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Abstract The technique of online/offline is regarded as a
promising approach to speed up the computation of encryp-
tion, because the most part of computation, such as pairing
over points on elliptic curve and exponentiation in groups,
can be pre-computed in the offline phase without know-
ing the message to be encrypted and/or recipient’s identity.
The online phase only requires light computation, such as
modular multiplication. In this paper, we propose two novel
identity-based online/offline schemes: a full secure identity-
based online/offline encryption scheme and an identity-based
online/offline signcryption scheme. Compared to the other
schemes in the literature, our schemes achieve the short-
est ciphertext size in both offline and online phases and
demonstrate the best performance in offline computation.
Our schemes are applicable to devices with limited com-
putation power. They are proven secure in the random oracle
model.

Keywords Identity-based · Online/offline · Encryption ·
Signcryption

1 Introduction

Identity-based encryption (IBE)was introduced by Shamir in
1984 [19] to eliminate the certificate in public key infrastruc-
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ture. In an IBE system, each user’s public key can be an
arbitrary string binding the user’s identity, such as an email
address or a telephone number. If a new user wants to join
the network in a network system based on IBE, there is no
need for other users in the network to verify its certificate in
order to communicate securely.

The merits of identity-based cryptography have drawn
a lot of attraction (e.g., [1,2,4,6,10,22,23]). However, all
of these works involve computations such as pairings over
points on elliptic cure and exponentiations (point multipli-
cations) in groups. These operations are regarded as the
most costly computations in cryptography, which might not
be applicable for lightweight devices. An elegant solution
to reduce the computational overhead of digital signature
schemes was proposed by Even et al. [9], where a signing
process was split into two phases. The first phase is called
offline phase, which is performed prior to obtaining the mes-
sage to be signed. The second phase is called online phase,
which is executed when the message becomes available.
All the heavy computations in the signing phase are pre-
computed in the offline phase. In the online phase, it only
performs the light computations such as modular multiplica-
tion and hashing.

The first two identity-based online/offline encryption
(IBOOE) schemes were proposed by Guo et al. [11] in 2008.
In the offline phase, all the heavy computations are con-
ducted without the requirements of the recipient’s identity
and the message to be encrypted. When the recipient’s iden-
tity and the message become available, the online phase can
be accomplished with great efficiency. However, the cipher-
text size of both IBOOE schemes in [11] is large, so might
not be desirable for lightweight devices.

The online/offline encryption schemes are usually for-
mulated with the bilinear maps. Let G and GT be two
multiplicative groups with the same prime order p. A sym-
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metric bilinear map is defined as e : G × G → GT . The
first scheme in [11] needs one element in GT , four elements
in G, two elements in Z

∗
p and two one-time signatures. The

second scheme requires four elements in GT , two elements
in G and two elements in Z

∗
p.

Subsequently, an IBOOE scheme, which is more effi-
cient than Guo et al.’s [11], was proposed by Liu and Zhou
[15]. They removed the elements in GT from the final
ciphertext and only needed three modular multiplications
operations in the online phase. Later, Chow et al. [7] pro-
posed thefirst identity-basedonline/offlinekey encapsulation
(IBOOKEM). Based on their IBOOKEM, they proposed a
secure IBOOE scheme in the random oracle model. Com-
pared to [15], they saved two elements inG in the ciphertext.
However, Selvi et al. [17,18] showed that the schemes in [15]
and [7] are not secure against the chosen ciphertext attack
(CCA). A practical IBOOE scheme for wireless sensor net-
work was proposed by Chu et al. [8], which removed the
elements in GT from the offline storage. However, the secu-
rity, storage and computation of the proposed scheme are
depended on a symmetric encryption scheme.

A provably CCA secure (in the random oracle model)
and efficient IBOOE scheme was proposed by Selvi et al.
[17,18]. Their IBOOE scheme requires more than one ele-
ment in group G in both online and offline phase. Recently,
an efficient semi-generic transformation to achieve IBOOE
from IBE was proposed by Lai et al. [12] in ACISP 2015.
Due to the space limitation, they only proposed a key encap-
sulation scheme against the chosen plaintext attack.

In this paper, we propose an efficient identity-based
online/offline encryption scheme. Our proposed IBOOE
scheme achieves the shortest ciphertext, in comparison with
other schemes in the literature. Compared to the best-known
scheme in the literature, our scheme saves one element in G
in both offline and online phases. We only require one ele-
ment in G in both offline storage and ciphertext size in our
scheme. In the offline phase, our scheme reduces one group
operation inG. Our proposed scheme is proven secure in the
random oracle model.

The first identity-based online/offline signcryption
(IBOOSC) scheme was proposed by Sun et al. [20] in 2008.
They for the first time gave the definition of IBOOSC and
its security model. Then, a generic construction of identity-
based online/offline signcryptionwas given bySun et al. [21].
However, Selvi et al. [18] pointed out that the schemes in [20]
and [21] actually are not secure against the existential forgery
attack.

To improve the security, Liu et al. [14] proposed a secure
IBOOSC scheme. In [14], the final ciphertext still needs four
elements in G. To speed up the online computation, Selvi et
al. [18] proposed a new secure IBOOSC scheme and reduced
one multiplication operation in the online phase compared to
[14]. But their scheme requires a larger offline storage and

the ciphertext is bigger than [14]. Li et al. [13] proposed
an efficient IBOOSC scheme based on [1] for low power
devices. Their scheme requires three elements in G in both
the offline storage and the final ciphertext.

Apart fromour novel online/offline identity-based encryp-
tion scheme, in this paper, we also propose a novel and
efficient identity-based online/offline signcryption scheme
based on [1]. Our scheme achieves the shortest ciphertext,
compared to the existing IBOOSC schemes. Compared to
[13], our scheme saves one element in G in the final cipher-
text and saves one element inG and one element in Z∗

p in the
offline storage. In the offline phase, our signcryption scheme
reduces one operation inG. The online computation is com-
parable and only requires two modular operations.

Organization The remainder of the paper is organized
as follows. In Sect. 2, we review some basic preliminaries
including bilinear pairing, complexity assumptions, defini-
tions and the corresponding securitymodels.We describe our
novel identity-based online/offline encryption scheme with
the shortest ciphertext and show its security in Sect. 3. In
Sect. 4, we propose an efficient identity-based online/offline
signcryption scheme and give its security. In Sect. 5, we give
the evaluation and comparison of our schemes and draw our
conclusions in Sect. 6.

2 Preliminaries

2.1 Bilinear pairing

LetG andGT be cyclic groups of the same prime order p. g is
a generator ofG. A bilinear pairing is amap e : G×G → GT

with the following properties:
1. Bilinear: For all u, v ∈ G and a, b ∈ Z

∗
p, we have

e
(
ua, vb

) = e (u, v)ab.
2. Non-degeneracy: e (g, g) �= 1.
3. Computability: It is efficient to compute e (u, v) for all

u, v ∈ G.

2.2 Complexity assumptions

The computational assumptions for the security of our
schemes are based on the following three assumptions. Let
G andGT be multiplicative cyclic groups of the same prime
order p, g be a generator of G and e be a pairing map.
We review the k-collision attack assumption 1 (k-CAA1)
[5], the q-bilinear Diffie–Hellman inversion (q-BDHI) [2]
assumption and the q-strong Diffie–Hellman (q-SDH) [3]
assumption.

Definition 1 (k-CAA1) Given

(
g, ga, c0,

(
c1, g

1
c1+a

)
,

. . . ,

(
ck, g

1
ck+a

))
where ci∈RZ

∗
p and distinct for 0 ≤ i ≤

k, the k-CAA1 problem is to compute e(g, g)
1

c0+a .
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Definition 2 (q-BDHI)Given (q+1)-tuple
(
h, ha, ha

2
, . . . ,

ha
q ) ∈ G

q+1 where a∈RZ
∗
p, the q-BDHI problem in

(G,GT ) is to compute e(h, h)
1
a .

Definition 3 (q-SDH) Given (q + 1)-tuple
(
h, ha, ha

2
,

. . . , ha
q ) ∈ G

q+1 where a∈RZ
∗
p, the q-SDH problem in

G is to find a pair
(
c, h

1
a+c

)
with c ∈ Z

∗
p.

2.3 Definition of identity-based online/offline encryption

An identity-based online/offline encryption scheme consists
of the following five algorithms:
Setup(k): Taking as input a security parameter k ∈ Z

+, it
outputs the system parametersmpk and the master keymsk,
where the system parameters are publicly known, while the
master key is kept secretly and known to generator (PKG)
only.
KeyGen(mpk, msk, ID): Taking as input the system para-
meters mpk, master key msk and an arbitrary ID ∈ {0, 1}∗,
it outputs a private key dID for ID.
Off-Encrypt(mpk): Taking as input the system parameters
mpk, it outputs the offline ciphertext Coff .
On-Encrypt(mpk, Coff , ID, m): Taking as input the system
parameters mpk, offline ciphertext Coff , an identity ID ∈
{0, 1}∗ and a message m, it outputs a ciphertext CT .
Decrypt(mpk,CT , dID): Taking as input the system parame-
tersmpk, ciphertext CT and the private key dID, it outputs a
plaintext message or a rejected symbol.

The security for IBOOE is the same as that for identity-
based encryption. The strongest and commonly accepted
notion of security for identity-based encryption system is that
of indistinguishability against an adaptive chosen ciphertext
attack. The game of IND-ID-CCA is defined under the fol-
lowing game between a challenger C and an adversary A.
Both take the security parameter k ∈ Z

+ as input.
Setup: C takes as input a security parameter k and runs the
Setup algorithm to obtain the system parameters mpk and
the master key msk. It gives the adversary A the system
parameters mpk.
Phase 1: A adaptively makes a polynomial number of fol-
lowing queries:

– Private key query (IDi ). C responds by running key gen-
eration algorithm KeyGen to generate the private key
dIDi and sending dIDi to A.

– Decryption query (I Di ,CTi ). C responds by running
key generation algorithm KeyGen to generate the pri-
vate key dI Di , running the algorithm Decrypt to decrypt
the ciphertext (IDi ,CTi ) and sending the result back
to A.

Challenge:Aoutputs twomessagesm0,m1 and a challenged
identity ID∗ under one restriction that A did not request a
private key for ID∗ in Phase 1. C picks a random bit b ∈
{0, 1}, computes a challenge ciphertext CT∗ on mb and then
sends CT∗ to A.
Phase 2: A continues to issue private key queries on
IDi �= ID∗ and decryption queries on (IDi ,CTi ) �=
(ID∗,CT∗). C responds as in Phase 1.
Guess: Finally,A outputs its guess b′ ∈ {0, 1} for b and wins
the game if b′ = b.

We refer to such an adversaryA as an IND-ID-CCAadver-
sary. We define adversary A’s advantage in attacking the
game as

AdvA (k) =
∣
∣∣∣Pr[b = b′] − 1

2

∣
∣∣∣ .

Definition 4 An identity-based online/offline encryption
scheme is IND-ID-CCA secure if for any polynomial time
IND-ID-CCA adversary the AdvA(k) is negligible.

2.4 Definition of identity-based online/offline
signcryption

An signcryption scheme should provide confidentiality as
well as authentication and non-repudiation. The formal struc-
ture of identity-based online/offline signcryption (IBOOS)
scheme consists of five algorithms that are modeled as fol-
lows:
Setup(k): The same as IBOOE.
KeyGen(mpk, msk, I D): The same as IBOOE.
Off-Signcrypt(mpk, IDs , dIDs ): Taking as input the system
parameters mpk, sender’s identity IDs and the sender’s pri-
vate key dIDs , it outputs offline ciphertext δ.
On-Signcrypt(mpk, m, IDs , IDr , δ): Taking as input a mes-
sage m, a sender’s identity IDs , a receiver’s identity IDr and
the offline output δ, it outputs the final signcryption σ .
Unsigncrypt(mpk, σ , IDs , IDr , dI Dr ): Taking as input a
signcryption σ , a sender’s identity IDs , a receiver’s identity
IDr and the receiver’s private key dIDr , it outputs the plaintext
message or a rejected symbol.

Signcryption achieves both encryption and digital signa-
ture. We first give the security for message confidentiality.
The notion of IND-ID-CCA for IBOOSC is similar to that
for IBOOE and is defined under the following game between
a challenger C and an adversary A.
Setup: C takes as input a security parameter k and runs the
Setup algorithm to obtain the system parameters mpk and
the master key msk. It gives the adversary A the system
parameters mpk.
Phase 1: A adaptively makes a polynomial number of fol-
lowing queries:
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– Private key query (IDi ). C responds by running key gen-
eration algorithm KeyGen to generate the private key
dIDi and sending dIDi to A.

– Signcryption query (IDs, IDr ,m). C responds by run-
ning key generation algorithm KeyGen to generate
the sender’s private key dIDs , running the algorithm
Off-Signcrypt to obtain δ and sending σ by runningOn-
Signcrypt to A.

– Unsigncryption query (σ, IDs, IDr ). C runs KeyGen to
generate the receiver’s private key dIDr and sends the
result of Unsigncrypt to A.

Challenge:A outputs two messages m0,m1 and challenged
identities

(
ID∗

s , ID
∗
r

)
under one restriction thatAdid not issue

a private key query for ID∗
r in Phase 1. C picks a random bit

b ∈ {0, 1} and computes a challenge ciphertext σ ∗ on mb,
then sends σ ∗ to A.
Phase 2: A issues more private key queries on IDi �= ID∗

r
and unsigncryption queries on σi �= σ ∗. C responds as in
Phase 1.
Guess: Finally,A outputs its guess b′ ∈ {0, 1} for b and wins
the game if b′ = b.

We refer to such an adversaryA as an IND-ID-CCAadver-
sary. We define adversary A’s advantage in attacking the
game as

AdvA (k) =
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ .

Definition 5 An identity-based online/offline signcryption
scheme is IND-ID-CCA secure if for any polynomial time
IND-ID-CCA adversary the AdvA (k) is negligible.

The next game defines the security for non-repudiation
with regard to signatures embedded in ciphertexts. The com-
monly accepted notion of security for signature system is
existentially unforgeable against adaptive chosen message
attacks (EUF-CMA). This notion is defined by the following
game between a challenger C and an adversary A.
Setup: C takes as input a security parameter k and runs the
Setup algorithm to obtain the system parameters mpk and
the master key msk. It gives the adversary A the system
parameters mpk.
Private key query(IDi ). C responds as in the IND-ID-CCA
game for IBOOSC.
Signcryption query (IDs, IDr ,m). C responds as in the
IND-ID-CCA game for IBOOSC.
Unsigncryption query (σ, IDs, IDr ). C responds as in the
IND-ID-CCA game for IBOOSC.
Forge: Finally, A outputs a triple

(
σ ∗, ID∗

s , ID
∗
r

)
where the

private key of ID∗
r has not been queried. A wins the game

if σ ∗ is a valid ciphertext corresponding to the
(
ID∗

s , ID
∗
r

)

and passes the verification. The adversary’s advantage is its
probability to win the game.

Definition 6 An identity-based online/offline signcryption
scheme is EUF-CMA secure if there is no probability poly-
nomial time adversary A who can win this game with a
non-negligible advantage.

3 Identity-based online/offline encryption

In this section, we give our efficient identity-based online/
offline encryption scheme and the corresponding security
analysis.

3.1 Construction

Let G and GT be two cyclic groups of the same prime order
p, and g is the generator of G. Let e : G × G → GT be
the bilinear pairing and n be the length of the message. The
scheme is described by the following five algorithms.
Setup: The system parameters are generated as follows. The
PKG randomly chooses α ∈ Z

∗
p, computes v = e (g, g) and

sets g1 = gα . Let H1 : {0, 1}∗ → Z
∗
p, H2 : GT → {0, 1}n ,

H3 : GT × {0, 1}n × Z
∗
p × G → Z

∗
p be the cryptographic

hash functions. The public parameters mpk and the master
key msk are

mpk = (G,GT , p, g, g1, v, n, e, H1, H2, H3), msk = α.

KeyGen: A user’s private key generation algorithm proceeds
as follow. For an identity ID ∈ {0, 1}∗, the PKG computes

dI D = g
1

α+H1(I D) .

Off-Encrypt: The offline storage is computed as follows.
The PKG randomly chooses s, w ∈ Z

∗
p and computes

R = vs, C1 = (
g1g

w
)s

, h = H2 (R) .

The offline storage is Cof f = (C1, R, s, w, h).
On-Encrypt: To encrypt a message m ∈ {0, 1}n for I D ∈
{0, 1}∗, the sender computes

C2 = s (H1 (I D) − w) mod p,

C3 = h ⊕ m,

C4 = (s + H3 (R,m,C1,C2)) mod p.

Then output the final ciphertext CT = (C1,C2,C3,C4).
Decrypt: Given a ciphertext CT = (C1,C2,C3,C4), the
recipient decrypts the ciphertext by using its private key dI D
to compute

R′ = e
(
dI D,C1g

C2
)

,

m′ = C3 ⊕ H2
(
R′) ,

123



Efficient identity-based online/offline encryption and signcryption with short ciphertext 303

s′ = (
C4 − H3

(
R′,m′,C1,C2

))
mod p,

w′ =
(
H1 (ID) − C2s

′−1
)
mod p.

Then check whether

C1
?=

(
g1g

w′)s′
.

If it holds, the recipient outputsm′ as the result of decryption,
and otherwise rejects it.
Correctness: For a valid ciphertext, we have

R′ = e
(
d I D,C1gC2

)

= e

(
g

1
α+H1(I D) , (g1gw)sgs(H1(I D)−w)

)

= e

(
g

1
α+H1(I D) , gs1g

sH1(I D)

)

= e(g, g)s

= R.

The receiver gets the correct R by using its private key. Since
it is a valid ciphertext, after getting correct R, receiver can
compute the correctm, s andw, and then passes the checking
equation. Thus, receiver can get the valid message.

3.2 Security

We now give the formal proof for the security of our scheme.
We have the following result states that our scheme is IND-
ID-CCA secure under the k-CAA1 assumption.

Theorem 1 Suppose the hash functions H1, H2 and H3

are random oracles. Then our proposed scheme is indis-
tinguishability against chosen ciphertext attacks (IND-ID-
CCA) under k-CAA1 assumption. Specifically, suppose there
is an IND-ID-CCA adversaryA that has advantage ε against
our proposed scheme.Amakes atmost qE private key queries
and at most qH1 , qH2 , qH3 queries to the hash functions H1,
H2, H3, respectively. Then there is an algorithm S to solve
the k-CAA1 problem with advantage ε′, where

ε′ ≥ ε

qH1

(
qH2 + qH3

) .

Proof Suppose A has advantage ε in attacking our scheme.
We build a simulator S that solves k-CAA1 problem with

advantage ε′ by running A. Let

(
g, ga, c0,

(
c1, g

1
c1+a

)
,

. . . ,

(
ck, g

1
ck+a

))
be a random instance of k-CAA1 prob-

lem taken as input byS and its goal is to compute e(g, g)
1

a+c0 .
In order to use A to solve the problem, S needs to simulate
a challenger and responses all the queries for A. Without

loss of generality, we assume that k = qH1 − 1. Simulator
S works by interacting with A in an IND-ID-CCA game as
follows:
Setup: S sets g1 = ga and randomly chooses an index
I ∈ {

1, 2, . . . , qH1

}
and then sends the system parameters

(G,GT , p, g, g1, H1, H2, H3) to A.
H1 queries: At any time adversary A may issue queries to
the random oracle H1 on IDi . S maintains a list L1 of tuples
(IDi , ci ). This list is initially empty. If IDi is already on the
list L1, S responds with H1 (IDi ) = ci . Otherwise, S checks
the IDi . If IDi = IDI , S sets H1 (IDI ) = c0, returns c0 and
then adds the new tuple (IDI , c0) into L1. If IDi �= IDI , S
randomly chooses ci from the instance of k-CAA1which has
not been chosen by S before and sets H1 (IDi ) = ci . Then S
adds the new tuple (IDi , ci ) into L1 and returns ci .
H2 queries: At any time, adversary A may issue queries to
the random oracle H2 on Ri . S maintains a list L2 of tuples
(Ri , βi ). This list is initially empty. If tuple (Ri , βi ) is in the
list L2, S responds with H2 (Ri ) = βi . Otherwise, S picks a
random string βi ∈ {0, 1}n where βi has not been used before
and sets H2 (Ri ) = βi . Then S returns βi and adds the new
tuple (Ri , βi ) into L2.
H3 queries: At any time, adversary A may issue queries
to the random oracle H3 on

(
Ri ,mi ,Ci

1,C
i
2

)
. S maintains

a list L3 of tuples
(
Ri ,mi ,Ci

1,C
i
2, γi

)
. This list is initially

empty. If
(
Ri ,mi ,Ci

1,C
i
2

)
is on the list, S responds with γi .

Otherwise, S randomly chooses γi ∈ Z
∗
p which does not

exist in L3. Then S sets H3
(
Ri ,mi ,Ci

1,C
i
2

) = γi , responds
to A with γi , and adds the new tuple

(
Ri ,mi ,Ci

1,C
i
2, γi

)
to

the list L3.
Phase 1: At any time, adversary A may issue the following
queries:
– Private key queries. Let IDi be a private key query issued
by adversary A. S responds to this query as follows. If
IDi = IDI , S aborts. Otherwise, S looks up the list L1 to
get the corresponding (IDi , ci ). If (IDi , ci ) is not in the
list L1, S runs the H1 queries and gets the corresponding
ci and adds the tuple (IDi , ci ) into L1. ThenS sets dI Di =
g

1
α+ci and returns dI Di .

– Decryption queries. Consider a decryption query for a
ciphertext (IDi ,CTi ) where CTi = (

Ci
1,C

i
2,C

i
3,C

i
4

)
.

Simulator S first examines the IDi . If IDi �= I DI ; since
S knows the private key of IDi , he can run the decryption
algorithm to decrypt the ciphertext correctly by using
dI Di . If I Di = IDI , S decrypts the ciphertext as follows:

1. Search the tuple
(
Ri ,mi ,Ci

1,C
i
2, γi

)
from the list L3

such that H2 (Ri ) ⊕ mi = Ci
3. If no match, output

“invalid.”
2. Otherwise, compute si = (

Ci
4 − γi

)
mod p and

check whether

Ci
1g

Ci
2

?=
(
g1g

H1(IDi )
)si

.
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304 J. Lai et al.

If it does not hold, go back to step 1 and test next
tuple in L3.

3. Otherwise, computewi = (
H1 (IDi ) − Ci

2si
−1

)
mod q

and check whether

Ci
1

?= (
g1g

wi
)si .

If it holds, output mi as the decryption result and
return mi to A, otherwise go back to step 1.

Challenge: Once adversary A decides Phase 1 is over, it
outputs two messages m0,m1 ∈ {0, 1}n and a challenged
identity I D∗ under one restriction that ID∗ has not been
queried in the private key queries phase. If ID∗ �= IDI , S
aborts. Otherwise, S picks a random bit b ∈ {0, 1} and com-
putes the challenge ciphertext as follows:

1. Randomly choose λ ∈ Z
∗
p, C∗

2 ∈ Z
∗
p, C∗

3 ∈
{0, 1}n, C∗

4 ∈ Z
∗
p.

2. ComputeC∗
1 = gλ−C∗

2 and setCT∗ = (
C∗
1 ,C

∗
2 ,C

∗
3 ,C

∗
4

)
.

Phase 2: A continues issuing more private key queries
on IDi �= ID∗ and decryption queries on (IDi ,CTi ) �=
(ID∗,CT∗). S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1} for b.

From the A’s point of view, if it knows that CT∗ is a bad
challenge ciphertext (invalid), it must have queried the H2

or H3 oracle with R∗ as input. This means that R∗ is one of
input of H2 or H3 oracle and in the list L2 or L3. Otherwise,
according to the assumption,Awill with ε advantage output
the correct b′. This alsomeans that A has queried the value of
H2 or H3 taken R∗ as input. From the decryption algorithm,
we have

R∗ = e
(
dI D∗ ,C∗

1g
C∗
2

)
= e

(
g

1
α+H1(I D

∗) , gλ−C∗
2 gC

∗
2

)

= e(g, g)
λ

α+c0 .

S ignores the guess ofA and randomly picks a R from the
list L2 or L3 and computes Rλ−1

as the solution to the given
instance of k-CAA1 problem.

The above completes the description of simulation algo-
rithm S. To complete the security proof, it remains to show

that S correctly outputs e(g, g)
1

c0+a with probability at least
ε′. We first analyze the probability that S does not abort dur-
ing the simulation. We consider two events below:

1. A1 : A did not query the private key on I D∗ in private
key query phase.

2. A2 : The challenged identity I D∗ is equal to IDI .

We have

Pr [A1] = 1 − qE
qH1

,

Pr [A2] = 1

qH1 − qE
,

Pr
[¬abort

] = Pr [A1 ∧ A2]
= Pr [A2] Pr [A1|A2]

=
(

1
qH1−qE

) (
1 − qE

qH1

)

= 1
qH1

,

The probability of R randomly chosen from the list L2 or
L3 to be the solution of k-CAA1 is at least 1

qH2+qH3
. It follows

that S computes a correct answer for k-CAA1 problem by
the above simulation with advantage

ε′ ≥ ε

qH1

(
qH2 + qH3

) .

This completes the proof.

4 Identity-based online/offline signcryption

In this section, we propose an efficient IBOOSC scheme
based on Barreto et al.’s [1] identity-based signcryption
scheme and give the security analysis.

4.1 Construction

Let G and GT be two cyclic groups of the same prime order
p, and g is the generator of G. Let e : G × G → GT be the
bilinear pairing and n be the length of the message.
Setup: The system parameters are generated as follows.
Given a system security parameter k, the PKG randomly
chooses α ∈ Z

∗
p, computes v = e(g, g) and sets g1 = gα .

Let H1 : {0, 1}∗ → Z
∗
p, H2 : {0, 1}n ×GT ×G×G → Z

∗
p,

H3 : GT → {0, 1}n be the cryptographic hash functions. The
public parameters mpk and the master key msk are given by

mpk = (G,GT , p, g, g1, v, n, e, H1, H2, H3), msk = α.

KeyGen: A user’s private key generation algorithm proceeds
as follow. For identity ID ∈ {0, 1}∗, the PKG computes

dI D = g
1

α+H1(ID) .

Off-Signcrypt: The offline storage is computed as follows.
The sender with identity IDs randomly chooses s, w, β ∈ Z

∗
p

and computes

R = vs, C1 = dβ
I Ds

, C2 = (
g1g

w
)s

.
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The offline storage is δ = (s, β,w, R,C1,C2).
On-Signcrypt: To encrypt and sign a message m ∈ {0, 1}n
for a receiver with identity IDr ∈ {0, 1}∗, the sender com-
putes

C3 = m ⊕ H3(R),

h = H2(m, R,C1,C2),

C4 = β−1(s + h) mod p,

C5 = s (H1 (IDr ) − w) mod p.

Then output the final ciphertext σ = (C1,C2,C3,C4,C5).
Unsigncrypt: For a ciphertext σ = (C1,C2,C3,C4,C5),
the recipient decrypts the ciphertext by using its private key
dI Dr to compute

T = C2g
C5 ,

S = CC4
1 ,

R = e(T, dI Dr ),

m = C3 ⊕ H3(R),

h = H2(m, R,C1,C2).

Then check whether

R = e
(
S, g1g

H1(IDs )
)

v−h .

If it holds, output m as the result of decryption, and believe
IDs has signed on m. Otherwise, reject it.
Correctness: For a valid ciphertext, we have

T = C2g
C5 = (

g1g
w
)s
gs(H1(IDr )−w) =

(
g1g

H1(IDr )
)s

,

S = CC4
1 =

(
dβ
I Ds

)β−1(s+h) = ds+h
I Ds

,

e
(
T, dI Dr

) = e

(
(
g1gH1(IDr )

)s
, g

1
α+H1(IDr )

)

= e

((
gα+H1(IDr )

)s
, g

1
α+H1(IDr )

)

= e(g, g)s

= R.

Receiver gets the correct R by using its private key. After
obtaining the correct R, receiver can compute the correct m
and h and pass the checking equation.

e
(
S, g1gH1(IDs )

)
v−h = e

(
d(s+h)
I Ds

, gα+H1(IDs )
)
e(g, g)−h

= e

(
g

s+h
α+H1(IDs ) , gα+H1(IDs )

)
e(g, g)−h

= e(g, g)s+he(g, g)−h

= e(g, g)s

= R.

4.2 Security

We now give the formal proof for the security of our sign-
cryption scheme. The security follows immediately from the
following two theorems. The first theorem states that our
scheme is IND-ID-CCA secure under the q-BDHI assump-
tion for the message confidentiality. The second theorem
ensures that our scheme is EUF-CMA secure under q-SDH
assumption.

Theorem 2 Suppose that an IND-ID-CCA adversaryA has
an advantage ε against our scheme, when asking qHi queries
to random oracles Hi (i = 1, 2, 3), qsc signcryption queries
and qus queries to the unsigncryption queries. Then there is
an algorithm S to solve the q-BDHI problem for q = qH1

with advantage

ε′ ≥ ε

qH1

(
2qH2 + qH3

)

(

1 − qsc
(
qsc + qH2

)

2k

)(
1 − qus

2k

)
.

Proof Suppose the adversary A has advantage ε in attack-
ing our scheme. We build a simulator S that solves q-
BDHI problem with advantage ε′ by running A. Let(
h, ha, ha

2
, . . . , ha

q
)
be a random instance ofq-BDHI prob-

lem taken as input by S. Its goal is to compute e(h, h)
1
a . In

order to use A to solve the problem, S needs to simulate a
challenger and response all the queries for A. Simulator S
works by interacting with A in an IND-ID-CCA game as
follows:
Setup: S randomly picks l ∈ {1, 2, . . . , qH1}, Il ∈ Z

∗
p

and w1, w2, . . . , wl−1, wl+1, . . . , wq ∈ Z
∗
p. For i =

1, 2, . . . , l − 1, l + 1, . . . , q, it computes Ii = Il − wi . S
expands the polynomial

f (z) =
q∏

i=1,i �=l

(z + wi ) =
q−1∑

j=0

c j z
j ,

and sets g = h

q−1∑

j=0
c j a j

= h f (a), X = h

q∑

j=1
c j−1a j

= ha f (a) =
ga . For i ∈ {1, . . . , q} \ {l}, S expands

fi (z) = f (z)

z + wi
=

q−2∑

j=0

d j z
j ,

and computes

Vi = h

q−2∑

j=0
d j a j

= h fi (a) = h
f (a)
a+wi = g

1
a+wi .

Thus, g is a generator of G and S knows q − 1 pairs(
wi , Vi = g

1
a+wi

)
. S sets g1 = X−1g−Il = g−a−Il and
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computes v = e(g, g). The system public key is

mpk = (G,GT , p, g, g1, v, n, e, H1, H2, H3).

S implicitly sets the master key msk = α = −a− Il . For all

i ∈ {1, . . . , q} \ {l}, we have
(
Ii , V

−1
i

)
=

(
Ii , g

1
α+Ii

)
.

H1 queries: At any time,Amay issue queries to the random
oracle H1 on IDi . S maintains a list L1 of tuples (IDi , Ii ).
This list is initially empty. If IDi is already on the list L1, S
responds with H1 (IDi ) = Ii . Otherwise, S sets H1 (IDi ) =
Ii , adds the new tuple (IDi , Ii ) to the L1 list and returns Ii .
H2 queries:At any time, adversaryAmay issuequeries to the
random oracle H2 on

(
mi , Ri ,C1,i ,C2,i

)
. S maintains a list

L2 of tuples(mi , Ri ,C1,i ,C2,i , h2,i ,C3,i , λi ). This list is ini-
tially empty. If the tuple

(
mi , Ri ,C1,i ,C2,i

)
already appears

on the list L2, S responds with H2
(
mi , Ri ,C1,i ,C2,i

) =
h2,i .

Otherwise, S picks a random h2,i ∈ Z
∗
p, sets H2(

mi , Ri ,C1,i ,C2,i
) = h2,i and returns h2,i to A. To

anticipate possible subsequent Unsigncrypt requests, S
additionally simulates random oracle H3 on its own to
obtain h3,i = H3 (Ri ) ∈ {0, 1}n , computes C3,i =
mi ⊕ h3,i , λi = Ri · vh2,i and then adds the new tuple(
mi , Ri ,C1,i ,C2,i , h2,i ,C3,i , λi

)
to the list L2.

H3 queries: At any time, adversary A may issue queries to
the random oracle H3 on Ri . S maintains a list L3 of tuples(
Ri , h3,i

)
. This list is initially empty. If Ri appears on the

list, S responds with H3 (Ri ) = h3,i . Otherwise, S randomly
chooses h3,i ∈ {0, 1}n , sets H3 (Ri ) = h3,i , responds to A
with h3,i and then adds the new tuple

(
Ri , h3,i

)
to the list L3.

Phase 1: At any time, adversary A may issue the following
queries:

– Private key queries. Let IDi be a private key query issued
by adversary A. If i = l, S outputs failure and stops.
Otherwise, S knows H1(IDi ) = Ii and returns V−1

i =
g

1
α+Ii to A.

– Signcryption queries. OnceA issues a signcryption query
for a message m and identities (IDs, IDr ) = (IDi , ID j )

for i, j ∈ {
1, . . . , qH1

}
. If i �= l, S knows the sender’s

private key dI Di = V−1
i and can answer the query

according to the specification of Signcryption. If i = l,
we have j �= l by the irreflexivity assumption. Thus, S
knows the receiver’s private key dI D j = V−1

j and does
the following steps:

1. Randomly choose x, y, h ∈ Z
∗
p.

2. Compute C1 = dxy
−1

I D j
, C2 = (

g1gI j
)−h

gx1 and r =
e
(
C2gIi x , dI D j

)
, C5 = Ii x , set C4 = y.

3. Patch the hash value H2(m, R,C1,C2) to h. S fails
if H2 is already defined, but this only happens with
probability

qsc+qH2
2k

.
4. Compute C3 = m ⊕ H3(R) and return σ =

(C1,C2,C3, y, I j x) to A.

To see its correctness,we implicitly set s =
(

α+Ii
α+I j

)
x−h,

then we have

T = C2gC5

= (
g1gI j

)−h
gx1 · gIi x

= (
gα+I j

)−h · (
gα+Ii

)x

= (
gα+I j

)s−
(

α+Ii
α+I j

)
x · (

gα+Ii
)x

= (
gα+I j

)s(
gα+Ii

)−x · (
gα+Ii

)x

= (
gα+I j

)s

=
(
g1gH1(ID j)

)s
,

S = CC4
1 =

(
dx y

−1

I D j

)y = dxI D j
=

(
g

1
α+I j

)(s+h)· α+I j
α+Ii

=
(
g

1
α+Ii

)(s+h)

= ds+h
I Di

.

Thus, σ is a valid ciphertext.
– Unsigncryptionqueries.Once adversary issues theunsign-
cryption query on σ = (C1,C2,C3,C4,C5) for identi-
ties (IDs, IDr ) = (IDi , ID j ), simulator S first examines
the ID j . If j �= l, sine S knows receiver’s private key
dID j = V−1

j , and it can answer the query using dI D j . If
j = l, we have i �= l by the irreflexivity assumption.
Thus, S knows the sender’s private key dI Di = V−1

i . For
all valid ciphertexts, we have

s = logdI Di

(
CC4
1 · d−h

I Di

)
= log

g1g
I j

(
C2g

C5
)

.

That is

dsI Di
= CC4

1 · d−h
I Di

,
(
g1g

I j
)s = C2g

C5,

where h = H2(m, R,C1,C2). Therefore, we have the
relation

e
(
C2g

C5, dI Di

)
= e

(
g1g

I j ,CC4
1 · d−h

I Di

)
.

Then S computes λ = e
(
CC4
1 , g1gIi

)
and searches

through list L2 for entries of the form
(
mi , Ri ,C1,i ,C2,i ,

h2,i ,C3,i , λi

)
indexed by i ∈ {

1, . . . , qH2

}
. If none is

found, reject σ . Otherwise, S does the further following

123



Efficient identity-based online/offline encryption and signcryption with short ciphertext 307

checking for the corresponding indexes

e
(
C2gC5, dI Di

)

e
(
g1g

I j ,CC4
1

) = e
(
g1g

I j , dI Di

)−h2,i .

If the unique i ∈ {
1, . . . , qH2

}
satisfies the above equa-

tion, the matching message mi is returned. Otherwise, S
rejects it. It is clear that, for all queries, the probability to
reject a valid ciphertext is smaller than qus

2k
.

Challenge:A chooses two messagesm0,m1 and challenged
identities (IDs, IDr ) under the restriction that IDr has not
been query its private key in Phase 1. If IDr �= IDl ,B aborts.

Otherwise, S randomly chooses C∗
3 ∈ {0, 1}n , β, x, y ∈

Z
∗
p, C∗

1 ∈ G, sets C∗
4 = x,C∗

5 = y and computes
C∗
2 = g−βg−y . S returns the challenge ciphertext σ ∗ =(
C∗
1 ,C

∗
2 ,C

∗
3 ,C

∗
4 ,C

∗
5

)
to A. Let ρ = β

a , since α = −a − Il ,
we have

C∗
2g

C∗
5=g−βg−y · gy=g−β=g−ρa=gρ(α+Il )=

(
g1g

Il
)ρ

.

A cannot learn that σ ∗ is an invalid ciphertext unless it has
queried H2 or H3 on e(g, g)ρ .
Phase 2: A issues more queries as in Phase 1 under the
restrictions that it cannot make a private key query on IDr

and unsigncryption query on σ ∗. S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}.

S ignores the guess of A and randomly picks an entry(
Ri , h3,i

)
or (mi , Ri , C1,i ,C2,i , h2,i ,C3,i , λi ) from the list

L3 or L2. From the decryption, we have

R∗ = e(g, g)ρ = e(g, g)
β
a = e(h, h)

f (a)2β
a .

As f (a) is the polynomial contained a, by polynomial divi-
sion, we have

f (a)2β
a =

(
q−2∑

j=0
c j+1a j + c0

a

)

f (a) β

= f (a) β ·
q−2∑

j=0
c j+1a j +

(

c0β
q−2∑

j=0
c j+1a j + c20β

a

)

,

R∗ = e(h, h)
f (a)2β

a

= e(h, h)
f (a)β·

q−2∑

j=0
c j+1a j+

(

c0β
q−2∑

j=0
c j+1a j+ c20β

a

)

= e

⎛

⎜
⎝gβ, h

q−2∑

j=0
c j+1a j

⎞

⎟
⎠ e

⎛

⎜
⎝hc0β, h

q−2∑

j=0
c j+1a j

⎞

⎟
⎠ e(h, h)

c20β

a

= e

⎛

⎜
⎝(ghc0)β, h

q−2∑

j=0
c j+1a j

⎞

⎟
⎠ e(h, h)

c20β

a .

Thus, we can solve the q-BDHI problem by computing

e(h, h)
1
a =

⎛

⎜
⎝R∗ · e

⎛

⎜
⎝

(
ghc0

)−β
, h

q−2∑

j=0
c j+1a j

⎞

⎟
⎠

⎞

⎟
⎠

1
c20β

.

This completes the description of the simulation. It
remains to analyze S’s advantage to solve the q-BDHI prob-
lem. We define the following events:

E1 : A does not choose IDl as the challenge receiver’s
identity.

E2 : A issues a private key query on IDl .
E3 :S aborts in a signcryption query because of a collision

on H2.
E4 : S rejects a valid ciphertext in one unsigncryption

query.
From the above analysis, we know that these four events

are independent events and the probability of S which will
not abort is

Pr
[¬abort

]
= Pr

[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4

]
.

We have Pr
[¬E1

] = 1
qH1

and know ¬E1 implies ¬E2. We

also observe that Pr [E3] ≤ qsc
(
qsc+qH2

)

2k
and Pr [E4] ≤ qus

2k
.

Therefore,

Pr
[¬abort

]
= Pr

[¬E1 ∧ ¬E3 ∧ ¬E4

]

≥ 1

qH1

(

1 − qsc
(
qsc + qH2

)

2k

) (
1 − qus

2k

)
.

The chosen entry contains the right element R∗ =
e(g, g)ρ with probability larger than 1

2qH2+qH3
, since L3 con-

tains no more than qH2 + qH3 records by construction. Thus,
the advantage to solve q-BDHI problem is

ε′ ≥ ε

qH1

(
2qH2 + qH3

)

(

1 − qsc
(
qsc + qH2

)

2k

)(
1 − qus

2k

)
.

��
Theorem 3 Suppose that an EUF-CMA adversary A has

an advantage ε ≥ 10(qsc+1)
(
qsc+qH2

)

2k
to produce a forgery

within a time t, when asking qHi queries to random oracles
Hi (i = 1, 2, 3), qsc signcryption queries and qus queries to
the unsigncryption queries. Then there is an algorithm S to
solve the q-SDH problem for q = qH1 in expected time

t ′ ≤ 120686qH1qH2

t + O
(
(qsc + qus) tp

) + qusqH2 te

ε
(
1 − 1

/
2k

) (
1 − q

/
2k

)

+O
(
q2tm

)
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where tp is the complexity of a pairing computation, te is
the cost of exponentiation in GT and tm is the cost of scalar
multiplication in G.

Proof Suppose adversary A can produce a forgery in our
scheme with advantage ε. We build a simulator S that solves

q-SDH problem by runningA. Let
(
h, ha, ha

2
, . . . , ha

q
)
be

a random instance of q-SDH problem taken as input by S
and its goal is to find a pair

(
c, h

1
a+c

)
, c ∈ Z

∗
p. In order to

useA to solve the problem, S needs to simulate a challenger
and responses all the queries for A. Simulator S works by
interacting with A in an EUF-CMA game as follows:
Setup: S randomly chooses w∗, w1, w2, . . . , wq−1 ∈ Z

∗
p

and expands the polynomial

f (z) =
q−1∏

i=1

(z + wi ) =
q−1∑

j=0

c j z
j .

Then set g = h

q−1∑

j=0
c j a j

= h f (a), g1 = h

q∑

j=1
c j−1a j

= ha f (a) =
ga and

fi (z) = f (z)

z + wi
=

q−2∑

j=0

d j z
j ,

and compute

Vi = h

q−2∑

j=0
d j a j

= h fi (a) = h
f (a)
a+wi = g

1
a+wi .

Thus, g is a generator of G and S knows pairs(
wi , Vi = g

1
a+wi

)
. Then S computes v = e(g, g). The sys-

tem public key is

mpk = (G,GT , p, g, g1, v, n, e, H1, H2, H3) .

S implicitly sets the master key msk = a and randomly
chooses a challenge identity ID∗

s ∈ {0, 1}∗ to adversary A.
H1 queries: At any time, adversaryA can query the random
oracle H1 on IDi . S maintains a list L1 of tuples (IDi , wi ).
This list is initially empty. If IDi is already on the list L1, S
responds with H1(IDi ) = wi . Otherwise, if IDi = ID∗

s , S
sets H1(IDi ) = w∗. If IDi �= ID∗

s , S sets H1(IDi ) = wi . S
adds the new tuple (IDi , wi ) to the list L1 and returns wi .
H2 queries: At any time, adversaryA can query the random
oracle H2 on (mi , Ri ,C1,i ,C2,i ). S maintains a list L2 of
tuples (mi , Ri ,C1,i ,C2,i , h2,i ,C3,i , λi ). This list is initially
empty. If tuple (mi , Ri ,C1,i ,C2,i ) already appears on the list
L2, S responds with H2

(
mi , Ri ,C1,i ,C2,i

) = h2,i .
Otherwise, S picks a random h2,i ∈ Z

∗
p, sets

H2
(
mi , Ri ,C1,i ,C2,i

) = h2,i and returns h2,i to A. To

anticipate possible subsequent Unsigncrypt requests, S
additionally simulates random oracle H3 on its own to obtain
h3,i = H3(Ri )and computesC3,i = mi ⊕h3,i , λi = Ri ·vh2,i
and adds the new tuple

(
mi , Ri ,C1,i ,C2,i , h2,i ,C3,i , λi

)
to

the list L2.
H3 queries: At any time, adversaryA can query the random
oracle H3 on Ri . S maintains a list L3 of tuples

(
Ri , h3,i

)
.

This list is initially empty. If Ri is on the list, S responds
with H3(Ri ) = h3,i . Otherwise, S randomly chooses h3,i ∈
{0, 1}n , sets H3(Ri ) = h3,i and responds to A with h3,i and
then adds the new tuple

(
Ri , h3,i

)
to the list L3.

Private key queries: Let IDi be a private key query issued by

A. If I Di = ID∗
s , S aborts. Otherwise, S returns Vi = g

1
a+wi

to A.
Signcryption queries Once A issues a signcryption query
for a message m and identities (IDs, IDr ) = (

IDi , ID j
)
for

i, j ∈ {
1, . . . , qH1

}
. If IDi �= ID∗

s , S knows the sender’s
private key dI Di = Vi and can answer the query according
to the specification of Signcryption. If IDi = ID∗

s , we have
ID j �= ID∗

s by the irreflexivity assumption. Thus, S knows
the receiver’s private key dI D j = Vj and does the following
steps:

1. Randomly choose x, y, h ∈ Z
∗
p.

2. Compute C1 = dxy
−1

I D j
, C2 = (

g1gI j
)−h

gx1 , R =
e
(
C2gIi x , dI D j

)
and C5 = Ii x , set C4 = y.

3. Patch the hash value H2(m, R,C1,C2) to h. S fails if H2

is already defined but this only happens with probability
qsc+qH2

2k
.

4. Compute C3 = m ⊕ H3(R) and return σ =
(C1,C2,C3, y, Ii x) to A.

To see it correctness, we implicitly set s =
(

α+Ii
α+I j

)
x − h,

then we have

S = CC4
1 =

(
dx y

−1

I D j

)y = dxI D j
=

(
g

1
α+I j

)(s+h)· α+I j
α+Ii

=
(
g

1
α+Ii

)(s+h)

= ds+h
I Di

,

T = C2gC5

= (
g1gI j

)−h
gx1 · gIi x

= (
gα+I j

)−h · (
gα+Ii

)x

= (
gα+I j

)s−
(

α+Ii
α+I j

)
x · (

gα+Ii
)x

= (
gα+I j

)s(
gα+Ii

)−x · (
gα+Ii

)x

= (
gα+I j

)s

=
(
g1gH1(ID j)

)s
.

Thus, σ is a valid ciphertext.
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Unsigncryption queries: Once adversary issues an unsign-
cryption query on σ = (C1,C2,C3,C4,C5) for identities
(IDs, IDr ) = (

IDi , ID j
)
, simulator S first examines the

ID j . If ID j �= ID∗
s , since S knows receiver’s private key

dID j = Vj , it can answer the query by using dID j to decrypt
the ciphertext. If ID j = ID∗

s , we have IDi �= ID∗
s by the

irreflexivity assumption. Thus, S knows the sender’s private
key dI Di = Vi . For all valid ciphertexts, we have

s = logdI Di

(
CC4
1 · d−h

I Di

)
= logg1gw j

(
C2g

C5
)

.

That is

dsI Di
= CC4

1 · d−h
I Di

,
(
g1g

w j
)s = C2g

C5 ,

where h = H2 (m, R,C1,C2). Therefore, we have the rela-
tion

e
(
C2g

C5, dI Di

)
= e

(
g1g

w j ,CC4
1 · d−h

I Di

)
.

Then S computes λ = e
(
CC4
1 , g1gwi

)
and searches

through list L2 for entries of the form
(
mi , Ri ,C1,i ,C2,i , h2,i ,

C3,i , λi

)
indexed by i ∈ {

1, . . . , qH2

}
. If none is found,

reject σ . Otherwise, S does the further following checking
for the corresponding indexes

e
(
C2gC5 , dI Di

)

e
(
g1g

w j ,CC4
1

) = e
(
g1g

w j , dI Di

)−h2,i .

If the unique i ∈ {
1, . . . , qH2

}
satisfies the above checking

equation, the matching message mi is returned. Otherwise,
S rejects it. It is clear that, for all queries, the probability to
reject a valid ciphertext is smaller than qus

2k
.

Forge: From the forking Lemma [16], after a polyno-
mial replays of the adversary A, S can obtain two valid
forge signatures (C1,C2,C3,C4,C5, s, h,m∗) and (C1,C2,

C3,C ′
4,C5, s, h′,m∗) for I D∗, where h = H2 (m∗, R,C1,

C2) and h′ = H2 (m∗, R,C1,C2), but h �= h′. Since both
signatures are valid and satisfy the verification equation, we
have

e
(
CC4
1 , g1g

H1(ID∗
s )

)
e(g, g)−h

= e
(
C1

C4
′
, g1g

H1(ID∗
s )

)
e(g, g)−h′

.

That is

e
(
CC4−C4

′
1 , g1g

H1(ID∗
s )

)
= e(g, g)h−h′

,

e

((
CC4−C4

′
1

)(h−h′)−1

, g1g
H1(ID∗

s )

)

= e (g, g) .

Since

g1g
H1(ID∗

s ) = gα+w∗
,

we have

V ∗ =
(
CC4−C4

′
1

)(h−h′)−1

= g
1

a+w∗ = h
f (a)

a+w∗ ,

f (a)

a + w∗ = γ

a + w∗ +
q−2∑

i=0

γi a
i .

Therefore,

h
1

a+w∗ =
⎛

⎝V ∗ · h
−

q−2∑

i=0
γi ai

⎞

⎠

1
γ

.

We find a pair
(
w∗, h

1
a+w∗

)
to the solution of q-SDH prob-

lem.
Finally, by the forking Lemma, it comes that, ifA forges a

signature in a time t with probability ε ≥ 10(qsc+1)
(
qsc+qH2

)

2k
,

simulator S can solve the q-SDH problem in expected time

t ′ ≤ 120686qH1qH2

t + O
(
(qsc + qus) tp

) + qusqH2 te

ε
(
1 − 1

/
2k

) (
1 − q

/
2k

)

+O
(
q2tm

)
,

where tp is the complexity of a pairing computation, te is
the cost of exponentiation in GT and tm is the cost of scalar
multiplication in G. ��

5 Evaluation and comparison

In this section, we draw comparisons between our schemes
and theother identity-basedonline/offline encryption schemes
and signcryption schemes in the literature. We denote by mc

themodular computation inZ∗
p ,S aone-time strong signature

in [11]. We set k the block size of a symmetric key encryp-
tion E in [8], k̃ the security system parameter in [7], n the
message size. We first compare our encryption scheme with
the existing schemes. Then we provide an evaluation for our
signcryption scheme. Without loss of generality, we assume
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Table 1 Comparison of
computation cost

Off comp. On comp. Security model Assumption

[11]BB GT+ 6G + S Mvmc + S IND-sID-CCA DBDH

[11]G 5GT +3G M + 2mc IND-ID-CCA q-DABDHE

[15] GT +6G 3mc Adaptive CPA 
-BDHI

[8] GT +6G E + 2mc IND-sID-CCA DBDH

[7] GT +3G mc IND-ID-CCA 
-BDHI

[17] GT +3G mc IND-ID-CCA k-BDHP

[18] GT +4G 2mc IND-ID-CCA k-mBDHIP

Ours GT +2G 2mc IND-ID-CCA k-CAA1

Table 2 Comparison of storage
Offline storage Ciphertext size Analysis model

[11]BB |GT | + 4|G| + |S|+4|Z∗
p| |GT | + 4|G| + 2|S| + 2|Z∗

p| Standard

[11]G 4|GT | + 2|G| + 4|Z∗
p| 4|GT | + |G| + 2|Z∗

p| Standard

[15] |GT | + 4|G| + 6|Z∗
p| 4|G| + 3|Z∗

p| + n Random Oracle

[8] 4|G| + 3|Z∗
p| + k 4|G| + 2|Z∗

p| + |E| Standard

[7] |GT | + 2|G| + 2|Z∗
p| + k̃ 2|G| + |Z∗

p| + k̃ + n Random Oracle

[17] |GT | + 2|G| + 4|Z∗
p| + 2n 2|G| + 2|Z∗

p| + 2n Random Oracle

[18] |GT | + 3|G| + 4|Z∗
p| + n 3|G| + 2|Z∗

p| + n Random Oracle

Ours |GT | + |G| + 2|Z∗
p| + n |G| + 2|Z∗

p| + n Random Oracle

Table 3 Comparison of
computation cost and size

Off comp. On comp. Off stor. Ciphertext size

[18] GT + 7G 2mc 2|GT | + 4|G| + 4|Z∗
p| + n |GT | + 5|G| + 2|Z∗

p| + n

[14] GT + 7G 3mc |GT | + 4|G| + 6|Z∗
p| 4|G| + 3|Zp| + n

[13] GT + 4G 2mc |GT | + 3|G| + 4|Z∗
p| 3|G| + 2|Z∗

p| + n

Ours GT + 3G 2mc |GT | + 2|G| + 3|Z∗
p| 2|G| + 2|Z∗

p| + n

one multi-exponentiation is equal to two exponentiations in
group G.

Table 1 provides a comparison of computation cost and
shows that our scheme has the lightest computation in the
offline phase. It reduces at least one element in G. In the
online phase, it needs two modular computations in Z

∗
p

which still has a good computational efficiency. The pro-
posed scheme can achieve IND-ID-CCA under the k-CAA1
assumption.

From Table 2, we achieve shorter ciphertext size than
the best-known IBOOE instantiation. We only have one ele-
ment in G in the final ciphertext, which greatly reduces the
bandwidth when transmitting the encrypted massage. In the
offline storage, our scheme also achieves a comparable result,
although the protocol in [8] is slightly better in the offline
storage compared to our scheme. However, [8] depends on
one symmetric key encryption. It leads to the key manage-
ment problem and the security also depends on the security
of the symmetric key encryption algorithm. Thus, in some
way, our scheme has the smallest size and saves one element
in G in both the offline and online phases.

Table 3 shows that compared to the existing schemes, our
identity-based online/offline signcryption scheme achieves
the least computation and the smallest storage in both offline
and online stages. In the offline computation, we reduce at
least one operation in G. Compared to [13], our proposed
scheme saves one element in G and one element in Z

∗
p in

the offline storage, which leads to reduce one element in
G in the final ciphertext. The online computation is still
comparable and requires twomodular multiplications. These
improvements in our two schemes are very important when
the communication bandwidth is limited.

We remark that the security proofs of our schemes are
under the random oracle model. Random oracle model has
usually been regarded as a heuristic method since no hash
functions can be used as the random oracle. However, the
proof analysis in the random oracle model is more efficient
than that without random oracle and achieves an acceptable
security level, which has been commonly accepted. In some
situations, the weight of efficiency is over security level.
Therefore, in this case, the random oracle model provides
a better choice.
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6 Conclusion

We proposed two novel and efficient identity-based online/
offline schemes for encryption and signcryption, respec-
tively. Both our schemes are proven secure in the random
oracle model and achieve the shortest ciphertext. The pro-
posed schemes can reduce one operation in G in offline
computation and save at least one element inG in both offline
storage and online ciphertext. These improvements are sig-
nificant for the devices with limited storage and computation
power. Therefore, our schemes are desirable candidates for
lightweight devices.
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