage-resilient security of the improved protocol. There
are several standard model leakage-resilient CCA2-secure
public-key encryption schemes in the literature [13,20],
which canbe used to replace theCCA2public-key encryption
scheme. In order to compute the Diffie–Hellman exponen-
tiations in leakage-resilient manner, the mechanism used
by Alawatugoda et al. [2] would be appropriate, which is
influenced by the leakage-resilient storage scheme ofDziem-
bowski and Faust [12]. Thus, it is possible to improve this
generic protocol to achieve leakage resiliency.
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