
Int. J. Inf. Secur. (2017) 16:213–226
DOI 10.1007/s10207-016-0325-1

REGULAR CONTRIBUTION

Two-factor authentication for the Bitcoin protocol

Christopher Mann1 · Daniel Loebenberger1

Published online: 5 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We show how to realize two-factor authentica-
tion for a Bitcoin wallet. To do so, we explain how to employ
an ECDSA adaption of the two-party signature protocol by
MacKenzie andReiter (Int J Inf Secur 2(3–4):218–239, 2004.
doi:10.1007/s10207-004-0041-0) in the context of Bitcoin
and present a prototypic implementation of a Bitcoin wallet
that offers both: two-factor authentication and verification
over a separate channel. Since we use a smart phone as
the second authentication factor, our solution can be used
with hardware already available to most users and the user
experience is quite similar to the existing online banking
authentication methods.

Keywords Bitcoin · Two-party ECDSA · Two-factor
authentication · Block chain

CR Subject Classification Security and privacy · Digital
signatures · Mobile and wireless security

1 Introduction

Bitcoin (BTC) is a cryptographic currency proposed by
Satoshi Nakamoto [23] in the legendary e-mail to the Cryp-
tography Mailing list at metzdowd.com. One of the most
important features of Bitcoin is that it is completely peer-to-
peer, i.e., it does not rely on a trusted authority (the bank)
which ensures that the two central requirements of any elec-
tronic cash system are met: Only the owner can spendmoney

B Daniel Loebenberger
daniel@bit.uni-bonn.de

Christopher Mann
christophermann@web.de

1 B-IT, University of Bonn, Bonn, Germany

and it is impossible to spend money twice. In Bitcoin, these
two features are realized with a common transaction his-
tory, the Bitcoin blockchain, known to all users. Each of the
transactions in the chain contains the address to which some
Bitcoins should be payed, the address from which the Bit-
coins should be withdrawn and the amount. Both addresses
are directly derived from the public key of the corresponding
ECDSA key pairs of the recipient and the sender, respec-
tively. Thewhole transaction is then signed using the ECDSA
private key of the sender. Since any user might have multi-
ple addresses, its wallet consists of several key pairs and is
typically stored on the owner’s device or within some online
service.

Thus, from a thieves’ perspective, the only thing one has
to do in order to steal some Bitcoins is to get one’s hands
on the corresponding wallet, just like in real life. Indeed,
Lipovsky [19] describes an online banking Trojan that also
steals Bitcoin wallets.

A common approach to complicate this is the use of two-
factor authentication. This means that the wallet stored on
a device does not contain the private keys but just shares of
them. The other shares are stored on an independent device
(such as a smart phone). Now, any transaction can only be
signed with the help of both shares of the private key. During
the signing process, it has to be ensured that at no point in
time the full private key is present on either of the devices.

Therewas already considerable effort to realize two-factor
authentication forBitcoinwallets. First of all, it is in principle
possible to use Bitcoin’s built-in functionality for threshold
signatures, see Sect. 2. This has, however, three major dis-
advantages: First of all, it would be visible in the blockchain
that multi-factor authentication is used. Second, the size of
the transaction increases, which leads to higher transaction
fees. Last but not least, there are Bitcoin clients aroundwhich
do not work properly with the threshold signature extension.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0325-1&domain=pdf
http://orcid.org/0000-0002-7969-6260
http://dx.doi.org/10.1007/s10207-004-0041-0


214 C. Mann, D. Loebenberger

Goldfeder, Bonneau, Felten, Kroll, and Narayanan [11]
tried to employ threshold signatures proposed by Ibrahim,
Ali, Ibrahim, and El-sawi [14]. However, as the authors
pointed out there, it is quite difficult to use these kind of sig-
natures for two-factor authentication, since the restrictions on
the threshold are quite delicate to handle. In their blog post,
they compare different threshold signatures with respect to
their applicability to Bitcoin wallets. However, their reason-
ing remains quite high level.

In this article, we show in Sect. 3 how to actually realize
two-factor authentication for a Bitcoin wallet employing the
two-party ECDSAsignature protocol adapted fromMacKen-
zie and Reiter [20]. In Sect. 4, we also present a prototypic
implementation of a Bitcoin wallet that offers both: two-
factor authentication and verification over a separate channel.
Since we use a smart phone as the second authentication fac-
tor, our solution can be used with hardware already available
to most users and the user experience is quite similar to the
existing online banking authentication methods. Our source
code is liberally licensed and can be found on GitHub, see
Mann [21]. We also got in contact with the developers of the
Java Bitcoin library. Indeed, there was lively discussion on
the Bitcoin mailing list, when they got aware of our proto-
type. For details, see Hearn [13]. A preliminary version of
this article was published in Mann and Loebenberger [22].

Very recently, we found the work of Goldfeder, Gen-
naro, Kalodner, Bonneau, Kroll, Felten, and Narayanan
[12], where the authors present an extended version of the
MacKenzie and Reiter scheme which allows t-party thresh-
old signatures. This is a very nice idea in the context of
Bitcoin, and it would be very interesting to see their extended
scheme running. Unfortunately, their prototype currently
only implements the plain MacKenzie and Reiter scheme.
Furthermore, we observed that in contrast to our implemen-
tation their desktop wallet serves as a trusted dealer during
initialization. On a compromised computer, this is a clear
security problem. We address this issue here, see Sect. 3.4.2.

2 Threshold signature support in Bitcoin

As part of the scripting functionality, Bitcoin supports t-out-
of-u threshold signatures. Instead of only a single signature,
a usermust provide t signatures to spend a transaction output.
Each of the t signatures must verify under one of the u public
keys. Bitcoin’s threshold signature support has been used by
Bitpay Inc. [3] to implement a Web application that offers
shared control of Bitcoin addresses.

In the standard single signature case, Bitcoins are sent to
a Bitcoin address which is directly derived from a public
key. The payee can spend the received Bitcoins by providing
a transaction with a signature that verifies under the public
key. In the threshold signature case, the payer must specify

a list of u public keys instead of a single one. The payee can
spend the received Bitcoins by providing a transaction with
t signatures where each of the signatures verifies under one
of the u public keys.

As a list of public keys is now used to identify the payee
instead of a single one, no Bitcoin address can be derived
anymore. Thus, the payermust not only know a short Bitcoin
address but the whole list of u public keys to send Bitcoins to
the payee. This is very inconvenient for the payer. A further
Bitcoin feature called pay-to-script-hash (P2SH) solves this
problem by adding another indirection: Instead of specifying
thewhole list of public keys, the payer only specifies the hash
value of a Bitcoin script, which contains the list of public
keys. The script is hashed with the same function that is used
to hash the public keys. Therefore, it is possible to derive a
Bitcoin address from the script. When spending the Bitcoins,
the payee must not only provide the t signatures, but also a
Bitcoin script that fits the hash value specified by the payer.
The signatures in the spending transaction are then verified
against the public keys in the script.

The combination of both features provides a threshold
signature support that is as convenient for the payer as the
single signature version of Bitcoin. Nevertheless, this variant
of threshold signatures for Bitcoin has the three disadvan-
tages mentioned above: First, it is visible in the public block
chain that threshold signatures are used. This implies that
everybody can see by inspection of the block chain that a
certain amount of Bitcoins is shared by different addresses.
Even though this does not directly reveal the use of two-
factor authentication, it still breaks the semantics of a Bitcoin
address, since we do not want to consider the phone as a
second person owning the Bitcoins, but just as a mandatory
authentication method for a user, who wants to spend them.
Second, the spending transaction becomes much larger as it
contains the t signatures and the script with the list of the u
public keys. Signatures and public keys are responsible for
most of the data in a transaction. Consequently, having sev-
eral of them increases the size of the transaction significantly
and can increase the transaction fees as these depend on the
size of the transaction. Last but not least, there are Bitcoin
clients around which do not work properly with the threshold
signature extension. The use of threshold signatures compati-
ble with ECDSA as discussed in the next section circumvents
these kinds of problems.

3 Two-party ECDSA

In MacKenzie and Reiter [20], a two-party signature scheme
for DSA is presented. It employs a homomorphic cipher,
specifically the Paillier [25] cryptosystem. This allows one
party to operate with cipher texts of another party’s secrets
without ever learning about these secrets. In difference to

123



Two-factor authentication for the Bitcoin protocol 215

Alice Bob

dA
R←− Z

×
n

QA ←− dAG

(skA,pkA) ←− GenPai()
(gB,hB ,NB) ←− GenIC()

τA ←− (pinit (gB) , pinit (hB))
QA,pkA,τA−−−−−−−−−→
(gB,hB,NB)

check τA, QA G

check ¬ prime (NB)
dB

R←− Z
×
n

QB ←− dBG

(skB , pkB) ←− GenPai()
(gA, hA,NA) ←− GenIC()

check τB , QB G
QB,pkB,τB←−−−−−−−−−
(gA,hA,NA)

τB ←− (pinit (gA) ,pinit (hA))

check ¬ prime (NA)
Q ←− dAQB Q ←− dBQA

Fig. 1 Pairing protocol for performing the setup for the two-party
ECDSA signature protocol in Fig. 2. GenPai() executes the setup for the
Paillier cryptosystem and GenIC() executes the setup for the Fujisaki

and Okamoto integer commitment scheme as described in Sect. 3.1.
pinit(x) generates a (non-zero-knowledge) proof that x is a quadratic
residue modulo NA or modulo NB

the other threshold signature schemes, this one works for
only two parties. As we need a two-party signature scheme
for ECDSA to implement our two-factor wallet, we decided
to port their scheme to ECDSA. Also Goldfeder et al. [11]
came to the same conclusion: In the blog post related to their
article, they note that the scheme by MacKenzie and Reiter
seems to be “close to ideal.” They later describe in Goldfeder
et al. [12] a t-out-of-n extension for the scheme proposed by
MacKenzie and Reiter which uses a threshold version of the
Paillier cryptosystem. Note that there are also other applica-
tions of multi-party signatures in the context of Bitcoin such
as coin mixing for improving the privacy, see Ziegeldorf,
Grossmann, Henze, Inden, and Wehrle [32].

We now give an overview of two-party signatures as
described by MacKenzie and Reiter [20] in the context of
ECDSA.

For the setup, one fixes a cryptographic hash function
h (in our case, we use SHA-256, see NIST [24]) and a
particular set of elliptic curve domain parameters: a prime
power q ∈ N≥2 denoting the size of the base field, the
elliptic curve parameters a, b ∈ Fq defining the elliptic
curve E : y2 = x3 + ax + b, a (finite) base-point G ∈ E
of prime order n ∈ N, and a cofactor h = #E/n ∈ N.
An ECDSA key pair is a pair (d, Q) ∈ Z

×
n × E , where

d was pseudorandomly generated and Q = dG on the
elliptic curve E . In the case of Bitcoin, the elliptic curve
secp256k1 as defined by Certicom Research [6] is fixed.
There, q is a large prime, a = 0, b = 7 and the cofactor is
h = 1. In order to sign a message m ∈ {0, 1}∗ in ECDSA,
Alice selects pseudorandomly a nonzero integer k ∈ Z

×
n

and computes kG. The process is repeated as long as the
x-coordinate r = coordx(kG) mod n = 0. Now, Alice com-
putes s = k−1(h(m) + rd). If s = 0, the process is repeated
using a new ephemeral key k ∈ Z

×
n .

The ECDSA version of the signature scheme byMacKen-
zie and Reiter [20] consists of three different phases for
jointly signing a message m ∈ {0, 1}∗.

1. Initialization. In this phase, Alice and Bob agree on a
common ECDSA public key Q which is used to ver-
ify the cooperatively created signatures. Therefore, Alice
and Bob generate two private key shares dA, dB ∈
Z

×
n pseudorandomly. Afterwards, they exchange the

corresponding public keys QA = dAG and QB =
dBG. Both sides now compute the common public key
as Q = dAQB = dAdBG and Q = dBQA =
dBdAG, respectively. Essentially, they perform a Diffie–
Hellman key exchange and thus hold the same pub-
lic key Q in the end. The full protocol is given in
Fig. 1.
As part of the protocol, Alice and Bob also generate
key pairs (skA, pkA) and (skB, pkB), respectively, for
the Paillier cryptosystem and exchange the public keys.
Furthermore, they generate and exchange public parame-
ters (gA, hA,NA) and (gB, hB,NB), respectively, for the
Fujisaki and Okamoto [10] integer commitment scheme.
We can define the fictitious private key d = dAdB which
is the private key corresponding to the public key Q. Note
that none of the two parties ever hold the full private key
d nor are they able to compute it.

123



216 C. Mann, D. Loebenberger

2. In the second phase, a shared ephemeral secret k =
kAkB ∈ Z

×
n is generated together with the corresponding

public key R = kG ∈ E . Alice and Bob also com-
pute the public keys corresponding to their shares of the
ephemeral secret as RA = kAG and RB = kBG ∈ E .
Furthermore, Alice commits to the two values k−1

A and
k−1
A dA in Z

×
n by sending the corresponding encryptions

under pkA to Bob.
3. In the final phase, Bob uses the two commitments

together with the homomorphic property of the encryp-
tion scheme to finally compute the second part of the
ECDSA signature s, see Fig. 2.

Note that both the secret signature keyd and the ephemeral
key k are constructed from twomultiplicative shares indepen-
dently by the two devices. Even if an attacker has full control
over one of the devices and can learn or even choose one of the
shares, this still does not allow the attacker to recover the full
key, since the other device still chooses its share uniformly
at random. Thus, the resulting product is indistinguishable
from random and therefore unpredictable for the attacker.

3.1 Building blocks

For the protocol to work, it is necessary to prove several
facts to the other party using non-interactive zero-knowledge
proofs, whichwewill denote by zkp, seeBlum, Feldman, and
Micali [4]. Also, the protocol is based on the Paillier cryp-
tosystem, which is an (additively) homomorphic asymmetric
cipher described in Paillier [25]. It works as follows:

1. Generation of the public key pk and the private key sk:

(a) Choose two large primes p and q uniformly at ran-
dom. Set N=pq and λ= lcm (p−1,q − 1).

(b) Select g ∈ ZN2 , s.t. gcd
(
L

(
gλ mod N2

)
,N

) = 1 and
L (u) = u − 1/N. The g does not need to be selected
at random for security and Damgård and Jurik [9]
suggest to always use g = N + 1.

The public key is pk = (N, g) and the private key is
sk = (λ) or equivalently (p,q).

2. Encryption of a plain text m ∈ Mpk with the message
space Mpk = ZN:

(a) Select r ∈ Z
∗
N uniformly at random.

(b) Compute the cipher text c = gm · rN mod N2.

3. Decryption of a cipher text c ∈ Cpk with the cipher text
space Cpk ⊂ Z

∗
N2 :

(a) Compute the decrypted plain text

m = L
(
cλ mod N2

)

L
(
gλ mod N2

) mod N.

The homomorphic property of a cipher gives rise to an oper-
ation

+pk : Cpk × Cpk −→ Cpk,
(Encpk(m1),Encpk(m2)) �−→ Encpk(m1 + m2)

which can be implemented as

+pk : (c1, c2) �−→ c1 · c2 mod N2.

Note that the Paillier cryptoscheme is randomized, and con-
sequently, the output of +pk is only one of many valid
encryptions of m1 + m2. Applying the function +pk repeat-
edly defines the function

×pk : Cpk × N −→ Cpk,
(Encpk(m1),m2) �−→ Encpk(m1 · m2)

.

which in case of the Paillier cryptoscheme can also be imple-
mented directly as

×pk : (c1, k) �−→ (c1)
k mod N2.

Another building block is range bounded integer commit-
ments, which are used inside of the zero-knowledge proofs.
These allow a prover to commit to a secret x ∈ Z and to prove
at the same time that x is inside a certain range as described
in Fujisaki and Okamoto [10].

More precisely, in such an integer commitment, a prover
P commits a certain secret value x to a verifier V , such that it
cannot be changed later, but at the same time does not reveal
the value itself to V . There are two basic requirements for
any commitment scheme:

1. The commitment must not leak any information about
the committed secret.

2. It must be infeasible to find a x ′ 	= x which produces the
same commitment.

Additionally, the Fujisaki and Okamoto scheme allows P
to prove at the same time that the secret value x falls into
a certain range. The two-party ECDSA signature protocol
uses amodified versionwhich is non-interactive and has been
described in Chan, Frankel, and Tsiounis [7], Damgård and
Fujisaki [8], Boudot [5]. It works as follows:

1. The verifier V generates certain public parameters.

(a) V chooses two large Sophie Germain primes p′, q′
uniformly at random and p′ 	= q′. There are prime
numbers p, q, s.t. p = 2p′ + 1, q = 2q′ + 1.

(b) V computes the modulus N = pq.
(c) V chooses a random g ∈ Z

×
N with multiplicative

order p′q′. The unique cyclic subgroup with order
p′q′ of Z×

N is the set of quadratic residues modulo

123



Two-factor authentication for the Bitcoin protocol 217

N. A generator g of it can be easily computed as
g ≡N a2 with a ∈ Z

×
N chosen uniformly at random

and gcd (a − 1,N) = 1 and gcd (a + 1,N) = 1.
This holds for most a, see Schmidt [27].

(d) V chooses χ ∈ Z
∗
p′q′ uniformly at random and com-

putes h = gχ mod N.
(e) V proves to P that h ∈ 〈g〉. This can be achieved by

proving that h is a quadratic residue modulo N.

The public parameters are (g, h,N). All other values
must stay secret.

2. The prover P commits to a secret x ∈ [0,m] and at the
same time proves that x ∈ [−m3,m3

]
.

(a) P chooses r ∈ ZmN uniformly at random.
(b) P computes the commitment z1 = IC (x, r) =

hxgr mod N.
(c) P choosesα ∈ Zm3 , γ ∈ Zm3Nuniformly at random.
(d) P computes z2 = IC (α, γ ) = hαgγ mod N.
(e) P computes e = h (z2) mod m.
(f) P computes s1 = α+xe and s2 = γ +re. These com-

putations are performed in Z. If s1 /∈ [
em,m3 − 1

]
,

P starts over again.

The prover P can now send (z1, e, s1, s2) to the verifier
V as a range bounded commitment to the secret value x .

3. The verifier V checks a range bounded commitment of
the form (z1, c, s1, s2) from the prover P .

(a) V checks, that s1 ∈ [
em,m3 − 1

]
.

(b) V computes e′ = h
(
hs1gs2 z−e

1

)
mod m.

(c) V checks, that e′ = e.

The verifier V is now convinced that x ∈ [−m3,m3
]
.

The randomizer r can intentionally exceed p′q′, which is
the order of g. This ensures that the commitment z is sta-
tistically close to uniform in 〈g〉 and consequently that this
commitment scheme has the hiding property, see Damgård
and Fujisaki [8].

3.2 The protocol

In Fig. 2, the full two-party ECDSA signature protocol
adapted from MacKenzie and Reiter [20] is given. The
protocol uses two zero-knowledge proofs to ensure correct
execution of the protocol. The first proof πA, constructed
by Alice, proves to Bob the existence of values x, y ∈[−n3, n3

]
, such that x R = RB, (y/x)G = QA and

DecskA (αA) ≡n x,

DecskA (β) ≡n y.

In other words, Alice proves to Bob that she has properly
executed the previous steps in the protocol. The second zero-
knowledge proof πB is used on the other side by Bob to
prove to Alice that he has also executed the necessary steps
in the protocol and that the operations he performed fit to
the operations Alice performed. Specifically, he proves that
there are values x, y ∈ [−n3, n3

]
, z ∈ [−n7, n7

]
, such that

Alice (dA,QA, skA) Bob (dB,QB, skB)

kA
R←− Z

×
n

zA ←− k−1
A

αA ←− EncpkA
(zA)

β ←− EncpkA
(dAzA)

m,αA,β−−−−−−→ check αA, β ∈ CpkA

kB
R←− Z

×
n

check RB G
RB←−−−−−− RB ←− kBG

R ←− kARB

πA ←− zkpA(RB , R, αA, β)
R, πA−−−−−−→ check R G , πA

r ←− coordx(R) mod n

zB ←− k−1
B

c
R←− Zn5

σ ←− αA ×pkA
h (m) ×pkA

zB

+pkA
β ×pkA

r ×pkA
dBzB

+pkA
EncpkA

(c · n)
αB ←− EncpkB

(zB)
check σ ∈ CpkA

, check αB ∈ CpkB
, πB

σ,αB,πB←−−−−−− πB ←− zkpB(m, r, RB , αA, αB , β, σ)
s ←− DecskA

(σ) mod n

r ←− coordx(R) mod n
publish (r, s)

Fig. 2 Generating a two-party ECDSA signature using the modified MacKenzie and Reiter [20] protocol

123



218 C. Mann, D. Loebenberger

x RB = G, (y/x)G = QB and

DecskB (αB) ≡n x,

DecskA (σ ) = DecskA
(((

αA ×pkA h (m)
) ×pkA x

)

+pkA

((
β ×pkA r

) ×pkA y
)) + zn.

It seems counterintuitive that Bob can argue about decryp-
tions of cipher textswhichwere encryptedwithAlice’s public
key pkA. One would expect that this requires knowledge of
Alice’s secret key skA. But Bob is arguing about homomor-
phic operations with the cipher texts, which are deterministic
for him, as he also knows the randomization term zn. In the
zero-knowledge proof, he can encode the equality of the two
decryptions as equality of two related cipher texts, which
Bob can prove without any problems.

We do not present the zero-knowledge proofs πA and πB

as these can be obtained by straightforward translation of
the corresponding proofs in MacKenzie and Reiter [20]. The
Fujisaki and Okamoto integer commitment scheme appears
as part of the zero-knowledge proofs to implement the afore-
mentioned range bounds for x, y, z.

We finish with an illustration of the correctness of the
modified two-party signature scheme:

s =DecskA (σ )

=DecskA
(((

αA ×pkA h (m)
) ×pkA zB

)

+pkA

((
β ×pkA r

) ×pkA dBzB
)

+pkA EncpkA (c · n)
)

= zAh (m) zB + dAzArdBzB + c · n
= k−1

A k−1
B (h (m) + rd)

= k−1 (h (m) + rd)

Thus, the modified two-party MacKenzie and Reiter signa-
ture is indeed a valid ECDSA signature under the private
key d = dAdB ∈ Z

×
n and the shared ephemeral secret

k = kAkB ∈ Z
×
n .

3.3 Attack scenarios and counter measures

In MacKenzie and Reiter [20], the authors provide a proof of
soundness for their protocol, but no rationale for their design
choices. In this section, we present several attack scenarios
which we designed to illustrate the purpose of the different
parts of the protocol. It is quite obvious that Alice is in a
much stronger position than Bob in this protocol as she con-
trols the decryption of σ , which contains Bob’s secrets, and
also the publication of the resulting ECDSA signature. Bob
on the other hand is in a rather vulnerable position as he must
multiply his secret values with some cipher texts over which

he has no control. Consequently, Bob needs strong guaran-
tees that the values encrypted in the cipher texts have been
constructed as required by the protocol. These guarantees are
given to Bob with the zero-knowledge proof πA.

3.3.1 Zero-knowledge proofs

We now illustrate what happens when the zero-knowledge
proof πA is missing completely. In this case, Alice is free to
choose any αA, β ∈ MpkA . Alice can now sign themalicious
messagem′ with the help of Bobwho thinks that he is signing
the benign message m. Alice proceeds as follows:

1. Alice follows the first step of protocol, but computes αA

differently as αA = zAh (m)−1 h
(
m′) mod n.

2. Alice and Bob follow the protocol, but Bob does not ver-
ify the missing proof πA in the second to last step.

3. In the last step, Alice computes the ECDSA signature
(r, s) as described in the protocol.

The signature Alice just computed is a valid signature for
the message m′ instead of m as one can see by a simple
calculation. Alice has thus succeeded in creating a signature
for the malicious message m′, while Bob is thinking that he
signed the benign message m.

For the zero-knowledge proof πB , one might notice that
Bob sends it together with the encrypted signature σ to
Alice. Alice then verifies πB and afterward publishes the
decrypted signature (r, s) without any further verification.
This is quite counterintuitive as one would expect that Alice
just verifies the decrypted signature (r, s) according to the
ECDSA standard before publishing it instead of relying on
the zero-knowledge proof πB . Unfortunately, this approach
might cause an information leak onAlice’s side. As Bob is no
longer restricted by the zero-knowledge proof, he can send
arbitrary values to Alice who will decrypt them. Alice must
then abort the protocol if the decrypted signature is invalid.
In the end, Alice might leak a single bit of information based
on the fact whether she aborted the protocol or not. With the
zero-knowledge proof in place, Bob only learns that Alice
noticed that the zero-knowledge proof is not valid and that
he already knows.

3.3.2 Randomization of σ

Another interesting element of the protocol is the random-
ization of σ which is performed by Bob in the second to
last step of the protocol. Bob computes σ as in the pro-
tocol with a randomizing term EncpkA (c · n) where c ∈
Zn5 is chosen uniformly at random. Alice later computes
s = DecskA (σ ) mod n, but she can also see the unreduced
decryption of σ . Without the randomization, the unreduced
decryption leaks information about Bob’s secret values.

123



Two-factor authentication for the Bitcoin protocol 219

To work properly, the randomization requires the range
proofs for the clear texts x, y of αA, β in the zero-knowledge
proof πA. These range proofs assure that x, y ∈ [−n3, n3

]
.

When these range proofs are missing and the message space
of the Paillier cryptoscheme is large enough, which is the
case when using a 4096-bit RSA modulus N, a malicious
Alice can easily recover Bob’s secret key as follows:

1. Alice executes the first step of the protocol, but computes
αA, β as αA = zA + zAn6 and β = dAzA + dAzAn10.

2. Alice executes the protocol together with Bob until the
last step.

3. In the last step, Alice receives σ and computes

s′ =DecskA (σ )

= zAh (m) zB + zAn
6h (m) zB + dAzArdBzB

+ dAzAn
10rdBzB + c · n

4. Alice computes

s′′ = s′div n6 = zAh (m) zB + dAzAn
4rdBzB

5. Alice retrieves Bob’s ephemeral secret zB by computing

(
s′′ mod n4

)
z−1
A h (m)−1

=
((

zAh (m) zB + dAzAn
4rdB

)
mod n4

)
z−1
A h (m)−1

= zAh (m) zBz
−1
A h (m)−1 ≡n zB

6. Finally, Alice retrievesBob’s secret key share dB by com-
puting

(
s′′div n4

)
(zAzBrdA)−1

=
((

zAh (m) zB + dAzAn
4rdB

)
div n4

)
(zAzBrdA)−1

= dAzArdB (zAzBrdA)−1 ≡n dB

Alice now knows all the inverted values, as she retrieved
zB in the step before, r is public, and zA, dA are her own
secrets.

3.3.3 Experimental verification

Both attack scenarios, the one resulting from a missing zero-
knowledge proof πA and the one resulting from a missing
randomization of σ , have been verified in experiments with
our prototypic implementation of the two-party ECDSA
protocol. We discovered that in case of the missing random-
ization of σ even a small number of protocol runs (less than
10) will leak the magnitude of Bob’s secret key share, such
that it can be computed quite precisely by a malicious Alice.

Both attack scenarios are now part of the prototype’s auto-
mated test suite.

3.4 Security analysis

In the following, we discuss the security of both the two-
party ECDSA protocol adapted from MacKenzie and Reiter
[20] and our pairing protocol.

3.4.1 Security of the MacKenzie and Reiter protocol

In MacKenzie and Reiter [20], the authors give a detailed
security analysis for their protocol. We will only summarize
their results and provide a list of the assumptions underwhich
the protocol is secure.

MacKenzie and Reiter have proven that their two-party
DSA protocol is EUF-CMA (existential unforgeability under
chosenmessage attack) secure against anAlice-compromising
or a Bob-compromising attacker under certain assumptions.
This means that even if an attacker completely compromises
one party and gets access to all its private secret, the success
probability to forge a signature is still negligible. To achieve
this, both parties must independently check that the message
to sign is benign. The assumptions for EUF-CMA security
of the two-party ECDSA protocol are the following:

– ECDSA is EUF-CMA secure. This assumption is obvi-
ous. If ECDSA is not EUF-CMA secure, an attacker
can simply use the existential forgery attack for ECDSA
directly on the common public key Q and there is no need
anymore to attack the two-party ECDSA protocol itself.

– The Paillier cryptosystem is semantically secure. As
proven in Paillier [25], this is the case if and only if the
decisional composite residuosity assumption (DCRA)
holds. In short, DCRA states that no polynomial time
distinguisher exists for N-th residues modulo N2 with
N = pq and p,q prime. Additionally, it is proven that
the DCRA does not hold if the RSA assumption does not
hold. While this shows some connection between DCRA
and RSA assumption, it does not provide us with a secu-
rity reduction to the RSA assumption.

– The proofs πA and πB are sound. It was proven by
MacKenzie and Reiter that the soundness of the proofs
πA and πB can be reduced to the strong RSA assumption
in the DSA case. One can justify the application of their
results to the ECDSA case. A further soundness proof for
the Fujisaki and Okamoto integer commitment scheme is
not required. Note that MacKenzie and Reiter reuse the
commitment scheme, but the soundness proof is part of
the soundness proof of πA and πB .

– The proofs πA and πB are statistically zero-knowledge.
MacKenzie and Reiter have proven this for DSA, and the
applicability of their results in the ECDSA case can be

123



220 C. Mann, D. Loebenberger

justified. The statistical zero-knowledge of πA and πB

does not require any further assumptions.
– The initialization has been correctly performed. All the
parameters in the protocol must be correctly generated
as required. This can be done by executing the pairing
protocol in Fig. 1. We discuss the security of the pairing
protocol separately.

In conclusion, the two-party ECDSA signature protocol is
EUF-CMAsecure under the following assumptions: ECDSA
is EUF-CMA secure, the strong RSA assumption holds, and
the decisional composite residuosity assumption (DCRA)
holds. Furthermore, the random oracle model is used when
hash functions appear, and consequently, the security proofs
only hold in the random oracle model.

3.4.2 Security of the pairing protocol

During the pairing protocol, each party should prove to the
other party that their parameters have been created accord-
ing to the setup instructions. Three different types of public
parameters occur during the pairing:

– The points QA and QB which correspond to the private
key shares dA and dB , respectively.

– The Paillier public keys pkA and pkB which correspond
to the secret keys skA and skB , respectively.

– The parameters (gA, hA,NA) and (gB, hB,NB) for the
Fujisaki and Okamoto commitment scheme.

MacKenzie and Reiter provide a draft for a pairing proto-
col in an appendix of their article, but they mostly focus
on proofs of knowledge for the private key shares for DSA
and also for the private keys for the Paillier cryptosystem.
Proving the knowledge of a private key is usually done in
public key infrastructures when applying for a certificate for
a certain public key. Otherwise, a user could bind an arbi-
trary public key to his identity and signatures which verify
under this public key would be attributed to this user even
though he has not created them. In the context of Bitcoin,
the proofs of knowledge are unnecessary as the key pairs are
exclusively used to identify the owner of a certain Bitcoin
address. If Alice or Bob send a point QA or QB for which
they do not know the private key share, the Bitcoin address
will be inaccessible, but no other consequences will occur.
The availability problem can only be solved by introducing
a third party as any party can also just forget its shares (see
Sect. 6.4).

Consequently, we designed our own pairing protocol (see
Fig. 1) which does not contain the unnecessary proofs of
knowledge but does consider the integer commitment by
Fujisaki and Okamoto which does not appear at all in the
draft by MacKenzie and Reiter.

In the following, we discuss the different parts of our
pairing protocol. Regarding the points QA and QB , which
are the public keys corresponding to the private key shares
dA and dB , we only need to ensure during the pairing that
QA, QB ∈ 〈G〉. As the used elliptic curve secp256k1 has
a cofactor of 1, this can easily be done by just verifying that
QA and QB are on the elliptic curve.

For the Paillier cryptosystem, proofs of the correct gen-
eration of the key pairs and also proofs of knowledge of
the private keys are not required. Bob’s Paillier key pair
(skB, pkB) is only used for committing one of Bob’s secrets
when constructing the zero-knowledge proof πB . Alice’s key
pair (skA, pkA) on the other hand is also used by Bob as he
multiplies his own secrets into the cipher texts encryptedwith
Alice’s public key. Bob protects his secrets by randomizing
σ which works no matter how broken Alice’s key pair is
as the randomization is done by multiplying the rest of σ

with an exponentiation of a random element from Z
∗
NA

(the
homomorphic addition becomes amultiplication). In the end,
each party only endangers its own secrets when incorrectly
generating its Paillier key pair.

As mentioned before, the Fujisaki and Okamoto integer
commitment scheme is much more delicate. Its parameters
must indeed be constructed as required in the setup pro-
cedure. The RSA moduli NA and NB must especially be
formed from two safe primes, gA and gB must be quadratic
residues modulo NA and NB , respectively, and hA ∈ 〈gA〉
and hB ∈ 〈gB〉. Otherwise, the integer commitment scheme
does not hide the committed secrets and a malicious verifier
can mount a quite efficient attack as described by Kunz-
Jacques, Martinet, Poupard, and Stern [17]. Unfortunately
and mentioned by Kunz-Jacques et al., achieving provable
security is really hard as the construction ofNA andNB from
safe primes must be proven and no zero-knowledge proof
with an acceptable execution time exists for this problem.
Consequently, we decided to only apply two attack mitiga-
tions which are suggested by Kunz-Jacques et al.:

– Check that gA, hA and gB, hB are quadratic residues
modulo NA and NB , respectively. This implies that
hA ∈ 〈gA〉 as the RSA modulus NA is formed by the
two safe primes pA and qA with pA = 2p′

A + 1 and
qA = 2q′

A + 1 and p′
A and q′

A prime. Hence, gA is a gen-
erator of orderp′

Aq
′
A of the subgroupof quadratic residues

modulo NA. We can prove hA ∈ 〈gA〉 by showing that
hA is a quadratic residue modulo NA. The same applies
to gB, hB .

– Check that NA and NB are not prime.

Because of these counter measures, the malicious verifier
now needs several hundred protocol runs to recover a single
bit of the prover’s secret and furthermore a different set of
parameters for each bit. Consequently, the described attack
becomes infeasible in the setting of our prototype as the para-

123



Two-factor authentication for the Bitcoin protocol 221

Table 1 Required parameter sizes for ECDSA as used in Bitcoin. Para-
meter sizes chosen for the prototype: 2560 bit for NA and NB

n NA NB

ANSSI [1] 256 2048 2048

MacKenzie and Reiter [20] 256 >2304 >1536

meters are fixed in the pairing protocol and each protocol run
must be triggered manually by the user on both devices.

3.4.3 Parameter choices for Bitcoin

In Table 1, the parameters sizes required for the two-factor
Bitcoin wallet are given. The parameter sizes were chosen
based on the established recommendations for key sizes.
ECDSA with the curve secp256k1, as used in the Bit-
coin protocol, uses 256-bit keys. This corresponds to 128
bits of security. To achieve 128 bits of security with RSA, a
2048-bit modulus is required according to ANSSI [1]. Note
that others are more pessimistic: NIST [2] recommends at
least 3072-bit moduli. On the other hand, there is also an
implicit lower bound for the moduli sizes by the protocol
itself, since some of the above- mentioned arguments only
work when the used parameter sizes are large enough. We
decided to use 2560-bit RSA moduli for the Paillier cryp-
tosystem (the smallest multiple of 256 above 2304) which is
a good compromise between the different recommendations
and also offers acceptable performance on the smart phone.

It should be stressed that we are only talking about short-
term security. The Paillier cryptosystem is only used to
encrypt private keys and ephemeral secrets for the ECDSA
signature scheme, which uses 256-bit keys. The security can
be easily increased later to the level provided by 256-bit
ECDSA by increasing the RSA modulo size beyond 3072
bit and transferring all Bitcoins to new addresses with new
ECDSA key pairs, which were not yet used in the two-party
ECDSA signature protocol. Increasing the level of secu-
rity any further is not possible as the used elliptic curve
secp256k1 is fixed in the Bitcoin protocol.

4 Two-factor Bitcoin wallets

Asmentioned in Lipovsky [19], a first Bitcoin stealing online
banking Trojan has already been discovered in the wild.
WhenBitcoin is used by awider public, attackersmight come
up with more sophisticated attacks inspired by the attacks on
European online banking systems. Therefore, it makes sense
to analyze such attacks and to consider the existing counter
measures when designing a Bitcoin wallet.

In Sancho, Hacquebord, and Link [26], a common attack
on online banking is described. First, the user’s computer is

compromised by a Trojan, which modifies the victim’s DNS
resolver and installs an additional attacker controlled certifi-
cation authority on the system. Consequently, the Trojan can
now become a man-in-the-middle between the user and the
bank. After the user successfully logged in, the attacker dis-
plays a warning to trick the user into installing a malicious
app on his phone, which finally allows the attacker to inter-
cept incoming session tokens and transaction numbers. It is
important to note that the phone is compromised by tricking
the user into installing the spyware app and not by exploiting
vulnerabilities in the phone’s software.

In Fig. 3, the dataflow when signing a transaction is
displayed. To complicate such attacks as far as possible,
state-of-the-art online banking systems offer both two-factor
authentication and verification over a separate channel. In the
commonly used SMS TAN system, the user creates a bank
transaction on his computer and then needs to enter a TAN to
confirm the transaction. The user receives this TAN via SMS
from his bank. The SMS does not only contain the TAN but
also the transaction details again and the user can verify them.
A compromised computer cannot modify the information in
the SMS which allows the user to detect any modifications
done to the transaction by an online banking Trojan.

With our Bitcoin wallet, we also provide both two-factor
authentication and verification over a separate channel to Bit-
coin users. We thus offer users a similar level of security for
Bitcoin as they currently have in online banking.

As mentioned before, a Bitcoin address is directly derived
from an ECDSA public key and anyone having access to the
corresponding private key can spend all Bitcoins stored in
this address. Therefore, the only secure way to implement
two-factor authentication is to share the private key and to
create transaction signatures with a two-party signature pro-
tocol. Any other solution would require to store the private
key at one place. This place then becomes a single point of
failure. Several Bitcoin service providers offer SMS TAN
or one-time-password two-factor authentication, but in these
cases the service provider stores the private key and becomes
a single point of failure. Bitcoin service providers are hardly
regulated at the moment, and the when considering the bank-
ruptcy of Mt. Gox, it is clear that leaving the security to the
service provider is too risky.

4.1 Connecting the two wallets

We currently assume that both, the desktop and the phone
wallet, are located in the same, most likely wireless, local
area network. Over the IP connection, the two wallets then
establish a TLS channel in which they exchange messages
using the Apache Avro serialization library. Currently, we
only perform a basic TLS handshake in which the desktop
wallet acts as the server. The desktop wallet generates the
key pair and the certificate for the TLS connection ad hoc

123



222 C. Mann, D. Loebenberger

Fig. 3 Signing a Bitcoin transaction with our prototype of a two-factor Bitcoin wallet

and embeds the public key in a QR code which the phone
wallet then scans. With this approach, we prevent man-in-
the-middle attacks as the phone receives the desktop’s public
key via a secure side channel and checks it when establishing
the TLS connection. Naturally, one would tend to use a pre-
shared key as the QR code provides a secure side channel.
Unfortunately, the TLS stacks of both Java and Android do
not support TLS with a pre-shared key. To further reduce the
attack surface and also to achieve amore rigorous pairing, the
two wallets could be connected via Bluetooth. As Bluetooth
only allows connections between previously paired devices,
network-based attacks would become much harder. Further-
more, the comparison-based pairing of Bluetooth has been
proven secure in Lindell [18]. This pairing mode can be used
as both devices have screens and the possibility for user input.
On the other hand, Bluetooth only pairs the two devices but
not directly the two applications. If the Bluetooth connec-
tion is used to establish an IP connection, a local attacker
might still be able to perform a man-in-the-middle attack.
In the end, we decided to not use Bluetooth for our proto-
type as the configuration is nontrivial and platform specific
and more importantly cannot not be driven by the wallet
application. The impact on the usability would have been too
high.

Before our two-factor authenticated wallet can be used,
the desktop wallet and the phone wallet must be paired. Dur-

ing the pairing, the two wallets agree on a Bitcoin address
under shared control. The user then needs both devices to
spend any Bitcoins from this address. For the pairing, the two
wallets execute the protocol depicted in Fig. 1 over a TLS
connection which has been established as described before.
In this protocol, the two wallets agree on a common ECDSA
public key Q. From this public key, both wallets indepen-
dently derive the user’s Bitcoin address and display it to the
user. The user must then check that both wallets show the
same Bitcoin address to be sure that the pairing was suc-
cessful and that the Bitcoin address is really under shared
control. Without this check, a malicious wallet could trick
the user into using a Bitcoin address which it completely
controls.

4.2 Creating two-factor authenticated transactions

For our Bitcoin wallet, we use the modified version of the
two-party signature protocol by MacKenzie and Reiter [20]
as described in Sect. 3. This allows us to share the private key
belonging to a Bitcoin address between two different devices
and transactions can be signed without ever recombining the
private key.

Our two-factor wallet consists of a desktop wallet in form
of a Java graphical user interface, and a phone counterpart
that is realized as an Android application. Only the desktop

123



Two-factor authentication for the Bitcoin protocol 223

Fig. 4 The desktop GUI (left) and the smart phone GUI (right) after completing a transaction

application is a fullBitcoinwallet,which stores andprocesses
all incoming transactions relevant to the user. Consequently,
only the desktop wallet can display the transaction history
and the current balance. The phone wallet is only required
when signing a new transaction. It does not need to connect to
the Bitcoin network at all, which makes the implementation
much more lightweight. For the full source code, see Mann
[21].

When a user wants to send Bitcoins to another person, he
starts by creating a Bitcoin transaction with the desktop wal-
let 1©. When the transaction is ready for signing, the desktop
wallet displays a QR code which contains the IP address of
the desktop wallet and the public key for a TLS connection.
The desktop ad hoc generates the key pair and a correspond-
ing server certificate for the TLS connection. Note that the
TLS connection has only been added as an additional line of
defense and for privacy reasons. The protocol byMacKenzie
and Reiter is also secure when the phone and the desktop
communicate in clear text.

The user now opens the smart phone wallet and scans
the QR code with the phone’s camera 2©. The smart phone
wallet connects to the desktop wallet via the IP address
specified in the QR code. The phone wallet establishes a
TLS connection with the desktop wallet 3©. During the
connection setup, the phone wallet verifies that the pub-
lic key from the desktop’s certificate matches the public
key in the QR code. This prevents any man-in-the-middle
attacks.

Over the secured connection, the phone wallet requests
the transaction to sign from the desktop wallet 4© and after

receiving it from the desktop 5© displays it on the phone’s
screen 6©. The user now has the possibility to review the
transaction again to make sure that it has not been modified
by a compromised desktop wallet.

When the user confirms the transaction on the mobile, the
phone wallet asks the desktop wallet to start the two-party
signature protocol 7©. The two wallets then exchange the
messages required for the two-party signature protocol over
the TLS connection 8©.

At the end, the desktop wallet holds the correct ECDSA
signature for the transaction. It can now embed the signa-
ture into the transaction 9©. Afterward, the desktop wallet
publishes the now correctly signed transaction to the Bitcoin
network 10©. Figure 4 shows the desktop and the phone wallet
after successfully completing the two-party ECDSAprotocol
in 8©.

Note that there is no special protection for the key shares
stored on the desktop, the security relies on the design of
the MacKenzie and Reiter protocol. An attacker who has
control over the desktop (e.g., a banking Trojan) can obtain
the desktop’s key shares. However, these shares areworthless
without the corresponding shares on the phone.

5 Implementation aspects and runtime analysis

In the Bitcoin protocol, the transaction fee (which is payed to
theminer) is the difference between the sumofBitcoins in the
transaction inputs and the sum of Bitcoins in the transaction
outputs. The inputs actually only reference the outputs of

123



224 C. Mann, D. Loebenberger

preceding transactions. Consequently, to correctly compute
the fee, one needs access to the preceding transactions. In our
case, the phone must compute the overpay, which is the fee,
itself. Otherwise, the desktop can create a transaction which
only contains benign outputs, but spends far too large inputs.
The result would be a large fee for the miner and a financial
damage for the user.

Implementing full Bitcoin network access is possible as
wallet software exists forAndroid, butwouldmake the phone
wallet much more complex. Instead, in our solution, the
phone does not only request the transaction to sign from the
desktop, but also all transactions that are referenced in the
inputs of the transaction to sign. The phone verifies that the
hash values of the provided transactions fit the hash values
in the transaction inputs. Now the phone can be sure that it
has the correct transactions and can use the information from
these to compute the overpay in the transaction to sign.

In general, protocols that use zero-knowledge proofs tend
to be quite slow. Therefore, we have benchmarked two
different prototypes: one prototype using Bitcoin’s built-in
threshold signature support as described in Sect. 2 and a sec-
ond one using the two-party signature protocol from Sect. 3.
The benchmarks were performed on a core-i5-2520M note-
book running Ubuntu 14.04 with OpenJDK, and a Nexus 4
smart phone running Android 4.4.4.

During the benchmark, the execution time of each pro-
totype has been measured for transactions which have one,
two, or three inputs. The execution time measured is the time
taken by a complete protocol run between the computer and
the phone. The results in Table 2 show that the prototype
using the two-party signature protocol achieves acceptable
runtime, even though Bitcoin’s built-in functionality is con-
siderably faster.

On the other hand, when using online banking with SMS
TAN, the user has to wait at least several seconds for the
SMS. Our execution time is therefore well within the user’s
expectations.

As mentioned in Sect. 2, Bitcoin’s built-in threshold
signature support has the disadvantage of increasing the
transaction size significantly. We have verified this by
recording the size of the resulting transaction during a bench-
mark. The result in Table 3 shows that the transaction size
increases by at least 40% when using Bitcoin’s threshold
signatures.

It should be noted that a transaction with only three inputs
is already larger than 1000bytes. Furthermore, larger transac-

Table 2 Protocol runtime

1 input 2 inputs 3 inputs

Section 2 0.22s 0.18s 0.25s

Section 3 3.8s 7.4s 11.1s

Table 3 Final size of signed transaction

1 input 2 inputs 3 inputs

Section 2 370 bytes 696 bytes 1022 bytes

Section 3 257 bytes 438 bytes 619 bytes

tions require a larger transaction fee and have a lower priority
to be added to a new block. The priority can be increased by
adding an additional fee. Consequently, the solution using
Bitcoin’s built-in threshold signature support comes with
financial costs for the user. In contrast, our solution is trans-
parent to the Bitcoin network and does not influence any
fees.

6 Future work

As our implementation is only a prototype, there is still some
work to do. Besides a thorough code review, we identified the
following aspects for future work:

6.1 Execution time

Our prototype already achieves an acceptable execution time
when signing a Bitcoin transaction, but there is still some
place for improvements. Analyzing the prototype carefully,
we found that most of the execution time is used by mod-
ular arithmetic on large integers. To reduce it, one could
employ more efficient methods for integer multiplication,
see, for example, Karatsuba and Ofman [15] or Schönhage
and Strassen [28].

6.2 Random numbers

Several versions of Android were shipped with a broken
default pseudorandom generator that has not been correctly
seeded on start up. This allowed an attacker to recover its
state, see Kim, Han, and Lee [16], and lead to Android Bit-
coin wallets which generated predictable private keys. In a
future version of ourwallet, this should be taken into account.

6.3 Integer commitment

The zero-knowledge proofs make use of the integer commit-
ment scheme by Fujisaki and Okamoto [10], which requires
a RSAmodulus to consist of two safe primes.We have imple-
mented the prime sieve idea from Wiener [30] and achieved
a great speedup compared to our first trivial implementa-
tion, but on the phone the generation of a safe prime with
2048 bit still takes several minutes. In Damgård and Fujisaki
[8], a generalization of the commitment scheme is presented,

123



Two-factor authentication for the Bitcoin protocol 225

where the requirement of safe primes has been relaxed to
strong primes, which can be generated more easily, see von
zur Gathen and Shparlinski [29]. It would be nice to imple-
ment this.

6.4 Key derivation, backup and halting attackers

ABitcoin address is directly derived from the user’s ECDSA
public key.Thus, an attacker only needs to get control over the
corresponding private key to spend all Bitcoins in a certain
address. At the same time,when the user loses the private key,
all Bitcoins in the corresponding address are lost forever.
This is a somewhat special case as in standard public key
infrastructures lost signature keys can easily be replaced by
creating a newkey pair and then issuing a new certificate. The
design of Bitcoin poses the special challenge on users to store
their private keys securely and at the same time ensuring the
availability with the help of backups. In the context of two-
factor authentication, the situation is even more involved,
since both shares, the desktop and the phone share, need to
be stored separately in a backup. This is an issue that has to
be addressed in the future.

Furthermore, it is desirable to use a new address and con-
sequently a new key pair for each transaction to provide a
higher level of privacy to the user. The standard Bitcoin client
just generates a new key pair for each transaction and stores
it in the user’s wallet. Therefore, the wallet file can easily
contain hundreds of key pairs. The whole wallet file must
now be backed up while being kept secret at the same time.

A solution to this problem is key derivation as described
in Wuille [31]. When using such a scheme, all key pairs and
consequently all Bitcoin addresses are derived from a single
random seedwith the help of a secure key derivation function
usingHMAC-SHA512.Hence, the user only needs to backup
the seed securely, which is short enough to be, for example,
written down and put into a safe.

A consequence of using our two-factor authentication,
which requires two devices to sign a transaction, is that data
loss or a halting attack on a single device makes the Bitcoins
in the address under shared control inaccessible. Hence, it
is highly reasonable to offer support for key derivation by
implementing a modified version of the scheme described in
Wuille [31]. This would allow a user to easily backup his
two-factor authenticated wallet by just securely storing the
two seeds used by the two devices, for examplewith the piece
of paper in a safe method.

6.5 Data protection

Currently, both wallets serialize the secrets for the signa-
ture protocol and then write them to a file. We have only
implemented features related to the protocol, but additional

mechanisms like password protection of the wallets and
encryption of stored data are not realized, yet.

7 Conclusion

We have shown that one can use the two-party ECDSA sig-
nature protocol adapted from MacKenzie and Reiter [20] to
realize two-factor authentication for a Bitcoin wallet. Fur-
thermore, we have implemented a prototypic Bitcoin wallet
using this protocol. As far aswe know,wewere able to imple-
ment the first fully functional prototype which is compatible
with and completely transparent to the Bitcoin production
network. Specifically, transactions created by our two-factor
wallet are indistinguishable from standard Bitcoin transac-
tions. This transparency is a unique feature that has not
been available before and allows users to combine two-factor
authenticationwithCoinJoin,which is a very promising solu-
tion for Bitcoin’s privacy problem, without experiencing a
degraded privacy.

Acknowledgements We would like to thank Michael Nüsken for
various useful comments andMikeHearn for greatly improving the per-
formance of afirst version of the prototype by suggesting a bouncy castle
versionwith optimized arithmetic on the curve secp256k1. Addition-
ally, we thank the anonymous reviewers for their helpful remarks. This
work was funded by the B-IT foundation and the state of North Rhine-
Westphalia.

References

1. ANSSI. Mécanismes cryptographiques–Règles et recommanda-
tions concernant le choix et le dimensionnement des mécanismes
cryptographiques, Rev. 2.03. Agence nationale de la sécurité des
systèmes d’information (2014). http://www.ssi.gouv.fr/uploads/
2015/01/RGS_v-2-0_B1.pdf

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST Special
Publication 800-57—Recommendation for Key Management-Part
1: General (Revision 3). National Institute of Standards and Tech-
nology (2012). http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57_part1_rev3_general.pdf

3. Bitpay Inc. Copay: A secure Bitcoin wallet for friends and compa-
nies (2014). www.copay.io

4. Blum, M., Feldman, P., Micali, S.: Proving security against chosen
cyphertext attacks. In: Advances in Cryptology: Proceedings of
CRYPTO 1988. Santa Barbara, CA, number 403 in Lecture Notes
in Computer Science, pp. 256–268. Springer (1988)

5. Boudot, F.: Efficient proofs that a committed number lies in an
interval. In: Preneel B (ed) Advances in Cryptology-EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pp.
431–444. Springer, Berlin, Heidelberg (2000). ISBN 978-3-540-
67517-4 (Print) 978-3-540-45539-4 (Online). doi:10.1007/3-540-
45539-6_31

6. Certicom Research. Sec 2: Recommended Elliptic Curve Domain
Parameters. Technical report, Certicom Corporation (2000)

7. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come-Easy go divisible
cash. In: Nyberg K (ed) Advances in Cryptology—EUROCRYPT
98, volume 1403 of Lecture Notes in Computer Science, pp. 561–
575. Springer, Berlin, Heidelberg (1998). ISBN 978-3-540-64518-
4 (Print) 978-3-540-69795-4 (Online). doi:10.1007/BFb0054154

123

http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
www.copay.io
http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/BFb0054154


226 C. Mann, D. Loebenberger

8. Damgård, I., Fujisaki, E.: A statistically-hiding integer commit-
ment scheme based on groups with Hidden order. In: Zheng Y
(eds) Advances in Cryptology—ASIACRYPT 2002, volume 2501
of Lecture Notes in Computer Science, pp. 125–142. Springer,
Berlin, Heidelberg (2002). ISBN 978-3-540-00171-3 (Print) 978-
3-540-36178-7 (Online). doi:10.1007/3-540-36178-2_8

9. Damgård, I., Jurik, M.: A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In: Kim
K (eds) Public Key Cryptography—PKC 2001, volume 1992 of
LectureNotes in Computer Science, pp. 119–136. Springer, Berlin,
Heidelberg (2001). ISBN 978-3-540-41658-6 (Print) 978-3-540-
44586-9 (Online). doi:10.1007/3-540-44586-2_9

10. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols
to prove modular polynomial relations. In: Kaliski J. B. S. (ed)
Advances in Cryptology: Proceedings of CRYPTO 1997, Santa
Barbara, CA, volume 1294 of Lecture Notes in Computer Science,
pp. 16–30. Springer, Berlin, Heidelberg (1997). ISBN 3-540-
63384-7. doi:10.1007/BFb0052225

11. Goldfeder, S., Bonneau, J., Felten, E. W., Kroll, J. A.,
Narayanan, A.: Securing Bitcoin wallets via threshold signatures.
preprint, March 2014. http://www.cs.princeton.edu/~stevenag/
bitcoin_threshold_signatures.pdf

12. Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J. A.
Felten, E. W., Narayanan, A.: Securing Bitcoin wallets via a new
DSA/ECDSA threshold signature scheme. preprint, March 2015.
http://www.cs.princeton.edu/~stevenag/threshold_sigs.pdf

13. Hearn, M.: Update on mobile 2-factor wallets. Bitcoin Mailing list
at http://sourceforge.net (2014). http://sourceforge.net/p/bitcoin/
mailman/message/33017648/

14. Ibrahim, M., Ali, I., Ibrahim, I., El-sawi, A.: A robust threshold
elliptic curve digital signature providing a new verifiable secret
sharing scheme. In: IEEE Computer Society MWCAS03, pp. 276
– 280 Vol. 1. Cairo, Egypt, 27-30 December 2003. ISBN 0-7803-
8294-3. doi:10.1109/MWSCAS.2003.1562272

15. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on
automata. Soviet Physics–Doklady, 7(7), 595–596 (1963). trans-
lated from Doklady Akademii Nauk SSSR, 145(2), 293–294 July
(1962)

16. Kim, S. H., Han, D., Lee, D. H.: Predictability of Android
OpenSSL’s pseudo random number generator. In: Proceedings of
the 2013 ACM SIGSAC conference on Computer and communi-
cations security, pp. 659–668. New York, NY, USA (2013). ACM.
ISBN 978-1-4503-2477-9. doi:10.1145/2508859.2516706

17. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern J.: Cryptanaly-
sis of an efficient proof of knowledge of discrete logarithm. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T (eds.) Public Key
Cryptography—PKC2006, volume 3958 of LectureNotes inCom-
puter Science, pp. 27–43. Springer, Berlin, Heidelberg (2006).
ISBN 978-3-540-33851-2 (Print) 978-3-540-33852-9 (Online).
doi:10.1007/11745853_3

18. Lindell, Y.: Comparison-based key exchange and the security of the
numeric comparison mode in Bluetooth v2.1. In: Fischlin M. (ed.)
Topics in Cryptology—CT-RSA 2009, volume 5473 of Lecture
Notes in Computer Science, pp. 66–83. Springer, Berlin, Heidel-
berg (2009). ISBN 978-3-642-00861-0 (Print) 978-3-642-00862-7
(Online). doi:10.1007/978-3-642-00862-7_5

19. Lipovsky, R.: New Hesperbot targets: Germany and Aus-
tralia (2013). http://www.welivesecurity.com/2013/12/10/new-
hesperbot-targets-germany-and-australia/

20. MacKenzie, P., Reiter, M. K.: Two-party generation of DSA sig-
natures. Int. J. Inf. Secur. 2 (3-4), 218–239 (2004). doi:10.1007/
s10207-004-0041-0

21. Mann, C.: A prototypic implementation of a two-factor Bitcoin
wallet: Source code. GitHub, November 2014. https://github.com/
ChristopherMann/2FactorWallet

22. Mann, C., Loebenberger, D.: Two-factor authentication for the
Bitcoin protocol. In: Foresti, S. (ed.) Security and Trust Manage-
ment, volume 9331 of Lecture Notes in Computer Science, pp.
155–171. Springer, Berlin, Heidelberg (2015). ISBN 978-3-319-
24857-8 (Print) 978-3-319-24858-5 (Online). doi:10.1007/978-3-
319-24858-5_10

23. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System.
Cryptography Mailing list at https://metzdowd.com, p. 9 (2008).
https://bitcoin.org/bitcoin.pdf

24. NIST. Federal information processing standards publication 180-
4—Secure Hash Standard. National Institute of Standards and
Technology, March 2012. http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf. Federal Information Processings Stan-
dards Publication 180-4

25. Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. In: Stern, J. (ed.) Advances in Cryptology: Pro-
ceedings of EUROCRYPT 1999, Prague, Czech Republic, volume
1592ofLectureNotes inComputer Science, pp. 233–238. Springer,
Berlin, Heidelberg (1999). ISBN 3-540-65889-0. doi:10.1007/3-
540-48910-X_16

26. Sancho, D., Hacquebord, F., Link, R.: Finding Holes Operation
Emmental. Technical report, Trend Micro Incorporated (2014).
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp-finding-holes-operation-emmental.
pdf

27. Schmidt, J.: Answer to “How to compute a generator of this cyclic
quadratic residue group?” (2012). http://math.stackexchange.com/
questions/167478

28. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer
Zahlen. Computing 7, 281–292 (1971)

29. von zur Gathen, J., Shparlinski, I.: Generating safe primes. J. Math.
Cryptol. 7 (4), 333–365 (2013). ISSN 1862-2984 (Online) 1862-
2976 (Print)). doi:10.1515/jmc-2013-5011

30. Wiener, M. J.: Safe Prime Generation with a Combined Sieve.
Cryptology ePrint Archive, 2003/186,May 2003. http://eprint.iacr.
org/2003/186

31. Wuille, P.: BIP32Hierarchical deterministicwallets (2014). https://
github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

32. Ziegeldorf, J. H., Grossmann, F., Henze, M., Inden, N.,Wehrle, K.:
CoinParty: Secure Multi-Party Mixing of Bitcoins. In Proceedings
of the 5th ACM Conference on Data and Application Security and
Privacy, CODASPY ’15, pp. 75–86. New York, NY, USA, (2015).
ACM. ISBN 978-1-4503-3191-3. doi:10.1145/2699026.2699100

123

http://dx.doi.org/10.1007/3-540-36178-2_8
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dx.doi.org/10.1007/BFb0052225
http://www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf
http://www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf
http://www.cs.princeton.edu/~stevenag/threshold_sigs.pdf
http://sourceforge.net
http://sourceforge.net/p/bitcoin/mailman/message/33017648/
http://sourceforge.net/p/bitcoin/mailman/message/33017648/
http://dx.doi.org/10.1109/MWSCAS.2003.1562272
http://dx.doi.org/10.1145/2508859.2516706
http://dx.doi.org/10.1007/11745853_3
http://dx.doi.org/10.1007/978-3-642-00862-7_5
http://www.welivesecurity.com/2013/12/10/new-hesperbot-targets-germany-and-australia/
http://www.welivesecurity.com/2013/12/10/new-hesperbot-targets-germany-and-australia/
http://dx.doi.org/10.1007/s10207-004-0041-0
http://dx.doi.org/10.1007/s10207-004-0041-0
https://github.com/ChristopherMann/2FactorWallet
https://github.com/ChristopherMann/2FactorWallet
http://dx.doi.org/10.1007/978-3-319-24858-5_10
http://dx.doi.org/10.1007/978-3-319-24858-5_10
https://metzdowd.com
https://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf
http://math.stackexchange.com/questions/167478
http://math.stackexchange.com/questions/167478
http://dx.doi.org/10.1515/jmc-2013-5011
http://eprint.iacr.org/2003/186
http://eprint.iacr.org/2003/186
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
http://dx.doi.org/10.1145/2699026.2699100

	Two-factor authentication for the Bitcoin protocol
	Abstract
	1 Introduction
	2 Threshold signature support in Bitcoin
	3 Two-party ECDSA
	3.1 Building blocks
	3.2 The protocol
	3.3 Attack scenarios and counter measures
	3.3.1 Zero-knowledge proofs
	3.3.2 Randomization of σ
	3.3.3 Experimental verification

	3.4 Security analysis
	3.4.1 Security of the MacKenzie and Reiter protocol
	3.4.2 Security of the pairing protocol
	3.4.3 Parameter choices for Bitcoin


	4 Two-factor Bitcoin wallets
	4.1 Connecting the two wallets
	4.2 Creating two-factor authenticated transactions

	5 Implementation aspects and runtime analysis
	6 Future work
	6.1 Execution time
	6.2 Random numbers
	6.3 Integer commitment
	6.4 Key derivation, backup and halting attackers
	6.5 Data protection

	7 Conclusion
	Acknowledgements
	References




