
Int. J. Inf. Secur. (2017) 16:435–457
DOI 10.1007/s10207-016-0334-0

REGULAR CONTRIBUTION

Designing vulnerability testing tools for web services: approach,
components, and tools

Nuno Antunes1 · Marco Vieira1

Published online: 14 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper proposes a generic approach for
designing vulnerability testing tools for web services, which
includes the definition of the testing procedure and the tool
components. Based on the proposed approach, we present
the design of three innovative testing tools that implement
three complementary techniques (improved penetration test-
ing, attack signatures and interface monitoring, and runtime
anomaly detection) for detecting injection vulnerabilities,
thus offering an extensive support for different scenarios. A
case study has been designed to demonstrate the tools for the
particular case of SQL Injection vulnerabilities. The experi-
mental evaluation demonstrates that the tools can effectively
be used in different scenarios and that they outperform
well-known commercial tools by achieving higher detection
coverage and lower false-positive rates.

Keywords Software vulnerabilities · Vulnerability detec-
tion · Security testing · Web services

1 Introduction

Web services (WS) are nowadays used to support the infor-
mation systems of wide range of organizations in sectors
such as banking and manufacturing, representing a strategic
mean for data exchange, content distribution, and systems
integration [1]. They are supported by a complex software

B Nuno Antunes
nmsa@dei.uc.pt

Marco Vieira
mvieira@dei.uc.pt

1 Department of Informatics Engineering, University of
Coimbra, Polo II - Pinhal de Marrocos, 3030-290 Coimbra,
Portugal

infrastructure, which typically includes an application server,
the operating system, and a set of external systems (e.g. other
services, databases, and payment gateways). Web services
are one of the cornerstones of service-oriented architecture
(SOA), making them the lingua franca for systems integra-
tion.

The security of web applications is, in general, quite
poor [2,3]. Web services are no exception, and research
and practice show that web services are often deployed
with software bugs (i.e. vulnerabilities) that can be mali-
ciously exploited [4]. Injection vulnerabilities, consisting of
improper code that allows the attacker to inject and execute
commands, enabling, for instance, access to critical data, are
particularly frequent [2]. SQL Injection and XPath Injection
vulnerabilities are especially relevant, as services frequently
use a data persistence solution based in a database [5] or in
a XML solution [6].

Vulnerability testing tools provide an automatic mean
to search for vulnerabilities while avoiding the repetitive
and tedious task of doing hundreds or even thousands of
tests by hand. However, even state-of-the-art tools frequently
present low effectiveness in terms of both vulnerability
detection coverage (ratio between the number of vulnerabil-
ities detected and the total number of existing vulnerabilities)
and false-positive rate (ratio between the number of vulner-
abilities reported that do not exist and the total number of
vulnerabilities reported) [4,7].

The main problem is that most vulnerability testing tools
try to be as generic as possible (to detect many types of vul-
nerabilities), but are typically very limited in terms of the
detection approaches they implement for each vulnerability
type and do not take advantage of the specific access con-
ditions to the target services. In fact, due to cost and time
restrictions, generic tools are often selected as they can detect
a wide spectrum of vulnerabilities, although with reduced

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0334-0&domain=pdf

436 N. Antunes, M. Vieira

effectiveness. Additionally, there are specific characteristics
that distinguish web services from other web applications
and that influence the development of vulnerability detec-
tion tools, namely the well-defined interface, the need for
testing third-party web services, and the interoperability and
reduced dependency among services.

Building effective tools requires innovative techniques
that take into account the different access conditions to the
services under testing. For example, if one has access to
the web service interfaces, including interfaces with external
resources like other services or databases, then an improved
technique based on interface monitoring may be used in detri-
ment of traditional penetration testing. Furthermore, testing
tools should implement a generic procedure that supports the
design of standardized and modular tools, guaranteeing an
easier way to develop new tools and to improve existing ones,
allowing more effective detection of vulnerabilities. The idea
is that the different components should implement specific
features of the tool, in a decoupled and modular manner,
allowing for easily designing and later improving the tool. It
also allows web service developers to modify existing tools
to better fit their needs, just by modifying some particular
components.

In this paper we propose a generic approach for design-
ing vulnerability testing tools for web services. The
approach is based on modular development and defines the
components and the testing procedure that a tool should
implement. The components include a workload emulator
(responsible for generating and executing a set of requests
to exercise the web service), an attack emulator (in charge
of generating and injecting requests that simulate attacks),
a service monitor (in charge of instrumenting the service
under testing, if needed, and collecting relevant information
to support vulnerabilities identification), and a vulnerability
detector (responsible for analysing the collected information
and identify vulnerabilities, and for running the testing pro-
cedure). Based on the proposed approach, we design three
specific testing tools that implement three complementary
techniques for detecting injection vulnerabilities in web ser-
vices, thus providing an extensive support for developers to
test different scenarios.

The evaluation of the approach includes an analysis of
the modularity of the implemented tools and a case study
designed to demonstrate that the implemented tools are able
to perform as well as the tools implemented in ad hoc fashion.
The modularity analysis ought to show the high cohesion
of the defined modules and the loose coupling between
them. The case study uses a reference set of 80 operation
from 21 services (adopted from the benchmark for vulner-
ability detection tools presented in [8]). Although the case
study is focused in SQL Injection, most of the concepts and
techniques presented can be easily adapted for other kinds
of injection vulnerabilities (the most frequent ones in web

applications and web services [4]). Results clearly show that
the three detection techniques implemented have different
performances depending on the web service access condi-
tions. Those results were compared with the ones obtained
by three commercial vulnerability scanners, showing that
our tools perform consistently better than those scanners.
Besides showing the effectiveness of the tools, the case study
presented demonstrates the applicability of the approach for
designing vulnerability testing tools for web services, as it
was able to accommodate the design of three different tools.

In summary, the contributions of this paper are:

– The proposal of a generic approach for designing vul-
nerability testing tools for web services, which includes
the definition of the testing procedure and of the tool
components. By instantiating this approach, it is possible
to easily design different tools targeting different types
of vulnerabilities, reuse components from other tools to
develop new tools faster, and evolve existing tools by
proposing improved versions of different components;

– An extensive survey of the related work on vulnerability
detection tools and techniques targeting web services and
web applications, both on commercial products and on
proposals from research initiatives;

– The redesign of three vulnerability testing techniques
previous published [9–11] to instantiate the proposed
generic approach and components. Although all these
techniques target the detection of injection vulnerabilities
in web services, they are based in very different vulner-
ability detection techniques and allow us to demonstrate
the flexibility of the approach.

– The experimental evaluation of the tools based on a case
study allows to evaluate the redesigned tools and com-
pare their effectiveness with state-of-the-art penetration
testing tools for vulnerability detection on web services.

The outline of the rest of this paper is as follows. Section 2
introduces relevant background and related work. Section 3
describes the overall approach for designing vulnerability
scanning tools for web services and defines the required com-
ponents. Section 4 discusses the design of the three tools
for detecting injection vulnerabilities. Section 5 presents the
evaluation of the approach and of the implemented tools.
Section 6 discusses the shortcomings of the paper and ideas
for improvements. Finally, Sect. 7 concludes the paper and
puts forward future work.

2 Background and related work

Web services provide a simple interface between a provider
and a consumer [12] and are supported by open protocols
such as the Simple Object Access Protocol (SOAP) [12],

123

Designing vulnerability testing tools for web services: approach, components, and tools 437

Fig. 1 Web services typical structure

which are used for exchanging XML-based messages between
the consumer and the provider over the network (using for
example http or https protocols). A web service may include
several operations that are defined in a description file (e.g.
using WSDL [13] or WADL [14]), which is used to generate
server and client code, and for configuration. A broker is used
to enable applications to find web services. Figure 1 depicts
a typical web services environment.

2.1 Web services threats and challenges

Published studies show that, in general, web applications
present dangerous security flaws. The ten most critical web
application security vulnerabilities [15] were presented in
2010 by the Open Web Application Security Project (OWASP
Foundation) [16]. At the top of this list, we can find vulnera-
bilities that are also reported as the two most found in other
studies [17,18], consisting of injection and cross-site script-
ing (XSS). XSS flaws occur whenever an application takes
user supplied data and sends it to a web browser without first
validating or encoding that content. Although some complex
applications use data from web services in session aware con-
texts, most times web services work without any attachment
to websites. Thus, XSS is not a priority in services environ-
ments [4].

On the other hand, injection vulnerabilities are critical.
An injection occurs when data from an input are used with-
out any check as part of a command or of a query. Issues
like SQL Injection and XPath Injection are particularly rele-
vant in web services as they are directly related to the way the
web service code is structured [15,19]. Basically, SQL Injec-
tion and XPath Injection attacks take advantage of improper
coded applications to change SQL commands that are sent
to the database or tamper XPath queries used to access parts
of an XML document. Several studies [4,20,21] show that
a large number of web services are deployed with security
flaws that range from code vulnerabilities (e.g. code injection
vulnerabilities) to the incorrect use of security standards and

protocols. To minimize security issues, developers should
use vulnerability testing tools to search applications for vul-
nerabilities.

Several techniques for the detection of software vulner-
abilities are available for web applications [19]. Although
most of these approaches can also be applied to web services,
there are several specificities that distinguish web services
from other web applications [22] and that should be kept
in mind when developing and using vulnerability detection
tools: (1) web services have always a well-defined interface.
This is mostly a positive aspect, as it avoids the need for a
crawling phase (required by some approaches to learn the
interface of a web application), but makes it easier to mask
information about internal problems of the application, which
can be a limiting factor, as it reduces the information when
compared to what testing tool can extract from the service’s
responses during crawling. (2) In many situations, the user
that needs to test the security of a web service is not the owner
and thus cannot access its internals, which is a requisite for
some vulnerability detection techniques. A common example
of this scenario is when a consumer has to select a service
from a multitude of alternatives provided by third parties.
(3) The interoperability and reduced dependency among
services not only facilitates their replacement or modifica-
tion without requiring changes in other parts of the system,
but also requires vulnerability detection to be effective, i.e.
allowing an easy way to test and retest the services of the
system while taking into account a more complete view of
system and the potential interactions among services.

2.2 Black-box testing

Most vulnerability testing tools are based on black-box test-
ing [19,23], which consists of the analysis of the program
execution from an external point of view. In short, it con-
sists of exercising the software and comparing the execution
outcome with the expected result and is one of the most
used techniques [24,25] for verification and validation of
software. Penetration testing, a specialization of testing, is
based on the analysis of the program outputs in the presence
of malicious inputs, searching for potential vulnerabilities.
In this approach, the tester does not know the internals of
the web application and it uses fuzzing techniques over the
HTTP requests [19]. The tester needs no knowledge about
the implementation details and tests the inputs of the appli-
cation from the user’s point of view. The number of tests can
reach hundreds or even thousands.

The most common automated penetration testing tools
used in web applications are generally referred to as web
security scanners (or web vulnerability scanners). These
scanners have a predefined set of test cases that are adapted
to the application to be tested, saving the user from defining
all the tests to be done. In practice, the user only needs to

123

438 N. Antunes, M. Vieira

configure the scanner and let it test the application. Once the
test is completed, the scanner reports existing vulnerabilities
(if any are detected). Most vulnerability scanners are com-
mercial tools, but there are also some free applications. In
practice, three brands lead the market: HP WebInspect [26],
IBM Rational AppScan [27], and Acunetix Web Vulnerability
Scanner [28]. On the other side, popular free security scan-
ners that support web services areFoundstoneWSDigger [29]
and WSFuzzer [30]. The main problem of these open-source
tools is that, in fact, they do not detect vulnerabilities: they
only automate the tests. In other words, they submit attacks
to the web service and log the responses leaving the task of
examining these logs.

Regarding state-of-the-art research proposals, multiple
techniques have been presented, as follows. WAVES [31] is
a black-box technique for testing web applications for SQL
Injection vulnerabilities. The technique is based on a reverse
engineering process that identifies the data entry points of the
application and attacks them using malicious patterns. An
algorithm is proposed to allow “deep injection” and to elim-
inate false negatives. During the attack phase, the responses
of the application to the attacks are monitored and machine
learning techniques are used to improve the attack method-
ology.

SecuBat [32] is an open-source web vulnerability scanner
that uses a black-box approach to crawl and scan websites
for the presence of exploitable SQL Injection and XSS vul-
nerabilities. SecuBat does not rely on a database of known
bugs. Instead, it tries to exploit distinctive application-level
vulnerabilities by issuing attacks targeting these vulnerabil-
ities, including proof-of-concept exploits in certain cases.
After the attack is launched, the response is parsed and inter-
preted in an attempt to find attack-specific response criteria
and keywords. Based on this process, it is calculated a confi-
dence value on the success of the attack. False positives are
possible, thus requiring a careful tuning of the confidence
value threshold.

The problem is that both WAVES [31] and SecuBat [32]
can only be applied to web applications (not to web services,
where the interface is well defined) and ignore user knowl-
edge about the application being tested.

An evaluation of web vulnerability scanners is presented
in [33]. Both commercial and open-source scanners were
evaluated, in a total of 11 scanners. To test the tools, the
authors introduced different types of vulnerabilities in a real-
istic web application, challenging the crawling capabilities
of the tools. The main findings of the study were that (1)
the crawling process is critical to the success of the scan-
ning process and that (2) many classes of vulnerabilities are
completely overlooked by these tools. Due to the character-
istics of web services, the difficulties related to the crawling
process are not an issue, as the interface is well defined. How-
ever, a limitation related to this one is the code coverage of

the tests. This means that if the tests do not exercise cor-
rectly the web service code, they are not able to exploit the
vulnerability and also not able to detect it. A final limitation
of black-box approaches in web services environment is that
the vulnerability detection is limited by the output informa-
tion of the application. It is important to keep in mind that
the output information includes not only to the web service
responses, but also other information available to the exte-
rior (e.g. response time). This work contributes to an effort
on overcoming some of these limitations: on the one hand,
the tools presented are based on techniques with improved
visibility on the internals of the web services, and on the
other hand, the modularity of the designs proposed facilitate
the process of improving the test coverage by replacing the
workload and attack load generation modules by better ones.

2.3 Grey-box testing

Grey-box vulnerability detection approaches try to overcome
some of these limitations by monitoring the behaviour of the
application during the execution of the tests, trying to find
anomalies caused by vulnerabilities present in the code. The
idea is that by analysing the internal behaviour of the code
in the presence of realistic inputs it is possible to identify
bugs and vulnerabilities. The effectiveness of such analysis
depends strongly on the input values (as in testing), but it
takes advantage of the observation of the source code. For
improving the effectiveness of the analysis, the program must
be executed with sufficient test inputs. Code coverage analy-
sers help guaranteeing an adequate coverage of the source
code [34,35].

While other works focused on identifying vulnerabilities
related to the use of external inputs without sanitizations, the
work presented in [36] introduces an approach that combines
static and dynamic analysis techniques to analyse the correct-
ness of sanitization processes in web applications. First, a
technique based on static analysis models the modifications
that the inputs suffer along the code paths. This approach
uses a conservative model of string operations, which might
lead to false positives. Then, a technique based on dynamic
analysis works bottom-up from the sinks and reconstructs the
code used by the application to modify the inputs. The code
is then executed, using a large set of malicious input values
to identify exploitable flaws in the sanitization process.

Other techniques to detect SQL Injection attacks need the
application developers to change the code in order to insert
the detection mechanisms. SQLCheck, presented in [37],
checks SQL queries at runtime to see if they conform to a
model of expected SQL queries. The model is expressed as
a context-free grammar that only accepts legal queries. The
user supplied portions are marked in queries with a secret key.
A parser is generated based on the grammar. At runtime, the
parser verifies the generated query and when a SQL Injec-

123

Designing vulnerability testing tools for web services: approach, components, and tools 439

tion attack is detected, the request is rejected. The security
depends on the generated keys, and the approach requires the
developer to rewrite code to manually insert the secret keys
into dynamically generated SQL queries. Another problem
of this technique is that it introduces additional complexity
to the development phase, which limits its applicability.

Runtime anomaly detection tools can be used for both
attack detection and vulnerability detection. One of those
tools is AMNESIA (Analysis and Monitoring for NEutraliz-
ing SQL Injection Attacks) [38] that combines static analysis
and runtime monitoring to detect and avoid SQL Injection
attacks. Static analysis is used to analyse the source code
of a given web application building a model of the legiti-
mate queries that such application can generate. At runtime,
AMNESIA monitors all dynamically generated queries and
checks them for compliance with the statically generated
model. When a query that violates the model is detected,
it is classified as an attack and is prevented from accessing
the database. The problem is that the model built during the
static code analysis may be incomplete because it lacks a
dynamic view of the runtime behaviour.

3 Overall approach and components

Although most of the works discussed above propose new
and more effective techniques for vulnerability and attack
detection, none of them follows a standard for designing the
tools, following instead specific architectures. This reduces
their maintainability, making it harder to introduce future
improvements. It also limits the reuse of their components
which does not allow taking advantage of them when propos-
ing new tools that could benefit from a faster development
and from the knowledge “embedded” in the tools. Again, it
is important to emphasize that the goal of this paper is not
to propose new techniques: instead, the goal is to present a
generic modular approach for designing tools and describe
the steps necessary to develop tools following this approach.
In this sense and in terms of vulnerability testing, the novelty
of the paper is more on the architectural design of vulnerabil-
ity detection tools than on new and more effective techniques.

Designing an effective vulnerability testing tool requires
the clear definition of a set of components and of a stan-
dardized testing procedure. Although other techniques and
tools follow designs that share similarities to our proposal,
they were designed in an ad hoc fashion without any formal-
ism or standard procedure [26–30]. The reasoning behind this
proposal is that the tools must be composed of different com-
ponents that should implement specific features of the tool,
in a decoupled manner. Although this may be common sense,
the fact that most tools do not follow any kind of standardized
approach demonstrates the value of the proposal. Adopting
this kind of design strategy brings many advantages when

compared with the isolated development of vulnerabilities
detection tools, as summarized in the following:

– It facilitates the design and maintenance of the tools,
including iterative improvements. In fact, to improve the
effectiveness of the tool, it is only necessary to upgrade
each module by using newly developed techniques.

– It makes easier and faster the task of developing new
tools. With an easier design, it comes an easier devel-
opment process and developers can also benefit from
reusing state-of-the-art modules in which their tech-
niques will not introduce innovations.

– It also allows developing teams to modify the vulner-
ability detection tools to better fit their needs, just by
modifying some particular components.

– It makes possible the combination of multiple vulner-
ability detection tools, as they share the same design
principles, applying them to detect different types of vul-
nerabilities. The advantage is that this allows detecting a
wider spectrum of vulnerabilities and vulnerability types
while maintaining the higher effectiveness of specialized
tools.

Figure 2 shows the relation among the proposed compo-
nents and with the web service under testing. As we can see,
the workload emulator and the attack emulator work together
to create and submit attacks, the vulnerability detector uses
knowledge about the attacks and information collected from
the web service to identify vulnerabilities, and the service
monitor is in charge of instrumenting the web service and
collecting information to feed the vulnerability detector. The
vulnerability detector is also in charge of implementing the
testing procedure by coordinating the remaining compo-
nents.

Due to the high diversity of web services, types of vulnera-
bilities, and vulnerability detection approaches, in this paper
we argue that designing an effective tool requires focusing
on a well-defined domain. In fact, the division of the spec-
trum into well-defined areas is necessary to allow making
choices during the definition of the components and proce-
dure. In the context of this work, the definition of the tool
domain includes selecting the type of web services, the type
of vulnerabilities to detect, and the vulnerability detection
approach. The first, class of web services (e.g. SOAP, REST),
allows understanding the characteristics of the services that
will be tested. The second defines the types of vulnerabil-
ities (e.g. SQL Injection, XPath Injection, file execution)
that should be detected by the tool. Finally, the vulnerability
detection approach (e.g. penetration testing, anomaly detec-
tion) specifies the approaches that the tool will use to detect
vulnerabilities.

The next subsections detail the proposed components
(always referring to Fig. 2). The testing procedure is dis-

123

440 N. Antunes, M. Vieira

Fig. 2 Generic architecture of a web service vulnerability testing tool

cussed in Sect. 3.4, together with the vulnerability detector
component. Note that the goal of this section is not to design
a specific tool (that is done in Sect. 4), but to propose an
approach that can be generically used to design testing tools
for detecting vulnerabilities in web services in general, and
thus, specific details are left out and discussed later.

3.1 Workload emulator

The workload emulator (WE) component is in charge of
generating a set of valid requests. These requests will be used
by the attack injector for generating attacks, but can also be
executed in the absence of attacks to exercise each opera-
tion of the web service under testing. The motivation for the
decoupling of workload and attack emulators is many fold.
First, the non-malicious requests (the workload) are very use-
ful to study the web service regarding its correct functioning.
This knowledge is of utmost importance for some vulnerabil-
ity detection processes as it allows them to detect anomalies
or discard behaviours that seem related to a vulnerability but
are also observable when the service is not under attack (e.g.
a database error that happens in situations in which the ser-
vice is not under a SQL Injection attack). In second place, it
allows an easy independent improvement of the modules with

all the benefits for the process. In fact, the generation of good
workloads is not dependent on security knowledge, meaning
that it is possible to have researchers or developers with expe-
rience in functional tests improving the workload generation
modules and this will also have very positive effects on the
attack generation, improving the overall technique. Finally,
the decoupling gives more flexibility to the developers, allow-
ing them to adapt the design to their technique and integrate
third-party modules or tools when necessary.

The WE includes two elements: a workload generator and
a workload injector.

The workload generator (WG) starts by obtaining the
required definitions about the web service under testing. As
mentioned before, a web service interface is described in a
descriptor file (e.g. WSDL, WADL) [12], which should be
processed to obtain the list of operations, parameters (includ-
ing return values), and associated data types. However, as
in most cases the valid values for each parameter (i.e. the
domain restrictions of the parameter) are not available in
that file and associated schemas, the user should be allowed
to provide additional information about the valid domains
for each parameter (including for parameters based on com-
plex data types, which are composed by a set of individual
parameters). Note that, for web service operations with sev-
eral input parameters, the valid domain for a given parameter
may be dependent on the value specified for another parame-
ter (this must also be specified). This information would also
benefit tools that do not follow this design (e.g. commercial
scanners), but the modularity of this approach allows eas-
ily modifying or upgrading the WG module to deal with the
existing information or even to ask the user if he is interested
in providing it.

A workload (set of valid web service calls) should then be
generated to exercise each operation of the web service under
testing. As it is not possible to define a generic workload
that fits all web services, we need to apply a specific work-
load to each specific service. Three alternatives are available
for implementing the workload generation (a vulnerability
testing tool may support more than one alternative, thus offer-
ing to the user the option of selecting the one that best fits
his requirements). The first option is to use a user-defined
workload generator. In this case, the user of the tool should
implement a generation component based on the knowledge
he has about the service being tested. The workload emula-
tor should provide an easy way for integrating this generation
component, which only needs to interact with the workload
injector (in charge of submitting the workload requests to the
services under testing) and with the attack generator (that cre-
ates attacks based on the workload requests in an educated
manner, as described in the next subsection).

The second option is to use the functions of an existing
vulnerability scanner, which consists of supporting the inte-
gration of external tools in a similar way to the user-defined

123

Designing vulnerability testing tools for web services: approach, components, and tools 441

workload. A key aspect is that in this case we are not inter-
ested in the attack generation and vulnerability detection
capabilities of such tool (this will be addressed later in the
design of the attack injector and of the vulnerability detector),
but only on interface identification and workload generation
features. Additionally, note that selecting an existing vulner-
ability scanner to provide this feature may not be an easy task
as, depending on the type of vulnerabilities to detect and on
the detection approach to implement, existing scanners may
be limited in the support provided also because they were
not developed in a modular standardized fashion that would
allow them to be integrated with other tools.

The last option is to include in the vulnerability testing
tool amodule that implements a workload generator. Several
approaches can be used for generating web service requests,
including (see [39] for details on these approaches) determin-
istic generation (e.g. based on constant values, step functions,
values shuffling), stochastic methods (e.g. based on uni-
formly distributed random values, random values added by a
step function, and Gaussian, Poisson, or exponential distri-
butions), and hybrid approaches (a combination of multiple
approaches). As the goal is to generate (valid) requests that
adequately exercise the services under testing (i.e. allow
achieving a high coverage of the code under testing), this
process should take into account the web service definitions
mentioned above. It is also of extreme importance to design a
workload generator that satisfies the requirements in terms of
the target vulnerabilities and of the detection approach being
implemented.

The representativeness of the workloads used is crucial
in the effectiveness of the vulnerability testing process. If
the inputs used are not able to exercise the code completely,
the technique may also not be able to trigger and detect the
vulnerabilities. This way, the developers of the vulnerability
testing tool should select the workload generation strategy
that best fit their scenarios. A key advantage of the modu-
larity of a tool is that it allow selecting the most favourable
options for the workload generator or even develop a new
and potentially more adequate one.

The workload injector (WI) component takes the work-
load generated and submits it to the web service. This is an
optional element, as some approaches may not require the
execution of a workload. For example, classical penetration
testing is based only on the execution of the penetration tests.
On the other hand, anomaly detection approaches require a
profiling phase; thus, a workload execution is required. A
feature that may be added to the workload injector is code
coverage analysis [34,35]. The idea is that in the cases where
source code or bytecode is available, code coverage can be
used to drive the generation of the workload requests. This
can be done by using a tool that analyses the execution pro-
file of the web service (during the execution of the workload)
and calculates a coverage value (many code coverage met-

rics can be used in this context; see [40] for an overview),
which can then be used to decide whether more requests
are needed to increase coverage. In such case, the injector
component should ask the generator component to create
additional requests.

3.2 Attack emulator

The attack emulator (AE) component is in charge of auto-
matically generating attacks and of submitting them to the
web services under testing. This way, it includes two ele-
ments: an attack generator, in charge of creating attacks, and
an attack injector, responsible for submitting those attacks.

Two options can be considered for implementing the
attack generator (AG). The first is to use the functions of an
external vulnerability scanner, which consists of supporting
the integration of external generators in a similar way to what
is done for the workload generation (see previous section).
Note that, similarly to the workload generator, selecting an
adequate external attack generator may be difficult, as exist-
ing tools may not implement the testing strategies required
to successfully implementing a given vulnerability detection
approach and because these tools can be hard to integrate, as
they were not developed following a modular standardized
style.

The second option is to include an internal attack gen-
erator that takes the workload and replaces valid values by
malicious values following an extensive set of mutation rules
(see Table 1 for examples of typical mutation rules). By build-
ing the attack load on top of the workload, it is possible
to avoid functional redundancy (i.e. repeated implementa-
tion of code for request generation that is common to both
workload and attack load generation) and take advantage of
the knowledge on test generation that it as embedded on it
inherently. Also, it is possible to take advantage of future
improvements of the workload generator module without
changing the attack emulator module. Obviously, the muta-
tion rules depend on the type of vulnerabilities to detect (the
table shows different examples for SQL Injection and XPath
Injection) and should be as complete as possible in order to
achieve high detection coverage. This way, defining the set of
mutation rules is a complex task that should take into account
multiple sources of information, including information on
how existing tools work, knowledge on previous successful
attack attempts in the field, and scientific references.

Although the process for generating the attacks may
depend on the vulnerability detection technique, we pro-
pose a generic procedure whose goal is to support the design
of generation approaches capable of creating comprehensive
sets of attacks. As shown in Fig. 3, such procedure includes
several phases, where each phase focuses on generating mali-
cious calls that target a given operation and includes a set of
steps. Each step targets a specific parameter of the opera-

123

442 N. Antunes, M. Vieira

Table 1 Examples of SQL Injection attack types

SQL Injection attack

(1) '' or 1=1 --

(2) '' or 1=1 or'',''=''

(3) ' or (EXISTS)

(4) ' or uname like'%

(5) ' or userid like '%

(6) ' or username like '%

(7) ' UNION ALL SELECT

(8) ' UNION SELECT

(9) char%2839%29%2b%28SELECT

(10) " or 1=1 or ""="

(11) ' or ''='

Fig. 3 Generic process for generating the attacks

tion and comprises several attack sets. An attack set includes
the attacks to be performed over a given parameter, which
are generated by applying the mutation rules. Obviously, the
same mutation rule may be applied one or more times over
the same input parameter.

The attack injector (AI) component is in charge of sub-
mitting the generated attacks to the web service under testing.
If an external attack generator is used, then the injector should
provide the required integration interfaces. Similarly to the
workload injector, the attack injector may also support cov-
erage analysis features, whose output can be used to drive
the generation of additional attacks.

3.3 Service monitor

To identify vulnerabilities, we need to collect as much infor-
mation as possible about the behaviour of the web services
under testing. This information is later used by the vulner-
ability detector component and the type of information that
can be collected depends on the access conditions to the tar-
get web services. In fact, as these environments are typically
based on services that can be under the control of multiple
providers, the users of the testing tool may have different
levels of access to the services to be tested. In practice, three
scenarios may be considered (see example in Fig. 1):

– Scenario 1 a service is within reach but not under control,
like in the case of S2 in Fig. 1. Only the external inter-
face of the service is known, and the input information is
available. This means that it is not possible to access the
source code and only black-box testing techniques can
be used. This scenario also simulates the point of view
of the consumer.

– Scenario 2 a service is under control but some of the
resources that it uses are not, like in the case of S1 (it uses
resource R1 that is not under control). In this case, it may
not be possible to access the source code. However, all the
interfaces between the service and the external environ-
ment are known. This allows obtaining extra information
about the domains of web service’s inputs.

– Scenario 3 a service is under control and also the
resources that it uses are, like in the case of S0. It is possi-
ble to use all kinds of vulnerability detection techniques,
including the ones that require access to the source code.

Each vulnerability detection technique has its specific
requirements in terms of the information needed, but the most
basic information is the web service requests and correspond-
ing responses (to both workload requests and attacks). This
request/response can be used together with other interactions
to disclose more advanced vulnerabilities, a classic example
is to perform a tautology attack [41] that can be more eas-
ily detected using one request that will be evaluated to true
and another that will be evaluated to false, and then compare
the results. In the case of more advanced approaches, addi-
tional information may be related to the internal functioning
of the web service, to the web services interfaces (includ-
ing interfaces with external resources like other services and
databases), etc. This way, the service monitor should be able
to instrument the target services in a way that allows col-
lecting the required information, in the less intrusive way
possible. Depending on the type of information needed and
on the level of access to the internals of the web service,
there are multiple options to monitor web services. Three
examples are: perform network packet sniffing (consists of
reading each packet as it flows across the network), use a
proxy (serving as a relay for HTTP requests), and apply code
instrumentation (instrument the service code to include mon-
itoring facilities).

In practice, the service monitor (SM) component should
consider three components: service instrumentation (SI),
an optional component in charge of instrumenting the ser-
vice under testing, as needed; information collector (IC),
responsible for collecting the information during the execu-
tion of the tests; and informationmanager (IM), responsible
for storing the collected information in a database and for
providing that information to the vulnerability detector com-
ponent when required.

123

Designing vulnerability testing tools for web services: approach, components, and tools 443

Fig. 4 Proposed testing procedure

3.4 Vulnerability detector

The vulnerability detector (VD) is in charge of processing
and correlating the information collected to detect vulnera-
bilities. This component is probably the most critical one and
should be able to identify as much vulnerabilities as possible
(based on the available information), while minimizing the
number of false positives reported. As mentioned before, in
addition to the traditional analysis of requests and responses,
vulnerability detection can be based on more elaborated
approaches such as interface monitoring [10] and anomaly
detection [11] (what is important is to apply techniques that
adequately take advantage of the available information). The
vulnerability detector is also the component responsible for
managing all the tests by implementing the testing procedure.
This is achieved by orchestrating the components presented
before. This way, two elements should be included in the
detector: the vulnerability identifier (VI) and the testing
driver (TD). We propose to keep these two elements inside
the same component as the testing procedure and the vulner-
ability detection approach greatly influence each other and
are highly dependent on the vulnerability detection technique
being implemented.

A key aspect is that the testing procedure should be as
standard as possible in order to accommodate the vulnerabil-
ity detection techniques of multiple different tools that, by
their turn, will potentially support a more exhaustive testing
and high vulnerability detection coverage of a broader range
of vulnerabilities. Although such procedure depends on the
specificities of the detection technique, in Fig. 4 we present
an overview of the generic approach we propose. As shown,
the procedure includes four phases: (1) web service instru-
mentation phase, (2) workload execution phase, (3) attack
phase, and (4) vulnerability detection phase.

In the web service instrumentation phase, the service
monitor component is asked to instrument the web service
under testing in a way that allows gathering the required
information. As service instrumentation may not be required
in some techniques, this phase is optional. For example, in
the case of classical penetration testing, the only information

needed is web service requests and responses, whose col-
lection does not require any particular instrumentation (this
information is automatically provided by the workload injec-
tor and by the attack injector).

The workload execution phase consists of generating
and submitting the workload requests. This phase is also
optional as running a workload may not be needed in some
cases. For example, classical penetration testing does not
require the execution of the workload, but only the injection
of the attacks. In practice, it consists of using the workload
generator component for generating requests and the work-
load injector component for submitting those requests. The
goal is to allow the service monitor component to gather
information on the behaviour of the web service in the
absence of attacks.

During the attack phase, attacks are generated and sub-
mitted to the web service. In practice, it involves using the
attack generator component for generating attacks and the
attacks injector component for submitting them. During this
process, the service monitor gathers information about the
behaviour of the web service in the presence of the attacks.
This information, combined with the one collected during
the workload execution phase, is then used during the vul-
nerability detection phase for identifying vulnerabilities by
applying the defined detection technique. For example, the
SQL commands that are issued to a database can be used by
the vulnerability detector to search attack signatures that are
an indication of an SQL Injection vulnerability, as will be
detailed in Sect. 4.2.3.

4 Testing tools for injection vulnerabilities

In this section, we present the design of three vulnerability
testing tools that implement the generic approach and com-
ponents presented in the previous section. The application
domain of these tools is SOAP web services and injection vul-
nerabilities. As mentioned before, this definition is of utmost
importance and allows making the right decisions regarding
the design of the components and procedure. The vulnerabil-
ity detection techniques implemented by the tools presented
in this section were previously introduced in [9], [10], and
[11], respectively. In this work, we redesigned those tech-
niques based on the approach presented in Sect.3, making
them consistent in terms of the components and of the test-
ing procedure.

Like most vulnerability testing tools, these three tech-
niques were designed in an independent manner in their
original prototypes, following an ad hoc design approach.
This way, during this process it was necessary to analyse the
existing tools, identify the modules of the generic architec-
ture that made sense in each context, and proceed to redesign.
After this step, it was necessary to re-implement the function-

123

444 N. Antunes, M. Vieira

alities of the tools following the new modular design. One
of the key challenges was to decouple vulnerability identi-
fication logic from the other parts of the tools, as it was in
all cases integrated with the testing code. After decoupling,
it is necessary to feed the new module with the information
necessary for its execution. Although this was a time- con-
suming task, the idea is that after that process, it is much
easier to replace the VI module by an improved one that will
be fed also with the information available.

In this context, the main benefits of the redesign of the
tools are flexibility and maintainability. The introduction of
improvements in previous versions was a time-consuming
operation that required modifications across all the appli-
cation. Instead, in the new versions it is only necessary to
perform changes in the modules related. Additionally, it is
very easy also to replace each module, something that was a
very hard task due to the interdependence of the code blocks.
To improve the representativeness of the tests applied (both
the workload and the attacks) in the new versions of the tools,
we only need to modify or replace the WG module. In the
previous version, it would be necessary to do changes in all
the workload-related code and many times also in the attack-
related and vulnerability detection code. Another example
is how easy it is to replace other modules, for example the
vulnerability identifier (VI) module. For this, it is only nec-
essary to replace the old module by a new one, as it will be
ready to use the information provided by the testing driver
(TD) and the information manager (IM).

The corollary or the ultimate benefit of this redesign
process is that it will allow, in a near future, to integrate mul-
tiple approaches and techniques in just one integrated tool.
By reusing the modules that are commons and selecting the
other modules through simple configurations, it is possible
to provide the user with the versatility to use multiple vul-
nerability testing approaches in different scenarios with the
help of just one tool.

The following sections present the new architecture and
modules of the redesigned versions of the tools.

4.1 Improved penetration testing (IPT-WS)

IPT-WS targets the detection of injection vulnerabilities in
services within reach but not under control (i.e. Scenario 1
defined in Sect. 3.3). Comparing to existing web vulnerabil-
ity scanners based on penetration testing, our approach has
three key improvements: (1) we use a representative work-
load to exercise the services and understand the expected
behaviour (i.e. the typical responses in the presence of valid
inputs); (2) the set of attacks performed is a compilation
of all the attacks performed by a large set of scanners plus
many attack methods that can be found in the literature; and
(3) we apply well-defined rules to analyse the web services
responses in order to improve coverage and remove false pos-

Fig. 5 IPT-WS overall design. (see Fig. 2 for module’s names)

itives. These rules include comparing the responses obtained
when using malicious inputs with the normal responses (i.e.
responses in the presence of a valid workload) and with the
responses from robustness testing [42]. Figure 5 presents the
tool design, which is detailed in the following subsections.
The monitoring component is not included as the vulnera-
bility detection depends only on the use of the web services
requests and responses, which are directly provided by the
workload emulator and by the attacks emulator.

4.1.1 Workload emulation

For generating the workload, the tool automatically reads the
web service definitions (i.e. operations, return values, para-
meters, data types, and domains) from the WSDL file. As
the valid values for each parameter (i.e. the domain restric-
tions of the parameter) may not be available, the user is
allowed to provide additional information about the valid
domains (including for parameters based on complex data
types, which are decomposed in a set of individual para-
meters). Table 2 shows an example of how the tool user
should specify the domains for an example web service
named ValidateService that provides the following opera-
tion to the clients: ValidateObject (String name, String date,
String trackingNumber, int number).

Two options are available for generating the workload.
In the first option (user-defined workload), the user should
implement a workload emulation tool that can be easily
integrated in our testing tool (by performing some simple
configurations). To simplify the implementation of the work-
load generator, there are several easy to use client emulation
tools like soapUI [43] that can be used. The second option is
to use the random workload generator (WG) implemented
by the scanner, which is able to generate a workload auto-
matically by performing the following steps:

1. Generate test values for each input parameter using the
web service definitions mentioned above, the tool gener-
ates randomly a set of valid input values (i.e. values in

123

Designing vulnerability testing tools for web services: approach, components, and tools 445

Table 2 Example of
specification of the domains for
each parameter

ValidateObject.name Type: String

Min Length: 3

Max Length: 15

ValidateObject.date Type: Date

Format: YYYY/MM/DD

ValidateObject. trackingNumber Type: String

Pattern: \u{2}\d{4}\d{4}\d\u{2}
ValidateObject.number Type: Integer

Min Value: 100000000

Max Value: 999999999

the parameter domain specified by the user). The number
of test values to be generated is also defined by the user.

2. Generate test calls for each operation the tool creates a
large set of calls for each operation. This consists of the
sum of all combinations of the test values generated for
all the parameters. For example, take an operation with 10
parameters (p) and 5 test values (v) for each parameter.
The total number of test calls is 9765625 (i.e. v p).

3. Select test calls for each operation as it may be unfeasible
to use a workload based on all the test calls generated
(e.g. due to time constraints), the tool is able to randomly
select a subset of the calls. It is up to the user to specify
the size of this subset, which determines the final size of
the workload to be used during the tests.

Note that the main problem of the random workload gen-
eration approach is that the representativeness of the web
service calls is not guaranteed (although our tool allows using
workloads of different sizes and randomly generated val-
ues are enough in most cases). Thus, this approach should
be used only if the user-defined workload approach is not
possible. The tool can be easily extended to include more
advanced workload generation approaches (as discussed in
Sect. 3.1). After the generation process, the workload injec-
tor (WI) executes the workload to gather information about
the web service typical responses (i.e. responses obtained
without injecting attacks).

4.1.2 Attack emulation

The set of attack types implemented by the IPT-WS tool
is based on the compilation of the types used by a large
set of scanners (three commercial and two open sources:
Acunetix Web Vulnerability Scanner [28], IBM Rational
AppScan [27], HP WebInspect [26], Foundstone WSDig-
ger [29], and wsfuzzer [30]). This list was analysed and
complemented based on practical experience and using
information on injection methods available in the literature

(e.g. [19,21,44,45]). The final list includes 137 attack types
(see Table 1 for examples and [46] for the complete list).

The attacks generation consists of mutating the workload
test calls. In practice, valid values are replaced by malicious
values. Obviously, the number of attacks to be performed can
be extremely huge. Take, for example, a web service with 3
operations with 5 parameters each and a workload with 25 test
calls per operation. Applying all the attack types (137) over
all the test calls (25) for every parameter (5) of each operation
(3) would end up representing 51375 (137 × 25 × 5 × 3)
web service executions. Depending on the time available,
this may be unfeasible. This way, the tool allows the user to
specify the number of test calls from the original workload
that should be used for the attack load generation. For this, the
original (valid) test calls are ranked based on their potential
ability to help in detecting vulnerabilities, and then, a subset is
selected.

Ranking is built using the following rules: (1) test calls
that led to valid web service responses (i.e. no exception, no
server error, and no SOAP error) are in the top of the list;
(2) test calls that leaded to web service exceptions are in
second place; (3) test calls that leaded to server errors (e.g.
http errors in the 400 and 500 intervals) are in third place;
and (4) test calls that leaded to client-side errors (e.g. SOAP
exceptions) are in the bottom of the list (used only as last
resource). It is important to note that test calls that leaded
to valid web service responses are placed in the first place
as these are the ones with higher probability of exercising
the target code in a more effective manner (i.e. with higher
coverage). On the other hand, test calls that during the work-
load execution leaded to exceptions or server errors cannot
be simply removed, as they are also useful. For example,
test calls that raise web service exceptions due to improper
authentication can be used later to check whether an SQL
Injection attack is able to circumvent existing authentication
mechanisms (details in the next section).

After the generation process, the attacks are submitted
to the web service and the responses are collected, pro-
viding, together with the information gathered during the

123

446 N. Antunes, M. Vieira

execution of the workload (valid requests and corresponding
responses), the support for the vulnerability detection phase.

4.1.3 Vulnerability detection

The last step of the process consists of analysing the
responses obtained during the workload and the attacks
execution. This is a crucial step to achieve higher cover-
age and lower false-positive rates, and is done by applying
well-defined rules that allow identifying vulnerabilities and
excluding potential false positives. In practice, it is based on
the following set of steps, which are executed for each of the
attacks performed over each parameter:

1. If the response obtained consists of a client-side error
(e.g. SOAP stack error), then the attack was not suc-
cessful and no vulnerability was explored, as the web
service code was not even executed.

2. Otherwise, if the response is an error then

(a) If the response for the original test call (before being
mutated with malicious values) was the same error,
then the error is not due to the attack, but to another
problem of the service (e.g. software bug or database
server problem).

(b) Otherwise, apply robustness testing over the parame-
ter (as proposed in [42]). Creating a robustness test
is very similar to the creation of an attack. However,
instead of a malicious input, the attack injector uses
a non-malicious invalid input (i.e. values outside the
expected input domain). The testing driver module
is in charge of asking to the attack injector to gen-
erate and execute this request. The tool includes a
predefined set of values for each possible parameter
domain.

i. If the responses obtained during robustness test-
ing include the same error, then the error
obtained is due to a robustness problem and
not to a vulnerability. This is the case also of
server side validation or input sanitization leads
to an error returned to the client.

ii. Otherwise an injection vulnerability exists as
the attack leaded to invalid responses that could
not be observed when using a valid workload or
when applying robustness testing. This means
that the invalid response is caused by the attack,
not by a value out of the parameter’s domain.
This is a strong symptom of the existence of a
vulnerability.

3. Otherwise (i.e. valid response in the presence of the
attack), if the execution of the original test call (before
being mutated with malicious values) leaded to a data-
base error, server error, or web service exception, then an

injection vulnerability has been detected as the attack
was able to exercise parts of the service that were not
possible to execute when using the valid workload. An
example of this situation is when an attack is able to
circumvent an authentication mechanism that was pre-
venting valid test calls from proceeding.

4. Otherwise, if the response obtained in the presence of
the attack is the opposite of the response obtained for the
original workload call (before being mutated with mali-
cious values), then an injection vulnerability has been
detected as the attack leaded to the successful execution
of the operation, which was not the case when using the
valid workload. Take, for example, an operation that per-
forms a database modification and only returns a value
indicating the success or nonsuccess of the modifica-
tion. If and attack is able to circumvent an authentication
mechanism that was preventing valid test calls from pro-
ceeding, then there is a security vulnerability.

5. Otherwise, no vulnerability was found. The attack did
not change the web service behaviour in a visible manner.
It may leave undetected cases where the service does not
report relevant information for the detection.

The most critical and difficult step of the algorithm is step
4. In fact, it is quite difficult to establish whether a response
obtained in the presence of an attack is the opposite of the
response obtained for the original workload call (i.e. before
mutation). The rules used for such checking must be simple
and should be applied to data types that allow determining
the opposition between the result of a valid request and an
attack. We propose the set of rules presented in Table 3 to
make these decisions. Although these rules may be a source
of false positives, because the opposite values are not unique
and sometimes depend on the specifics of the application,
we can easily integrate new ones and change existing ones.
An example of a new rule is to define {“Successful
request“|”Error message!”} for a String parame-
ter that contains messages values. Another example for the
rule {0|1} that originates false positives for Int return
codes where-1means error, replacing it by the rule{-1|1}
avoiding the false positive.

4.2 Attack signatures and interface monitoring
(Sign-WS)

In this section, we design an automatic approach that uses
attack signatures and interface monitoring for the detection
of injection vulnerabilities (the target is Scenario 2 defined
in Sect. 3.3). The goal is to improve the penetration testing
process by providing enhanced visibility, yet without needing
to access or modify the web services code. The key assump-
tion is that most injection attacks manifest, in some way, in
the interfaces between the attacked web service and other

123

Designing vulnerability testing tools for web services: approach, components, and tools 447

Table 3 Rules for the analysis of opposite responses

Original response Opposite response

False True

Fail Success

0 1

Empty list or array List or array with values

0 GUID data type

Error No Error

Invalid Valid

NOK OK

systems (e.g. database, operating system, gateways) and ser-
vices (e.g. other web services in a service composition). For
example, a successful SQL Injection attack leads the service
to send malicious SQL queries to the database. Thus, these
attacks can be observed in the SQL interface between the
service and the database server. The same happens for XPath
Injection [19] (XPath or XQuery at the interface with XML
files), OS Command Injection [19] (at the interface with the
operation system), etc. In practice, the approach targets the
types of vulnerabilities that allow web services to be used as
front end for attacking backbone resources.

Comparing with traditional penetration testing and with
the approach presented in Sect. 4.1, the Sign-WS tool is more
effective as it uses additional information that allows increas-
ing the number of vulnerabilities detected and reduce false
positives. For example, blind injection vulnerabilities (that
exist when an application is vulnerable, but the results of an
attack are not visible to the attacker) cannot be detected by
traditional penetration testing (or by our IPT-WS tool), but
they can be detected by the Sign-WS approach as they can be
observed in the interface between the web services and the
resource targeted by the attack. On the other hand, detecting
vulnerabilities based on the effects of attacks (e.g. changes
in SQL queries) is much more precise than considering only
the analysis of the web service output.

Figure 6 presents the design of the tool that is detailed in
the next subsections. Workload emulation is not discussed as
it is based on the random workload generator presented in
Sect. 4.1.1 and workload execution is not required.

4.2.1 Attacks emulation

Sign-WS supports two options for generating attacks: it
allows the integration of an external tool (e.g. another vul-
nerability scanner), but also includes a specific generation
module similar to the one presented in Sect. 4.1.2. A key
aspect in both cases is that signatures are added to the attacks
to later support the detection of vulnerabilities. The next
subsections introduce the concept of attack signatures and

Fig. 6 Sign-WS overall design. (see Fig. 2 for module’s names)

(a)

(b)

Fig. 7 Examples of queries with signatures. a the signature is active; b the

signature is inside a literal string, and it is inactive

describe how they are added to the attacks when the internal
attack generator is used and when an external tool is applied.
The following paragraphs explain how to define effective
attack signatures and how to use them to generate signed
attacks or sign attacks from an external tool.

Defining Effective Attack Signatures In the literature, attack
signatures are defined in multiple ways, depending on the
type of system studied, but according to [47] an attack signa-
ture is “a distinctive complex pattern used to detect system
penetration, which may involve comparison of audit and log
data from a variety of sources within the computing platform
or infrastructure”.

In the context of this work, an attack signature is a token
that is introduced inside a malicious string (the injection
attack) in such way that, if the attack is successful, the token
is observable somewhere in the interfaces of the service. For
example, in a successful SQL Injection attack [15], the sig-
nature should show up in the manipulated SQL command
(the target of the attack), outside any literal string (i.e. as
a part of the actual command), revealing that it is possible
for attackers to modify the structure of the command sent to
the database server. In this case, the signature is considered
active (see example in Fig. 7a). Otherwise, if the signature is
placed inside a literal string, it is considered inactive and is
inoffensive (Fig. 7b).

Defining attack signatures is not easy. On one hand, sign-
ing attacks with complex signatures may not be possible due
to length limitations, restrictions in terms of the characters
that can be used, etc. On the other hand, very simple signa-
tures may raise false positives, as there is the risk of using
a signature that matches a valid keyword (the valid keyword
would wrongly suggest the presence of the signature). This

123

448 N. Antunes, M. Vieira

(a) (b)

Fig. 8 Signature token used: a regular token; b reversed

Table 4 Examples of signed SQL Injection attack types

Signed SQL Injection attack

(1) ' %SIGNATURE%

(2) \′ %SIGNATURE%

(3) '-- %SIGNATURE%

(4) ' or 0=0 -- %SIGNATURE%

(5) %WORKLOAD%'%SIGNATURE%

(6) %WORKL_%'or %SIGNATURE%=%SIGNATURE% --

way, to maximize the success of the approach, the signa-
ture token must be: unambiguous—the signature must not
be easily confused with the tokens/keywords regularly found
in the context of the applications being tested; inoffensive—
the signature must not include characters that may be filtered,
escaped, or refused. Although the goal is the attack to pass the
protection mechanisms, the signature token must be harm-
less; informative—the signature must include information
about what is being attacked to later allow the identification
of the vulnerable input; short—the token must be as short as
possible to avoid problems with limited length fields or pro-
tection mechanisms as length validators, which are extremely
common in web services.

The proposed signature model is composed of a set of
five elements, including two delimiters, two identifiers (that
represent the information transported by the signature), and
a qualifier (see example in Fig. 8). The first delimiter (‘_’)
marks the beginning of the signature, the first identifier rep-
resents the web service operation or resource being tested,
the second identifier is the input parameter attacked, and
the second delimiter (‘_’) marks the end of the signature
information. The qualifier, placed after the second delim-
iter, indicates whether the signature is applied in normal or
reversed mode, as explained below.

This model allows short and informative enough signa-
tures. To reinforce unambiguity, for each attack a confirma-
tion request is submitted, containing a reversed version of
the signature. This is important to decrease the probability
of using a signature that, by coincidence, partially matches
a part of the target command, also providing a second vali-
dation of the vulnerability. As signatures do not include any
“special” characters, they do not suffer any transformation
due to existing escaping routines, thus assuring inoffensive-
ness. Obviously, to guarantee portability and allow adapting
to different types of web services, the user of the tool is
allowed to configure the signature model he wants to apply
(using regular expressions).

Figure 8 shows the signature model (including the
reversed version) used by our tool. When building the signa-
ture, digit ‘1’ is replaced by the identifier of the web service
operation under testing, and digit ‘2’ is replaced by the iden-
tifier of the input parameter attacked. Each identifier can be
a number (10) or a letter (52). The attack injector maintains a
dictionary of the meaning of each identifier. If the number of
operations or input parameters is greater than 62 (although
it rarely is), then it will be necessary to add digits to the sig-
nature model described in configuration files, increasing the
size of the signature.

Generating Signed Attacks As presented in Sect. 4.1.2, the
approach implemented by the internal attack generator (AG)
consists of mutating the workload requests. In practice, valid
values are replaced by the malicious values. However, in the
Sign-WS tool signatures are added to the attacks (by the
attack injector component) for later supporting vulnerabil-
ity identification. Table 4 presents some examples of SQL
Injection signed attacks. The meaning of each of the tokens
(added by the attack generator) is as follows:

– %SIGNATURE% is a placeholder to be replaced by the
signature token dynamically generated. By using this
token, the tool user can control the specific location of
the signature inside the malicious string;

– %WORKLOAD% is a placeholder to be replaced at runtime
by the value of the input in the original workload request.
It is useful because it helps disguising the attack with
valid data, avoiding some validators that perform pattern
matching. If the workload was correctly generated to fit
this kind of domain restrictions, using it as a base to
generate attacks increases the chances of generating a
successful attack.

– %WORKL_% similar to %WORKLOAD%, but in this case
only the initial characters are used in order to maintain the
total length of the input. This helps avoiding length val-
idators. For instance, considering a validator that accepts
a string with a length between 100 and 150 characters (or
even a more restrictive range), if the workload request is
valid, then the attack generated using this token is also
valid.

The defined attacks cover the majority of the cases,
using techniques that try, for instance, to avoid weak escap-
ing mechanisms by combining multiple escaping characters
together. However, the user can easily add more attacks using
the rules defined above. A key aspect is that, to reveal a
vulnerability, the attack does not need to be successful on
accessing, modifying, or destroying data. For example, in
the case of SQL Injection what is required is the attack to be
able to change the structure of the SQL query in such way
that the signature token can be identified in the service inter-

123

Designing vulnerability testing tools for web services: approach, components, and tools 449

faces as being active. The same is valid for other types of
injection vulnerabilities.

Signing Attacks For supporting the integration of an exter-
nal tool to generate attacks, the attack injector intercepts the
requests performed by that testing tool. In this case, the attack
injector was developed in such way that all the requests per-
formed by the testing tool are intercepted, locally stored, and
finally forwarded (without any change) to the target web ser-
vice. In this phase, the requests are not signed, as the goal
is to allow the penetration tester to perform its work with-
out any interference (except a very small delay introduced by
the attack injector; however timing issues are not particularly
important especially during testing).

When the testing tool completes the testing process, all the
stored requests are analysed by the attack injector, searching
for attacks (i.e. requests containing malicious input strings).
When an attack is found, a signature token is added to the
attack string. The signature includes information about the
component and input under attack (obtained from the origi-
nal request) that is also inserted in the dictionary that maps
the identifiers to the inputs they represent. The place in the
attack string where the signature is inserted can be defined
by the user of the tool, in the form of key characters. These
key characters depend on the type of attack being con-
ducted; for example, in our experiments with SQL Injection
we considered the typical characters necessary to launch SQL
Injection campaigns: literal string delimiters ('and ''), the
equal character (=) often used to manipulate SQL conditions,
and the parenthesis characters () and (), used to manipulate
or add subqueries. After this, the new request is sent to the
application. If no key character is found, then the request is
discarded, as it is not considered an attack.

4.2.2 Service monitoring

Simultaneously to the submission of the attacks containing
the attack signatures, it is necessary to monitor the interfaces
of the application to capture the executed commands (IC in
Fig. 6). Depending on the type of interface, there are multiple
options to monitor web applications, including use network
packet sniffing, use a proxy, and instrument the code. In the
particular case of Sign-WS, we use a particular case of the
later option: we perform driver instrumentation. In practice,
when the interface to be monitored is accessed through a
driver (e.g. Java applications use JDBC drivers to access the
database server), this driver can be instrumented to include
monitoring facilities. Obviously, driver instrumentation is an
intrusive technique, but the modifications can be done outside
the core of the applications being tested. In fact, it is possible
to create an instrumented version of a specific driver that can
even be used in different applications. Even so, one must

be extremely careful in order not to introduce bugs in the
instrumented driver during this process.

For example, to allow the Sign-WS tool to monitor the
queries issued to the database we instrumented the JDBC
driver using aspect-oriented programming (AOP) [48]. AOP
is a well-known programming paradigm that allows injecting
crosscutting concerns into any application in a non-intrusive
way [48]. The Java Database Connectivity (JDBC) API is
designed to access any kind of tabular data, but it is mostly
used when a Java application needs to manipulate data stored
in a relational database [49]. It is the responsibility of each
database vendor to provide a library containing the JDBC
driver and the implementation of the JDBC API for Java
applications to interact with its database management system
(DBMS). AOP was used to transparently intercept the key
points inside the JDBC library where the SQL commands
are sent to the database server. The result of this process
was a new driver library. To use this driver during the web
application testing process, what is needed is to refer the
modified version in the classpath of the application instead of
the original one. During tests execution, this enhanced driver
library executes, without harming the normal behaviour of
the driver, the examination and processing of the queries,
looking for the presence of the attack signatures. A similar
approach is used for other drivers.

When the signed attacks are submitted to the service,
the information collector (IC) gathers information from the
web service interfaces. This information is stored by the
information manager (IM) in a database (together with the
corresponding requests) by the information manager and
later used by the vulnerability detector (VD) to identify vul-
nerabilities.

4.2.3 Vulnerability detection

After capturing the commands at the service interfaces, it
is necessary to process and analyse them to detect potential
vulnerabilities. This way, when a signature token is found
outside a literal string in a command sent to an external
resource, this means that there is a vulnerability in the web
service. Thus, before applying regular expressions to find sig-
natures, it is necessary to process the data in order to remove
the inoffensive parts (e.g. control characters, well-formed lit-
eral strings).

Figure 9 shows an example of the transformations applied
to SQL queries during the command processing steps (a
similar approach is used for other types of commands). In
step 1, all the correctly escaped slashes (\), apostrophes
(') and quotes (") are removed from the string (obviously,
the definition of “correctly escaped” varies according to the
type of commands that are being processed). In step 2, the
remaining literal strings identified by the regular expres-
sion “'[ˆ']*'” are removed, with this regular expression

123

450 N. Antunes, M. Vieira

(a)

(a)

Fig. 9 Command processing steps demonstrated with SQL queries. The

lines show the transformations applied to each query during the processing. Tokens

in strikethrough are removed in that step. Tokens in italic are active signatures. a An

active signature is found; b no active signature is found

representing a collection of characters delimited by two apos-
trophes that cannot contain apostrophes inside. Any attack
signature that still remains in the command after this process
(step 3) is considered active, as can be observed in Fig. 9a. In
this case, a vulnerability is identified, having the associated
information: ‘2’ (operation or resource under testing) and
‘8’ (input parameter attacked). This is the information that
allows linking the vulnerability to the input than can be used
to exploit it. Obviously, the attack signatures should include
the information needed to make a correspondence between
this information and the inputs of the application under test-
ing. An alternative technique would be to use a query parser to
parse the SQL. However, the query parser needs more time to
execute than processing the regular expressions. Even worse
is that the parser usually requires well- formed queries and the
signatures used most of the times lead to incorrectly formed
queries that will force the parser into unexpected cases that
may take more time to process and introduce bigger perfor-
mance impacts.

4.3 Runtime anomaly detection (RAD-WS)

In this section, we present an automatic approach for the
detection of injection vulnerabilities based on anomaly detec-
tion and that includes two main steps (the target is Scenario
3 defined in Sect. 3.3). First, we generate and run a workload
to exercise the web service under testing and learn the profile
of the internal commands issued (e.g. SQL and XPath com-
mands). Afterwards, we apply a set of injection attacks and
observe the internal commands being executed. This allows
us to detect existing vulnerabilities by matching commands
during attacks with the valid set of commands previously
learned.

Comparing to the approaches proposed before, RAD-WS
takes advantage of information about the internal behaviour
of the service under testing, which allows increasing detec-
tion coverage. Additionally, it allows relating the attacked
inputs with the anomalies (i.e. the mismatches between
commands during attacks and the valid set of commands pre-
viously learned) and locates the vulnerabilities in the code

Fig. 10 RAD-WS overall design. (see Fig. 2 for module’s names)

of the web service. Figure 10 presents the design of the tool
components, which are detailed in the next subsections. The
attack emulator component is not presented as RAD-WS uses
the one implemented by IPT-WS (presented in Sect. 4.1.2).

4.3.1 Workload emulation

The workload generator (WG) module is based on the
random workload generator presented in Sect. 4.1.1. To
learn the commands, the workload injector exercises the
service by executing the generated workload. During the
workload execution phase, internal commands (e.g. SQL
and XPath commands) are intercepted (using AOP, as pre-
sented in Sect. 4.3.3) and parsed in order to remove the
data variant part (if any) and a hash code is generated to
uniquely identify each command. In other words, the infor-
mation used does not represent the exact command text,
since commands may differ slightly in different executions,
while keeping the same structure. For example, in the SQL
command “SELECT * from EMP where job like
‘CLERK’ and SAL > 1000”, the job and the salary
in the select criteria (job like STRING? and sal >
NUMBER?) are dependent on the user’s choices. Thus, instead
of considering the full command text, we just represent the
invariant part of it.

Each hash signature is associated with a source code entry
point (which is provided by the AOP framework) in a Map
structure. This does not mean that we need the original appli-
cation’s source code; it just means that we need bytecode
compiled with source code line information, which is gener-
ally the case, even in production applications as it provides
extra information on failure events. In the previously referred
Map structure, each key corresponds to a given source code
point and has a set of associated valid/expected hashed com-
mands. Note that, in a given point there might be several valid
commands (this is why we need a set of valid commands for
each source code point).

An important aspect is that the workload must guarantee a
minimum level of code coverage (as discussed in Sect. 3.1).
Although this does not assure a complete learning of internal

123

Designing vulnerability testing tools for web services: approach, components, and tools 451

commands, it allows us to have a high confidence degree. This
way, the tool allows easily integrating an external code cover-
age analysis tool. Additional workload requests are generated
if the coverage value is under a given threshold defined by
the user.

4.3.2 Service monitoring

For the web service instrumentation, we use the well-known
aspect-oriented programming (AOP) [48] to intercept key
web service execution points and introduce the vulnerabil-
ity detection mechanisms. Vulnerability detection starts by
automatically identifying all the locations in the web ser-
vice code where commands are executed. This is achieved
by using AOP to intercept all the calls to methods that belong
to APIs used to execute SQL commands (e.g. JDBC, the
Spring Framework JDBC), to evaluate XPath expressions
(e.g. JAXP, JaxenXPath), etc. Virtually any API can be added,
as the only requirement is to know the signature of the
method to be intercepted. At runtime, methods that issue
SQL commands, XPath queries, etc. are intercepted (using
AOP) and delivered to the information collector. It is impor-
tant to emphasize that instrumentation does not change the
service behaviour (the code logic is not modified) and that
it is only meant for the RAD-WS tool (it is removed after
testing).

4.3.3 Vulnerability detection

To detect vulnerabilities, we perform security checks for each
data access executed during the attack phase. All commands
(SQL, XPath, etc.) are intercepted (using AOP), hashed, and
stored during that phase. These are compared to the values of
the learned valid commands for the code point at which the
command was submitted. In practice, the matching process
consists of looking up the current source code origin in the
previously referred Map structure and getting the set of hash
codes of the valid (learned) commands for that point. This
set (generally quite small) is then searched for an element
that exactly matches the hash of the command that is being
executed. If a match is not found, the occurrence (i.e. the
potential vulnerability) is logged for future reference. The
log entry includes a reference to the code location where the
vulnerability was detected, the query that was executed in
the presence of the attack, and information about the oper-
ation input values, namely the attacked parameter and the
attack value. If the source code origin is not found in the Map
lookup, the log indicates that the line was not learned. This
case indicates that the learning phase is incomplete (coverage
was not good enough) and that a more exhaustive workload
is required. Note that the lines that have not been learned pro-
vide indications on how to improve the workload to increase
coverage.

5 Evaluation

The evaluation of the tools focuses on the key innovations
introduced: a generic design and the modularity of such
design. Modularity allows to easily develop new techniques
or improve the available techniques just by adding new mod-
ules or improving the existing ones. However, this should be
achieved without reducing the vulnerability detection effec-
tiveness.

As case study, we used the three tools presented before
and three commercial vulnerability scanners to detect SQL
Injection vulnerabilities in a set of SOAP web services imple-
mented in Java. In addition to the modularity analysis, the
goal is to evaluate the effectiveness of each tool and to under-
stand whether they are an effective alternative to commercial
ones. Two well-known metrics were used in this evaluation:
detection coverage (percentage of existing vulnerabilities
detected by the tool) and false-positive rate (percentage of
vulnerabilities reported but that do not exist).

In practice, the goal is to answer the following questions:
(1) does the proposed approach supports building modular
tools? (2) do different access conditions to the web services
under testing allow more advanced tools to achieve higher
effectiveness in terms of coverage and false positives? (3)
do the proposed tools have greater effectiveness than exist-
ing state-of-the-art vulnerability scanners, thus representing
a viable alternative?

Time and resource consumption values are not a major
factor when evaluating the tools and their applicability and
were left out of scope of this work. However, we can say
that the complete testing process had a duration ranging
from minutes to few hours depending on the complexity and
throughput of the service under testing. This duration is con-
sidered acceptable, and its impact decreases when compared
with the importance of their detection coverage and false-
positive rate: vulnerabilities left undetected have the poten-
tial for huge financial losses, while false positives will require
that developers allocate effort to fix nonexistent vulnerabili-
ties. In terms of memory, none of the tools required more than
1GB to perform their tasks, meaning that can be supported
by any computer nowadays.

5.1 Tools and experimental setup

The experimental evaluation was based on the web services
of the “Benchmark for SQL Injection Vulnerability Detection
Tools” proposed in [8]. Using a benchmark allows evaluating
and comparing our tools according to specific characteristics
in a standard way. The benchmark consists of 21 services,
with 80 operations with a total of 158 known SQL Injec-
tion vulnerabilities. These services have been adapted from
three standard benchmarks developed by the Transactions
Processing Performance Council, namely TPC-App, TPC-

123

452 N. Antunes, M. Vieira

C, and TPC-W (see details on these benchmarks at [50]). To
characterize the vulnerabilities that exist in the web services,
we invited a team of 3 external developers, with two or more
years of experience in security of database centric applica-
tions, to conduct a formal inspection of the code looking for
vulnerabilities. Details are at [8].

The three commercial scanners used in the experiments
are representative of the state of the art in vulnerability testing
for web applications and web services: HP WebInspect [26],
IBM Rational AppScan [27], and Acunetix Web Vulnera-
bility Scanner [28]. For the results presentation, we have
decided not to refer directly to the commercial scanners to
assure neutrality and because licenses do not allow, in gen-
eral, the publication of evaluation results. The three tools
are referred in the rest of this paper as VS1, VS2, and VS3
(without any order in particular).

In terms of configurations, our three tools were config-
ured to perform tests using a workload size of 10 elements.
This means that for a web service with 5 operations and 7
parameters each operation, the total number of request per-
formed is 49000 (5 × 10 × 7 × 140) and the duration of the
workload execution is about 15 minutes. For the commercial
tools, information about the domain of each web service input
parameter was provided when allowed by the tool. If the tool
requires the user to set an example invocation per operation,
the example respected the input domains of operation. All
the tools in this situation used the same example to guaran-
tee a fair evaluation. The tests were performed 3 times for
each tool, always starting from the same initial conditions.
The tested services are stateless, and the testing tools work
in a deterministic way resulting in the same execution flow
and the same results in every run. Details on the presented
results are available at [46].

5.2 Modularity analysis

From the definition of the approach and components pre-
sented presented in Sect. 3, we can identify two main mod-
ularity attributes: the elements inside a component should
address only one concern and be strongly connected inside
themselves (high cohesion); at the same time, a component
should not address more than one concern and it should be
independent from other components (loose coupling). This
means that they should have few connections with other com-
ponents of the tool.

To build a modular tool, one should start by identifying
concerns and separate them, to build software components
that address each concern. After this separation, it is possible
to hide the complexity of each module behind abstractions
and interfaces.

There are many metrics for characterizing the degree of
modularization. However, most of those metrics lack some
meaning in the values produced in absolute terms. In fact,

most metrics are only useful for comparison purposes. Fur-
thermore, it is not a fair assessment to say that a program
implementation is more modular than other if the goals and
functionalities implemented are different, mainly because
concerns are different and the number of crosscutting con-
cerns may be higher in one implementation than in the
other.

Due to these limitations and since comparison between
our implementations and the existing tools would not be fair,
we decided to perform a qualitative analysis instead of a
quantitative analysis. For that, we analysed the component
diagram of our tools in order to identify design patterns that
can give us evidence that the components are compliant with
the required modularity attributes.

We identified four concerns that are necessary in order
to be possible to develop, change, or maintain our tools
without knowing or change the entire tool. Those concerns
are: workload generation, attack load generation, monitor-
ing, and detection. Each of these concerns was isolated
within a module, as shown in Sect. 3, guaranteeing a high
cohesion among the elements included in the module. Addi-
tionally, to guarantee loose coupling between modules,
every component provides a well-defined interface to the
remaining ones, and this interface does not provide func-
tionality that is not related with the concern that the module
addresses.

As shown in Fig. 2, the connectivity between components
is through well-defined interfaces. Also, the components do
not depend on the remaining ones. These are typical char-
acteristics of a modular design, and the less connection to
other component and the less concerns are addressed by
one component, the more modular the component under
analyses is. Finally, high cohesion (specifically, functional
cohesion) can be observed in the external modules as all
parts of the module are placed together and share the same
goal (i.e. all the elements present on the module address
the same concern, and all of them contribute to the same
task).

5.3 Overall results for the three tools

To understand whether improved access conditions to the
web services under testing allow achieving higher effective-
ness, our three tools were executed on top of the web services
(in this case, Sign-WS is used only with the internal attacks
generator). Figure 11 presents the summary of the results
(the first bar in the graph presents the total number of known
vulnerabilities).

The different tools reported a different number of vul-
nerabilities. As expected, RAD-WS identified the higher
number of vulnerabilities (≈75 % of the total number of vul-
nerabilities) and Sign-WS coverage (≈74 %) is very close
to RAD-WS. This suggests that the added visibility indeed

123

Designing vulnerability testing tools for web services: approach, components, and tools 453

Fig. 11 Summary of the results for the three tools

improves the detection process, but detection based on inter-
face monitoring is also very effective. A very important
aspect is that both RAD-WS and Sign-WS reported 0 false
positives. IPT-WS is the tool with the lowest detection cover-
age and the only one reporting false positives (but also the one
with less requirements in terms of information). In practice,
RAD-WS was able to detect all the vulnerabilities detected
by Sign-WS, which in turn detect all the true vulnerabilities
reported by IPT-WS. Additionally, the results obtained are
equivalent to the ones obtained by the original tools [9–11],
with small variations observed due to the non-deterministic
nature of the testing processes. However, these variations
are always under 0.01 %, which is quite acceptable when
comparing the detection performance of tools. The follow-
ing paragraphs analyse the results in more detail.

IPT-WS detected a low number of vulnerabilities (≈25 %)
and reported a large set of false positives (≈43 %). The low
coverage and very high rate of false positives can be explained
by the fact that this tool is based in the limited informa-
tion provided by the web services requests and responses.
For example, vulnerabilities whose exploitation does not
manifest in the output of the service cannot be detected. Fur-
thermore, unclear responses induced the mechanism to report
a large number of vulnerabilities that in fact do not exist.

The first observation regarding Sign-WS is that it is able
to detect 117 of a total of 158 vulnerabilities (≈74 %),
presenting much higher detection coverage than IPT-WS
(which detected only 38 real vulnerabilities). As expected,
the increased visibility on the web services interfaces, pro-
vided by the use of signed attacks and interface monitoring,
allows the approach to detect vulnerabilities that would not
be possible to detect by analysing only the web services
responses. The second observation is related to the fact that
the tool did not report false positives. This increases the
confidence in the vulnerabilities detected by Sign-WS in
future campaigns. As mentioned before, the rare scenario
where false positives would manifest is when tokens sim-
ilar to the signatures (both normal and reversed) are used
in the construction of application’s queries. That is not the

case in this set of services and also in the large majority of
applications (anyway, the tool user is able to configure the
signature model, which may allow avoiding matching simi-
lar keywords). This way, we do believe that these results can
be generally reproduced in real-world web services.

The detection methodology of RAD-WS allowed the iden-
tification of the highest number of vulnerabilities. The tool
has identified 119 vulnerable inputs (a coverage of ≈75 %),
two more that Sign-WS, which shows that internal visibil-
ity allows detecting vulnerabilities that do not manifest in the
web services interfaces. This happens in the rare cases where
the signatures are rejected or transformed by a validation
mechanism, while the RAD-WS is able to detect differences
in the query profile independently from signatures. Examples
are fields with a length validator smaller than the signature
but big enough for other attacks (e.g. “'--”), or a field with a
pattern validator that the signature does not fit but that another
attack may fit. Another important aspect is that the tool did
not report any non-existing vulnerabilities (0 false positives).

As mentioned before, the quality of the results obtained
is directly related to the coverage of the workload used in
profiling phase, as it is during this phase that the valid SQL
commands are learned. The results and the detailed analysis
of the web services code showed that the workload generated
by the tool was sufficient to learn most of the commands in
which vulnerabilities exist. The analysis also revealed that
the vulnerabilities not detected are due to situations where a
vulnerability is preceded by another very similar vulnerabil-
ity, and so, the second can only be detected after fixing the
first. In these cases, also a penetration tester would probably
not find the vulnerabilities. However, the attacker may find
ways to explore the vulnerable code, and also, the code needs
to be fixed or will create problems in the future. This way, we
also consider these vulnerabilities for evaluation purposes.

The effectiveness of the workload achieved during the
profiling phase of our experiments is also achievable in real-
world situations, as the web services developers typically
have access to the source and possess enough knowledge
about the service to correctly define the input domains. In
fact, the web services tested are a good example of real-
world complex web services (the complexity of the TPC
specifications can be attested in [50]) having a huge num-
ber of parameters. Although the web services code was not
written by the authors of the present paper, it was possible
to define a workload that assures a complete learning. This
suggests that the process can be reproduced in other real web
services scenarios. Nevertheless, we believe that it is impor-
tant to research automatic workload generation approaches
based on the source code analysis in order to achieve higher
code coverage and to increase automation (e.g. to eliminate
the need for the user to provide input domains).

123

454 N. Antunes, M. Vieira

Fig. 12 Comparison between our tools and three commercial vulner-
ability scanners

5.4 Comparison with state-of-the-art vulnerability
testing tools

To assess whether the proposed tools represent a viable
alternative, we compared their effectiveness with three well-
known and widely used commercial vulnerability scanners.
Overall results are shown in Fig. 12, with the first bar pre-
senting the total number of vulnerabilities in the code.

Columns 2, 3, and 4 in Fig. 12 show the vulnerabilities
reported by the commercial tools. As we can see, the differ-
ent tools reported a different number of vulnerabilities and
the coverage for the commercial tools is always under 35 %.
Among these, VS1 identified the higher number of vulnera-
bilities (≈32 % of the total vulnerabilities). However, it also
reports a very higher number of false positives (≈54 %). The
very low number of vulnerabilities detected by VS3 can be
partially explained by the fact that this tool does not allow
the user to set any information about input domains, nor it
accepts any exemplar request. This means that the tool gen-
erates a completely random workload that, probably, is not
able to test parts of the code.

Comparing our tools with the commercial scanners, we
can observe that both Sign-WS and RAD-WS consistently
present better results, in terms of both coverage and false pos-
itives, largely outperforming any of the commercial tools. On
the other hand, the tool based on improved penetration testing
(IPT-WS) presents better results than two of the commer-
cial tools (VS2 and VS3), but presents a lower coverage than
VS1 (≈24 % against ≈32 %). However, in terms of false pos-
itives IPT-WS performs better than VS1 (≈43 % and ≈54 %,
respectively). A detailed analysis of the results and of the web
services under testing showed that IPT-WS is better than VS1
on the identification of false positives (i.e. the rules we imple-
ment are more precise), but is less effective on exercising the
target services (the workload is less effective).

Figure 13 illustrates the analysis of the intersection of the
vulnerabilities detected by the different tools. The areas of
the circles are roughly proportional to the number of vul-

Fig. 13 Intersection of vulnerabilities detected

nerabilities detected by the respective tool, whose name is
indicated close to the circle. The same does not happen with
the intersection areas, as it would be impossible to represent
it graphically.

As we can see, RAD-WS is the tool that detected the
largest number of vulnerabilities, reporting 2 vulnerabilities
that no other tool reported. A large amount of vulnerabil-
ities (67) were detected only by RAD-WS and Sign-WS,
representing more than 55 % of the total number vulnera-
bilities reported, showing the advantage of tools with extra
information when compared with penetration testing tools.
Additionally, only 3 vulnerabilities were detected by all the
tools, but this number is obviously limited by the low cover-
age of VS3. Regarding the penetration testers, VS1 presented
the higher detection coverage, as it is able to identify all the
vulnerabilities detected by IPT-WS and VS2, plus 13 vul-
nerabilities. VS1 was also able to identify one vulnerability
that no other tool detected. Although none of the tested tools
was able to exploit this vulnerability, VS1 uses heuristics to
identify vulnerabilities that are in most cases very liberal,
reporting vulnerabilities from little evidences that in many
cases result in false positives but in this case resulted in a
really existing vulnerability.

The final remark is relative to the 38 vulnerabilities that
were not detected. After a manual analysis of the services,
similarly to what was discussed in Sect. 5.3 we concluded
that: (1) many of those are vulnerabilities located in places
in the code hard to reach via black-box testing, and the
workloads used are not yet complete enough to be able to
execute those code paths, and (2) sometimes a vulnerability
is preceded by another very similar vulnerability, and so, the
second can only be detected after fixing the first. The solu-
tion for the first case is to develop new and better ways for
generating the workload and attacks. Regarding the second
case, we need to apply an iterative process with alternate

123

Designing vulnerability testing tools for web services: approach, components, and tools 455

cycles of vulnerability detection and correction. Neverthe-
less, these topics are outside of the scope of this paper and
the upgrade of these modules can be done without impact-
ing the proposed architecture (which shows the advantage of
following our generic approach for designing vulnerability
testing tools).

6 Threats to validity

There are two points in the work that may threat its validity
and that are important to be discussed, as follows.

– It was not possible to gather measures on how easy it is
to implement new tools, as large parts of the work were
conducted by the authors of the paper on adapting the
design of existing tools. We plan to do future experiments
with third-party developers that should in the end try to
detail the difficulties faced.

– The evaluation includes a single case study that may be
limited for understanding the real effectiveness of the
tools. However, the main goal of the evaluation is to show
that the tools outperform commercial security scanners
(similarly to their original versions), while adopting the
direct benefits of the designing approach proposed: main-
tainability and flexibility.

The case study itself has shortcomings that also need to be
discussed, as follows:

– The vulnerabilities focused are only SQL Injection vul-
nerabilities. This may limit the generalization of some of
the concepts presented in the paper. However, all these
concepts are extensible to injection vulnerabilities in gen-
eral, which represent the biggest threat in the web services
domain.

– The services used are only SOAP-based web services.
This may also limit the generalization of the results, but
all the approaches presented here are technology inde-
pendent and may be used to test other kinds of services.
The only requirement is having services with a well-
defined interface that is understandable by an application.

– The benchmark used for evaluation was proposed by
the authors, which may bias the results of the evalua-
tion. However, the benchmark is based on a well-defined
approach and its representativeness depends on the ser-
vices used as workload which in this case come from
third-party implementations of widely used performance
benchmarks.

7 Conclusions

In this paper, we proposed a standardized and consistent pro-
cedure to design vulnerability testing tools. This includes
the architecture of such tool, the generic approach, and a
set of well-defined components. The approach provides an
integrated support for developing innovative and more effec-
tive tools whose modularity allows iterative improvements
simply by upgrading each module by improved versions of
themselves.

The proposed approach was used to design tools imple-
menting three different techniques for detecting injection vul-
nerabilities: improved penetration testing, attack signatures
and interface monitoring, and runtime anomaly detection.
These tools use different parts of the generic architectures,
showing the versatility of the approach. The tools target dif-
ferent testing scenarios (i.e. target services with different
access conditions) offering a multitude of options to the test-
ing teams.

A benchmark for vulnerability detection tools was used
as case study to demonstrate the effectiveness of tools for
the particular case of detecting SQL Injection vulnerabili-
ties. The experimental evaluation showed that the tools can
effectively be used in different scenarios and that they out-
perform well-known commercial tools by achieving higher
detection coverage and lower false-positive rates.

Future work includes implementing vulnerability detection
tools targeting other types of vulnerabilities and services.
Based on the proposed approach, we will develop a new
integrated and modular tool to allow developers to imple-
ment new detection techniques or improve the existing just
by integrating new modules. During this process, we will
evaluate our approach using external developers. The new
tool will also include the implementation of a framework for
detection of vulnerabilities in service-based infrastructures.

Additionally, it is necessary to improve the modules where
the tools performed less effectively as in generating more
effective workloads and studying the code coverage during
test execution. Finally, the efficiency of the developed tools
in terms of performance and scalability need also to be eval-
uated as they impact on the software usability.

Acknowledgements This work has been partially supported by the
project CErtification of CRItical Systems (www.cecris-project.eu,
CECRIS), Marie Curie Industry-Academia Partnerships and Pathways
(IAPP) number 324334, within the context of the EU Seventh Frame-
work Programme (FP7).

References

1. Alonso, G.: Web Services: Concepts, Architectures and Applica-
tions. Springer Verlag, Berlin (2004)

123

http://www.cecris-project.eu

456 N. Antunes, M. Vieira

2. Christey, S., Martin, R.A.: Vulnerability type distributions in CVE,
V1. 0 10, 04 (2006)

3. Zanero, S., Carettoni, L., Zanchetta, M.: Automatic Detection of
Web Application Security Flaws, Black Hat Briefings (2005)

4. Vieira, M., Antunes, N., Madeira, H.: Using Web Security Scanners
to Detect Vulnerabilities in Web Services. In: IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks, DSN’09.
(Estoril, Lisbon, Portugal, 2009), pp. 566–571 (2009). doi:10.1109/
DSN.2009.5270294

5. Council, T.P.P.: TPC BenchmarkTM App (application server)
Standard Specification, Version 1.3. http://www.tpc.org/tpc_app/
(2008)

6. Meier, W.: Web, Web-Services, and Database Systems. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (ed.) No. 2593 in
Lecture Notes in Computer Science, pp. 169–183. Springer, Berlin
Heidelberg (2003)

7. Fonseca, J., Vieira, M., Madeira, H.: Testing and Comparing Web
Vulnerability Scanning Tools for SQL Injection and XSS Attacks.
In: 13th Pacific Rim International Symposium on Dependable
Computing (PRDC 2007) (Melbourne, Australia, 2007), pp. 365–
372 (2007). doi:10.1109/PRDC.2007.55

8. Antunes, N., Vieira, M.: Benchmarking Vulnerability Detection
Tools for Web Services. In: IEEE Eighth International Conference
on Web Services (ICWS 2010) (Miami, Florida, 2010), pp. 203–
210 (2010). doi:10.1109/ICWS.2010.76

9. Antunes, N., Vieira, M.: Detecting SQL Injection Vulnerabilities in
Web Services. In: Fourth Latin-American Symposium on Depend-
able Computing 2009 (LADC ’09), pp. 17–24. IEEE Computer
Society, Joao Pessoa, Brazil (2009). doi:10.1109/LADC.2009.21

10. Antunes, N., Vieira, M.: Enhancing Penetration Testing with Attack
Signatures and Interface Monitoring for the Detection of Injection
Vulnerabilities in Web Services. In: 2011 IEEE International Con-
ference on Services Computing (SCC) (IEEE, 2011), pp. 104–111
(2011). doi:10.1109/SCC.2011.67

11. Antunes, N., Laranjeiro, N., Vieira, M., Madeira, H.: Effective
Detection of SQL/XPath Injection Vulnerabilities in Web Services.
In: 2009 IEEE International Conference on Services Computing
(SCC 2009) (Bangalore, India, 2009), pp. 260–267 (2009). doi:10.
1109/SCC.2009.23

12. Chappell, D.A., Jewell, T.: Java Web Services. O’Reilly & Asso-
ciates Inc, Sebastopol (2002)

13. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web
Service Definition Language (WSDL) 1.1. http://www.w3.org/TR/
wsdl (2001)

14. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media,
Inc, Sebastopol (2007)

15. OWASP Foundation, OWASP top 10 2013. Tech. rep., Open Web
Application Security Project (2013)

16. Foundation, O.: Open Web Application Security Project. http://
www.owasp.org/ (2001)

17. Acunetix. 70 % of Websites at Immediate Risk of Being Hacked!
http://www.acunetix.com/news/security-audit-results.htm (2007)

18. NTA Monitor, Annual Web Application Security Report. Tech. rep.
(2011)

19. Stuttard, D., Pinto, M.: The Web Application Hacker’s Hand-
book: Discovering and Exploiting Security Flaws. Wiley, Hoboken
(2007)

20. Fogie, S., et al.: XSS Attacks: Cross Site Scripting Exploits and
Defense. Syngress Publishing, Burlington (2007)

21. Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger, N.:
SOA and Web Services: New Technologies, New Standards—New
Attacks. In: Fifth European Conference on Web Services. ECOWS
’07, pp. 35–44 (2007)

22. OWASP Testing Project: Testing for web services—OWASP test-
ing guide v3. Tech. rep, Open Web Application Security Project
(2008)

23. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art:
Automated Black-box Web Application Vulnerability Testing. In:
2010 IEEE Symposium on Security and Privacy (SP), pp. 332–345
(2010)

24. I.C.S.S.S.E.S. Committee, 1012-2012—IEEE Standard for System
and Software Verification and Validation, IEEE standard 1012-
2012 edn. (IEEE Computer Society)

25. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing.
Wiley, Hoboken (2011)

26. HP. HP WebInspect. https://h10078.www1.hp.com/cda/hpms/
display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200
(2008)

27. IBM. IBM Rational AppScan. http://www-01.ibm.com/software/
awdtools/appscan/ (2008)

28. Acunetix. Acunetix Web Vulnerability Scanner. http://www.
acunetix.com/vulnerability-scanner/ (2008)

29. I. Foundstone. Foundstone WSDigger. http://www.foundstone.
com/us/resources/proddesc/wsdigger.htm (2005)

30. OWASP Foundation. OWASP WSFuzzer Project. http://www.
owasp.org/index.php/Category:OWASP_WSFuzzer_Project
(2008)

31. Huang, Y., Huang, S., Lin, T., Tsai, C.: Web Application Security
Assessment by Fault Injection and Behavior Monitoring. In: Pro-
ceedings of the 12th International Conference on World Wide Web
(ACM, Budapest, Hungary, 2003), pp. 148–159 (2003)

32. Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: SecuBat: A Web
Vulnerability Scanner. In: Proceedings of the 15th International
Conference on World Wide Web (ACM, New York, NY, 2006), p.
247256 (2006). doi:10.1145/1135777.1135817

33. Doup, A., Cova, M., Vigna, G.: In: Detection of Intrusions and
Malware, and Vulnerability Assessment. no. 6201 in Lecture Notes
in Computer Science (Springer Berlin Heidelberg, 2010), pp. 111–
131 (2010)

34. Doliner, M.: Cobertura. http://cobertura.sourceforge.net/ (2006)
35. Atlassian. Clover—Code Coverage for Java. http://www.atlassian.

com/software/clover/ (2010)
36. Balzarotti, D., et al.: Saner: Composing Static and Dynamic

Analysis to Validate Sanitization in Web Applications. In: IEEE
Symposium on Security and Privacy. SP 2008, 66, pp. 387–401
(2008). doi:10.1109/SP.2008.22

37. Su, Z., Wassermann, G.: The Essence of Command Injection
Attacks in Web Applications, In: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’06, 41 (ACM, New York, NY, 2006),
POPL ’06, p. 372382 (2006). doi:10.1145/1111037.1111070

38. Halfond, W., Orso, A.: AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks, In: Proceedings of the
20th IEEE/ACM International Conference on Automated Software
Engineering, p. 183 (2005)

39. Laranjeiro, N., Vieira, M., Madeira, H.: A Technique for Deploying
Robust Web Services. IEEE Transactions on Services Computing
PP(99), 1 (2012). doi:10.1109/TSC.2012.39

40. Kaner, C.: Software Negligence and Testing Coverage. In: Proceed-
ings of STAR 96: The Fifth International Conference on Software
Testing Analysis and Review (Orlando, FL, 1996), pp. 299–327
(1996)

41. Kindy, D., Pathan, A.S.: A Survey on SQL Injection: Vulnera-
bilities, Attacks, and Prevention Techniques. In: 2011 IEEE 15th
International Symposium on Consumer Electronics (ISCE), pp.
468–471 (2011). doi:10.1109/ISCE.2011.5973873

42. Vieira, M., Laranjeiro, N., Madeira, H.: Assessing Robustness of
Web-services Infrastructures. In: 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN’07,
pp. 131–136 (2007)

43. eviware. soapUI. http://www.soapui.org/ (2008)

123

http://dx.doi.org/10.1109/DSN.2009.5270294
http://dx.doi.org/10.1109/DSN.2009.5270294
http://www.tpc.org/tpc_app/
http://dx.doi.org/10.1109/PRDC.2007.55
http://dx.doi.org/10.1109/ICWS.2010.76
http://dx.doi.org/10.1109/LADC.2009.21
http://dx.doi.org/10.1109/SCC.2011.67
http://dx.doi.org/10.1109/SCC.2009.23
http://dx.doi.org/10.1109/SCC.2009.23
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.owasp.org/
http://www.owasp.org/
http://www.acunetix.com/news/security-audit-results.htm
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://dx.doi.org/10.1145/1135777.1135817
http://cobertura.sourceforge.net/
http://www.atlassian.com/software/clover/
http://www.atlassian.com/software/clover/
http://dx.doi.org/10.1109/SP.2008.22
http://dx.doi.org/10.1145/1111037.1111070
http://dx.doi.org/10.1109/TSC.2012.39
http://dx.doi.org/10.1109/ISCE.2011.5973873
http://www.soapui.org/

Designing vulnerability testing tools for web services: approach, components, and tools 457

44. Shema, M.: Seven Deadliest Web Application Attacks. Syngress,
Burlington (2010)

45. Halfond, W.G., Viegas, J., Orso, A.: A Classification of SQL-
injection Attacks and Countermeasures. In: International Sympo-
sium on Secure Software Engineering (2006)

46. Antunes, N., Vieira, M.: Vulnerability Testing Tools for Web Ser-
vices. http://eden.dei.uc.pt/~mvieira/ (2013)

47. Sabhnani, M., Serpen, G.: Why Machine Learning Algorithms Fail
in Misuse Detection on KDD Intrusion Detection Data Set. Intel-
ligent Data Analysis 8(4), 403–415 (2004)

48. Kiczales, G.J., et al.: Aspect-oriented programming. US Patent
6,467,086 (2002)

49. Reese, G., Oram, A.: Database Programming with JDBC and JAVA.
O’Reilly & Associates, Inc., Sebastopol (2000)

50. Transaction Processing Performance Council. Transaction process-
ing performance council. http://www.tpc.org/ (2009)

Nuno Antunes received the PhD
degree in Information Science and
Technology from the University
of Coimbra, Portugal. He is an
Assistant Professor at the Uni-
versity of Coimbra, Portugal. His
interests include the development
of dependable and secure web
applications and services, experi-
mental dependability and security
evaluation, and security bench-
marking. He is a member of the
IEEE Computer Society and a
member of the IEEE.

Marco Vieira received the PhD
degree in Computer Engineering
from the University of Coimbra.
He is an Associate Professor at the
University of Coimbra, Portugal.
His interests include dependabil-
ity and security benchmarking,
experimental dependability eval-
uation, fault injection, software
development processes, and soft-
ware quality assurance. He is a
member of the IEEE Computer
Society.

123

http://eden.dei.uc.pt/~mvieira/
http://www.tpc.org/

	Designing vulnerability testing tools for web services: approach, components, and tools
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Web services threats and challenges
	2.2 Black-box testing
	2.3 Grey-box testing

	3 Overall approach and components
	3.1 Workload emulator
	3.2 Attack emulator
	3.3 Service monitor
	3.4 Vulnerability detector

	4 Testing tools for injection vulnerabilities
	4.1 Improved penetration testing (IPT-WS)
	4.1.1 Workload emulation
	4.1.2 Attack emulation
	4.1.3 Vulnerability detection

	4.2 Attack signatures and interface monitoring (Sign-WS)
	4.2.1 Attacks emulation
	4.2.2 Service monitoring
	4.2.3 Vulnerability detection

	4.3 Runtime anomaly detection (RAD-WS)
	4.3.1 Workload emulation
	4.3.2 Service monitoring
	4.3.3 Vulnerability detection

	5 Evaluation
	5.1 Tools and experimental setup
	5.2 Modularity analysis
	5.3 Overall results for the three tools
	5.4 Comparison with state-of-the-art vulnerability testing tools

	6 Threats to validity
	7 Conclusions
	Acknowledgements
	References

