
Int. J. Inf. Secur. (2016) 15:621–635
DOI 10.1007/s10207-016-0316-2

SPECIAL ISSUE PAPER

Analyzing proposals for improving authentication
on the TLS-/SSL-protected Web

Christopher W. Brown1 · Michael Jenkins2

Published online: 3 February 2016
© Springer-Verlag (outside the USA) 2016

Abstract “Secure” Web browsing with HTTPS uses
TLS/SSL and X.509 certificates to provide authenticated,
confidential communication between Web clients and Web
servers. The authentication component of the system has a
variety of weaknesses, which have led to a variety of propos-
als for improving the current environment. In this paper, we
survey, analyze, compare and contrast five prominent pro-
posals. To do this, we attempt to systematically capture the
properties onemight require of such a system: authentication
properties, forensics/privacy properties, usability properties
and pragmatic properties. Enumerating these properties is
an important part of understanding these proposals and the
nature of the authentication problem for the secure Web.
Finally, we offer a few conclusions and suggestions per-
taining to these proposals and possible future directions of
research.

Keywords Web security · Authentication · TLS · HTTPS ·
Certificates

1 Introduction

This article provides a summary and analysis of five propos-
als for improving the authentication component of the current
environment for the TLS-/SSL-protected Web (HTTPS)—
specifically the client’s authentication of the server. As a part

B Christopher W. Brown
wcbrown@usna.edu

Michael Jenkins
mjjenki@tycho.ncsc.mil

1 National Security Agency / U. S. Naval Academy, Annapolis,
MD, USA

2 National Security Agency, Fort Meade, MD, USA

of this analysis, we identify the properties the overall system
would, ideally, satisfy and describe the various proposals in
terms of the degree to which they do or do not provide/have
these properties. The paper’s real contributions, hopefully,
are a clearer picture of what the authentication problem for
the TLS-/SSL-protected Web really is, and a framework for
evaluating new proposals both individually, and in combina-
tion with one another.

The current environment for secureWebbrowsing is based
on TLS (see RFC5246 [1]). TLS provides a mechanism by
which a Web client (browser) and a Web server establishing
a connection between one another make use of public key
cryptography to agree on a shared secret key, which is then
used to encrypt communication using symmetric encryption
for the rest of that session. Typically the process begins with
the client being furnished a domain name by the user, which
is then translated to an IP address via DNS name resolution,
after which the client sends the Client Hello TLS message
to the server presumed to be listening on port 443 at that IP
Address. The client then receives messages from the server,
one ofwhich contains a public key.The client chooses a secret
key (more accurately, a value that determines the secret key),
encrypts it with the public key the client received and sends
the resulting ciphertext back to the server. At this point, both
parties have the same secret key, and encrypted communica-
tion can commence.

This process guarantees that the client and the owner of
the public key—i.e., the entity in control of the associated
private key—are the only ones who know the secret key,
assuming that the private key is kept private. It does not,
however, guarantee anything about the identity of the owner
of the private key. There is no assurance that the party the user
of the client wanted to contact is the onewithwhom the client
now has a secure connection. Routing to the IP address could
have gone wrong. DNS resolution could have produced the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0316-2&domain=pdf

622 C. W. Brown, M. Jenkins

wrong IP address. The domain name itself might be wrong—
e.g., amazen.com instead of amazon.com. Thus, there is a
critical authentication problem to be dealt with!

The current environment for secure Web browsing gen-
erally handles this authentication problem in the following
(highly simplified!) way: (1) It is the user’s responsibility to
ensure that the domain name provided to the browser is in
fact the correct domain name for the entity they are trying to
contact. (2) The Web server sends its public key to the client
in an X.509 certificate (see RFC5280 [2]) as part of a certifi-
cate chain in the TLS Server Certificate message, and it is the
browser’s responsibility to validate the certificate chain and
verify that it chains to one of the certificates in the browser’s
list of trust anchors. (3) It is the responsibility of the CA that
issued the trust anchor at the end of the certificate chain to
ensure that the public key in the certificate really belongs to
the entity that owns the given domain name.1

It is assumed that the reader of this paper is familiar with
this process, including details such as certificate revocation
lists, self-signed certificates andX.509validation not covered
in the very brief description above. It is also assumed that the
reader is familiar with the manifold problems inherent in this
system—for instance, that every CA trusted by the browser
represents a single point of failure for the whole system or
realities of how users usually bypass the whole system [3,
4]. The key point is that the authentication component of
the current secure Web-browsing environment has problems
both in principle and in practice.

The many problems that exist in the current environment
have prompted a wide variety of proposals for improve-
ments. The proposals considered in this paper are limited
to ones with a reasonable level of pragmatism (full-scale
replacement of the current environment with something new
is extremely unlikely!) and a reasonable degree of visibility
or momentum behind them. User interface improvements,
while important, are also outside of the scope of this analysis.
The proposals examined here are: DANE, Certificate Trans-
parency, HTTP Pinning (HPKP), TACK and Perspectives.
We looked at the Sovereign Keys proposal closely, but it is
not yet mature enough to really analyze to the same extent as
the above. Projects similar to Perspectives, such as Conver-
gence, Google’s now defunct Certificate Catalog project and
the Berkeley ICSI project, are interesting as well, but space
precludes covering them here.

This paper consists of three parts. The first describes the
set of properties thatmight be desirable for the authentication
component of the “secure Web.” The second provides sum-
maries of the five proposals, along with some commentary
and analysis—all of which is done in terms of the properties

1 The responsibility for managing trust anchors falls to some combi-
nation of browser vendors, OS vendors, users and, perhaps, IT support
departments.

from the previous section. The last focuses on comparisons
of different proposals and their potential to work in combi-
nation with one another.

2 Desirable properties for the authentication
component of the “secure Web”

It is easier to understand and compare these various propos-
als if we first describe what it is we really want. In other
words, what properties do we really desire of the authentica-
tion component of the “secureWeb”?What follows is a list of
such properties, grouped into four categories. The fourth cat-
egory is more accurately described as a list of properties we
would like to see in a proposal for improving on the current
state of affairs, for example that the proposed improvements
could be phased in incrementally, as opposed to expecting
the whole Internet infrastructure to change all at once. These
properties were in large part deduced from reading a number
of proposals and commentary on those proposals.

Authentication Properties2

continuity: that when a client connects to a host with
name X, one can be sure that, in some meaningful sense,
it is communicating with the same entity as it was com-
municating with the last time it connected to a host with
name X. Note: It could make sense to think of continuity
on two levels, the individual client level and the commu-
nity level. Pinning proposals are about individual clients
observing continuity. Notary proposals such as Perspec-
tives or the Berkeley ICSI, and gossiping proposals are
about a community of clients observing continuity.
domain name authentication: that the client is con-
nected to the server authorized, intended or allowed to
run under that name-and-port by the legitimate owner of
that domain name.
higher-level authentication: that the client is connected
to the server authorized, intended or allowed to run under
that name-and-port by an entity described by some notion
of identity beyond merely ownership of a given domain
name (e.g., Southwest Airlines, the US Postal Service).
There are actually different classes of certificates—EV
(extended validation) [5], OV (organization validation),
DV (domain validation)—that seek to provide some
higher-level authentication. Note: Many companies have
made their domain name their identity, e.g., amazon.com,
so that domain name identity and higher-level identity are
one and the same.
attribute authentication: that the client is connected to
the server authorized, intended or allowed to run under

2 This article is only concerned with server authentication, so client-
authentication properties are not addressed.

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 623

that name-and-port by an entity with certain attributes
(e.g., FDIC insured bank, NASDAQ listed company).

Forensics and Privacy Properties

client privacy: that third parties cannot, without the will-
ing participation of the client or the server, deduce what
Web sites a given client has been connecting to (without
special access to the client machine).
impostor discoverability: that the legitimate owner of
a given domain name should be able to discover what
servers are presenting themselves as belonging to that
name.
server privacy: that third parties cannot, without the
willing participation of the client or the server, deduce
the existence of a given server without actually attempt-
ing a connection themselves.
local privacy: that someone with access to the client
machine after a Web site has been visited cannot deduce
facts about what sites have been visited by the client.
Of course, if a proposal includes client-side data, a user
should be able to “clear history” as they can with cur-
rent mechanisms like cookies. However, this presumably
degrades the improvements to authentication. So this
property refers to privacy concerns assuming that this
clearing of authentication history has not happened.

Usability Properties

minimal false positives: that the client seldom refuses
a connection or presents the user with an error message
when the server it is connected to is indeed the right
one. Ideally the client never decides to disbelieve that
the entity with which it is communicating has the proper
identity when, in fact, it does. This is the ideal. In real-
ity, we can only try to minimize the number of false
positives. As noted elsewhere, encountering many false
positives conditions users to simply override-and-accept.
Conversely, users that err on the side of caution are actu-
ally discouraged from connecting to legitimate servers.
Note that this is described as a “false positive” because of
the analogy tomedicine— the test says there is a problem
when, in fact, everything is OK.
maximal actionable information: that the client should
have good, actionable information to present to the user,
information that allows for good decisions. This includes
information that allows for a reasonable plan of action in
case the user decides not to override-and-accept.
minimal user trust: that the trust users must place in
other entities isminimized. Note: This is a complex issue,
since it involves not only how many entities need to be
trusted, but also to what extent they are trusted, and how
bad things could be if some number of them colluded.

user control: that the user is allowed to override deci-
sions, determine who or what to trust, etc. This means
the system must allow for it. Particular clients might not.
minimal server trust: that the trust server operatorsmust
place in other entities is minimized.
minimal server roadblocks: that setting up a TLS
server is not overly burdensome. Already, lots of people
and organizations have difficulty doing it right. Ideally
improved authentication mechanisms should not set up
too many barriers, technical, logistical or financial, to
organizations that want to set upWeb sites that use them.

Implementation/Infrastructure/Pragmatics Properties

incremental: that there are benefits (progress toward
other properties) for those that opt-in without requiring
that everyone participates.
minimal-impact: that big changes to the Internet archi-
tecture are not required.Client-only solutions, for instance
are very low impact, as are server-only. When both have
to change, when third parties are involved and so forth,
the impact grows.
no-break: that things that currently work relying on
relatively common practices (e.g., local network TLS
connections, changing domain ownership, Web-hosting
services, user-level TLS servers on hosts, etc.) do not
break under the new proposal.
scalable/maintainable/robust: that the system works at
Internet scale and can function over a long period of time.
For example, if keys are lost or no longer secure: Can they
be changed? The system should function reasonably in
the face of outages and attacks.
resource-friendly: that adopting the proposal does not
slow communication toomuch, or require toomuch CPU
time or memory. Resource-constrained mobile devices
must be able to participate.
realistic: that the proposal does not make unreasonable
assumptions or demands on individuals or society. For
example, expecting organizations with no suitable finan-
cial or other incentive to run big servers might not be
realistic.

In each of the following five sections, we briefly describe
a well-known proposal for improving authentication on the
secure Web and analyze that proposal in terms of the prop-
erties described above. Each property is listed, along with
commentary on the proposal in termsof that property.A small
“gauge” icon accompanies each property to give a quick indi-
cation ofwhether the proposal positively or negatively affects
a certain property, or has no substantial impact. For the first
three categories—Authentication, Forensics and Privacy and
Usability — the gauge value is to be understood as relative
to the current secure Web environment. For the last category

123

624 C. W. Brown, M. Jenkins

— Implementation/Infrastructure/ Pragmatics—gauge val-
ues are to be understood as relative to all the other proposals
for improvements. The gauge values are simply manifesta-
tions of qualitative judgments, not true quantitative data. The
hope is that when combined in tables as in the following sec-
tions, they are a concise means to provide insight into the
strengths, weaknesses and purpose of any given proposal.
However, it is the accompanying commentary that provides
the actual analysis.

3 DNS-based authentication of named entities
(DANE)

DNS-based authentication of named entities (DANE) uses
DNSSEC to make assertions that constrain valid certificate
chains. These assertions can specify the end-entity certifi-
cate or public key, the trust anchor certificate or public
key, or an intermediate certificate or public key. By using
DNSSEC to distribute these assertions, clients can guarantee
that the assertions really belong to the domain name in ques-
tion. Thus, DANE is a mechanism that provides very strong
domain name authentication. DANE depends on DNSSEC,
and DNSSEC adoption seems to be proceeding very slowly.
DANE (see RFC6698 [6]) adds a new record type to DNS,
the TLSA resource record, which allows the nameserver that
is authoritative for a given domain name to make assertions
tied to a pairing of the name with a port-and-protocol. These
assertions are of the following form:

(usage, selector, matching type, certificate association data)

where usage ∈ {0, 1, 2, 3}, selector ∈ {0, 1}, matching type
∈ {0, 1} and the “certificate association data” can be a cer-
tificate, the Public KeyInfoField of a certificate or a hash
value.

The semantics of DANE assertions are essentially this:
The certificate chain is constrained in usage 0 to contain a
given certificate/public key and in usage 1 to start with a
given certificate/public key (which specifies the end entity).
For both, the client is still required to validate the certifi-
cate chain up to a client-trusted anchor. Usages 2 and 3 are
similar, except that the client’s role in determining trust is
eliminated. The certificate chain is constrained in usage 2
to contain a given certificate/public key as trust anchor, and
that trust anchor must be trusted by the client for purposes of
that validation, regardless of the client’s current trust store.
The certificate chain is constrained in usage 3 to have a given
end-entity certificate/public key, and if it does, the clientmust
accept the connection without doing certification path vali-
dation of the chain.

Because it is tied to DNSSEC, DANE’s pragmatic outlook
is tied to DNSSEC adoption. It is worth clarifying the sense

in which DANE offers something more than DNSSEC alone
would offer. A client relying on DNSSEC to resolve a given
hostname to an IP address has a strong guarantee that the IP
address it uses for that domain name is correct. However, it
has no guarantees that the entity it connects to is a really a
host properly associated with that IP address. After all, the
attacker could be corrupting routing rather than DNS. With
DANE, however, the client has stronger guarantees that the
host it is connected to is properly associated with the given
domain name.

Usage 2 and 3 assertions are potentially problematic.With
usage 3, certification path validation does not occur, i.e., if
the end-entity certificate presented to the client matches the
certificate in the DANE assertion, the connection is accepted.
A usage 2 DANE response mandates a certain trust anchor
for validation, and mandates that it be trusted—regardless of
whether it is currently in the client’s trust store. Both deny
the user (or system administrator) the opportunity to make
trust decisions. The security issue here is that without usages
2 and 3 both DNSSEC/DANE and the CA system have to be
defeated in a successful attack, while with them an attacker
that can successfully subvert DNSSEC can successfully pull
off a man-in-the-middle attack. Defense in depth has been
lost.

continuity:—
domain name auth.: This is DANE’s strength.
higher-level auth.: Usages 2 and 3 response

bypasses certification path validation, so information in
certificates is less trustworthy than in the current system.

attribute auth.:—
client privacy: Generally, having to contact a

third-party server is a client privacy concern. However,
clients would almost always be contacting a DNS server
for name resolution anyway, so it is not really a concern
here.

impostor discoverability:—
server privacy: Normally a DNS server would

store the IP address associated with a given name and
nothing more. DANE records include a port as well as
IP, so the fact that a particular host is running a TLS
server at a particular port number is then known to the
DNS server.

local privacy:—
minimal false positives: DANE provides mech-

anisms (usages 3 and 4) by which a certificate that does
not chain to a trust anchor would be accepted without any
error or warning, which reduces false positives, although
it can also defeat authentication, as pointed out above.

maximum actionable info: If a site uses DANE
and the client issues an error, the DANE assertion itself
provides extra information about what public key / cer-
tificate should have been expected.

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 625

minimal user trust: The user does not need to
trust the CAs as much, but they put more trust in DNS.

user control: With usages 2 and 3, there are situ-
ations in which a connection will be accepted regardless
of the user’s trust anchor settings.

minimal server trust: With DANE, the Web
server operator puts even more trust in the DNS; how-
ever, CAs do not need to be trusted as much.

minimal server roadblocks: To use DANE, the
Web server operator requires the cooperation of the DNS
administrator. To also ensure that clients that do not sup-
port DANE are not locked out, a certificate from a CA
would also be required.

incremental: Both Web clients and sites (though
not reallyWeb servers) need to change forDANE towork,
any pair that supports DANE gain the security of the
system, regardless of whether it is adopted elsewhere.
However, it is not enough for just one of the two parties
to elect to participate.

minimal-impact: It is not enough for client and
server to change, the infrastructure has to change if
DNSSEC is not already available.

no-break:—

scal./maint./robust:—

resource-friendly: DNSSEC has some overhead
(see [7]) andmore signed infowill be sent whenDANE is
used than would be sent using DNSSEC solely for name
resolution.

realistic: Given that DNSSEC is in use, DANE
is quite realistic. The question is whether it is realistic to
expect significant DNSSEC adoption anytime soon.

4 Certificate Transparency

Certificate Transparency is described inRFC6962 [8]. Its pri-
mary purpose is to provide “impostor discoverability.” The
basic idea is this: If there was a public logfile of all certifi-
cates issued, then domain name holders could view the public
logfile to root out bogus certificates for their domain names
and, as the proposal puts it, “invoke existing business mecha-
nisms for dealing with misissued certificates.” If TLS clients
all agree to reject any certificate not recorded in the pub-
lic logfile, attackers would be forced to record their forged
certificates in the logfile where, hopefully, server/domain
owners would observe the bogus certs and do something
about it. While this basic idea is straightforward, realizing it
in a secure way is non-trivial. The Certificate Transparency
proposal is somewhat complicated in terms of the number
of entities involved: In addition to servers and clients, there
are logfile servers, trusted auditors and logfile monitors (see

Fig. 1). So the description that follows adds these various
pieces in small steps.

Step 1: We first consider how clients determine whether
a certificate record is in the logfile. Of course, the client
could contact the logfile server and ask. Even if that
could be done in an utterly secure and authenticatedman-
ner, there are still two issues: (1) contacting the third
party has a performance and availability concern and
(2) letting the logfile server know every domain name
you want to contact has privacy concerns. Therefore,
the proposal calls for a different approach. Clients have
preloaded/out-of-band-received public keys for the log-
file server. The TLS server is supposed to send a “signed
certificate timestamp” (SCT) along with the certificate,
which is essentially a hash of the certificate concatenated
with a timestamp, signed by the logfile server. This gives
the client something that it can verify quickly, without
any third-party communication, so it addresses both con-
cerns 1 and 2. IANA has issued a value for the TLS
SCT extension. For technical reasons beyond the scope
of this overview, the SCT is issued before the certificate
is logged. However, the SCT contains an additional field
with a value called the Maximum Merge Delay (MMD).
Implicit in the SCT is a promise by the logfile server that
the time between when the SCT was issued and when it
is logged will not exceed that MMD value.
Step 2: If the logfile is misbehaving or if it has been com-
promised or its private key stolen or broken, clients could
get forged SCTs. In other words, they could be accepting
certificates that were not actually logged. To address this,
the proposal calls for “trusted auditors” that clients are
supposed to submit SCTs to, in order to keep tabs on the
logfile server and make sure it really is reporting the sub-
mitted SCT as part of the log. The RFC mentions having
the client do this (asynchronously, so as not to take the
performance hit), but (1) that has all the same privacy
concerns and (2) the logfile server could systematically
lie to that one host. So it makes more sense to introduce
trusted auditors into the system. It is unclear who or what
auditors are notifying in case they detect a misbehaving
logfile server, nor is it clear what the planwould bewere a
logfile server discovered to be misbehaving. Recovering
from that situation could be quite challenging.
Step 3: Another way that a logfile server could misbe-
have is by modifying past entries in the log. For instance,
maybe a bogus certificate gets a real SCT from the log-
file server and is in the logfile (so the auditor does not
see any trouble) but then after the attack the logfile entry
gets erased, and all this happens before the domain name
owner gets a chance to check for any new entries in the
logfile for his domain name. This would defeat the whole
purpose of Certificate Transparency. Therefore, the log-

123

626 C. W. Brown, M. Jenkins

Fig. 1 Diagram illustrating CT. A full picture would show multiple logfile servers

file is append-only—once an entry is there, it is there
forever. This is done with Merkle trees, which provide a
mechanism whereby anyone observing the logfile server
could detect modifications or erasures of past entries. Of
course, some entity has to bother to make these checks,
so the proposal calls for “logfile monitors,” which would
periodically query the logfile server and check that it was
really operating in append-only mode. These might do
double duty by also checking for new logfile entries for
domains the host is interested in.
Step 4: Finally, the proposal envisages not one, but mul-
tiple logfile servers. To protect against denial-of-service
attacks, in which the attacker floods a logfile server with
bogus certificates to be logged, the proposal suggests that
each logfile server would publish a list of root CAs, and it
would only log entries that validate via a chain up to one
of the CAs in the list. The proposal also calls for “gos-
siping” to root out misbehaving logfile servers. However,
no details on the gossiping protocol are given.

Certificate Transparency provides impostor discoverabil-
ity. This is a benefit to server/domain name owners, but only
secondarily a benefit to users. It provides no benefit for the
initial targets of attacks, but it does offer a potential ben-
efit to the larger user community, in as much as a vigilant
server/domain name owner may notice the attacker and take
steps to shut him down. The proposal takes great pains to
ensure that entities that care to do so can monitor the activ-
ities of logfile servers in order to ensure that they are being
honest, so that logfile operators do not need to be trusted.
There are, however, some issues to consider.

The purpose of the logfile monitors is to ensure that the
logfile servers behave properly. However, once again, it is
unclear how to deal with a logfile server that has misbe-
haved. It could be blacklisted somehow, but it is not clear
what to make of the SCTs it had previously issued. Web

servers would be sending them out, potentially unaware that
it was no longer trusted. Perhaps a bigger question is what to
do with logfile servers that are not purposefully acting badly,
but fail to meet an obligation—for example a logfile server
that does not get the SCT into the log within the window
specified by the MMD because of an attack, or a simple pro-
gramming or administrative error. Simply blacklisting such
a server seems highly undesirable. An alternative would be
to rollback the log to the point of the error, but that is a prob-
lem because all the legitimate SCTs that had been issued
in between issuing this SCT and noticing that the merge
deadline had been missed would then be invalidated. Some
mechanism is required to deal with this gracefully.

The proposal does not address how logfile public keys
are distributed and updated. It seems that we end up in a
similar situation as with CAs, namely that some arbitrary
list of trusted logfile servers is preloaded into the browser.
There is then the potential for even more certificate-related
error messages, since a client could receive a certificate that
is actually OK, but receive an SCT along with it that refers to
a logfile server that is not trusted by the client (or for which
the public key stored in the client is too old or too new).

It is not clear why users/clients would opt to submit SCTs
to auditors. Collectively, there is the benefit that attackers
could be discovered and eventually dealt with. But for the
individual user there is little short-term benefit, and there
is definitely a risk to privacy. If the intended model is that
browser vendors would run their own trusted auditors, the
privacy issue is mitigated, since their users are essentially
trusting them completely anyway ... at least for Google,
Microsoft and Apple. Less so for open source projects like
Firefox, where users may put their faith in the “many eyes”
that are supposedly on the source code. How a “trusted audi-
tor” run by the Mozilla foundation is set up would not be
subject to all those eyes, making it easier for a single indi-
vidual or small group to misuse it than to introduce errors

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 627

into the Firefox codebase. Below is a summary analysis of
CT.3

continuity: no real first-order effect.

domain name authentication: no real first-order
effect.

higher-level authentication:—

attribute authentication:—

client privacy :The auditor sees every secure site
the client connects to.

impostor discoverability : This is the whole
point of CT!

server privacy : A legitimate server has to
announce its presence by submitting to a logfile server.

local privacy: No additional data are stored
locally.

minimal false positives :With CT, users could be
faced with errors when valid certificates are not logged,
or when SCTs are sent to clients that do not have that
logfile server’s public key.

maximal actionable information :When a cert’s
trust anchor is untrusted by the client, but the cert is
logged, the user at least knows that the cert has been
available for scrutiny and for how long. Otherwise, the
user will know that it is unlogged (which is more suspi-
cious).

minimal user trust : On the one hand, CTmeans
users do not need to place so much trust in CAs (that

3 Draft revisions of the RFC address some of the issues raised here.
This evaluation notes server privacy as an issue—a legitimate server
needs to announce its presence by submitting its certificate to a public
logfile server. To address this, draft revision 3 of the RFC includes a
mechanism for redacting portions of the domain name in the certificate
information submitted to a logfile server. For example, if the domain
name in the certificate was super.secret.example.com, the information
submitted to the logfile servermight be(PRIVATE).example.com.
Another mechanism added in the draft that addresses this problem is
logging a name-constrained intermediate authority, along with a field
that explicitly allows the SCT for the intermediate authority to stand in
lieu of an SCT for the end-entity certificate. Thus, the situation above
might be handled be having super.secret.example.com send an SCT
for an intermediate CA constrained to example.com. Concerns raised
here regarding the Minimal Impact and Minimal Server Roadblocks
Properties are addressed in draft revision 3 by providing a mechanism
for including a server’s SCT in its certificate. This way, the server/server
owner does not necessarily need to change or do anything different in
order forCT to be used. Instead,CA’s couldmake sure SCTs are bundled
in the certificates they issue, and servers simply send those certificates
as they always do. Of course, this creates a chicken-and-egg problem:
the CA needs the SCT to create the certificate, but the logfile server
needs the certificate to create the SCT. To deal with this, draft revision
3 allows CA’s to submit “pre-certificates” to the logfile server, which
contain enough information for the logfile server to create an SCT. The
SCT gets sent back to the CA, which then can complete the certificate.
Because these mechanisms are only described in draft revisions under
very active development, we are not including them in our analysis.

is the “transparency”), but since a logfile server could
essentially blackball a site by refusing to issue a SCT for
it, users have to trust them to behave honorably. If there
is one (or few) logfile servers for your client, that could
become a problem.

user control:—

minimal server trust : Server/domain owners do
not need to place as much trust in CAs.

minimal server roadblocks : Server/domain
owners have to submit their certs to a logfile server and
have to find one that supports their trust anchor.

incremental :Adoption is amajor issue. If clients
do participate, all sorts of legitimate sites will suddenly
stop working, and users will get swamped in false posi-
tives.

minimal-impact: Both clients and Web servers
need to change in order for CT to work, and a lot of
additional infrastructure and new kinds of servers needs
to be created.

no-break : How will this work in local net-
work only situations?Will organizations be forced to run
logfile servers inside their local networks? How about
enterprise trust anchors? None of the usual logfile servers
will support them, of course, so would such an enterprise
need to run its own logfile server?

scal./maint./robust : lots of questions:What hap-
pens when logfiles make errors or are found to be acting
improperly? How can logfile server keys change? How
are logfile server keys distributed to clients? There are
some significant maintenance problems!

resource-friendly: Not a lot of extra burden on
client or server; although clients have to report to audi-
tors, they do it asynchronously.

realistic It is unclear what would motivate oper-
ators to stand up logfile servers, monitors or auditors.

5 An HTTP extension for public key pinning
(HPKP)

At its most basic, “pinning” just means hard-coding or
caching cert/public key (or the hash of the cert/public key) in
a client, and requiring the cert/public key received at connec-
tion time to match what is currently “pinned”. More flexibly,
the client might pin a set of certs/public keys, or pin the
cert/public key of an intermediate element of the certificate
chain, both of which allow the end-entity cert/public key to
change in a controlled manner. Essentially, pinning is a com-
mitment that the user would not allow certs/public keys to
change. What is interesting is looking at the question of who
controlswhether,whenandwhat pinning takes place. Pinning
could be directed by (1) the user, (2) the client (e.g., hard-

123

http://super.secret.example.com
http://super.secret.example.com
http://example.com

628 C. W. Brown, M. Jenkins

coded pins, or pinning that would be updated by the client
“calling home” or calling an external service, or a policy
of caching certs/public keys after an initial unpinned con-
nection) or (3) the server (directing pinning for itself or for
subdomains). An example of (1) is when a user preloads or
chooses to accept an ssh public key. An example of (2) is
when applications (like Chrome) have preloaded pins or call
back home to get new pinning directives. If a Web site were
to send pinning directives to the client that would be an exam-
ple of (3). Pinning, obviously, is a mechanism for providing
authentication continuity.

The IETF draft document draft-ietf-websec-key-pinning
(at the time of this writing in revision 21) [9] proposes an
HTTP extension, HPKP, that allows the server to direct the
pinning performed by the client—i.e., it is an example of the
category (3) typeof pinningdescribed above. In this proposal,
the server sends clients HTTP directives (the proposed exten-
sion) providing (hash-algorithm, hash-of-public-key) pairs
that are to be pinned. The client saves this pin information
indexed by the domain name it used in creating the con-
nection. On subsequent connections to the same name, the
client then checks whether any hash value in the set of pins is
matched by a hash of any of the public keys in the certifying
chain. If so, the client continues as normal. If not, there is an
error. A hash-algorithm + hash-of-public-key pair must be
accompanied by a “max-age” value and may be accompa-
nied by a “report-uri” value. The max-age value instructs the
client to keep the pin for a certain time. The report-uri gives
a URI that is to be used by clients to report pinning errors
for that domain name. An additional assertion may be sent
that directs the client to apply the pin not only to the server’s
domain name, but to all of its subdomains as well.

The obvious benefit of HPKP is the continuity authenti-
cation it provides. When a user connects to a server often
enough (meaning that the time between visits is less than the
max age) with the same client, man-in-the-middle attacks
should be detected. Because the server directs the pinning
and because sets of pins are allowed and intermediate public
keys can be pinned, servers can pull off planned transitions
to new public keys gracefully. As will be described in more
detail below, the proposal is very good in terms of the Usabil-
ity Properties. Among the Implementation/Infrastructure/
Pragmatics properties, the only real concern is the extra
resources required by a participating client—namely that
a potentially large number of pins will have to be stored,
which could be problematic for resource-constrained clients.
There is an especial concern that a malicious site could
flood the pin store and use up all the available space. The
specification could perhaps be modified to bound the stor-
age given a (non-top-level) domain, or reclaim space from
the non-top-level domain with the largest storage footprint.
Maintainability questions surrounding unplanned key tran-
sitions are answered by requiring servers to pin a “backup

key,” which is a key to be used in case the current public key
is compromised and needs to be revoked and its use discon-
tinued.

Next we consider Forensics and Privacy Properties. What
should be another obvious benefit of HPKP is impostor dis-
coverability. This is, after all, the point of the reporting
mechanism provided by the report-uri directive. But to what
degree will HPKP really provide this property? In the case
of a man-in-the-middle attack (which is what an “impostor”
really has to do), the client will be provided with a domain
name X, and the attacker will somehow arrange things so
that the client will think it is communicating with the host
properly referred to by that name when, in fact, it is commu-
nicating with some other host—for example by disrupting
routing. If the client receives a certificate chain and it does
not match what is pinned for the name X, the client is sup-
posed to send information about the pinning error to the URI
in the report-uri directive. However, it seems quite likely that
this message will never arrive at its destination given that
the attacker is already subverting network traffic to carry out
the man-in-the-middle attack. So the only case in which this
would actually have its desired effect iswhen the attackerwas
unwary enough to allow the reporting message through. We
note that this could be remedied by having clients send these
reports at exponentially decaying intervals—perhaps until a
signed acknowledgment is received. As long as the attack is
not permanent, the report should eventually get through. To
avoid flooding-style attacks, a carefully analyzed approach
that looks at domain relationships and drops multiple error
reports from the same (non-top-level) parent domain should
be investigated.

There are a variety of ways clients may end up with pins
that do not match the public key presented by a legitimate
server.A domain namemay change handswithout thewilling
cooperation of the party losing the domain. Both primary and
backup keys could be lost. An attacker manages to pull off
a successful man-in-the-middle attack for a period of time
on a site that does not use pinning, and puts a “poison pin”
in the browser of all clients that connect during that time,
with a very big max age. In all these cases, there is actually
a hole in the DNS namespace—a domain name that, for a
large number of clients, is unusable for HTTPS connections.
This is a potentially serious problem.

Finally, HPKP breaks with the general design principle of
separating concerns, and the specific cryptographic princi-
ple that different security properties should be safeguarded
by different keys (see, for example, Section 5.2 of [10]). Con-
sider the following three scenarios:

Scenario 1: Suppose a Web server instructs clients to
pin the key from the end-entity certificate. Then the key is
used both to provide continuity authentication and to pro-
vide confidentiality in sending the TLS premaster secret

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 629

from the client to the server.4 Note in this case that chang-
ing the end entity public key is a problem, because the
pin becomes invalid—although with some care and suffi-
cient time, this can be dealt with using the “backup key”
and max-age directive.
Scenario 2: Suppose instead that the client is instructed
to pin the public key from a CA certificate. In this case,
changing end-entity certificates will not violate the pin,
as long as the same CA signing key is the root of the new
end-entity certificate’s validation chain. However, now
that signing key is being used to provide both domain
name authentication and continuity authentication. Note
that in this case the client with the pin is no longer pro-
tected against a compromise of the CA key (as it was in
the previous case), because that key can sign a fraudu-
lent end entity certificate that will validate with the same
certificate chain, thus matching the pin.
Scenario 3: Suppose that the Web server operator, want-
ing the flexibility to change end-entity public keys but not
wanting to have to put all his trust in theCA, gets a signing
certificate (hopefully with a limited scope namespace!)
and uses it to issue certificates with different public keys
as they are needed. Once again, that signing key is being
used to provide both domain name authentication and
continuity authentication. Note that in this case, the Web
server operator is not reliant on the CA for continuity
authentication. On the other hand, compromise of the
Web server’s private signing key is sufficient to carry out
an attack.

In this sense TACK, which is described in the next section,
is designed well, because a separate key (the “Tack Signing
Key”) provides continuity authentication, and the certificate
chain keys provide (as they are supposed to) domain name
and higher-level authentication.

continuity: This is the point of HPKP, although
the fact that pins expire limit this property.

domain name auth:—

higher-level auth:—

attribute auth:—

client privacy: attacks referenced above.

impostor discoverability : The report-uri direc-
tive provides this but, for reasons described above, it is
unclear how effectively.

server privacy:—
local privacy: There is forensics information in

the pins themselves, and simply clearing the pinstore as

4 Depending on the TLS cipher-suite, the second use of the key may
instead be to verify that an ephemeral key belongs to the server.

you would the browser’s cache is not an attractive option
because the user would lose security.

minimal false positives:Sites the user visits often
should not generate false positives, but those visited infre-
quently might does not address first use.

max actionable information: For some errors,
pinned information shows what public key user should
expect to see this can be actionable.

minimal user trust: The user trusts server X’s
pinning directives, but these only pertain to server X
itself, so that is a pretty low level of trust. Pinning reduces
the trust that must be placed in CAs.

user control:—

minimal server trust: A server making use of
HPKP needs very little trust in CAs after a given client’s
first connection.

minimal server roadblocks: The server does not
need to rely on, or coordinate with, outside entities to use
HPKP in a limited way, but using it flexibly so that new
keys can be introduced in a reasonable way may require
getting a signing cert, which is a much bigger deal.

incremental: With a conforming client, any par-
ticipating site is more secure (for the user); however, both
client and server must participate.

minimal-impact: Clients and Web servers need
small modifications.

no-break:—

scal./maint./robust: Some small concern about
how domain names change hands.

resource-friendly: All the pin information needs
to be stored, which could be problematic for memory-
constrained clients. There are also concerns about attacks
on memory resources via HPKP.

realistic:HPKPonly requires buy-in frombrowser
vendors to get started. Given that this is a Google draft,
that buy-in might be there.

5.1 Trust assertions for certificate keys

Trust Assertions for Certificate Keys (TACK) is a 2013
project that proposes a TLS extension to help guarantee
continuity through server-directed pinning. The concept is
defined in an expired Internet Draft [11]; more information
is available at http://tack.io. Although its future is unclear,
it is an interesting proposal to consider here—especially
because with similar goals to HPKP, TACKmakes some dif-
ferent design decisions. In TACK, both the client and the
server need to participate, but no third parties are involved.
The basic idea is that the entity controlling a TLS server, the
“owner,” creates a long-term public/private key pair called
the Tack Signing Key (TSK) that provides the cryptographic

123

http://tack.io

630 C. W. Brown, M. Jenkins

basis for continuity authentication. A “tack” is an assertion,
signed with the TSK private key, that the owner approves of
(or revokes, but that would not be covered in much detail
here) a particular public key for TLS use. When a client ini-
tiates a TLS connection to a host with name N, it receives
both a tack T and a TLS public key K (usually in a certifi-
cate). The client checks that the TLS public key asserted in
the tack matches the received TLS public key K, of course,
but the important part is what comes next. If the client has not
connected to this server before, it “pins” the TSK public key
(which is included in the tack) to the name, i.e., it stores the
pair (N,TSK_pub). If, however, the client has connected to
this server before, then there is already a pin for the name N,
and thus, the client knows the identity of the owner from pre-
vious connections to N—it is given by the pinned TSK_pub.
So the client can verify that the identity of the owner is the
same now as it was for previous connections by checking that
the TSK public key in the tack matches the TSK public key
in the pin. With this mechanism, even if the TLS public key
changes, even if the whole certificate chain sent by the TLS
server changes, the client still can be confident of “continu-
ity,” i.e., confident that the owner from previous connections
approves the TLS public key to be used for this connection.

The actual proposal is trickier than the simplified overview
above. And the implications of the mechanism described in
the proposal are quite subtle. There may be two pins for a
given domain name in the pin store, though no more than
two, and each pin can be in one of two states, “active” or
“inactive.” Moreover, pins include start and end times that
determine the pin’s state (a pin can “age out” and make the
transition from active to inaction). Also, there may be two
tacks in the ServerHello, though no more than two, and each
tack is sent along with a flag labeling it as either “active”
or “inactive.” The state of the pin matters: only “active”
pins actually count as verifying continuity authentication.
The active/inactive status of the tack affects the state of the
pin and does it in a way that is intertwined with the current
time and the pin’s start and end time. For example, after 30
days without a connection, any active pin ages out to inac-
tive. To top it off, each tack includes a “generation” number
and a “max_generation” number, and each pin contains a
“max_generation” number. These get used to “revoke” TLS
public keys. However, they also interact with the process for
determining how tacks affect pin state.

When a TACK-supporting client sends the TLS Client
Hellomessage, it includes a newTLS extension called “tack”
with no associated extension data (and it must also send the
domain name using server name indication). This signals
to the server that the client wants to support TACK. The
ServerHello message sent in response also includes a “tack”
extension, but this time there is associated data. It consists of
one or two “tacks” and a one byte “activation flags” field. A
“tack” is a tuple

(public_key,min_generation,generation,target_hash,signature)

where public_key is the TSK public key, target_hash is the
hash of the TLS public key and signature is the signature of
the first four fields signed with the TSK public key. The first
tack is “active” if bit one of the activation flags is set. The
second tack, if it exists, is “active” if bit two of the activation
flags is set. A “pin” is a tuple

(domain_name, initial_time, end_time, TSK_public_key,

min_generation)

A key is “active” if current_time < end_time. The pin
store contains at most two pins with the same values for
domain_name and never contains two pins with the same
values for domain_name and TSK_public_key.

When a connection is attempted and 0,1,2 tacks are
received, a number of checks are performed, and a number
of results are possible. Basically, we could get “certifi-
cate_revoked,” “contradicted,” “confirmed” or “unpinned”
as results relevant to the current connection, and we may
have changes to the pin store as well. Pins may be added and
deleted, end_times may be updated, and min_generations
may be updated. The precise mechanisms will not be cov-
ered in this summary of TACK, as it would require too much
detail. Moreover, there are some minor ambiguities in the
current proposal.

The primary value of TACK is that it provides continuity
authentication. It is essentially orthogonal to the regular cer-
tificate mechanism, which is a nice property. It strengthens
authentication both for sites that to rely on self-signed certifi-
cates and those relying on certificates signed by CAs. TACK
and the HTTP Pinning Extension described above both pro-
vide server-directed pinning, so it is useful to enumerate some
of the key differences between the two proposals.

1. TACK is a TLS extension; thus, it operates on the
presentation layer, whereas HTTP Pinning operates on
the application layer. This means that not only will Web
servers andWebclients need to bemodified to participate,
but the TLS server and client code needs to change to
support TACK. Thismeans a bigger change to the current
architecture.
2. TACK does not try to do any kind of back-reporting.
3. TACK TSK’s and TACK signatures are separate from
the certificate chain. Conceptually, this is a big improve-
ment over HTTP Pinning, since it follows the principle of
using different keys to protect different properties—TSK
for continuity authentication, certificate signing keys for
domain and higher-level authentication.

TheTACKproposalmentions that there are somepotential
privacy concerns, namely that the pins are another record
of where one has browsed and that attackers could throw

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 631

fraudulent TSKs at a client and try to deduce based on the
client’s reactions whether it had connected to the real site
previously.

The proposal alsomentions that some sort of client gossip-
ing or other kind of mechanism for sharing TSK pins could
help with the problem of the initial connection, or connec-
tions initiated after a long enough period of time that the
TSK pin has expired. If this were to be followed through,
it would provide “community continuity authentication” , as
described earlier in the paper.

TACK suffers from the same potential problem as HTTP
Pinning in terms of leaving clients essentially unable to con-
nect to a given domain name because they have a “poison
pin,” for one reason or another. However, it is mitigated in
TACK by the “aging out” policy, which guarantees that a pin
that is not “refreshed” by receiving a reinforcing tack within
a 30 day window becomes inactive, and therefore, it is as if
there was no pin at all.

continuity: The aging out process and the way it
is affected by the frequency of visits make TACK’s conti-
nuity authentication a bit less strong, though it mitigates
other issues.

domain name auth:—

higher-level auth:—

attribute auth:—

client privacy: As described above, an attacker
may be able to use TACK-based rejection of a connec-
tion to deduce that the client has visited a particular site
before.

impostor discoverability :—

server privacy:—

local privacy: There is forensics information in
the pins themselves, and simply clearing the pinstore as
you would the browser’s cache is not an attractive option
because the user would lose security.

minimal false positives:Sites the user visits often
should not generate false positives, but those visited infre-
quently might does not address first use.

max actionable information: For some errors,
pinned information shows what public key user should
expect to see this can be actionable.

minimal user trust: The user trusts server X’s
pinning directives, but these only pertain to server X
itself, so that is a pretty low level of trust. Pinning reduces
the trust that must be placed in CAs.

user control:—

minimal server trust: A server making use of
TACK needs very little trust in CAs after a given client’s
first connection. Server operators place less trust in CAs

than in HPKP, since with TACK the operator controls the
key that safeguards continuity authentication.

minimal server roadblocks: TACK is self-
contained (no interaction with third parties) for the
server owner. The only real additional burden is the key-
management that accompanies the TSKs.

incremental: With a conforming client, any par-
ticipating site is more secure (for the user); however, both
client and server must participate.

minimal-impact: Clients, Web servers and their
underlying TLS libraries all need to change.

no-break:—

scal./maint./robust: Just small concerns about
switching TSK keys how domain names change hands.

resource-friendly:All the pin info needs to
be stored, which could be problematic for memory-
constrained clients. There is no “include subdomains”
directive like HPKP has; however, there are never more
than two public keys stored per name. There are also con-
cerns about using TACK to attack memory resources.

realistic: Adopting TACK requires changes not
only to Web clients and servers, but also to underlying
TLS libraries.

6 Perspectives

Perspectives is a circa 2008 Carnegie-Mellon project (see
[12]). It is included in this survey because it has been influ-
ential, and serves as an exemplar of the “notary-based”
approach to improving authentication. It is primarily about
maintaining meaningful authentication when servers present
bare public keys (which includes self-signed certificates).
However, it has contributions to make even when CA-signed
certificates are used. It seeks to provide what we have char-
acterized as community continuity authentication.

Perspectives starts by assuming we have clients that do
straightforward client-side pinning of TLS public keys, i.e.,
that maintain a map associating with each domain name the
last TLS public key accepted for that name. Requiring the
public key in the certificate sent by the server to match the
pinned public key provides a guarantee of continuity authen-
tication. However, this kind of pinning suffers from two
problems:

1. On the first attempt by the client to connect to a given
domain name, there is no pin, and therefore, no basis for
making a “trust decision” and
2. When the TLS public key presented by a server does
not match the pin, the client has no basis for determining
whether the server legitimately associated with a partic-
ular name now has a different key, or whether the client

123

632 C. W. Brown, M. Jenkins

is actually communicating with the wrong server. This
means that while client-side pinning makes it quite likely
that a warning will pop up when an actual attack takes
place, it also makes it quite likely that many, many warn-
ings will pop up in benign circumstances. Generating lots
of “false positive” warnings like this is a big problem.
What Perspectives seeks to provide is a mechanism for
determining, in an automated fashion, whether or not the
presented public key belongs to the given domain name,
so that warnings only make it to users when both pinning
and Perspectives fail to validate the name–key associa-
tion. Thus, the user should see far fewer “false positives,”
i.e., fewer warnings in what are actually benign circum-
stances.

Perspectives is based on third parties called “notaries.”
The idea is that there would be a number of “notary servers”
out on the Internet connecting to network services just to see
what kindof certificates they send to clients.Clients receiving
a public key they have not seen before can query one or more
notaries to see what keys they have observed for a particular
name and use this extra information to make a trust decision.
A Perspectives client caches the public keys it receives when
it connects to a given server. As long as the public key it
receives froma servermatcheswhat is cached, the application
is happy. When the public key received from the server does
not match, the client contacts a notary server and makes a
trust decision based on the notary’s response.

In an ideal world, there would simply be one notary that
would keep track through time of what TLS public key every
(domain name, port number)-pair (n,p) was serving up. A
client who accessed (n,p) for the first time, or which received
a different certificate than last time, would contact the one
notary and receive a signed response with the public keys
observed for (n,p) along with the timespans over which each
key was observed. The client would take that information
and make a “trust decision.” How it arrives at a decision
would be configurable. There are a few potential pitfalls
here: (1) an attacker might be able to control some por-
tion of the network surrounding the notary and send it the
same forged certificate the victim receives and (2) if that one
notary is compromised, all clients lose all their protection.
To address these, Perspectives uses a scheme in which there
are multiple notaries. A client polls k random notaries, and
takes all their responses into account in making the “trust
decision.”

Clients need to know what notaries are available and that
is something that could easily change over time. To man-
age this, there is another kind of server, a Notary Authority,
whose role is to publish lists of Notary Servers along with
their public keys. This list is published periodically, so clients
can update their individual lists. The published list is signed
by the Notary Authority’s private key, so a client that is pro-

vided with the Notary Authority’s public key can validate the
published list for itself.

Perspectives tries to reduce the number of “false posi-
tive” warnings and, in cases where warnings must be given,
to increase the potentially actionable information available
to the user. When a client connects for the first time to a
server using a given domain name, notaries may provide the
client with sufficient evidence of the trustworthiness of the
certificate/public key presented by the server, so that the cer-
tificate/public key can be accepted without user interaction
(and the resulting warning). For popular sites, the odds are
pretty good that the notaries will be able to provide such
evidence. If a certificate/public key does change, notaries
may (once again) provide sufficient evidence of trustworthi-
ness to clients who have cached the old certificate/public key.
When a warning needs to be given, a Perspectives client has
the certificate and date/time information from several notary
servers, which can be processed to provide (hopefully) useful
feedback to users.

One concern is that the Notary Authority represents a
single point of failure. The Security Analysis in the paper
(Sect. 6) neglects to analyze this case. Essentially, an attacker
who gains control of the Notary Authority’s public key can
send a client a fraudulent set of Notary Server names and
public keys and use them to present the client with fake
notary results. Another concern with Perspectives is that
clients send notary servers the domain names of the servers
they visit, which may violate the client privacy property.
Similar concerns exist with the Certificate Transparency pro-
posal. As with TACK and HTTP Pinning, there is a concern
that pinning certificates or public keys could be too much
of a burden on resource-constrained devices. Moreover, it
may be possible for attackers to fill up clients’ pin stores
and, in so doing, circumventing the protection of continuity
authentication.

Perspectives is predicated on the idea that we should see
community continuity in public keys. That is, not only should
a single client be seeing the same public key over time as it
repeatedly connects using a particular domain name, but any
group of clients should see the same key when they use the
same domain name. It is possible that servers would send dif-
ferent certificates to different clients based, perhaps, on the
client’s IP address or client software version. Such a prac-
tice would invalidate a major assumption of the Perspectives
project.

Finally, it is interesting to note that there is a big difference
between Perspectives and the other proposals considered, in
that Perspectives is not about mandating how trust decisions
are made, rather it is about providing meaningful, actionable
information—how that information gets incorporated into
the decision-making process is left to the user or the client.
That is a very nice “perspective” on the problem.

123

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 633

continuity: pinning provides individual continu-
ity, notaries provide community continuity. Perspectives
does not suffer from the aging out problem that HPKP
and TACK have.

domain name auth:—

higher-level auth:—

attribute auth:—

client privacy: Collectively, the notaries get to
see every server the client connects to.

impostor discoverability : Site owners could
query notaries, thereby identifying impostors—as long
as the impostor was discovered by some notary server.

server privacy: Notary servers could be used as
an anonymizing proxy for network reconnaissance; i.e.,
one could query servers to determine whether a certain
host had a server running on a certain port, and the server
operator would have no idea that this kind of probing was
taking place.

local privacy: Perspectives assumes
client-directed pinning, and there is extra forensics infor-
mation in the pins themselves.

minimal false positives: Notary information can
allow the client to deal with pin or certificate errors with-
out user intervention

max actionable information: The pinned values
and the notary observations are all available as pertinent
information when deciding what to do in response to a
warning.

minimal user trust: Notaries need to be trusted
to some extent, the notary server to a greater extent, but
much less trust in CAs is required.

user control: The user/client can implement any
policy they want to determine how pin and Perspectives
information are combined to make a decision.

minimal server trust: Required trust in CAs is
lessened, but servers must trust notaries not to misrepre-
sent their keys to clients.

minimal server roadblocks: Servers and server
operators do not have to do anything.

incremental: With a notary authority and some
notary servers in place, only clients need to change, and
any client that makes use of pinning + perspectives gets
all the benefits, even if it is the only one doing it.

minimal-impact: Only clients need to change.

no-break: There is concern over how Perspec-
tives clients would deal with internal network resources,
since no notary server would be able to query that
resource. This needs some thinking. Also a concern is the
assumption that, when things are operating properly, for
a given domain name every client would be see the same

public key. See, for example, [13] where this assumption
is violated. This is the case of an organization rolling out
a new public key gradually, or piecemeal.

scal./maint./robust: Some small concern about
how domain names change hands.

resource-friendly: All the pin info needs to be
stored. The delay caused by querying notaries is only
encountered in situations where the pin value and the
TLS public key do not match, which would happen very
infrequently.

realistic: The main concern is the lack of motiva-
tion for providing notary servers. However, the Berkeley
ICSI [14]is doing more or less the same thing, so there is
apparently some motivation.

7 Comparisons and conclusions

In this paper, we have presented a framework for evaluating
proposals to improve the current condition of authentication
for the secureWeb. Five such proposals were considered and
evaluated according to this framework. At a very high level,
we might summarize the evaluations as follows:

– DANE offers the prospect of providing strong guarantees
of domain name authentication. However, with “usage
values” 2 and 3 it eliminates the defense in depth that
the system of certificate authorities was supposed to
bring. Moreover, DANE is built on top of DNSSEC, and
DNSSEC adoption has not progressed very quickly.

– Certificate Transparency offers a mechanism that allows
domain/server owners to detect attackers that are imper-
sonating their sites. However, it has a number of prag-
matic problems, as detailed above, and may increase
the number of “false positive” warnings experienced by
users.

– The HTTP Extension for server-directed pinning and
TACK are both designed to provide continuity authen-
tication. However, TACK pins a special “Tack Signing
Key” rather than one of the public keys from the cer-
tificate chain used to deliver the TLS public key. As
described above, this is a better, more principled design,
although there are some pragmatic advantages to the
HTTP Pinning approach. Both TACK andHTTP Pinning
suffer from the “poison pin” problem, namely that once
the wrong pin gets in a client’s pin store, the client will
present the user with a “false positive” error message.

– Perspectives provides continuity authentication, but unlike
HTTP Pinning and TACK, it delivers continuity from
the community perspective. In fact, Perspectives assumes
that the client is using client-directed pinning (i.e.,
caching end-entity public keys) to provide continuity

123

634 C. W. Brown, M. Jenkins

authentication on the level of the individual. When that
fails, the host queries a number of notary servers to gain
the community perspective on what public key should
be expected for the given domain name. Perspectives
requires a fair amount of trust in the Notary Author-
ity, and there are privacy concerns with the way notary
servers see every TLS-protected site visited by a client.
Another concern is whether the implicit assumption of
Perspectives—that all clients should see the same pub-
lic key when connecting to the same domain name—is
justified.

DANE (ignoring usage 2 and 3), Certificate Transparency,
Perspectives and either one of TACK and HTTP Pinning
are pretty much orthogonal to one another, meaning that
they could be used in combination without interfering with
one another or overlapping in what they provide. In fact,
used in conjunction we would have stronger domain name
authentication (fromDANE), continuity authentication in the
individual sense (from TACK or HTTP Pinning), continuity
authentication in the community sense (from Perspectives)
and improved impostor discoverability (from Certificate
Transparency).

We finish up by looking beyond the proposals analyzed in
this paper and askingwhether the analysis suggests new ideas
to investigate or has any other interesting implications. The
first thingwewould like to point out is that instead of viewing
proposals like these as trying to “fix” authentication for the
TLS-protectedWeb,we should evaluate a proposal by clearly
understanding the authentication or forensics property it is
trying to provide and analyzing the extent towhich it provides
that property along with the positive and negative impacts
on the other properties that would result from adopting the
proposal.

A second point is that once we stop looking for a
single, monolithic, universal fix to authentication for the
TLS-protected Web, the importance of “orthogonality” of
proposals becomes quite clear, by which we mean that the
adoption of a proposal would not interfere with existing
mechanisms or other proposed improvements.When propos-
als are orthogonal they can be composed, and that strengthens
authentication. DANE’s usages 2 and 3 are unfortunate pre-
cisely because they ruin orthogonality. Without usage 2 or
3, DANE and the current certificate infrastructure compose
nicely.

A third point is that when we view these various mech-
anisms as providing evidence for one or more of the four
authentication properties, we see each connection attempt
as making a case for accepting the purported identity of
the server on the other end. It might be reasonable to pin
the “shape” of that evidence—i.e., what kind of evidence
was presented. So, for example, suppose a user has been
using client-directed pinning, and DANE (without usage 2

or 3) is used in conjunction with the usual certificate valida-
tion process. The user tries to go to https://example.com and
there is an error—the public key in the certificate presented
by the server does not match what the browser has pinned
for the name example.com. However, the DANE record is
validated, and the certificate chains to a trust anchor. The
decision about whether to trust this server despite the pin
mismatch is unclear. Now suppose that on prior connec-
tions, example.com had sent the client an EV certificate,
and suppose the client had pinned that fact. It would not
be at all unreasonable to base the trust decision on whether
or not the certificate presented by the server is an EV cer-
tificate. Note that pinning the “shape” of the authentication
evidence provided by a site has the really nice property that
it actually provides increased security to sites that choose
to employ stronger authentication evidence. In the example
above, the client would have “pinned” the facts that exam-
ple.com employs DANE and uses an EV certificate. Thus, an
attack will generate a warning to the user unless the attacker
both subverts DNSSEC and gets a fraudulent EV certificate
for example.com. Taking control of DNS records might be
enough to get an ordinary certificate for example.com, but it
should not be enough to get an EV certificate. This kind of
pinning could also make gradual adoption of some of these
proposals easier. For example, if the client pinned the fact
that a given site used Certificate Transparency (i.e., sent an
SCT) in prior connections, then the client could be config-
ured to require CT for that site from that point on, but not for
other sites. This would eliminate the problem of clients being
flooded with false positives. One of the interesting things
about Perspectives [12] is that it explicitly presents itself as
a mechanism for providing evidence about identity, not as a
procedure that proscribes trust decisions. That is a powerful
and flexible idea.

The fourth and final point is a suggestion that we feel
falls out of this analysis. We start with the observation that if
clientswere to do client-directed pinning of end-entity certifi-
cates and servers would doOnline Certificate Status Protocol
(OCSP) stapling, then most of the time there would be strong
authentication of the server on the basis of those two pieces
of evidence alone, and the connection could proceed5. The
process would be quick and involve very little overhead pro-
vided that the certificates match, and the point is that they

5 Client-directed pinning would ensure that the certificate had not
changed since the client’s last connection to the site, and OCSP sta-
pling would ensure that the certificate had not been revoked—at least
as of some reasonably recent point in the past. Online Certificate Status
Protocol (OCSP) stapling is a piece of the modern certificate infrastruc-
ture. It allows a server to send clients a message, signed by the relevant
certificate authority, that asserts that as of a certain point in time, the
server’s certificate has not been revoked. This is a nice alternative to
contacting OCSP servers to check for revocation, or either pushing or
pulling blacklists.

123

https://example.com
http://example.com
http://example.com

Analyzing proposals for improving authentication on the TLS-/SSL-protected Web 635

usually would. So the question really is how to deal with the
infrequent situation in which the above is unable to confirm
authentication. This can happen when a client connects with
a given name for the first time, when a different end-entity
certificate is sent by the server, or when an end-entity certifi-
cate is revoked. Making the right decision in these cases, and
doing it to the greatest extent possible without user interven-
tion, is crucial. However, since these situations are infrequent
(as well as important), when they do arise it would be accept-
able to have the client take substantially longer to make a
decision, or to gather information to present to the user in
case it is necessary. We suggest research into mechanisms or
the development of standards that allow the client to collect
a lot of relevant data in order to make a strong case for or
against trusting the server. As a very simple example, sup-
pose there was a standard way for a client that was not able to
authenticate the server using the pinning and stapling mech-
anism above, to fetch additional certificates for the server. A
client could implement a policy requiring that, in this event,
it is able to fetch an additional certificate that contains the
same TLS key, the same domain name, and chains to a differ-
ent trust anchor (without cross-signing). This increases the
difficulty of a man-in-the-middle attack significantly, since
the attacker would have to obtain fraudulent certificates from
two different trust anchors. This is orthogonal to other pro-
posals, and it strengthens all of them. For example, HPKP
has potential problems with unplanned key transitions. With
a mechanism like this, an organization that is forced to deal
with an unplanned key transition could have strong evidence
(we have suggested multiple certificates as a possible form)
that a client could fetch on that single connection for which
HPKPbroke. The client could be convincedwith overwhelm-
ing evidence and accept the TLS connection — without user
intervention. The delay caused by fetching and analyzing
this extra evidence would only be incurred once; then, HPKP
would suffice for subsequent connections.

Acknowledgments The first author’s research related to this work was
carried out at the National Security Agency under the Sabbatical pro-
gram administered by the Mathematical Sciences Program. The US
Government is authorized to reproduce and distribute reprints notwith-
standing any copyright notation herein.

References

1. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol
version 1.1. RFC 5246, RFC Editor (2006)

2. Housley, R., Santesson, S.: Update to directorystring processing in
the internet X.509 public key infrastructure certificate and certifi-
cate revocation list (CRL) profile. RFC 5280, RFC Editor (2006)

3. Herley, C.: So long, and no thanks for the externalities: the rational
rejection of security advice by users. In: Proceedings of the 2009
Workshop onNewSecurity ParadigmsWorkshop,NSPW’09,New
York, NY, USA, pp. 133–144. ACM (2009)

4. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.:
Crying wolf: an empirical study of ssl warning effectiveness. In:
Proceedings of the 18th Conference on USENIX Security Sym-
posium, SSYM’09, Berkeley, CA, USA, pp. 399–416. USENIX
Association (2009)

5. CA/Browser Forum. Guidelines for the issuance and management
of extended validation certificates (2014). https://cabforum.org/
wp-content/uploads/EV-V1_5_2Libre

6. Hoffman, P., Schlyter, J.: The DNS-based authentication of named
entities (DANE) transport layer security (tls) protocol: TLSA. RFC
6698, RFC Editor (2012)

7. National Institute of Standards and Technology (NIST) http://
www.dnsops.gov/dnssec-perform.html

8. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC
6962, RFC Editor (2013)

9. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for
http. Internet-Draft draft-ietf-websec-key-pinning-21, IETF Secre-
tariat (2014)

10. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommen-
dation for keymanagement—part 1: general (revision 3). Technical
Report NIST Special Publication 800–57, National Institute of
Standards and Technology (2007)

11. Marlinspike, M., Perrin, T.: Trust assertions for certificate keys.
Internet-Draft draft-perrin-tls-tack-02, IETF Secretariat (2013)

12. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improv-
ing ssh-style host authentication with multi-path probing. In:
USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ATC’08, Berkeley, CA, USA, pp. 321–334. USENIX
Association (2008)

13. Kaminski, D.: These are not the certs you’re looking for. Personal
blog (2011). http://dankaminsky.com/2011/08/31/notnotar/

14. The ICSI Certificate Notary. http://notary.icsi.berkeley.edu/

123

https://cabforum.org/wp-content/uploads/EV-V1_5_2Libre
https://cabforum.org/wp-content/uploads/EV-V1_5_2Libre
http://www.dnsops.gov/dnssec-perform.html
http://www.dnsops.gov/dnssec-perform.html
http://dankaminsky.com/2011/08/31/notnotar/
http://notary.icsi.berkeley.edu/

	Analyzing proposals for improving authentication on the TLS-/SSL-protected Web
	Abstract
	1 Introduction
	2 Desirable properties for the authentication component of the ``secure Web''
	3 DNS-based authentication of named entities (DANE)
	4 Certificate Transparency
	5 An HTTP extension for public key pinning (HPKP)
	5.1 Trust assertions for certificate keys

	6 Perspectives
	7 Comparisons and conclusions
	Acknowledgments
	References

