
Int. J. Inf. Secur. (2016) 15:475–491
DOI 10.1007/s10207-016-0321-5

REGULAR CONTRIBUTION

If it looks like a spammer and behaves like a spammer, it must
be a spammer: analysis and detection of microblogging spam
accounts

Abdullah Almaatouq1 · Erez Shmueli1 · Mariam Nouh2 ·
Ahmad Alabdulkareem1 · Vivek K. Singh1 · Mansour Alsaleh3 ·
Abdulrahman Alarifi3 · Anas Alfaris1 · Alex ‘Sandy’ Pentland1

Published online: 20 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Spam in online social networks (OSNs) is a sys-
temic problem that imposes a threat to these services in
terms of undermining their value to advertisers and potential
investors, as well as negatively affecting users’ engagement.
As spammers continuously keep creating newer accounts
and evasive techniques upon being caught, a deeper under-
standing of their spamming strategies is vital to the design
of future social media defense mechanisms. In this work,
we present a unique analysis of spam accounts in OSNs
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viewed through the lens of their behavioral characteristics.
Our analysis includes over 100 million messages collected
from Twitter over the course of 1 month. We show that there
exist two behaviorally distinct categories of spammers and
that they employ different spamming strategies. Then, we
illustrate how users in these two categories demonstrate
different individual properties as well as social interac-
tion patterns. Finally, we analyze the detectability of spam
accounts with respect to three categories of features, namely
content attributes, social interactions, and profile properties.

Keywords Online social networks · Microblogging ·
Account abuse · Spam detection · Spam analysis

1 Introduction

Spam exists across many types of electronic communica-
tion platforms, including e-mail, Web discussion forums, text
messages (SMS), and social media. Today, as social media
continues to grow in popularity, spammers are increasingly
abusing such media for spamming purposes. According to
a recent study [33], there was a 355 % growth in social
spam during the first half of 2013. Twitter company’s ini-
tial public offering (IPO) filing indicates spam as a major
threat in terms of undermining their value to advertisers
and potential investors, as well as negatively affecting users’
engagement [50].

While there is a growing literature on social media in terms
of developing tools for spam detection [30,42,53] and ana-
lyzing spam trends [45,58,59], spammers continue to evolve
and change their penetration techniques. Therefore, there is a
continuous need for understanding the evolving and diverse
properties of malicious accounts in order to combat them
properly [33,50].
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In this paper, we present an empirical analysis of sus-
pended spam accounts on Twitter, in terms of profile prop-
erties and social interactions. To perform the study, we
collected over 100 million tweets over the course of 1 month
(from March 5, 2013, to April 2, 2013) generated by approxi-
mately 30 million distinct user accounts (see Sect. 3). In total,
over 7 % of our dataset accounts are suspended or removed
accounts due in part to abusive behaviors and other viola-
tions.

Our preliminary analysis for comparing the behavioral
properties of normal and malicious users shows a tendency
for a bimodal distribution in the case of spam accounts (see
Sect. 4). Bimodal distributions commonly arise as a mixture
of uni-modal distributions corresponding to a mixture of pop-
ulations. Accordingly, we separate the subpopulations within
spammers, using Gaussian mixture models (GMMs), result-
ing in two distinct subpopulations (categories) of spammers.

We then investigate the individual properties as well as
the social interaction patterns of the two categories of spam-
mers (see Sect. 5). We observe that the two categories exhibit
different spamming patterns and employ distinct strategies
for reaching their victims. More specifically, by analyzing
the spam accounts profile attributes, we identify a cluster of
malicious accounts that seems to be originally created and
customized by legitimate users, whereas the other cluster
deviates from the baseline significantly. Also, through net-
work analysis of multiple social interactions, we reveal a
set of diverse strategies employed by spammers for reaching
audiences. We focus on themention function as it is one of the
most common ways in which spammers engage with users,
bypassing any requirement of sharing a social connection
(i.e., follow/following relationship) with a victim.

We analyze the detectability of spam accounts with respect
to three categories of features, namely content attributes,
social interactions, and profile properties (see Sect. 6). The
goal is to highlight the importance of behavioral charac-
teristics (i.e., profile and social interactions) as an enabling
methodology for the detection of malicious users in OSNs.
The conclusion and future work of our study are discussed in
Sect. 8. In summary, we frame our contributions as follows:

– We categorize spam accounts based on their behavioral
properties and find that Twitter spammers belong to two
broad categories.

– We analyze the different properties of spam accounts in
terms of their profile attributes and use the attributes of
legitimate accounts as a baseline.

– Through network analysis of multiple social interactions,
we reveal a set of diverse strategies employed by spam-
mers for reaching audiences.

– By examining the detectability of spam accounts with
respect to multiple categories of features, we highlight

the importance of behavioral characteristic as an enabling
methodology for OSNs spam detection.

Finally, we note that a portion of this paper has appeared
previously as a conference publication [2]. Our main con-
tributions for the journal version include highlighting the
importance of behavioral characteristic as an enabling
methodology for OSNs spam detection, adding more dis-
cussion, references, as well as in-depth analysis.

2 Background

Twitter is a microblogging platform and an online social
network (OSN), where users are able to send tweets (i.e.,
short text messages limited to 140 characters). According to
a recent study, Twitter is the fastest growing social platform
in the world [23]. In 2013, Twitter estimated the number
of active users at over 200 million, generating 500 million
tweets per day [50].

Twitter spam is a systemic problem [45]. While tradi-
tional e-mail spam usually consists of spreading bulks of
unsolicited messages to numerous recipients, spam on Twit-
ter does not necessarily comply to the volume constraint,
as a single spam message on Twitter is capable of prop-
agating through social interaction functions and reaches a
wide audience. In addition, previous studies showed that the
largest suspended Twitter accounts campaigns directed users
via affiliate links to some reputable Web sites that generate
income on a purchase, such as Amazon [45]. Such findings
blur the line about what constitutes as OSN spam. Accord-
ing to the “Twitter Rules,” what constitutes spamming will
evolve as a response to new tactics employed by spammers
[49]. Some of the suspicious activities that Twitter considers
as indications for spam [49] include: (1) aggressive friend-
ing; (2) creating false or misleading content; (3) spreading
malicious links; and (4) trading followers.

Spam content can reach legitimate users through the fol-
lowing functions: (i) home timeline: a stream showing all
tweets from those being followed by the user or posts that
contain @mention requiring no prior follow relationship; (ii)
search timeline: a stream of messages that matches a search
query; (iii) hashtags: tags used to mark tweets with keywords
or topics by incorporating the symbol # prior to the relevant
phrase (very popular hashtags are called trending topics; (iv)
profile bio: spam accounts generate large amounts of rela-
tionships and favorite random tweets from legitimate users
with the hope that victims would view the spammer account
profile which often contains a URL embedded in its bio or
description; and (v) direct messages: private tweets that are
sent between two users.

Accounts distributing spam are usually in the form of: (i)
fraudulent accounts that are created solely for the purpose of
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sending spam; (ii) compromised accounts created by legiti-
mate users whose credentials have been stolen by spammers;
and (iii) legitimate users posting spam content. While multi-
ple previous studies focused on fraudulent accounts [45,46],
the compromised accounts are more valuable to spammers
as they are relatively harder to detect due to their associated
history and network relationships. On the other hand, fraud-
ulent accounts exhibit a higher anomalous behavior at the
account level, and hence are easier for detection [18].

3 Datasets

Our Twitter dataset consists of 113,609,247 tweets, gener-
ated by 30,391,083 distinct users, collected during a 1-month
period from March 5, 2013, to April 2, 2013, using the Twitter
public stream APIs [48]. For each tweet, we retrieve its asso-
ciated attributes (e.g., tweet text, creation date, client used) as
well as information tied to the account who posted the tweet
(e.g., the account’s number of following, followers, date cre-
ated). On average, we receive over 4 million tweets per day.
We lack data for some days due to network outages, updates
to Twitter’s API, and instability of the collection infrastruc-
ture (using Amazon EC2 instances). A summary of tweets
collected each day and outage periods is shown in Fig. 1.

In order to label spammer accounts in our dataset, we rely
on Twitter’s account suspension algorithm described in [45].
Given that the implementation of the suspension algorithm
is not publicly available, we verify whether an account has
been flagged as spam by checking the user’s profile page.
In case an account has been suspended or removed, the
crawler request will be redirected to a page describing the
user statues (i.e., suspended or does not exist). While all of
the removed/suspended user’s information is no longer avail-
able through the Twitter’s API, we were able to reconstruct
their information based on the collected sample. In total, over
7 % of our dataset are suspended/removed accounts. As we
rely on Twitter suspension mechanism, this dataset contains
caught spam accounts on Twitter by the suspension mech-

anism, where uncaught accounts are treated as legitimate
users. Also, Twitter’s policy page states that other activi-
ties such as publishing malicious links, selling usernames,
and using obscene or pornographic images may also result
in suspension or deletion [49]. Also, removed accounts may
include users that deactivated their accounts during the data
collection period, which will cause them to be treated as spam
accounts in our analyses. Previous study [45] validated that
the vast majority (i.e., 93 % true-positive rate) of suspensions
are rooted in spamming behaviors and that Twitter’s suspen-
sion algorithm has false-negative rate bound of ±3.3 % at
95 % confidence intervals.

4 Identifying subpopulations

The results of the initial analysis to compare the collec-
tive tweeting patterns and social behavior of normal and
malicious users showed tendency for bimodality in the case
of spam accounts. This was less evident in the case of
legitimate users (see Fig. 2). This pattern occurs across mul-
tiple attributes (i.e., tweets count, favorites count, followers
count). The bimodal distributions commonly arise as a mix-
ture of uni-modal distributions corresponding to mixture of
populations. Accordingly, we separated the subpopulations
within spammers, using Gaussian mixture models (GMMs),
in order to reveal distinct spamming strategies and behaviors.

In order to identify subsets of malicious accounts, we use
Gaussian mixture models (GMMs). GMM is a probabilis-
tic model that assumes that data points are generated from
a mixture of a finite number of Gaussian distributions with
unknown parameters. To determine the number of compo-
nents (i.e., subpopulations or clusters), we fit multiple GMMs
with different numbers of Gaussians and then calculate the
Bayesian information criteria (BIC) score for each fit. The use
of BIC penalizes models in terms of the number of parameters
or complexity. Hence, complex models (i.e., high number of
free parameters) will have to compensate with how well they
describe the data. This can be denoted as follows:

Fig. 1 Tweets received per day.
On average, we receive 4
million tweets per day. We lack
complete data for some days due
to network outages, updates to
Twitter’s API, and instability of
the collection infrastructure
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Fig. 2 An illustration of different tweeting patterns and following
behaviors for normal and spam accounts. The first row (top figures)
represents the tweets and following count frequencies for normal users.
The second row (bottom figures) represents the tweets and following
count frequencies for spam accounts

BIC(Mc) = −2 · ln P(x |Mc) + ln N · k (1)

where x is the observed data, N is the number of observa-
tions, k is the number of free parameters to be estimated,
and P(x |Mc) is the marginal likelihood of the observed data
given the model M with c number of components.

A GMM with two components and spherical covariance
gives the lowest BIC score (see Fig. 3). The results of the
clustering exhibit two classes of spam accounts C1 ⊂ C and
C2 ⊂ C , where C is the set of all accounts. We refer to
the normal class (i.e., legitimate accounts) as Cnormal . The
results of the separation in one dimension (i.e., tweets count)
are shown in Fig. 3.

Based on the separation, we can further investigate the
properties and activity patterns of the different identified
classes. This separation aids in developing taxonomies and
exploiting meaningful structures within the spam accounts
communities.

5 Behavioral analysis

5.1 Profile properties

In order to further investigate the different identified classes,
we examine the empirical cumulative distribution functions
(ECDFs) of different attributes for each class (see Fig. 4).
We find that 50 % of the accounts in C1 have less than 29
tweets; however, for Cnormal and C2, 50 % of the accounts
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Tweets count

(b)

Fig. 3 A GMM with two components and spherical covariance gives
the lowest BIC score. The results of the separation in one dimension
(i.e., tweets count) are shown in b

have tweeted around 2000 times. Furthermore, we find that
almost 90 % of the accounts in C1 have no favorites (i.e.,
tweets added to their favorites list), whereas C2 and Cnormal

show closely matching patterns, with 50 % of the accounts
having less than 50 favorite tweets.

We continue to observe similar patterns across multiple
attributes, where C2 and Cnormal have similar distribu-
tions and C1 deviates from the baseline. We explain this
observation through the hypothesis that C2 mainly consists
of compromised accounts, while C1 consists of fraudulent
accounts as defined in Sect. 2.

The similarity between Cnormal and C2 in the basic pro-
file attributes, such as the percentage of accounts with default
profile settings, default profile images, profile descriptions,
and profile URLs (see Table 1), might indicate that C2
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Fig. 4 Comparison between the three classes C1,C2, and Cnormal in terms of tweeting and following behaviors after the GMM clustering

Table 1 Summary of basic
profile attributes

Default profile (%) Default image (%) URL (%) Biography (%)

Cnormal 22 1.3 29 83.6

C1 76 14 4 60

C2 36 1.5 20 84.7

We notice that Cnormal and C2 have relatively similar patterns

accounts were originally created and customized by legiti-
mate users. For example, we notice that only 22 % ofCnormal

and 36 % of C2 accounts kept their default profile settings
unchanged, in comparison with 76 % in the case of C1.

5.2 Social interactions

In this section, we analyze users behavior in terms of the fol-
low relationship and mention functions, from the topological
point of view. We approach this by incorporating multiple
measures that are known to signify network characteristics
(differences and similarity). Through this analysis, we reveal
sets of behavioral properties and diverse strategies employed
by spammers for engaging with victims and reaching audi-
ences.

5.2.1 Preliminaries

Let G = (V, E) be the graph that represents the topological
structure of a given function (i.e., follow or mention), where
V is the set of nodes and E is the set of edges. An edge in the
graph is denoted by e = (v, u) ∈ E , where v, u ∈ V . Note
that in the follow and mention networks, a nodev corresponds
to a Twitter user and an edge corresponds to an interaction
between a pair of users. If two nodes have an edge between
them, they are adjacent and we refer to them as neighbors.

We define the neighborhood of node v as the subgraph
H = (V ′, E ′) | V ′ ⊂ V and E ′ ⊂ E that consists of

all the nodes adjacent to v (alters) excluding v (we refer
to v as ego) and all the edges connecting two such nodes.
The 1.5 egocentric network E1.5(v) of node v is defined as
the neighborhood subgraph including v itself. Therefore, the
neighborhood can be denoted as N (v) := {u | (u, v) ∈ E or
(v, u) ∈ E} and the 1.5 ego network as E1.5(v) := {N (v) ∪
{v}}.

Focusing on the egocentric networks around the nodes
allows for studying the local graphical structure of a given
user and signifies the types of interactions that develop within
their social partners [4]. Figure 5 shows an illustration of
different levels of egocentric networks. From this, we can
define node properties and measure the relative importance
of a node within its egocentric network such as node degree
d(v), node out-degree dout (v), in-degree din(v), and recip-
rocal relationship dbi (v).

dout (v) = |{u | (v, u) ∈ E1.5(v)}|
din(v) = |{u | (u, v) ∈ E1.5(v)}|
d(v) = din + dout

dbi (v) = |{u | (u, v) ∈ E1.5(v) ∧ (v, u) ∈ E1.5(v)}|
(2)

From the properties defined in Eq. 2, we can derive the in-
degree density densi tyin(v), out-degree density
densi tyout (v), and the density of reciprocal relationships
densi tybi (v).
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Fig. 5 An illustration of the a
1.0 egocentric network; b the
1.5 egocentric network; and c
the 2.0 egocentric network. The
ego node is marked in red
(diamond), and its connections
(alters) are marked in yellow
(circles), and the alters’
connections are marked in blue
(triangles) (color figure online)

(a) (b) (c) 

densi tyin(v) = din(v)

d(v)

densi tyout (v) = dout (v)

d(v)
(3)

densi tybi (v) = dbi (v)

d(v)

In addition, we calculate the betweenness centrality for
each ego node in order to quantify the control of such node on
the communication between other nodes in the social network
[21]. The measure computes the fraction of the shortest paths
that pass through the node in a question v within its egocen-
tric network E1.5(v). Therefore, the betweenness centrality
CB(v) can be computed as [11]:

CB(v) =
∑

u �=w∈N (v)

σuw(v)

σuw

(4)

where σuw is the total number of shortest paths from node
u to node w and σuw(v) is the number of those paths that
pass through the node v. Therefore, CB(v) = 0 in the case
where all the alters are directly connected to each other and
CB(v) = 1 when the alters are only connected to each other
through the ego node.

We also compute the closeness centrality CC (v) which
measures the inverse of the sum of the shortest path distances
between a node v and all other nodes u0, u1, .., un ∈ N (v)

normalized by the sum of minimum possible distances. This
can be formulated as follows:

CC (v) = n − 1
∑

u∈N (v)
σ (v, u)

(5)

where σ(u, v) is the shortest path distance between v

and u, and n is the number of nodes in the egocentric
graph.

A network is strongly connected if there is a path between
every node to every other node in a directed graph. We define

the number of strongly connected components in the ego-
centric networks E1.5(v) and open neighborhood N (v) to
be SCCE1.5(v) and SCCN (v), respectively. By replacing all
of the directed edges with undirected edges, we compute
the number of weakly connected components for the ego-
centric network and open neighborhood as WCCE1.5(v) and
WCCN (v), respectively. The SCC andWCC are used to mea-
sure the connectivity of a graph.

5.2.2 Relationship graph

Twitter follow relationship is modeled as a directed graph,
where an edge between two nodes e = (v, u) ∈ E means that
v is following u. For the follow relationship, we only have
the number of followers and following for each account, and
not the actual relationship list. Therefore, in order to com-
pare relationships formed by both C1 and C2, we aggregate
following and follower data from both classes.

Figure 6 shows the number of followers and following rep-
resented by the in-degree din (follower) and out-degree dout
(following) for each class. We find that spam accounts that
belong toC1 are heavily skewed toward following rather than
followers, which could indicate a difficulty in forming recip-
rocal relationships. Furthermore, we observe a low densi tyin
for C1 with an average of 0.16 and high densi tyout with an
average of 0.4. On the other hand, C2 has more balanced
densities with approximately 0.5 for both.

While Twitter does not constrain the number of followers
a user could have, the number of following (i.e., dout ) is
limited [47]. Every user is allowed to follow 2000 accounts
in total; once an account reaches this limit, they require more
followers in order to follow more users [47]. This limit is
based on the followers to following ratio.

Furthermore, as shown in Fig. 6c, almost 50 % of C1

accounts have no followers (i.e., they did not embed them-
selves within the social graph) and almost 75 % of these
accounts have less than ten followers. We find that C2

accounts are more connected in terms of social relationships,
which makes them harder to detect and hence contribute
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Fig. 6 Illustration of the different relationship behaviors forC1 ina and
C2 inb. We find that spam accounts that belong toC1 are heavily skewed
toward following rather than followers or the identity line. The effect
of the number of following limit (i.e., 2000 dout ) is apparent/observed
in both classes

more content. These findings adhere to a known phenom-
enon observed in multiple security contexts. For example, [3]
showed that in many cases (especially in social networks),
optimal attack strategies (i.e., causing greater damage or
spreading more spam content) exhibit slow spreading pat-
terns rather than spreading aggressively.

The compromised account population that exists within
C2 can utilize the associated history and network relation-
ships of the original account owner to aid them in increasing
the visibility of their spam content.

5.2.3 Mention graph

The mention function is one of the most common ways in
which spammers engage with users; unlike the direct mes-
sages (DM), it bypasses any requirement of prior social
connection with a victim.

The mention network is constructed as a simple, weighted,
and directed graph, such that an edge between two nodes
e = (v, u) ∈ E means that user v mentioned user u during

(a)

(b) (c)

Fig. 7 The top figure shows the distribution of the frequency of men-
tions d(v) for C1 (black circles) and C2 (red triangles). The bottom
figures compare the empirical distribution obtained with best fits of
other heavy-tailed distributions (color figure online)

our collection period. We extract the 1.5 egocentric network
E1.5(v), where v are the accounts in C1 and C2.

Figure 7 shows the degree distribution of the mention net-
work. Although multiple studies observed that the degree
for the mention network follows heavy-tailed distributions
(e.g., [27], in order to understand the topological structure, we
further investigate the concrete goodness of fit [2]. The scale-
free nature of the mention network (i.e., degree distribution
that follows a power law) implies a very high heterogeneity
level in user behavior, which is expected for human activ-
ity phenomena [9,32]. In addition, the figure shows a clear
difference between the lengths of the tail of the distributions
between the two classes C1 and C2.

Table 2 shows the comparison between two centrality
measures for the mention network, namely the betweenness
CB and closeness CC centralities. We observe that the aver-
age betweenness centrality forC2 is significantly higher than
C1, which indicates that C1 accounts target users that men-
tion each other (i.e., communities and clusters of users). This
is somewhat a surprising outcome, as we expect C2 accounts
to utilize the associated relationships of the original account
owner, where the nodes in the neighborhood are real friends

123



482 A. Almaatouq et al.

Table 2 Comparing different centrality measures for the mention net-
work for C1 and C2 accounts

Class Betweenness (CB ) Closeness (CC )

μ σ μ σ

C1 0.014 0.08 0.97 0.12

C2 0.096 0.14 0.77 0.25

Fig. 8 The density of connected components in the mention network
for C1 and C2

and are more likely to mention one another. The relatively
low betweenness in C1 can be explained by at least three
possibilities:

– Conversations hijacking. We observe that 51.5 % of the
tweets captured by C1 contain mentions and 43.3 % of
these mentions are replies. In addition, only 1.2 % of
their mentions were reciprocated (densi tybi = 0.0127),
which arouses suspicion that C1 accounts intrude on
ongoing conversations between legitimate users and thus
have resulted in a low betweenness centrality.

– Targeting hubs. Due to the scale-free nature (i.e., degree
distribution that follows a power law) of the mention
network, mentioning or replying to hubs (nodes that are
highly connected to other nodes in the network) increases
the chance that the alters will be connected, and hence
the low betweenness score.

– Crawling profiles. It is also possible that C1 accounts
target communities and connected users in the mention
graph by crawling profiles (i.e., visiting the followers
and following lists or users’ timeline of the seed targeted
profile).

Figure 8 shows high average densities of strongly con-
nected components for both the egocentric network and the
neighborhood network in classes C1 and C2 (i.e., SCCN|N | and

SCCE1.5|E1.5| ). This observation indicates a difficulty in forming
reciprocal mention relationships as discussed earlier. Also, a
higher score in the densities of weakly connected components

(WCCN|N | and
WCCE1.5|E1.5| ) for C1 explains the lower betweenness

centrality score observed in Table 2.
The discrepancy in network measures (i.e., degree dis-

tribution, centralities, and connectivity) between C1 and C2

indicates the existence of different strategies for reaching
audiences employed by each class accounts.

6 Detection analysis

In this section, we analyze the detectability of spam accounts
with respect to three categories of features, namely content
attributes, social interactions, and profile properties (see Sect.
6.1). Our goal here is to highlight the importance of behav-
ioral characteristics (i.e., profile and social interactions) as
an enabling methodology for the detection of malicious
users in OSNs. As Twitter spammers are constantly evolving
to evade existing detection features, content-based features
(e.g., tweet similarity and duplicate tweet count) will eas-
ily be evaded. In our work, we investigate new and robust
features to detect Twitter spammers. Therefore, unlike pre-
vious studies (e.g., [42], we focus on comparing the different
categories of features in terms of their relative classifica-
tion performance (see Sect. 6.2) and information gain (see
Sect. 6.3), rather than on achieving a high absolute classifi-
cation performance. Moreover, although our algorithm relies
on a “labelled dataset” that was extracted from Twitter, it does
not mean that these labels were generated by an automatic
spam detection algorithm. It could have been the case that a
large amount of the suspended accounts (that we consider as
spam accounts) were suspended manually (e.g. if legitimate
users reported these accounts as spam accounts).

Our analyses included four different classification tasks:
(1) distinguishing spam accounts (C1 ∪ C2) from normal
accounts (Cnormal ), (2) distinguishing C1 spam accounts
from normal accounts (Cnormal ), (3) distinguishing C2 spam
accounts from normal accounts (Cnormal ), and (4) distin-
guishing C1 spam accounts from C2 spam accounts.

In order to reduce computation time, all of the experiments
reported in this section were conducted on a stratified sample
of Twitter accounts, which was obtained by sampling 2.5 %
of the accounts in each of the three subpopulations in our
dataset.

6.1 Features extraction

As mentioned above, we experimented with three categories
of features:
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Table 3 Content features
summary

Feature Description Type

Mean tweets similarity The average pairwise tweets similarity based
on the term frequency inverse document
frequency

Float

Sampled tweets count The number of sampled tweets appearing in
our dataset for a specific user. This feature
is an indication of the account activity level
during the data collection period

Integer

Tweets with mentions The number of tweets containing mentions to
other users (i.e., if one tweet contains more
than one mentioned user, it still counts as
one)

Integer

Tweets with hashtags The number of tweets containing hashtags
(i.e., if one tweet contains more than one
hashtag, it still counts as one)

Integer

Hashtags density The number of hashtags (i.e., one tweet can
include more than one hashtag) normalized
by the number of tweets

Float

Tweets with links The number of tweets containing URLs (i.e.,
if one tweet has more than one URL, it still
counts as one)

Integer

Links density The number of URLs normalized by the
number of tweets

Float

Table 4 Summary of profile
features

Feature Description Type

Total number of tweets The total number of tweets posted by the
user

Integer

Favorite count The total number of tweets that the user
has marked as favorite

Integer

Verification status Whether the user account is verified by
twitter. Verification is currently used to
establish authenticity of identities of key
individuals and brands on Twitter

Integer

Default profile image Whether the user is using Twitter’s default
avatar image

Boolean

Listed count The number of Twitter lists on which the
user appears

Integer

Geo enabled Whether the geographical location of the
user account is activated

Boolean

Account-age The number of days between the time of
creation of the account until the date of
the last tweets captured in our dataset

Float

Content features capture linguistic cues and specific prop-
erties of the tweet text posted by a user. Given that our
dataset contains multiple tweets for each user, we extract
the densities, averages, or frequencies of content attributes.
A summary of the features used and their description is given
in Table 3 Features are inspired by [6,20,30,39,57].

Profile features are based on Twitter meta-data related to
an account, including language, geographic locations, and
account creation time (see Table 4). Similar features were
used in [6,26].

Social interaction features capture various dimensions of
information diffusion patterns. We build networks based
on mentions, replies, and follow relationships, and extract
their statistical features. Examples include degree distri-
bution and centrality measures (see Table 5). Several of
these features have been used previously in the litera-
ture [6,20,26,37,39,53].

A note on categorical features: While categorical features
can easily be coded as integers, where each integer value
represents a different category, such integer values may be
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Table 5 Summary of social interaction features

Feature Network Description Type

Out-degree Follow The number of accounts a user is following (i.e.,
following count)

Integer

Out-degree density Follow The density of followings Float

In-degree Follow The number of accounts following the user (i.e.,
followers count)

Integer

In-degree density Follow The density of followers Float

In-degree Mention The number of accounts mentioning the user of
interest

Integer

Weighted in-degree Mention The number of time the user of interest was
mentioned

Integer

Weighted in-degree density Mention The number of time the user of interest was
mentioned normalized by the number of accounts
mentioning the user

Float

Out-degree Mention The number of accounts mentioned by the user of
interest

Integer

Weighted out-degree Mention The number of time the user of interest mentioned
other users

Integer

Weighted out-degree density Mention The number of time the user of interest mentioned
other users normalized by the number of accounts
that mentioned the user

Float

Bidegree Mention The number of reciprocal mention relationships Integer

Weighted bidegree Mention The weighted reciprocal relationship or
conversations length

Integer

Closeness centrality Mention The closeness centrality of the node with respect to
the 1.5 ego network

Float

Betweenness centrality Mention The betweenness centrality of the user with respect
to the 1.5 mention ego network

Float

Relative edges density Mention The total degree of the user normalized by the total
number of edges in the 1.5 ego network

Float

Open strongly connected components Mention The number of strongly connected components in
the neighborhood of the user (i.e., excluding the
user of interest)

Integer

Open weakly connected components Mention The number of weakly connected components in the
neighborhood of the user(i.e., excluding the user of
interest)

Integer

Ego strongly connected components Mention The number of strongly connected components in
the 1.5 ego network of the user (i.e., including the
user of interest)

Integer

Ego weakly connected components Mention The number of weakly connected components in the
1.5 ego network of the user (i.e., including the user
of interest)

Integer

misinterpreted as being ordered, which may result in unde-
sired behaviors. Therefore, in our experiments, we used the
1-of-K encoding [1,34] technique to convert a categorical
feature with k possible values to a set of k binary features.

6.2 Classification performance

For each one of the four binary classification tasks and each
one of the three categories of features (i.e., content, profile,
and social features), we trained and tested seven different

machine learning algorithms (i.e., ZeroR, Bayesian network,
naive Bayes, logistic regression, decision trees, and random
forest) in a fivefold cross-validation manner to compute the
average area under the ROC curve (AUROC) and the standard
deviation.

In our first experiment, we attempted to distinguish spam
accounts from legitimate users. Focusing on the best per-
forming algorithm (decision tree) in Fig. 9, we observe that
the social interaction features outperform profile and content
features and hence seem to be a better indicator for clas-
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Fig. 9 The results of experiment #1 where we try to distinguish
Cnormal from C1 ∪ C2

Fig. 10 The results of experiment #2 where we try to distinguish C1
types of spam accounts

Fig. 11 The results of experiment #3 where we try to distinguish C2
types of spam accounts from Cnormal

sifying spam accounts. We also notice that profile features
outperform content features in this case.

The second experiment focused on separating C1 spam
accounts from normal accounts (Cnormal ). As shown in
Fig. 10, we observe again a similar pattern where the social
interaction features achieve the highest detection score (with
the only exception of the Bayes network classifier).

It is also important to notice the scale in this experiment;
the detection AUC score is relatively higher than the scores
obtained in the previous experiment. This result is quite
expected from our previous analyses due to the fact that C1

spam accounts deviate significantly from Cnormal accounts
across different attributes.

In the third experiment (see Fig. 11), we study the
detectability of C2 spam accounts from normal accounts
(Cnormal ). We find that social interaction features provide
a better indication in comparison with other types of fea-
tures. However, in this experiment the reported AUC scores

Fig. 12 The results of experiment #4 where we try to distinguish the
different types of spam accounts

are lower than the ones that were reported in the second
experiment (i.e., C1 vs. Cnormal ). Again, this result is quite
expected due to our earlier observations that C2 and Cnormal

manifested similar patterns across multiple attributes.
In our fourth experiment, we focused on spam accounts

only (see Fig. 12). Surprisingly, although we used some of
the profile features to infer the separation between the two
classes in Sect. 4, the content features (generally) provided a
better detection signal than the profile features and a compa-
rable signal to the social interaction features. The discrepancy
between the results obtained in the first three experiments
above and this experiment might be explained as follows.
Both C1 and C2 users engage with their environment in an
anomalous manner compared to Cnormal users, and hence
both types can be distinguished relatively easily fromCnormal

using such features. However, comparingC1 users toC2 users
becomes difficult since they both exhibit anomalous social
interaction patterns, and therefore, content features become
more important.

6.3 Information gain results

Finally, it is worth mentioning that in all four experiments,
and for all seven machine learning algorithms, the composite
model (involving all features presented in this work) per-
formed significantly better than single-category models (e.g.,
content or profile based).

While the four experiments (presented in Sect. 6.2 focused
on evaluating the different categories of features, in this
section we evaluate individual features in terms of their infor-
mation gain. Note, however, that as opposed to the previous
approach, this approach does not capture the dependencies
between the different features.

The information gain IG for an attribute α in each exper-
iment’s training examples T evaluates the worth of α by
measuring the IG with respect to the class C . This concept
can be formulated as follows:

IG(T, a) = H(T ) − H(T |α)
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where H is the is the information entropy (i.e., the average
amount of information contained in each attribute).

The results of the analysis in this subsection conform with
our findings in the previous subsection and with our findings
in Sect. 5 as we proceed to explain. Table 6 shows the top ten
attributes, ranked in terms of their information gain scores,
for each one of the four classification tasks. As shown in the
table, the social interaction features account for 90, 60, 60,
and 40 % of the top ten features for the four classification
tasks, respectively.

More specifically, we can see that social interaction fea-
tures outperform other type of features such as profile and
content. Moreover, in the case of the fourth classification
task, the granularity of content becomes relatively more dis-
criminative.

7 Related work

We discuss prior related work on OSNs’ spam and network
analysis. Although we focus on spam accounts analysis,
our first-in-its-kind approach of spam behavioral categoriza-
tion (i.e., identifying subpopulations), analyzing the different
classes of spam accounts, and analyzing the mention inter-
actions, provides a unique view in looking at spam trends in
OSNs.

7.1 Spam in social networks

With the rapid growth of OSNs popularity, we are witness-
ing an increased usage of these services to discuss issues of
public interest and hence shape public opinions [16]. This
model of users as an information contributors has provided
researchers, news organizations, and governments with a
tool to measure (to some degree) representative samples of
populations in real time [24,29,43]. However, [28] identi-
fied propagandists Twitter accounts that exhibit opinions or
ideologies to either sway public opinion, disseminate false
information, or disrupt the conversations of legitimate users.
The study focused on accounts connected to two political
events: (i) the 2010 Nevada senate race and (ii) the 2011
debt-ceiling debate. A similar campaign has been analyzed
by [44], in which spam accounts flood out political messages
following the announcement of Russia’s parliamentary elec-
tion results. In addition, classical forms of abuse such as
spam and criminal monetization exist in Twitter including
phishing scams [15], spreading malware [36], and redirect-
ing victims to reputable Web sites via affiliate links [45] to
generate income.

Table 6 Summary of the information gain evaluation of individual fea-
tures for the four experiments

# Feature Type IG

Experiment #1

1 Mention out-degree density Social interaction 0.044

2 Mention in-degree density Social interaction 0.043

3 Follow in-degree Social interaction 0.040

4 Follow out-degree Social interaction 0.039

5 Total number of tweets Profile 0.028

6 Mention out-degree Social interaction 0.028

7 Mention weighted out-degree density Social interaction 0.023

8 Follow in-degree density Social interaction 0.019

9 Follow out-degree density Social interaction 0.019

10 Mention closeness centrality Social interaction 0.015

Experiment #2

1 Mention out-degree density Social interaction 0.075

2 Mention in-degree density Social interaction 0.074

3 Follow in-degree Social interaction 0.066

4 Follow out-degree Social interaction 0.059

5 Total number of tweets Profile 0.049

6 Favorites count Profile 0.030

7 Links density Content 0.020

8 Tweets with links Content 0.019

9 Follow out-degree density Social interaction 0.019

10 Follow in-degree density Social interaction 0.019

Experiment #3

1 Mention out-degree density Social interaction 0.056

2 Mention in-degree density Social interaction 0.055

3 Follow in-degree Social interaction 0.050

4 Follow out-degree Social interaction 0.047

5 Total number of tweets Profile 0.035

6 Favorites count Profile 0.019

7 Links density Content 0.014

8 Tweets with links Content 0.014

9 Follow out-degree Social interaction 0.014

10 Follow in-degree density Social interaction 0.013

Experiment #4

1 Mention out-degree density Social interaction 0.316

2 Mention in-degree density Social interaction 0.315

3 Follow in-degree Social interaction 0.254

4 Follow out-degree Social interaction 0.223

5 Total number of tweets Profile 0.218

6 Favorites count Profile 0.184

7 Links density Content 0.140

8 Tweets with links Content 0.139

9 Replies density Content 0.118

10 Mean tweets similarity Content 0.110
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7.2 Social network spam analysis

Due to the popularity of social media services, several stud-
ies measured and analyzed spam in OSNs. [57] provided an
analysis of some of the evasive techniques utilized by spam-
mers and discussed several detection features. In addition,
[58] performed an empirical analysis of the social relation-
ship in Twitter (i.e., following relationship) in the spam
community. The study showed that spam accounts follow
each other and form small-world networks. [41] examined
Twitter account markets and investigated their association
with abusive behaviors and compromised profiles. [46] per-
formed a study in collaboration with Twitter to investigate
the fraudulent accounts marketplace. The study discussed
prices, availability, and fraud perpetrated by 27 merchants
generating 127 to 459K US dollars for their efforts over
the course of 10 months. In another study [45], the authors
examined tools, techniques, and support infrastructure spam
accounts rely upon to sustain their campaigns. Surprisingly,
the study showed that three of the largest spam campaigns
in Twitter direct users to legitimate products appearing on
reputable Web sites via affiliate links that generate income
on a purchase (e.g., Amazon.com. However, the authors con-
sidered only tweets that contained URLs, and thus overlook
malicious accounts that employ other spamming strategies,
such as: i) embedding non-hyperlink URL by encoding the
ASCII code for the dot; ii) follow spam accounts that gen-
erate large amounts of relationships for the hope the victim
account would reciprocate the relationship or at least view
the criminal’s account profile which often has a URL embed-
ded in its bio [22] investigated the spammers’ mechanism
of forming social relationship (link framing) in Twitter and
found that vast majority of spam accounts are followed by
legitimate users who reciprocate relationships automatically
(social capitalists). The dataset used in this study contained
41,352 suspended Twitter accounts that posted a blacklisted
URL. However, [25] discussed the ineffectiveness of black-
listing at detecting social network spam in a timely fashion
and also suggested the existence of subpopulations of spam
accounts.

Moreover, Boshmaf et al. [10] evaluated how OSNs are
vulnerable to large-scale infiltration campaign caused by
social bots by building and coordinating a group of program-
mable social bots on Facebook for 8 weeks then evaluated the
collected data and studied the effects for the spamming cam-
paigns and users behavior. Influenced by Boshmaf et al. [10]
work, Elyashar et al. [19] studied infiltration targeting spe-
cific organizations’ employees using Facebook. They have
created social bots which were able to get connected with
50–70 % of organizations’ employees and get access to their
personal information.

7.3 Social network spam detection

A number of detection and combating techniques proposed in
the literature rely on machine learning. [7] manually labeled
8,207 Twitter accounts and developed a classifier to detect
spammers based on the URL and hashtag densities, follow-
ers to following ratio, account-age, and other profile-based
features. The account-age and number of URLs sent were
the most discriminating features. Stringhini et al. [42] cre-
ated a diverse set of “honey-profiles” and monitored activities
across three different social networks (Facebook, Twitter, and
MySpace) for approximately 1 year. They also built a tool to
detect spammers on Twitter and successfully detected and
deleted 15,857 spam accounts in collaboration with Twitter.

Another approach is presented by [56], where they
designed and implemented a system that recognizes legiti-
mate users early in OSNs. They utilized an implicit vouching
process, where legitimate users help in identifying other legit-
imate users. Additionally, [55] investigated the feasibility
of utilizing crowdsourcing as the enabling methodology for
the detection of fraudulent accounts. This study analyzed
the detection accuracy by both “experts” and “turkers” (i.e.,
workers from Amazon Mechanical Turk under a variety of
conditions). Moreover, [30] used traditional classifiers to
detect spam users in Twitter. They defined a collection of
content-based and user-based features. Similarly, [53] pro-
posed content-based and graph-based features to facilitate
spam detection using different classification algorithms. His
results show that the Bayesian classifier generates best over-
all performance. [52] proposed a new system that predicts
whether a user will interact with the social bots in Twitter
using a set of selected features and six classifiers (5-nearest
neighbor, logistic regression, multilayer perceptron, naive
Bayes, and random forest). Wang et al. [54] presented a new
sybil detection system using server-side clickstream mod-
els for Renren which is a large Chinese social network. The
clickstream models are created by clustering clickstream into
behavioral clusters.

However, most of the work in the literature did not con-
sider the behavioral features. This is highly important as
spammers continue to adopt different techniques and work-
arounds to overcome the standard detection methods. One
of the recent works that incorporated behavioral features
into the detection mechanism is the work by [20]. They
designed a framework for detecting Twitter social bots, where
they identified several classes of features ranging from users
and content-based features, to behavioral network-based fea-
tures, to distinguish between bot and human behavior.

Moreover, [5] surveyed sybil defenses approaches that
leverage the structural properties of social networks for
accurate identification of sybil accounts. The authors also
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provided an analysis of these approaches and highlighted
their strengths and weaknesses. Beeutel et al. [8] focused on
Page Likes generated by spammer on Facebook and proposed
a new approach based on social graphs that capture Page
Likes, users who created these likes, and the times at which
the likes are created in order to identify detection patterns
of spammers using iterative and approximate-based algo-
rithms. Another work by Cao et al. [12,13] proposed a social
graph-based tool, called SybilRank, to detect sybil accounts
in Tuenti which is the largest OSN in Spain. Their tool was
deployed and tested in Tuenti operation center which helps
the Tuenti system to detect 18 times more sybil accounts than
before. SybilRank is based on the observation that short ran-
dom walks from non-Sybil accounts on the social network
tend to stay within the non-Sybil region of the network, and
another tool, called SynchroTrap, was also proposed to detect
malicious accounts in online social networks, and it relies
on the observation that malicious accounts tend to perform
loosely synchronized actions relative to benign accounts.
SynchroTrap was implemented and deployed at Facebook
and Instagram and resulted in detecting more than two mil-
lion malicious accounts.

Beyond detection, Wagner et al. used a set of network,
behavioral, and linguistic features to build a predictive model
to estimate users’ level of susceptibility for Twitter using data
from the Social Bot Challenge 2011 [51]. Stein et al. [40]
built Facebook immune system which checks and classifies
every action in real time and provides explicit and implicit
user feedbacks and protects its users from malicious activities
including spamming. The classification is built using various
machine learning-based classifiers such as random forests,
SVM, and logistic regression.

7.4 Social bots for the greater good

Although social bots are typically referred to as an evil entity
conducting malicious behavior, several social bots actually
perform benign useful functions in online social networks.
Therefore, not all of the identified bots should be suspended
as many of them actually serve useful functions. For instance,
social bots that aggregate content are being used for deliver-
ing news feeds, hot topics, and breaking news occurring in a
user’s social network. One example is Fuego [35], a Twitter
bot designed to deliver the future of journalism by monitor-
ing a user’s universe of people and returning the links and
stories they are sharing. Another example for a useful social
bot that reports about hazardous events is Earthquake Robot
[38]. It gathers information from the U.S. Geological Sur-
vey (USGS) and updates users about earthquakes as they
happen. Other benign social bots are used by companies to
provide customer care and gather their feedback. Some mar-
keters use social bots that detect specific keywords and send
automated replies/follow requests to customers. The main

challenge here is to be able to distinguish between benign
and harmful social bots.

Although some social bots may be designed with good
intentions, the fact that they are fully automated may some-
times make them dangerous by spreading rumors and causing
social panic. A recent study demonstrates that Twitter fol-
lowers perceive Twitter bots as credible attractive sources
[17]. Thus, false information spread by automated accounts
is regarded as credible and may lead to false accusations as
happened in the Boston marathon bombing [14].

8 Conclusion and future work

This paper presents a unique look at spam accounts in OSNs
through the lens of the behavioral characteristics and spam-
mers’ techniques for reaching victims. We find that there
exist two main classes of spam accounts that exhibit dif-
ferent spamming patterns and employ distinct strategies for
spreading spam content and reaching victims. We find that
C2 (i.e., category 2 of spammers) andCnormal (i.e., legitimate
users) manifest similar patterns across multiple attributes. We
attempt to explain this observation through the hypothesis
that C2 mainly consists of compromised accounts, while the
accounts in C1 (i.e., category 1 of spammers) are fraudulent
accounts, as we find support for the hypothesis throughout
our analysis of profile properties. It is also possible that fraud-
ulent and compromised accounts can gain more followers by
purchasing them from online services [2] to evade detection
[57,58]. In terms of the relationship graph, we find that spam
accounts that belong to C1 are heavily skewed toward fol-
lowing rather than followers, which indicates difficulty in
forming reciprocal relationships. Furthermore, we observe a
low in-degree density for C1, while C2 has a more balanced
in-/out-degree densities. We show that the betweenness cen-
trality for C1 in the mention graph is significantly lower than
C2, which might be a result of hijacking conversations, tar-
geting hubs, or crawling profiles.

Following the behavioral analysis, we also investigated
the detectability of spam accounts with respect to three
categories of features, namely content attributes, social inter-
actions, and profile properties, focusing on two types of
analysis: (1) relative classification performance and (2) infor-
mation gain. The results of these analyses highlighted the
importance of social interaction features when distinguish-
ing between legitimate users and spammers. However, once
we attempt to distinguish the two types of spammers, the
very obvious features (i.e., social interaction and profile)
diminish and the details (i.e., content) become more rele-
vant. Generally, in all classification tasks, using the union of
all feature types provided the highest classification perfor-
mance. The sociobehavioral features demonstrated to work
with relatively few examples in the learning phase, before
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automatically detecting spamming accounts with minimal
processing time. Thus, there is a good chance that the pro-
posed sociobehavioral features are more robust (i.e., harder
to evade by spammers) and will allow for the detection of
such accounts much faster than Twitter’s current approach.
We cannot currently test this hypothesis since we do not know
the exact time in which the accounts were suspended.

We acknowledge that our analysis may contain some bias.
We have a partial view of the activities occurring during the
data collection period due to the at most 1 % sampling limit
imposed by Twitter. However, the work of [31] showed that
the implications of using the Twitter Streaming API depend
on the coverage and type of analysis. Generally, the streaming
API can be sufficient to provide representative samples that
get better with higher coverage, for certain types of analysis
(i.e., top hashtags, topics, retweet network measures). Fur-
thermore, we lack the absolute ground truth labels for the
accounts presented in the dataset and primarily rely on Twit-
ter’s suspension algorithm. This might impose a lower bound
on the number of spam accounts in our dataset (i.e., uncaught
spam accounts are treated as legitimate users). In addition,
there might be a fraction of legitimate users who deactivated
their accounts during the collection period and hence would
be labeled as removed. We also lack the appropriate resolu-
tion for important attributes used in the analysis; for example,
we only have the number of followers and following for each
user, and not the actual relationships list. Finally, our sample
suffers from other technical limitations, such as a number
of service outages that affected the collection during some
days throughout the accounted month. Despite such limita-
tions, we believe that our first-in-its-kind analysis of twitter
functions and spam behavioral categorization describes well
the current trends and phenomenon of OSN’s spam and can
be leveraged in designing OSN spam detectors and resilient
architectures.

In our future work, we will design and test alterna-
tive labeling and validation mechanisms for the analyzed
accounts. In particular, given that the compromised accounts
are very different from the fraudulent accounts, sudden
changes in the behavior of compromised accounts could be
detected, which would indicate the time at which the account
got compromised. This will require collecting and analyzing
a new dataset with more frequent checking for suspension
in order to provide accurate time stamp of when the suspen-
sion occurred. In addition, we plan to further investigate the
differences between the spam accounts utilizing other inter-
actions functions (e.g., hashtag, retweet, and favorite). We
also intend to quantify the success of spam campaigns and
explore the tools, techniques, and spam underground markets
utilized by spam accounts to spread their content and evade
many of the known detection mechanisms.
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