
Int. J. Inf. Secur. (2017) 16:43–74
DOI 10.1007/s10207-016-0314-4

REGULAR CONTRIBUTION

A formal modeling and analysis approach for access control rules,
policies, and their combinations

Vahid R. Karimi1 · Paulo S. C. Alencar1 · Donald D. Cowan1

Published online: 27 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Approaches to access control (AC) policy lan-
guages, such as eXtensible access control markup language,
do not provide a formal representation for specifying rule-
and policy-combining algorithms or for verifying properties
of AC policies. Some authors propose formal representa-
tions for these combining algorithms. However, the proposed
models are not expressive enough to represent formally
history-based classes of these algorithms, such as ordered-
permit-overrides. In addition, some other authors propose
a formal representation but do not present automated sup-
port for formal verification of properties of AC policies that
use these algorithms. This paper demonstrates a new rep-
resentation that can express all existing AC rule and policy
combinations of which the authors are aware. This represen-
tation can also be used to automate the formal verification
of properties of AC policies related to these algorithms. A
newmodeling representation for rule- and policy-combining
algorithms based on state machines is used to specify rule-
and policy-combining algorithms. Examples of these algo-
rithms are programmed in the language of the SPIN model
checker, and the programs are then used to support the auto-
mated formal verification of properties of AC policies. We
present our approach and then use the AC policies and prop-
erties of CONTINUE, a conference management system, to
compare it with prior work. Our first contribution is a new
modeling representation for combining algorithms based on

B Vahid R. Karimi
vrkarimi@yahoo.ca

Paulo S. C. Alencar
palencar@uwaterloo.ca

Donald D. Cowan
dcowan@uwaterloo.ca

1 Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, Canada

state machines. The second contribution is the formal verifi-
cation of AC properties under certain combining algorithms
that are beyond the capability of other approaches.

Keywords Access control (AC) · XACML · AC combining
algorithms · Modeling · Analysis

1 Introduction

Access control constitutes an important component of oper-
ating systems, database management systems (DBMS), and
applications. Access control policies define which users have
access to what objects and operations and describe any con-
straints. Several incidents of information leaks in real systems
owing to the implementation of incorrect access control
policies have been reported (e.g., [10,13,58]). First, these
occurrences point out the need for methodologies for mod-
eling secure systems as several authors have advocated (e.g.,
[45]). Second, these incidents also indicate the need for a
thorough analysis of access control policies and their proper-
ties.Although testing revealsmanyexisting errors in software
systems, errors still remain undetected even in safety-critical
and economically vital systems [14].

An access control policy can be seen as a combination of
one ormore access control rules, and one ormore policies can
be combined into a set of access control policies that control
access to an entire system. The rules and resulting policies
can be combined in many different ways, and this combina-
tion can be achieved using the rule- and policy-combining
algorithms of policy languages.

Approaches to access control (AC) policy languages, such
as eXtensible access control markup language (XACML), do
not provide a formal representation for specifying the rule-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0314-4&domain=pdf

44 V. R. Karimi et al.

A. Access Control (AC) Policies
and Rules

C. Formal Analysis

combination
A2

Access Control Rule

Access Control Policy

A1

B. The Formal Model
and Properties

B1
Formal AC Policies

(State Machines)

Formal AC Properties
(LTL)

B2

Results

AC Properties in LTL

AC Policies in PROMELA
Formal Specification of

C2
Formal Specification of

C1

The SPIN Model Checker

Fig. 1 A high-level overview of our approach

and policy-combining algorithms or for verifying properties
of AC policies.

Some authors [18,36] propose formal representations
for rule- and policy-combining algorithms. However, the
proposed models are not expressive enough to represent
formally classes of algorithms related to history of pol-
icy outcomes including ordered-permit-overrides, ordered-
deny-overrides, and only-one-applicable. In fact, they are
not able to express formally any algorithm that involves
history including the class related to consensus such as
weak-consensus, weak-majority, strong-consensus, strong-
majority, and super-majority-permit. In addition, some other
authors, e.g., [38], propose a formal representation but do
not present an approach and automated support for the for-
mal verification of properties of AC policies in conjunction
with the use of any classes of combining algorithms.

This paper presents a new modeling representation for
access control rules, policies, and their combination and
supports formal verification. This approach can express and
verify formally all-known policy- and rule-combining algo-
rithms, a result not seen in the literature. This approach
supports automated formal verification, based on model
checking, of single policies and combined policy sets.

Finally, the approach is applied to the AC policies and
properties of CONTINUE, a well-known conference man-
agement system from the literature. Several properties,
whose verificationwas not possible by prior approaches, such
as ones involving history of policy outcomes, are verified, and
results of this verification are shown in this paper.

2 An overview of our approach

Figure 1 shows an overview of the approach presented in this
paper. A brief description of this figure is provided next.

2.1 Access control policies and rules

In its simplest form, an access control policy consists of a
single access control rule, but normally several such rules
are combined to make a policy as shown in Boxes A1 and
A2 of Fig. 1. Similarly, several such policies can then be
combined to make a policy set.

This paper uses general forms of state machines, rep-
resented in both algorithmic and diagrammatic forms to
illustrate a rigorous systematic approach for describing all-
known combining algorithms. Sections 3, 4, and 6 provide a
detailed explanation of our approach.

2.2 The formal model and properties

Box B1 of Fig. 1 is the formalization of AC policies using
AC rules and state machines where the AC rules govern the
transitions between states.

The state machine representation supports the description
and verification of more complex policies that are currently
reported in the literature. For example, policies relying on
history of policy outcomes and policies relying on consensus
can be represented and verified in this formalism. This topic
is discussed in Sects. 4 and 6.

Formal AC properties in linear temporal logic (LTL) are
specified based on AC rules as shown in Box B2. This topic
is presented in Sects. 5 and 6.

2.3 Formal analysis

The formal analysis of access control properties of policies
is needed because access control policies can interact to pro-
duce undesirable behavior.

Box C1 shows the formal specification of AC policies.
This step consists of the specification of state machines in
the specification language of a model checker. Since this

123

A formal modeling and analysis approach for access control rules, policies. . . 45

OPS OBS

(S)
Sessions

PRMS

Users Roles

Roles

User Assignment
(UA)

(R)(U)

Sessions

Users
Permission Assignment

(PA)

Role Hierarchy
(RH)

Constraints

Fig. 2 The RBAC model

paper uses the SPIN (Simple PROMELA Interpreter) model
checker [8,23,24], statemachines are encoded in PROMELA
(Process Meta-Language), SPIN’s C-like language.

We have decided to use the model checking approach in
order to track the various states within the policies. In addi-
tion, various previous papers (see Sect. 7) have used model
checking for the verification of access control policies. We
chose SPIN, but other model checkers can be used. Box
C2 portrays the formal specification of AC properties. In
this step, properties are specified using the general form of
properties from Box B2 and LTL that SPIN uses. Section 6
describes these two steps in detail.

3 Access control (AC), rules, and policies

Before describing AC rules and policies, a brief discussion
on access control models is provided because one can view
access control models as providing the basis for access con-
trol rules and policies. First, the role-based access control
(RBAC) model [16,17,49], an example of a well-known and
widely used access control model, is shown. After that, we
describe the general concept of an access control model.
Then, we provide the connection between an access control
model, policy, and rule.

Figure 2 represents RBAC [16] in which permissions
(PRMS) are shown as a many-to-many relationship between
operations (OPS) and objects (OBS). According to Ferraiolo
et al. [15], an access control model can be described by
the five elements users, objects, subjects, operations, and
permissions, and the relationships among them. A user rep-
resents an individual interacting with a computer system. An
object represents any resource, such as a file, that can be
accessed, and therefore is assumed to be passive. An opera-
tion is an active process such as write, when a user writes to
a file, and a subject refers to a computer process, such as a
program consisting of several operations.1 Finally, a permis-

1 The early access control models used the term subject for an active
process, whereas in some recent descriptions of access control models,

sion describes a set of tuples relating operations and objects
such that if a tuple contains an operation and an object, then
the operation on that object is permitted.

Amapping between these five elements and the resources,
events, and agents, the elements used in this paper is
described next. Resources, events, and agents are the compo-
nents of a businessmodeling notation called resource–event–
agent (REA) [20,26]. First, users and objects correspond to
agents and resources, respectively. An event corresponds to
the completion of an operation and can be considered as a dif-
ferent view of the same concept: an event includes a distinct
change of state, whereas an operation makes the change hap-
pen [40]. Since a permission describes a set of tuples relating
operations and objects, then based on the mapping between
events and operations, permissions can also be modeled as
tuples of events on resources. In addition, the subject corre-
sponds to a process, which is set of operations that now map
to events.

An AC rule can be expressed as an implication, which
consists of a premise and a conclusion, as

p → q or premise-rule → conclusion-rule

or p-rule → q-rule

Instead of using p and q, this paper mainly uses premise-
rule and conclusion-rule to be specific. p-rule and q-rule
are used as a short form of premise-rule and conclusion-rule
such as when state machines are presented to avoid clutter.

An example is provided next to indicate the general form
of the premise and conclusion of an AC rule, to identify their
elements, and to clarify the use of these elements in the state
machines that will be presented shortly. This example and the
rest of this paper use the termsAgentType (AT),ResourceType
(RT), and EventType (ET) to describe the generic identifica-
tion of an agent, resource, and event, respectively. The notion
of type in REA is identical to that used by other authors (e.g.,
[42,43,52]).

The complete definition of the language is presented in
detail in “Appendix 3.”

Example 1 An AC rule in a banking system may be tellers
or managers are permitted to modify deposit accounts.

In this example, the described premise-rule of the impli-
cation includes tellers or managers (i.e., roles), deposit
accounts as resources or objects, and modify as an event.
In addition, if these AC rules are based on a model (e.g.,
Fig. 2), then the existence of relationships, such as between
operations (events) and objects (resources) or between roles
and resources, is a part of the premise of an AC rule. In other

Footnote 1 continued
such as RBAC, an operation and a subject are distinguished [15] where
a subject refers to a process possibly invoking several operations.

123

46 V. R. Karimi et al.

words, the premise-rule of this example includes the follow-
ing elements:

(AgentType = Teller or AgentType = Manager)
and

(ResourceType = DepositAccount)
and

(EventType = Modify)
and

(RelATET(Teller, Modify) and
RelATET(Manager, Modify))

and
(RelRTET(DepositAccount, Modify)

RelATET(Teller, Modify) expresses a relationship bet-
ween Teller and Modify, and RelATET(Manager, Modify)
indicates a relationship betweenManager andModify. Sim-
ilarly, RelRTET(DepositAccount, Modify) expresses a rela-
tionship between DepositAccount and Modify.

We define the conclusion-rule, of implication, as an Even-
tResult expression that includes events and their results, i.e.,
permit and deny. One ormore events are possible, and a result
can be either a permit or deny. Therefore, the conclusion-rule
(EventResult) for this example follows:

(Modify Access = permit)

A detailed description of the syntax of AC rules based
on REA and using Extended Backus–Naur Form (EBNF) is
provided in “Appendix 3.” A complete presentation of rules
in Backus–Naur Form (BNF) and EBNF can be found in the
PhD thesis by Karimi [33].

The description provided for this example can be written
in predicate logic as follows:

∀AgentType ∀ResourceType ∀EventType |
(AgentType = Teller ∨ AgentType = Manager)

∧
(ResourceType = DepositAccount)

∧
(EventType = Modify)

∧
(RelATET(Teller, Modify) ∧
RelATET(Manager, Modify))

∧
(RelRTET(DepositAccount, Modify))

→
ModifyAccess(permit)

4 AC policy and rule combinations

An AC policy set consists of a number of AC policies, and
an AC policy is defined as a combination of one or more AC

rules.As anACpolicy usually consists of several rules, policy
languages describe combining algorithms to provide differ-
ent strategies for making decisions about this combination.
For instance, a combining algorithm may permit a request if
a rule in the collection of rules allows such a request, regard-
less of the existence or non-existence of another rule (within
the collection) that denies such a request. Conversely, a com-
bining algorithm may deny a request if one rule denies such
a request and another rule within the collection permits the
request. Two such algorithms for combining rules into poli-
cies are described in detail in Sect. 4.1.

This section (Sect. 4) presents the combination ofAC rules
and policies in two steps: first, an algorithmic form of state
machines is shown to describe this combination (Sect. 4.1);
this step corresponds to Box A1 of Fig. 1. Then, a dia-
grammatic representation of state machines is presented to
describe theAC rule combinations (Sect. 4.2); this step corre-
sponds to Box B1 of Fig. 1. Similarly, AC policy sets, which
are combinations of AC policies, can be formed using the
same state machine approach. Note that each state is either
the premise or conclusion of an AC rule except for the initial
and final states.

4.1 The use of algorithmic forms

One strategy for AC rule-combining is based on the first-
applicable algorithm. The description of this algorithm
follows [55,56]: the evaluation of rules within a policy is
in the same order that rules are listed in a policy. If a rule
applies, then the rule’s result, i.e., permit or deny, applies
and the evaluation of the rest of the rules halts. Otherwise, the
procedure continues to the end. If none of the rules applies,
then the result will be not applicable.

Figure 3 shows an algorithmic form for creating policies
from rules for the first-applicable rule-combining algorithm.
The description in this figure uses the notion of states and the
premise conclusion of the AC rules as described in Sect. 3.

Another algorithm is permit-unless-deny [56], which can
be described as follows: if any decision is deny, then the result
will be deny; otherwise, the result will be permit.

Figure 4 shows an algorithmic form for the evaluation of
rules for the permit-unless-deny rule-combining algorithm.
Similarly, this description uses the premise and conclusion
of AC rule definitions and also includes states.

4.2 The use of state machines

This section describes the use of formal state machines to
represent algorithmic forms for combining rules into policies.
Before showing these state machines, the associated states
and their meanings are defined.

123

A formal modeling and analysis approach for access control rules, policies. . . 47

initial state = state q00;
for i = 1 to n do /* n = the number of rules in a
policy */

if premise-rulei = false then
move to state qi0;

else
move to state qi1;
if EventiAccess(permit) = true for every
element of EventResult then

move to state permit;
exit loop;

else if EventiAccess(deny) = true for every
element of EventResult then

move to state deny;
exit loop;

end
end
if i = n then

move to state NA;
end

end

Fig. 3 Rule combination using the AC rule definitions for the first-
applicable algorithm

initial state = state q00;
for i = 1 to n do /* n = the number of rules in a
policy */

if premise-rulei = false then
move to state qi0;

else
move to state qi1;
if EventiAccess(permit) = true for every
element of EventResult then

continue;
else if EventiAccess(deny) = true for every
element of EventResult then

move to state deny;
exit loop;

end
end
if i = n then

move to state permit;
end

end

Fig. 4 Combining rules with the AC rule definitions for permit-unless-
deny algorithm

State naming convention and meaning The initial state is
q00. With the exception of the initial state, the initial digit(s)
of a state name is 1 or greater and indicate(s) the rule number.
The last digit indicates whether the assumption of that rule
holds (1) or does not hold (0); e.g., q11: the state in which
rule 1’s assumption holds (i.e., true = 1).

q10: the state in which rule 1’s assumption does not hold
(i.e., false = 0).

As previously mentioned, each rule on state machines is
represented as p-rule → q-rule, where q-rule consists of
the EventResult part.

The assumptions and conclusions for rules 1 to n can
be shown as p-rule1 . . . p-rulen , and q-rule1 . . . q-rulen ,
respectively. Each assumption consists of one ormore atomic
statements that are combined using conjunction, disjunction,
or negation. Similarly, each conclusion consists of one or
more atomic statements that are joined by conjunction, dis-
junction, and negation.

Similarly, when the state machine is used to describe pol-
icy combinations instead of rule combinations, the word rule
changes to policy in the description. For instance, in a policy-
combining state machine, q11 and q10 have the following
meanings:

q11: the state inwhich policy 1’s has the outcome inwhich
the assumption holds (i.e., true = 1).
q10: the state inwhich policy 1’s has the outcome inwhich
the assumption does not hold (i.e., false = 0).

Transition within state meaning The transitions between
states are governed by examining the p-rule and q-rule. As
mentioned previously, the p-rules on state machines are iden-
tical to the assumption part of a rule. The conclusion of a rule
or EvenResult on state machines is shown as follows:

[
m1∧
i=1

EventiAccess (permit) = true

]

The superscript of
∧m1

i=1
indicates the number of elements

(i.e., events and their results) in the EventResult expression
of a rule. For instance, m1 is the number of elements in the
EventResult of rule 1, and m2 is the number of elements in
the EventResult of rule 2.

Figure 5 shows the UML state machine for the first-
applicable algorithm.

Figure 6 shows the UML state machine for the permit-
unless-deny rule-combining algorithm.

4.3 Policy-combining algorithms

Policy-combining algorithms are similar to the rule-
combining algorithms. For instance, the first-applicable
policy-combining algorithm can be described as follows
[55,56]: the evaluation of policies within a policy set is in
the same order that policies are listed in a policy set. If a
policy applies and its result is permit or deny, then the result
(i.e., permit or deny) applies and the evaluation of the rest of
the policies halts. If a policy does not apply or its result is not
applicable, then the procedure continues. If no other policy
exists, then the result will be not applicable.

Figure 7 shows an algorithmic form for describing the
first-applicable policy-combining algorithm. Figure 8 shows

123

48 V. R. Karimi et al.

RuleEvaluation
First-applicable

permit

deny

[p-rule2 = true]

[p-rule1 = true] [p-rule1 = false]

[p-rule2 =

q20

else

[p-rulen = true] [p-rulen = false]

q(n−1)0

qn1

NA

false]

q00

q11

q21

[
m1

i=1
EventiAccess (permit) = true]

[
m1

i=1
Even

tiAcc
ess (d

eny)
= true]

[
m2

i=1
EventiAccess (permit) = true]

[
m2

i=1
EventiAccess (deny) = true]

[
mn

i=1
EventiAccess (deny) = true]

[
mn

i=1
EventiAccess (permit) = true]

q10

Fig. 5 A UML state machine using AC rule definitions for the first-applicable algorithm

Permit-unless-deny
RuleEvaluation

[p-rule1 = false]

q00

[p-rule1 = true]

[
m1

i=1
EventiAccess (deny) = true]

[p-rule2 = true]

deny

q11

q20q21
[
m2

i=1
EventiAccess (deny) = true]

q(n−1)0

[p-rulen = false][p-rulen = true]

Permit

else

qn1
[
mn

i=1
EventiAccess (deny) = true]

[
mn

i=1
EventiAccess (deny) = false]

q10

[p-rule2 = false]

Fig. 6 A UML state machine that uses the definitions of AC rules for the permit-unless-deny algorithm

123

A formal modeling and analysis approach for access control rules, policies. . . 49

initial state = state q00;
for i = 1 to n do /* n = the number of policies in a policy set */

if premise-policyi = false then
move to state qi0;

else
move to state qi1;
if EventiAccess(permit) = true for every element of EventResult then

move to state permit;
exit loop;

else if EventiAccess(deny) = true for every element of EventResult then
move to state deny;
exit loop;

end
end
if i = n then

move to state NA;
end

end

Fig. 7 An algorithmic description for the first-applicable policy-combining algorithm

PolicyEvaluation
First-applicable

permit

deny

else

[p-policyn = true]

q(n−1)0

qn1

NA

[
m1

i=1
EventiAccess (permit) = true]

[
m1

i=1
Even

tiAcc
ess (d

eny)
= true]

[
m2

i=1
EventiAccess (permit) = true]

[
m2

i=1
EventiAccess (deny) = true]

[
mn

i=1
EventiAccess (deny) = true]

[
mn

i=1
EventiAccess (permit) = true]

[p-policy2 = false]

[p-policy1 = false]

[p-policyn = false]

q00

[p-policy1 = true]

[p-policy2 = true]

q11 q10

q21 q20

Fig. 8 A UML state machine for the first-applicable policy-combining algorithm

its corresponding state machine for the first-applicable
policy-combining algorithm.

4.4 A key advantage of our approach

Policy languages such as XACML can express the com-
bination of rules and policies. Li et al. [38] illustrate the
approach with examples such as weak-consensus. XACML

can describe this combination in the form of pseudo-code,
but we provide algorithmic forms that are comparable with
the pseudo-code format; in addition, we also provide accom-
panying state machine descriptions.

In comparison, our approach using state machines allows
us to describe rule and policy combinations and to analyze
them through model checking.

123

50 V. R. Karimi et al.

We emphasize the formality of our approach by describing
weak-consensus using our notation.

Weak-consensus [38] “Sub-policies should not conflict with
each other: Permit a request if some sub-policies permit a
request, and no sub-policy denies it. Deny a request if some
sub-policies deny a request, and no sub-policy permits it.
Yield a value indicating conflict if some permit and some
deny.”

Figure 9 shows the state machine representation for
the weak-consensus policy-combining algorithm that corre-
sponds to the algorithmic form, which is provided in Fig. 19,
“Appendix 2.”

Other possible (combining algorithms) approaches,
suggested by Li et al. [38], such as the strong-consensus
policy-combining algorithm,weak-majority policy-combining

algorithms, strong-majority policy-combining algorithm, and
super-majority-permit policy-combining algorithm are very
similar and can be described using the same approach. For
instance, as another example, the weak-majority policy-
combining algorithm is shown in “Appendix 2.”

5 Formal properties

Before describing a general formofACproperty, background
information on temporal implications and translations from
predicates to propositions is provided.

Temporal implications This paper uses temporal implica-
tions as discussed by Holzmann [23]. Table 1 provides a
summary of temporal implications.

Weak-consensus

[p-policy1 = true]

PolicyEvaluation

[p-policy2 [p-policy2
= false]

[p-policyn = false]

[p-policyn = true]

q20

q(n−1)0

qn1

[p-policy2 = false]

/DenyRes := true

[p-policy2 = true]

= true]

[
m1

i=1
EventiAccess (deny) = true]

qn0

[p-policy1
= false]

[p-policyn = true, DenyRes = true]

[DenyRes = true]

[DenyRes = false] conflict

[PermitRes = true]

[PermitRes = true, DenyRes = false]

[PermitRes = false,
DenyRes = true]

[PermitRes = true, DenyRes = true]

permit

PermitRes = true]

[
mn

i=1
EventiAccess (permit) = true]

[
mn

i=1
EventiAccess (deny) = true]

/PermitRes := true

/DenyRes := true

permitRes

denyRes

q10q11

[
m1

i=1
EventiAccess (permit) = true]

/PermitRes := true
permitRes

[p-policyn = true,

deny

[PermitRes = false]

q00

/ConflictRes := true

/ConflictRes := true
/ConflictRes := true

denyRes

[p-policy2 = true]

[p-policy2 = false]

q21

Fig. 9 A UML state machine representing the weak-consensus policy-combining algorithm

123

A formal modeling and analysis approach for access control rules, policies. . . 51

Table 1 Temporal implications [23]

To describe p implies q, one can write a simple expression, p → q

As p → q is equivalent to (!p) ∨ q, this implication holds, for instance, in the first state of a run in which p is false or q is true. In order to
make the implication true within each step of a run, the implication must be written as �(p → q), where �means always.

This expression is still not correct because it has no notion of temporal implication (e.g., the evaluation of a rule reaches a result at some
point). This expression must be written as �(p → ♦q), where ♦means eventually.

The latest expression still holds in a case in which p and q hold at the same state. In order to capture the notion that the truth of q somehow is
caused by the truth of p, one can change the description by adding the next operator (X) to have �(p → X♦q)

Finally, the last expression holds if p never becomes true because of the implication (→). The addition of ∧♦p at the end of the previous
expression ensures that p is expected to hold at some point of time. This addition prevents the expression from being vacuously true. The
final description is �(p → X♦q) ∧♦p

Fig. 10 Predicate and
propositional versions of
expressions

AgentTypeMember

predicates:

represented

AgentType = memberUsing ResourceType = Review

represented represented

EventType = Create

 propositions
EventTypeCreateResourceTypeReviewUsing

ATGprop

ATG RTG ETG

ETGpropRTGprop

From predicates to propositions Properties are specified in
LTL, which is a propositional temporal logic. First, Figs. 10
and 11 provide the general idea for the translation from pred-
icates, such as equalities and relationships, to propositions.
The propositional versions are identified with a subscript of
prop in these figures. Then, PROMELA, the language of
SPIN, is used to describe this translation at the code level.
Figure 10 shows three elements ATG, RTG, and ETG and
their propositional versions identified as ATGprop, RTGprop,
and ETGprop, respectively. The complete definition of the
language in detail, which includes the definitions for terms
ATG, RTG, ETG among others, is provided in “Appendix 3.”

ATG, RTG, and ETG are the minimum identification of
Agent, Resource, and Event, respectively. For instance, ATG
can only include the name of agents, but AgentExp can
include the agent’s attribute names and their values. Simi-
lar explanations hold for RTG and ETG in relation to their
counterpart ResourceExp and EventExp. As previouslymen-
tioned, this paper and Fig. 10 use terms AgentType (AT),
ResourceType (RT), and EventType(ET) to describe the
generic identification of agent, resource, and event, respec-
tively.

The propositional elements of Fig. 10 can be described by
the language of a model checker. For instance, if PROMELA
is used, then the propositional versions in this figure (i.e.,
AgentTypeMember, ResourceTypeReview, and EventType-
Create) can be defined as follows.

In the following expressions, the symbol “==” means
equal in PROMELA. Therefore, for instance, the first line

of the following expression defines an element AgentType-
Member to be the propositional equivalent of the predicate
version of the expression (AgentType ==member) and holds
the same information as one unit.

A similar explanation holds for the second and third defi-
nitions: ResourceTypeReview and EventTypeCreate are the
propositional versions of the expressions (ResourceType ==
Review) and (EventType == Create), respectively.

#define AgentTypeMember (AgentType == Member)

#define ResourceTypeReview (ResourceType ==
Review)

#define EventTypeCreate (EventType == Create)

Similarly, predicates, such as the ones that represent rela-
tionships, can bedescribed as one-unit-propositions as shown
in Fig. 11.

The CONTINUE case study that we shortly describe is
written in the RBAC profile of XACML. There is a relation-
ship between roles and the operations element of permissions
in RBAC, and another relationship between operations and
objects of permissions. We included these relationships in
PROMELA. We also mention more about our decision to
include relationships in Sect. 6.8. The predicates that can
represent existing relationships, such as between agent types
and event types ATET(Member, Create), can be represented
by the language of a model checker. For instance, using
PROMELA, this relationship can be expressed using an array
called RelA, which is defined by the keyword typedef. As
shown next, the elements of this array are AgeN and Act,

123

52 V. R. Karimi et al.

which can hold information about agent types and event
types. This relationship can be expressed as an array inwhich
one field (i.e., AgeN) represents agent types, and the other
field (i.e., Act) exemplifies event types. The typedef keyword
is used to declare a user-defined data structure. In this exam-
ple, we define an array in which each index of this array has
two fields.

typedef RelA {
byte AgeN;
byte Act;

}

Then, a specific array of the required size can be defined,
e.g., RelAmemR[1], one can define the size of this array to
be equal to the number of relationships between agent types
and event types.

For instance, the elements of this specific array can hold
information about a relationship between an agent type of
member (where the AgeN field identifies member), and an
event type of create (where the Act field exemplifies create)
as follows. In the following expressions, the symbol “=” is
for assignment.

memR[0].AgeN = member; memR[0].Act = create;

Similar to the previously provided description to repre-
sent predicates by propositions, the propositional version of
the relationship between an agent type of member and an
event type of create can be represented using PROMELA’s
keyword define, as shown next. ETMemberCreate is the
propositional representation of the information within the
array just described. In other words, the following expression
defines an element ETMemberCreate to be the proposi-
tional equivalent of the predicate version of the expression
(memR[0].AT == member && memR[0].ET == create) and
holds the same information as a single unit in one proposi-
tion.

#define ETMemberCreate (memR[0].AT == member

&& memR[0].ET == create)

The predicates, such as CreateAccess(permit) or its equiv-
alent representation in the form,Create Access= permit, can
be defined as CreateAccess == Permit. The latter expression
can be defined as a proposition called CreateAccesPermit, as
shown next.

#define CreateAccessPermit (CreateAccess ==

Permit)

5.1 General form of AC property specification

Figure 12 shows a general form of an AC property. This
definition includes the temporal operators of LTL and the
connectives of propositional logic.

CreateAccessPermit

represented

Using

predicates:

 propositions

Using ATET(Member,Create)

represented

ATETMemberCreate

CreateAccess(permit)

REL

RELprop prop

EventResult

EventResult

Fig. 11 Propositional versions of predicates

P = uop (P) | (P bop P) | ultl (P) | (P bltl P) |
AgentExp | ResourceExp | EventExp |
AgeEveRel | ResEveRel | EventResult
| ATG | RTG | ETG

uop = “not”;
bop = “and” | “or” | “implies”;
ultl = “always” | “eventually” | “next”;
bltl = “until” | “release” | “weak until”;

prop prop prop

prop prop prop

prop prop prop

Fig. 12 A general form of AC Property

An atomic proposition is represented as “p.” Agent-
Expprop, ResourceExpprop, EventExpprop, AgeEveRelprop,
ResEveRelprop, EventResultprop, ATGprop, RTGprop, and
ETGprop are propositions equivalent to AgentExp, Resource-
Exp, EventExp, AgeEveRel, ResEveRel, EventResult, ATG,
RTG, and ETG, respectively.

As described previously (Sect. 5), the elements ATGprop,
RTGprop, and ETGprop are the minimum descriptions of
AgentExpprop, ResourceExpprop, and EventExpprop, respec-
tively.

For instance, the element ATGprop is the propositional
description of an agent’s name, whereas the element Agent-
Expprop is a propositional description that can also include
an agent’s attribute names and their values. Similar expla-
nations hold for RTGprop and ETGprop in relation to their
counterparts ResourceExpprop and EventExpprop.

One specific example of this general form is provided in
Sect. 6.6, in which we discuss the specification of properties
in LTL.

6 CONTINUE conference management case study

This section shows the application of the materials on access
control models, rules, and policies, and their combinations
from Sects. 3 and 4 (corresponding to Boxes A1, A2, and B1
of Fig. 1) to build access control policies in CONTINUE, a
conference management system. This section also elaborates
the approach of encoding CONTINUE’s access control poli-
cies using PROMELA (corresponding to Box C1 of Fig. 1).

CONTINUE’s policy and property descriptions use the
approach of Sects. 3, 4, and 5 and are described as shown

123

A formal modeling and analysis approach for access control rules, policies. . . 53

in Box C of Fig. 1. The properties are specified in linear
temporal logic (LTL) and then verified using the SPINmodel
checker.

Properties of policies that use the first-applicable combin-
ing algorithm are then verified, and the results are expressed
and compared with the outcomes of two papers by Fisler et
al. [18] and Kolovski et al. [36] that use the same case study
but apply different verification techniques. The approach is
similar to these two papers in that the first-applicable com-
bining algorithm is used, and the verification time and state
space, obtained by using SPIN, are provided. Then, three
combining algorithms—ordered-permit-overrides, ordered-
deny-overrides, and only-one-applicable—that involve his-
tory of policy outcomes are described using state machines
and the approach of this paper. These algorithms are not
capable of being described, for the purpose of formal verifica-
tion of properties, using any other approach presented in the
current literature. The ordered-permit-overrides algorithm is
then described in full including the verification results of
properties.

6.1 CONTINUE, policies, and properties

CONTINUE [37] is a free conference management appli-
cation supporting the submission, review, discussion, and
notification phases of conferences. A broad description of
CONTINUE’s behavior follows:

– During the initial stage, individuals can view the confer-
ence information.

– During the submission phase, authors, including program
committee (PC) members, but not PC chairs, can submit
papers.

– PC chairs assign papers to non-conflicted PC members
(i.e., PC members cannot be assigned their own papers
to review).

– Only those who are assigned papers to review can submit
reviews.

– No PC members can view other PC members’ reviews
unless the former have submitted their own reviews. The
purpose of preventing PC members from accidentally
accessing other member reviews, before submitting their
own, is to reduce bias in their reviews.

– PC chairs can see all decisions, but PC members do not
have this authorization. PCmemberswho have submitted
papers should not be able to determinewho reviewed their
papers.

– Paper reviews are read during the discussion phase and
are the basis for decisions on which papers are accepted.

The original conference management access control poli-
cies are described using eXtensible access control markup
language (XACML). The CONTINUE policies are available

inXACMLformat on theCONTINUEWeb site.2 For brevity,
a prose description of the XACML policies is provided in
“Appendix 1.”

TheXACML format and also the prose translation demon-
strate the difficulty of defining access control policies
correctly because of the numerous rules and their nested
referrals. Furthermore,CONTINUEdescribes properties that
are provided later in this paper. This paper specifies proper-
ties and uses the general form shown in Sect. 5.

6.2 AC rule combination by algorithmic form and state
machine

The approach shown in this paper can describe various
ordering combination algorithms, such as ordered-permit-
overrides, ordered-deny-overrides, and only-one-applicable
for the purpose of formal verification, whereas prior works
are not capable of expressing these combinations. These three
combining algorithms and their specifications are described
next based on the approach provided in this paper.

Theordered-permit-overrides rule-combiningalgorithm This
algorithm can be described as follows [55,56]: The evalua-
tion of rules within a policy is in the same order that these
rules are listed in a policy. If any rule evaluates to permit,
then the result is permit. If none of the rules evaluates to per-
mit and the result of at least one evaluation is deny and the
results of the rest are not applicable, then the result is deny.
If none of the rules applies, then the final evaluation result is
not applicable.

Figure 13 shows in an algorithmic form a description of
ordered-permit-overrides.

Figure 14 shows the UML state machine corresponding
to the ordered-permit-overrides rule-combining algorithm.
Permit-overrides, another algorithm, is similar to ordered-
permit-overrides with one difference: in permit-overrides,
rules can be evaluated in any order within a policy. This
algorithm can be implemented using the non-deterministic
if-statement of SPIN. Guards (options or choices) within an
if-statement or a loop can be non-disjoint; as a result, one
of them can be selected non-deterministically. This selection
can even be different from one execution to the next.

The ordered-deny-overrides rule-combining algorithm This
algorithm can be described as follows [55,56]: The evalua-
tion of rules within a policy is in the same order that these
rules are listed in a policy. If any rule evaluates to deny, then
the result is deny. If none of the rules evaluates to deny and
the result of at least one evaluation is permit and the results
of the rest are not applicable, then the result is permit. If

2 http://www.cs.brown.edu/research/plt/software/margrave/versions/
01-01/examples/continue/.

123

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/
http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/

54 V. R. Karimi et al.

set seen-deny to false; initial state = state q00;
for i = 1 to n do /* n = the number of rules in a
policy */

if premise-rulei = false then
move to state qi0;

else
move to state qi1;
if EventiAccess(permit) = true for every
element of EventResult then

move to state permit; exit loop;
else if EventiAccess(deny) = true for every
element of EventResult then

move to state deny-seen;
set seen-deny to true;

end
end
if i = n then

if seen-deny = true then
move to deny state;

else
move to state NA;

end
end

end

Fig. 13 The defined AC rules and states for ordered-permit-overrides

none of the rules applies, then the final evaluation result is
not applicable.

Figures 15 and 16 show the algorithmic form represen-
tation and the UML state machine for the ordered-deny-
overrides algorithm, respectively.

Similar to the previous case, another rule-combining algo-
rithm is deny-overrides in which rules can be evaluated in
any order within a policy. Similarly, the use of the non-
deterministic if-statement of SPIN, as previously explained,
applies in this case too.

The only-one-applicable rule-combining algorithm the
XACML standard defines the only-one-applicable combin-
ing algorithm for policies not rules.

Kolovski et al. [36] describe the only-one-applicable
rule-combining algorithm because the same rule- and policy-
combining algorithms ofXACMLare similar. This algorithm
can be described as follows: if more than one rule is applica-
ble, then the result is indeterminate. If none of the rules is
applicable, then the result is not applicable. If only one rule
applies, then the result of that rule applies. The only-one-
applicable rule-combining algorithm in the algorithmic form

[
mn

i=1
EventiAccess (deny) = true]

Ordered-permit-overrides

[p-rule1[p-rule1 = true]

RuleEvaluation

q10

q00

= false]

q11

[p-rule2

permit

[p-rule2
= false]

[seen-deny = false]

[p-rulen = false][p-rulen = true]

=
fal
se][se

en
-de
ny

[seen
-den

y = true
]

[se
en-

den
y =

tru
e]

NA
deny

q20

q(n−1)0

qn1 qn0

[p-rule2 = false]

/seen-de
ny := true

[p-rule2 = true]

deny-seen

q21

= true]

else

[
m1

i=1
EventiAccess (permit) = true]

[
mn

i=1
EventiAccess (permit) = true]

[
m1

i=1
EventiAc

cess (den
y) = true]

Fig. 14 A UML state machine using the defined AC rules for ordered-permit-overrides

123

A formal modeling and analysis approach for access control rules, policies. . . 55

set seen-permit to false;
initial state = state q00;
for i = 1 to n do /* n = the number of rules in a policy */

if premise-rulei = false then
move to state qi0;

else
move to state qi1;
if EventiAccess(permit) = true for every element of EventResult then

move to state permit-seen; set seen-permit to true;
else if EventiAccess(deny) = true for every element of EventResult then

move to state deny; exit loop;
end

end
if i = n then

if seen-permit = true then
move to state permit;

else
move to state NA;

end
end

end

Fig. 15 The defined AC rules and states for ordered-deny-overrides

[
mn

i=1
EventiAccess (deny) = true]

Ordered-deny-overrides
RuleEvaluation

[p-rule2

deny

[p-rule2

= false]

[seen-permit = false]

[p-rulen = false][p-rulen = true]

= fals
e][see

n-p
erm

it

[see
n-pe

rmit
= true

]

qn1 qn0

[p-rule2 = false]
/set s

een-pe
rmit to true

[p-rule2 = true]

permit-seen = true]

NA

[p-rule1[p-rule1 = true]

q10

q00

= false]

q11

[se
en-

per
mi
t =

tru
e]

else

permit

q21 q20

q(n−1)0

[
m1

i=1
EventiAccess (deny) = true]

[
m1

i=1
EventiA

ccess (p
ermit) = true]

[
mn

i=1
EventiAccess (permit) = true]

Fig. 16 A UML state machine using the defined AC rules for ordered-deny-overrides

123

56 V. R. Karimi et al.

initial state = state q00;
set num-seen to zero;
set result to false;
for i = 1 to n do /* n = the number of rules in a policy */

if premise-rulei = false then
move to state qi0 ;
if i = n and num-seen > 1 then

move to state indeterminate;
exit loop;

else if i = n and num-seen = 0 then
move to state NA;
exit loop;

else if i = n and num-seen = 1 and result = permit then
move to state permit;
exit loop;

else if i = n and num-seen = 1 and result = deny then
move to state deny;
exit loop;

end
else

move to state qi1;
if EventiAccess(permit) = true for every element of EventResult then

set result to permit;
add one to num-seen; move to state seen;

else if EventiAccess(deny) = true for every element of EventResult then
set result to deny;
add one to num-seen; move to state seen;

end
if i = n and num-seen > 1 then

move to state indeterminate;
exit loop;

else if i = n and num-seen = 1 and result = permit then
move to state permit;
exit loop;

else if i = n and num-seen = 1 and result = deny then
move to state deny;
exit loop;

end
end

end

Fig. 17 The defined AC rules and states for only-one-applicable

of this paper is shown in Fig. 17, and Fig. 18 is the corre-
sponding state machine.

6.3 An advantage of this paper’s approach

Table 2 shows a summary and comparison of this paper with
prior approaches in termsof using rule-combining algorithms
in the context of formal verification of properties. The plus
sign indicates the capability of themethods of Fisler et al. [18]
andKolovski et al. [36] in formal description and verification,
whereas the minus sign shows the inability of their methods
to express a formal description and subsequent verification.

Similarly, an expression of the combination of ordered-
permit-overrides, ordered-deny-overrides, and only-one-
applicable rule-combining algorithms with others is not pos-
sible by other approaches. As a result, if a policy uses

the first-applicable algorithm, and another applies ordered-
permit-overrides, then their combination cannot be expressed
using the approaches of either Fisler et al. or Kolovski et al.
Table 3 shows the various possible combinations.

6.4 Formal analysis

This section uses the SPIN model checker to express CON-
TINUE’s policies and properties in addition to the analysis
of properties. SPIN accepts specifications written in a C-like
language called PROMELA. Correctness properties can be
written as assertion statements or specified as LTL formulas.

Access controlwas initially defined using amatrix to spec-
ify who has access to what, but the growth of an organization
adds to the maintenance problems of such a matrix; instead,
access control is nowdefined using rules to describe the infor-

123

A formal modeling and analysis approach for access control rules, policies. . . 57

q(n−1)0

q21

Only-one-applicable
RuleEvaluation

[p-rule2 = false]

q20

[p-r
ule2

= true
]

[num-seen = 0]

[
m1

i=1
EventiAccess (permit) = true]

/assign permit to result, num-seen + 1

num-seen = 1,

result = deny]

[num-seen > 1]

[p-rulen = false,

indeterminate

/assign deny to result, num-seen + 1

[
m1

i=1
EventiAccess (deny) = true]

deny

result = permit]

[p-rulen = false,

[result = deny, num-seen = 1]

[result = permit, num-seen = 1]

num-seen = 1,
[num-seen > 1]

permit

[p-rulen = true]

qn0

NA

[p-rulen = false]

seen qn1

[
m1

i=1
EventiAccess (deny) = true]

/assign deny to result, num-seen + 1

[
m1

i=1
EventiAccess (permit) = true]

[p-rule2 = false]
[p-rule2 = true]

[p-rule1 = true] [p-rule1 = false]

q00

/assign permit to result, num-seen + 1
seen q10q11

[p-rulen = true]

Fig. 18 A UML state machine using the defined AC rules for only-one-applicable

Table 2 Rule-combining
algorithms in the context of their
use with formal verification

Rule-combining algorithms Fisler et al. [18] Kolovski et al. [36] This paper

First-applicable + + +
Permit-overrides + + +
Deny-overrides + + +
Ordered-permit-overrides − − +
Ordered-deny-overrides − − +
Only-one-applicable − − +

mation within that matrix [18]. Despite the benefits of using
rules, some disadvantages still exist [35]: (1) large organiza-
tions have a lot of rules; therefore, application of these rules
makes it problematic to determine who has access to what,
and (2) the addition and modification of new rules add to the
problem of maintaining these rules. (Although the disadvan-
tages are described only in the context of rule-based RBAC,
they apply generally). In addition, it is well known that what
one specifies is what one gets but not necessarily what one
wants. Therefore, the analysis of specifications still consti-

tutes a significant step nomatter how carefully a specification
is described.

6.5 Formal specification of AC policies in PROMELA

The existing CONTINUE policies, described in XACML,
are specified in PROMELA. The formats of AC rules have
also been previously defined. These rules are encoded in
PROMELA.

123

58 V. R. Karimi et al.

Table 3 Rule-combining algorithms in the context of using with formal verification

Rule-combining algorithms Fisler et al. [18] Kolovski et al. [36] This paper

First-applicable + ordered-permit-overrides − − +
First-applicable + ordered-deny-overrides − − +
First-applicable + only-one-applicable − − +
Permit-overrides + ordered-permit-overrides − − +
Permit-overrides + ordered-deny-overrides − − +
Permit-overrides + only-one-applicable − − +
Deny-overrides + ordered-permit-overrides − − +
Deny-overrides + ordered-deny-overrides − − +
Deny-overrides + only-one-applicable − − +

In addition, this specification of AC rules follows the
algorithmic forms or state machines to encode policies and
their combinations. The specificAC rules of CONTINUE are
specified in their place-holders, identified as rule-numbers,
in algorithmic forms or state machines.

The following example shows one possible combination
of policies. The following if-statement shows the premise
of rules, such as premiseRule1 and premiseRule2, and the
conclusion of rules, such as conclusionRule1 and conclusion-
Rule2. The premises and conclusions of rules are defined in
PROMELA as shown in the top portion of Fig. 10, using
equalities and arrays as described on p. 10. Initially, the
state is q00, as shown in the state machines of this paper.
If premiseRule1 holds, then the state is q11, and based on
conclusionRule1, the state proceeds to a result (permit or
deny). Otherwise, the state is state q10, and the procedure
continues to the state representing premiserule2. The proce-
dure uses the same approach in evaluating the policy to the
end.

if
:: premiseRule1 -> conclusionRule1;
:: else

if
:: premiseRule2 -> conclusionRule2;
:: else

if
:: premiseRule3 -> conclusionRule3;
fi;

fi;
fi;

6.6 Formal specification of AC properties in LTL

CONTINUEhas properties that can be expressed inLTL.The
SPIN model checker is used to specify properties. Properties
can be specified as LTL expressions in SPIN. Table 4 shows
the mathematical symbols and the SPIN equivalents used.

Table 4 Some LTL and SPIN
operators

Operator LTL SPIN

And ∧ &&

Or ∨ ||
Not ¬ !
Implies → ->

Always � []

Eventually ♦ <>

Next X X

Table 5 provides the CONTINUE properties.
Property Example For any state, if an individual is neither
a PC chair nor an administrator, then he or she cannot even-
tually set (write) the meeting flag resource.

This property can be defined in the LTL notation of SPIN
as

[](pThree -> X<>notSetup)

where pThree and notSetup are defined as follows:
#define pThree (!(AT == chair || AT ==

admin) && (RT ==
ismeetingflagR) &&
eventIsW && chaERrel
&& admERrel)

where eventIsW is defined as

#define eventIsW (ET == writeEvent)

The purpose of chaERrel is to define the existence of
relationships between the role of chair and the operation of
write and between the operation of write and the resource
ismeetingflagR. We have described the same concept in
Sect. 5 describing typdef in PROMELA. For simplicity in
that section, we have included two fields to represent the
relationship between agent types and event types. We can
include a third field as a resource to represent the relationship
between operation and resource. We discuss more about the
inclusion of relationships in Sect. 6.8. chaERrel is defined
as

123

A formal modeling and analysis approach for access control rules, policies. . . 59

Table 5 Properties

The CONTINUE properties are provided next. Note that because of the use of model checking and temporal logic and implications (Table 1),
always, eventually, and next are used in the description of these properties.

Property 1 (Pr1): For any state, if there is a request, then it will eventually allow only a deny or permit response (i.e., no NA response is
possible). This property should hold.

Property 2 (Pr2): It is always the case that a program committee (PC) member who owns reviews can eventually edit his/her reviews. This
property should hold.

Property 3 (Pr3): For any state, if an individual is neither a PC chair nor an administrator, then he or she cannot eventually set the meeting
flag. In verification, this property should hold.

Property 4 (Pr4): It is always the case that if an individual role is not described (i.e., no roles exist for a subject), then no permit exists for the
individual. In verification, this property should fail.

Property 5 (Pr5): For any state, if an individual’s role is not described and a resource is not conference information, then eventually no
permits exist for the individual. This property should hold.

Property 6 (Pr6): It is always the case that if a person is neither a PC chair nor an administrator, then the person should eventually never be
allowed to read the paper-review resources for which he/she has a conflict of interest. This property should hold.

Property 7 (Pr7): For any state, if an individual is neither a PC chair nor an administrator, and he/she is conflicted, then the individual should
never be eventually permitted to read either any part of the review-content-set resources that are not written by the individual, or read the
reviewer-info resource. This property should hold.

Pr7 and Pr6 are similar in the sense that the latter refers to a subset of the former. (Pr6 refers to paper-review resources, and Pr7 includes all
review resources). A discrepancy between Pr7’s prose description and the specification of this property in Scheme exists. The specification
in Scheme considers only review-content-set and paper-review-info-reviewer resources, not all resources; nevertheless, either case is
acceptable.

Property 8 (Pr8): For any state, if a PC chair calls for a meeting, then the chair can eventually read anything related to the subject of the
meeting. This property should fail.

This property possibly exists to check whether a paper’s certain information, such as a paper’s author(s), can be revealed in a meeting.
Generally, the specific information, which can be known, must be clearly defined.

Property 9 (Pr9): For any state, if a PC chair calls for a meeting, then the chair can eventually read any part of the reviews to be discussed at
the meeting. This property should hold.

Pr9, a specific case of Pr8, allows access to all eight review resources (described previously).

Property 10 (Pr10): It is always the case that a non-conflicted PC member at discussion phase can eventually read all parts of the reviews.
This property should hold.

Property 11 (Pr11): For any state, a non-conflicted PC member who has submitted a review of a paper can eventually read all parts of others’
reviews of that paper. This property should hold.

For both Pr11 and Pr12, the provided Scheme code on the CONTINUE Web site specifies non-conflicted PC members.

Property 12 (Pr12): It is always the case that when the phase is not discussion, a PC member who has been assigned to submit a review of a
paper but who has not done so cannot eventually read any part of review-content-set of others’ reviews of that paper. This property should
hold.

#define chaERrel (chaR[13].AgeN == cha &&
chaR[13].WAct == writeA &&

chaR[13].ResN == ismeetingflagR)

Similarly, the purpose of admERrel is to define the exis-
tence of relationships between the role of administrator and
the operation ofwrite and between the operation ofwrite and
the resource ismeetingflagR. admERrel is defined as

#define admERrel (admR[0].AgeN == adm &&
admR[0].WAct == writeA
&& admR[0].ResN ==
ismeetingflagR)

notSetup is defined as
#define notSetup (writeAccess == deny)

We could have used the term writeDenied instead of not-
Setup to bemore descriptive but decided to use the latter term
to be consistent with the description of the property (i.e., set
the meeting flag).

This property is a specific example of the general form
of properties provided in Fig. 12, Sect. 5.1. This specific
example in connectionwith the general formcanbedescribed
as follows:

(i) pThree is a propositional description and includes
several elements.

(ii) The element, AT == chair, corresponds to ATG,
and its propositional expression within pThree cor-
responds to ATGprop. Similarly, the element, AT ==
admin, is another use of ATG.

123

60 V. R. Karimi et al.

(iii) The “or” (||) term corresponds to one option of bop in
Fig. 12.

(iv) The expression, RT == ismeetingflagR, corre-
sponds to RTG, and its propositional expressionwithin
pThree corresponds to RTGprop.

(v) The “and” (&&) term is one option of bop of the general
form.

(vi) The element, eventIsW, is ETGprop of the general
form. This element is the propositional expression and
corresponds to the predicate, ET == writeEvent.

(vii) The two elements, chaERrel and admERrel, are
examples of the description of general forms AgeEve-
Relprop and ResEveRelprop.

(viii) The symbol implication (->) is one option of bop of
the general form.

(ix) Finally, the specific definition, notSetup, is an
example of the general form of EventResultprop.

6.7 Verification results and expressive advantage

This paper reports on the verification of the twelve proper-
ties provided by CONTINUE. The result of this verification
is described and compared with the results of two previous
papers. These two papers use different approaches that are
not completely comparablewith the experiments described in
this paper, but they use CONTINUE policies and properties
and use verification as a part of their efforts. The approach
in this paper to verify access control policies using model
checking is completely comparable with the work described
by Jha et al. [29] as they also use a model checker.

The state space of a program is the multiplication of the
number of statements of each process by the number of values
each variable can have [8]. The state space in this work was
relatively small because the range of values that each variable
could take has been selected to be as small as possible. In
addition, the number of statements has been reduced by using
PROMELA’s atomic keyword.

Table 6 shows the experimental results for the properties
that hold. The first row of data is the state space; the sec-
ond row is the verification time in seconds, and the third
is the memory usage reported when running the program.

Similarly, the next three rows represent state space, running
time, and memory usage for the same properties, but the
assumptions of implications that must eventually hold are
not included. For instance, based on the explanation provided
in Table 1, for Pr1, the top three rows report the experi-
ment for the expression [](p− > X <> q)&& <> p, and
the bottom three rows of column Pr1 use the expression
[](p− > X <> q), an acceptable form, inwhich the assump-
tions that must eventually hold are not stated.

Finally, Pr4 and Pr8 failed as they should. Pr4 failed with
the state space of 293,315, a running time 0.654 s, and a
memory usage of 101.036MB. Pr8 failed with the state space
of 16,313, a running time of 0.047 s, and a memory usage
of 7.969 MB. A Windows PC with a Pentium (R) Dual core
2.7 GHz CPU and 4 Gbytes of memory is used for this exper-
iment.

As an example, the CONTINUE case study is used again
with the ordered-permit-overrides rule-combining algorithm.
All 12 properties whose verifications under this algorithm
were not possible by prior approaches are verified. Table 7
shows the result of this verification.

Pr4 and Pr8 failed as they should. Pr4 failed with the state
space of 274,906, a running time0.623 s, and amemory usage
of 94.883 MB. Pr8 failed with the state space of 16,313, a
running time of 0.044 s, and a memory usage of 7.969 MB.
Similar to the previous case, a Windows PC with a Pentium
(R) Dual core 2.7 GHz CPU and 4 Gbytes of memory is used
for the experiment.

It is worth mentioning that the computational limitations
imposed by the model checking approach apply to our work.
One main limitation of model checking is state space explo-
sion, which implies that as the model gets larger, the analysis
will be impractical. Another limitation of model checking is
that the analysis is performed on a model of a system and
not on the actual system [5]. This limitation is similar to one
open problem pointed out by Fisler et al. [19] about access
control policy analysis. They mention that there is a need
for “tractable models and analysis techniques for the inter-
actions between policies and the software systems that use
them. Most policy analysis papers ignore the surrounding
software system, thus losing valuable information.”

Table 6 State space (total number of states), verification time (in s), and memory usage (in MB) with first-applicable rule-combining algorithm

Pr1 Pr2 Pr3 Pr5 Pr6 Pr7 Pr9 Pr10 Pr11 Pr12

States 1,364,017 496,401 538,257 368,017 368,017 436,497 383,633 438,033 387,089 381,953

Time 12.3 3.06 3.2 2.14 2.14 2.7 2.31 2.74 2.37 2.23

Memory 468.298 170.426 184.796 126.349 126.349 149.859 131.710 150.387 132.896 131.133

States 700,017 380,049 377,233 368,017 368,017 377,745 370,833 372,433 369,521 368,465

Time 3.75 1.91 1.84 1.89 1.85 1.93 1.92 1.93 1.8 1.88

Memory 240.332 130.479 129.513 126.349 126.349 129.688 127.315 127.865 126.865 126.502

123

A formal modeling and analysis approach for access control rules, policies. . . 61

A comparison of our experiment and those of two others
is described next. This comparison is not in terms of state
space and verification time directly because the other two
experiments use different approaches. One reports a certain
timing for parsing XACML and constraining the represen-
tation, and the other describes timing for parsing XACML,
converting the representation to description logic, and pre-
processing time to convert them to normal form. Neither of
these elements applies to thework described in our approach.

Next, two other experiments that use the same policies
and properties but apply different verification methods are
discussed. These works are by (a) Fisler et al. [18] and (b)
Kolovski et al. [36].

The Work by Fisler et al. [18] The authors, who created and
madeCONTINUEpolicies and properties publicly available,
use multi-terminal binary decision diagrams (MTBDDs) to
represent policies. MTBDDs, variations of binary decision
diagrams, have multiple terminal nodes such that the permit,
deny, and not applicable of a policy rule can be represented.
An MTBDD is built for each rule; then, these MTBDDs are
combined. MTBDDs can be manipulated using PLT Scheme
(renamed Racket), a programming language also used to
query and verify properties. The authors report a time of
2050ms to parse and convert policies into theMTBDD repre-
sentations and another 20ms to constrain this representation.
The verification of each property takes<1ms. They obtained
these results using a machine with an Athlon XP 1800+
processor at 1.5 GHz with 512 MB RAM.

The verification time of Fisler et al.’s experiment is faster
than those results reported in Table 6, but Fisler et al.’s
2050 ms for parsing policies and 20 ms for constraining
policies are not applicable and have not occurred in the
experiment using SPIN because compiling the PROMELA
program is fast. Fisler et al. use PLT Scheme to write queries
about policies, whereas LTL expressions are used in our
approach.

Fisler et al.’s experiment and ours use different machines,
and we have provided the specification of these machines.
Fisler et al. provide a change impact analysis and a tool that
translates XACML policies into a venue for their analysis,

but we do not. We explain our approach for the inclusion of a
change impact analysis as future work in Sect. 6.8. Although
we do not provide a tool for translating XACML policies
into PROMELA, this paper includes an extensive use of state
machinemodeling that can serve as a blueprint for such a tool.
We provide further explanations on this subject, such as the
inclusion of relationships, in Sect. 6.8. On the other hand,
Fisler et al. cannot describe any of ordered-permit-overrides,
ordered-deny-overrides, and only-one-applicable combining
algorithms, but the approach provided in this paper can
explicitly represent such descriptions and perform verifica-
tions on the policies that use such combining algorithms.

The Work by Kolovski et al. [36] The authors used descrip-
tion logics and implemented a prototype of an XACML
analysis tool on top of Pellet, a description logic reasoner. In
general, description logics are decidable subsets of first-order
logic, but some are supersets of predicate logic. The authors
mention that one advantage of choosing description logic
representations is their expressiveness. Therefore, a larger
subset of XACML that is more expressive than propositional
logic can be represented and verified. Parsing these XACML
policies took 2.1 s, and converting them to description logic
took another 1.7 s. Preprocessing concepts and transform-
ing them into normal forms consumed 10.6 s. Verification
of properties took 0.420 s on average. The type of machine
used to obtain these results is not mentioned. The authors
attribute the faster time reported by Fisler et al.’s work to the
optimizations for Pellet that are designed to perform verifica-
tion for a richer logic than propositional logic (i.e., the logic
that describes these policies).

Kolovski et al.’s 0.42 s verification time is faster than the
one reported in Table 6, but their 2.1 s for parsing, 1.7 s
for converting policies to description logic, and 10.6 s for
transforming concepts to normal forms are not applicable to
the experiment using SPIN because the compilation of the
PROMELA program is fast. (Note that Tables 6 and 7 show
the running time).

Kolovski et al.’s experiment and ours use different
machines. Kolovski et al. provide a change impact analy-
sis and a tool that translates XACML policies into a venue

Table 7 State space (total number of states), verification time (in s), andmemoryusage (inmegabytes)with ordered-permit-overrides rule-combining
algorithm

Pr1 Pr2 Pr3 Pr5 Pr6 Pr7 Pr9 Pr10 Pr11 Pr12

States 1,391,409 503,249 545,105 374,865 374,865 450,833 390,481 444,881 393,937 388,801

Time 12.8 3.17 3.33 2.21 2.21 3.02 2.4 2.87 2.4 2.32

Memory 477.702 172.777 187.147 128.700 128.700 154.781 134.61 152.738 135.248 133.484

States 713,713 386,897 384,081 374,865 374,865 387,089 377,681 379,281 376,369 375,313

Time 3.81 1.95 1.95 1.87 1.9 1.96 1.93 1.94 1.91 1.93

Memory 245.034 132.031 131.864 128.700 128.700 132.896 129.666 130.216 129.216 128.853

123

62 V. R. Karimi et al.

for their analysis, but we do not. As formerly expressed, we
explain our approach for the inclusion of a change impact
analysis as futurework in Sect. 6.8. Asmentioned previously,
we do not present a tool for translating XACML policies into
PROMELA, but this paper accommodates a large number of
state machine models that can assist as a blueprint for such
a tool. We present more explanations on this topic, such as
the inclusion of relationships, in Sect. 6.8. On the other hand,
Kolovski et al. [36] are not able to specify ordered-permit-
overrides and ordered-deny-overrides combining algorithms,
but our approach can. Kolovski et al. believe that they will
be able to express only-one-applicable combining algorithm
in their future work.

6.8 Discussion and future work

This section provides a discussion of the running time of the
case study using different approaches in addition to the inclu-
sion of relationships and its consequence for the running time
of case study. Furthermore, the presentation covers absolute
guarantee of scalability, future work, the use of model check-
ing, and other possible approaches.

First, neither ourworknor theother experiments (Kolovski
et al. [36], Hughes and Bultan [27], Arkoudas et al. [3], the
latter two papers are described in the Sect. 7) that used the
initial case study produced a faster running time than Fisler
et al.’s approach. The purpose of these other experiments and
approaches is to illustrate feasibility and additional capabil-
ities. This paper also proposes a feasible approach with the
additional feature that our work can describe and verify some
combining algorithms that were not previously possible.

We have mentioned in Sect. 5 about the inclusion of rela-
tionships. The CONTINUE case study has been written as an
RBAC profile in XACML. We have decided to write access
control rules based explicitly on the access control model.
As a result, in this case (i.e., RBAC) there is a relationship
between a role and an operation, and another one between
an operation and an object, and we have included these rela-
tionships. Of course including the relationships makes the
size of our case study larger than other referenced work and
increases the running time.

In addition, there is another important element to consider.
If the goal is to obtain an absolute guarantee of scalabil-
ity, then that goal cannot be achieved no matter how many
experiments are performed. Hughes and Bultan [27] explain
this notion well “All we can say is that our approach per-
forms efficiently on these examples, and can successfully
verify non-trivial properties on these policies. Assessing the
effectiveness of our verification approach in practice would
require a comprehensive study, which is beyond the scope
of this work.” It should be noted that the largest example
that Hughes and Bultan used is CONTINUE. Hughes and
Bultan state “Since the examples we tested so far were eas-

ily handled by the SAT solver we believe that our approach
will be feasible for analysis of large XACML policies.” We
agree with these statements, and they represent our view of
our experiments. One aspect of our future work is to con-
duct more experiments. Furthermore, another direction of
our future work consists of inclusion of impact analysis and
other types of analysis as a verification formulation.

Finally, we conclude this section with a discussion about
model checking use and our choice to apply this approach.
Model checking has previously been used for the verification
of access control policies (see Sect. 7). We agree with the
statement, which follows, by Jha et al. [29] (see Sect. 7) who
also use model checking for the analysis of access control
policies. They state “In real-world large-scale RBAC sys-
tems, even though the number of roles in the whole system
may be large, we expect that the roles that are relevant for any
given query will be only a small portion of all roles.” Simi-
larly, we believe that the number of variants such as roles in a
query is a small portion of all possibilities. Furthermore, the
inclusion of combining algorithms causes selective paths of
the program to be activated, and therefore, the state space of
each run will be a small portion of all possibilities. Thus, we
expect the model checking approach will be scalable in this
sense. In our experiments, we have used SPIN, an explicit-
state model checker.

We now explore several topics about model checkers.
These topics, discussed next, are the use of modularization
and its applicability related to our work, industrial use of
model checkers, current and future enhancements of model
checkers, and the use of advanced features of model check-
ers. There may always be concerns that model checkers may
not scale as the number of policies grows. One remedy is to
divide policies into different modules and perform verifica-
tion accordingly.Ourwork is related toXACMLpolicies, and
a certain number of policies are specified in oneXACMLfile.
Several XACML files can exist with their combining algo-
rithms. Even for a very large number of policies, it will be
unlikely that all policies are specified in one XACML file.
Therefore, the model checker does not need to explore the
verification of policies within one verification. Thismodular-
ization process of XACML can work in favor of scalability
of verification. In other words, if needed, certain number of
policies can be combined and verified together using their
combining algorithms, and then this process can continue.

Despite the state space explosion issue, model checkers
are used in industry. The SPIN Web site lists success stories
such as the application of SPIN in the automotive industry.
Here SPIN and its Swarm verification front-end is applied
where Swarm “performs many small verification jobs in par-
allel, that can increase the problem coverage for very large
verification problems.”3

3 http://spinroot.com/spin/success.html.

123

http://spinroot.com/spin/success.html

A formal modeling and analysis approach for access control rules, policies. . . 63

Furthermore, model checkers implement optimization
techniques. SPIN uses the partial order reduction technique
to reduce thenumber of reachable states thatmust be searched
to verify properties. To reduce state space, SPIN also utilizes
statement merging in which “sequences of transitions within
the same process” are combined into a single step [23]. SPIN
also supports a slicing algorithm that determines based on
given properties which statements can be omitted from the
model without effecting the verification of those properties
[23]. SPIN likewise implements (complementary techniques
to state space reduction) strategies to reduce the amount of
memory needed to store each state. Two such strategies are
collapse compression and minimized automaton (MA) com-
pression that are elaborated in depth by Holzmann [23].

Because of these and other enhancements tomodel check-
ing, the variety and size of the problems that can be handled
has increased substantially. Two additions to the SPINmodel
checker are the use of parallelism and the addition of the
Swarm tool. These additions take advantage of production of
multi-coreCPUs [25]. The parallel search algorithmhas been
introduced in SPIN in 2005 by a modification (that has been
lately enhanced) enabling “the execution of the depth-first
search analysis onmultiple cpu-cores” [22]. Searchoptimiza-
tion through the Swarm tool can be usedwhen a large number
of CPUs or CPU-cores are available. A user provides the tool
with three parameters: the number of CPUs or CPU-cores,
the size of memory available for a run, and the upper limit
of runtime for the search to be completed. The tool enables
verification without exceeding the memory and time limits
specified by the user.

Even though model checkers include advanced features
to optimize models and reduce state spaces, users may not
use these features. They should be used for very large veri-
fication problems. For instance, features such as slicing and
memory compressionmust be invoked in SPIN to take effect.
Running the slicing algorithm displays possible redundan-
cies in the model for a stated property. Moreover, by using
the option—DCOLLAPSE—when compiling a program, a
user can collapse the size of state vectors (i.e., the amount
of memory required to encode a single state) up to 80–90%
[48].

Furthermore, one may postulate that if a more general
language (instead of the use of model checkers) is used for
expressing combining algorithms, then any combining algo-
rithms such as the ordered versions of combining algorithms
can be expressed. We clarify that the idea is not whether a
languageor an approach is expressive enough topresent a fea-
ture, but whether the approach (language or tool) is designed
to express that feature. The model checking approach is
designed to keep track of states, and for this reason, we have
chosen our approach that also enables us to express ordered
versions of combining algorithms. For instance, Alloy is
based on predicate logic that is more expressive than the

logic that Fisler et al. [18] use, but as Fisler et al. [18] and
Hughes andBultan [27] explain, these authors were not capa-
ble of handling the analysis of CONTINUE properties when
they used Alloy. The conclusion that can be made is that at
least at that time Alloy was not designed to solve the type of
problems that Fisler et al. and Hughes and Bultan intended
to solve. This inability to solve that type of problems is not
relevant to the expressivity of Alloy.

7 Related work

Several policy languages have been suggested in the lit-
erature. XACML [55,56] is the standard XML access
control policy language. XACML describes rule- and policy-
combining algorithms in English and provides pseudo-code
for the application of these algorithms. In contrast, this paper
uses algorithmic forms and state machines where the AC
rules govern the transitions between states. In addition, this
paper provides the translation of state machines to the lan-
guage of the SPIN model checker and performs the formal
verification of properties of access control policies, which is
beyond the scope of XACML.

The enterprise privacy authorization language (EPAL) [4]
represents another policy language.Despite some similarities
between EPAL andXACML, differences exist between these
two policy languages [1]: EPAL does not support the inclu-
sion of one policy within another one, and therefore unlike
XACML, EPAL does not provide a language to define the
results from several policies. In addition, a policy in EPAL
can have several rules, and if the effect of the first rule is
applicable, the subsequent rules within a policy are ignored.
Therefore, the approach shown for the first-applicable com-
bining algorithm in this paper can be modified to apply to
EPAL because EPAL does not support policy-combining
algorithms and allows only a form of first-applicable rule-
combining algorithm.Ni andBertino [47] suggest eXtensible
functional language for access control (xfACL). One goal of
xfACL is to strengthen XACML. A policy evaluation in this
language can have one of the following results [47]: permit,
deny, null (no decision), not applicable (NA), either permit or
not applicable (PNA), either deny or not applicable (DNA),
either permit or deny (PD), either permit, deny, or not applica-
ble (PDNA). The authors plan to extend their work to include
policy analysis techniques.

Fisler et al.’s work [18] and Kolovski et al.’s work [36]
have been described in detail in Sect. 6.7. As previously
mentioned, neither one is capable of describing some rule-
combining algorithms, such as ordered-permit-overrides and
ordered-deny-overrides, for the purpose of formal verifica-
tion.

Two related research papers by Hughes and Bultan [27]
and Arkoudas et al. [3] use the same conference manage-

123

64 V. R. Karimi et al.

ment case study and use formal verification techniques to
analyze XACML policies. For this reason, we discuss them
in detail. Nevertheless, these two research approaches do not
discuss ordered versions of combining algorithms. Both of
these papers provide change impact analysis and a tool to
translate XACML policies for analysis.

Hughes and Bultan [27] translate queries for XACML
policies into Boolean satisfiability problems and use a SAT
solver to perform verification. They explain the translation of
XACMLpolicies into their approach and provide the descrip-
tion for first-applicable, permit-overrides, deny-overrides,
and only-one-applicable combining algorithms.

Hughes and Bultan compare their work with the work by
Fisler et al. [18] with an experiment and show their results for
eleven properties. To obtain the time for verifying each prop-
erty within their experiment, four different components need
to be added together. These components are I/O processing,
transformation to triple form, Boolean formula generation
and conjunctive normal form (CNF) transformation, andSAT
solving where the first and third components dominate the
total analysis time. The authors state that the comparison of
their work with the work by Fisler et al. is difficult because
the architecture of the two approaches is different. In Fisler
et al.’s approach, XACML policies are parsed into a form
suitable for analysis once, and then all properties are veri-
fied. In this process, the parsing time is dominant, and the
verification time is very fast. Hughes and Bultan note if the
time for parsing and verification of properties of Fisler et al.’s
experiment are added together, then this total is comparable
with the total obtained by adding the four components in their
proposal. However, for Fisler et al.’s experiment, the parsing
is performed only once followed by the verification of prop-
erties, whereas for Hughes and Bultan’s work the addition
of four components must be done for each property. Their
experiment is performed using a machine with 2.8 GHz Intel
Pentium 4 and 2 GB of memory. The authors conclude that
by using their approach, it is feasible to verify XACML poli-
cies. Similarly, we have shown that our approach makes it
possible to verify XACML policies.

Hughes and Bultan state that their approach is capable of
expressing only-one-applicable combining algorithm that is
not possible by Fisler et al.’s research. Nevertheless, they
do not express the representation of any ordered versions of
combining algorithms such as ordered-permit-overrides or
ordered-deny-overrides. We have expressed the presentation
of only-one-applicable algorithm in addition to expressing
ordered-permit-overrides and ordered-deny-overrides.

Arkoudas et al. [3] use satisfiability modulo theories
(SMT) [44],which are described as a generalization of propo-
sitional satisfiability, to analyze policies. In addition to the
use of an SMT solver, another essential component of their
work isAthena [2] that is a functional programming language
(with some imperative features) and an interactive theorem

prover based on many-sorted first-order logic. Athena inter-
actswith an SMTsolver through a procedure called smtSolve.
The SMT solver that they used is Yices.

Arkoudas et al. use their approach to load CONTINUE
policies into their tool and verify the twelve properties of
CONTINUE. The authors express a one time loading time
of about 1.4 s and a total verification time of 570 ms for all
properties. Loading is in three phases. For their experiment,
Arkoudas et al. use a machine with 2.53 GHz Intel Core Duo
CPU with 2.96 GB of RAM. The authors also report analyz-
ing synthetically generated policies with 10–1000 rules that
have from 4–200 attribute values. For this analysis, a com-
bining algorithm of first-applicable, permit-overrides, deny-
overrides, or only-one-applicable was randomly chosen. The
authors indicate that the structure of their polices can be
atomic or complex where the latter corresponds to XACML
policies. In contrast, our work is only in connection with
XACML policies. Arkoudas et al. indicate their approach is
capable of expressing combining algorithms first-applicable,
permit-overrides, deny-overrides, and only-one applicable in
addition to expressing any complex combinations; neverthe-
less, they do not express any work or results in terms of
ordered versions of these combining algorithms.

Arkoudas et al. explain that their approach is capable of
expressing a wide range of policy analysis such as consis-
tency (i.e., a request is not both permitted and denied by a
policy) and conflict (e.g., one policy creates a different deci-
sion from another policy for the same request). As the authors
attest, most of their range of policy analysis can be expressed
as verification problems (i.e., whether a given policy satis-
fies certain properties).One direction that our futurework can
take is to investigate expressing this range of policy analysis
as property verification.

We have used a model checker in this paper to analyze
access control policies. Model checking has previously been
used for the verification of access control policies.Wediscuss
a few representative papers illustrating this line of research.
Jha et al. [29] use model checking and logic programming
to analyze access control policies and compare these two
approaches. They perform two experiments and conclude
that logic programming using XSB (the Stony Brook Uni-
versity Extended Prolog) performs better for small instances,
while model checking using the new symbolic model veri-
fier (NuSMV) performs better for larger cases. The authors’
work provides insights in terms of using two different analy-
sis approaches, but the scope of their work is limited to
RBAC. Their work is not concerned with rule- and policy-
combining algorithms that exist in policy languages. Schaad
et al. [50] use a model checker to verify delegation and revo-
cation functionality. They use the NuSMV model checker
in the context of a real-world banking workflow to confirm
unexpected use of delegation and revocation functionality
that can violate separation of duties. Similar to our approach,

123

A formal modeling and analysis approach for access control rules, policies. . . 65

they use amodel checker to analyze access control properties,
but their work is not about XACML policies and combin-
ing algorithms. Zhang et al. [59] describe a model checking
algorithm for analyzing access control policies written in
a language based on propositional logic. This language is
called RW (where R stands for reading, and W denotes writ-
ing). In RW, a property or a query is a group of agents and a
goal is either reading or writing data. The authors use a small
example related to an employee information system to show
their approach that can be used in two modes. The assessing
mode is whether a property holds, and the intrusion detection
mode is concerned with what steps can be taken to make a
property achievable if a property does not hold. Our work is
related to their first mode (i.e., assessing mode), and they are
not concerned with combining algorithms.

Other formal verification techniques are used to specify
and analyze access control policies. For instance, several
authors use Alloy [28] to specify and analyze aspects of
access control and usually use small examples to illustrate
their approach. Schaad and Moffett [51] use an illustrative
example that is specified and analyzed in Alloy to demon-
strate conflicts that can arise when role-based access control
and delegation are used. The authors describe conflicts that
can occur regarding delegation and separation of duties.
Toahchoodee and Ray [53] examine the policy integration
using Alloy and state this integration is not trivial. The
authors use a small example and an algebra inwhich an autho-
rization consists of a triple of sets of subjects, objects, and
actions. They show how to describe the union, intersection,
and subtraction, of two policies while storing the result in a
third policy using Alloy. The authors also discuss the closure
of a policy using a derivation rule. Mankai and Logrippo [39]
discuss conflicts among access control policies and useAlloy
for analysis. The authors describe an XACML access control
policy that consists of three rules about reading and modify-
ing grades. Their example is translated into Alloy, analyzed,
and inconsistencies are observed.

Halpern and Weissman [21] and Bruns and Huth [11] use
logic and formalmethods for access control policies. Halpern
and Weissman [21] use a fragment of first-order logic called
Lithium to describe and reason about policies. The authors
describe two types of possible queries: (1) given a set of
policies and an environment that provides all required infor-
mation determine whether a particular action gets a response
of permitted or forbidden and (2) given a set of policies deter-
minewhether these policies are consistent; i.e., no actions are
both permitted and forbidden by the policies. It appears that
there is no implementation of Lithium. By comparison, the
implementation of the approach and reasoning capability is
an important part of our work. Bruns and Huth [11] present
a framework based on Belnap’s four-valued logic in which
an access request maps to one of the following four values:
grant, deny, conflict, or unspecified. Bruns and Huth define

an access control policy called PBel. They discuss policy
composition using operators of Belnap logic. For instance,
if one uses the “summing” of outcome in which an outcome
of a policy is grant, and the outcome of another one is gap
(e.g., no rule applies), then the combined policy creates the
grant result. The concept of policy composition is akin to
the combining algorithms in XACML. The authors provide
examples but do not mention any experiments using their
framework.

A few other papers use different formats to express or
enhance XACML. Our enhancement includes the provision
of state diagrams along with the pseudo-code format. Exam-
ples of this type of research follow. Li et al. [38] point
out that XACML provides more flexible approaches of rule
and policy combinations among policy languages, but even
XACML cannot express formally several possible combi-
nations. They provide a few possible approaches, such as
weak-consensus, that XACML cannot express formally. Li et
al. do not discuss the verification of AC properties of policies
as we have discussed in this paper. Masi et al. [41] propose a
formalXACMLby using an alternative syntax in aBNF form
and define formally the semantics of XACML. In contrast,
our goal is to provide formal representations for rule- and
policy-combining algorithms as the necessary step to verify
properties of AC policies that use these combining algo-
rithms. Bryans [12] discusses the representation of XACML
policies using communicating sequential processes (CSP)
and explains the use of this approach to verifywhether a prop-
erty, which is also expressed in CSP, holds in an XACML
policy. The author uses a tool called failures-divergences
refinement (FDR) that is designed to check models speci-
fied in CSP. Bryans uses a small grading example to show
the approach. The author explains the representation of
permit-overrides and deny-overrides in CSP and mentions
that describing first-applicable represents a challenge in CSP
because parallel operators in CSP are commutative.

Several research efforts are reported in the context of the
semanticWeb and its tools and languages. The scope of these
efforts may or may not be related to XACML. Beimel and
Peleg [9] also discuss the analysis ofACpolicies. The authors
use theWeb ontology language (OWL) and the semanticWeb
rule language (SWRL) as their specification languages and
use an OWL-DL reasoner to provide analysis support. The
scope of their work is not related to XACML and its com-
bining algorithms. Kagal et al. [31] present Rein a policy
framework to enable Web-based policy management. Rein
has two parts: (1) a set of ontolgoies for describing policies
and (2) a reasoning engine for RDF-S and OWL and for
each supported rule language. Rein considers other policy
languages, such as XACML, as domain-specific languages,
and if the semantics of such languages can be described in
RDF-S, OWL, or N3 rules, then they can be integrated with
Rein. Therefore, the scope of this work is more related to

123

66 V. R. Karimi et al.

enabling a user to describe policies in different policy lan-
guages and reason over them by applying appropriate tools.
Rei [32] is a policy language based on deontic concepts with
the design goal of being grounded in a semantic Web lan-
guage and with the capability of covering several domains.
As a result, such a language must be capable of specifying
a wide range of policies (including access control policies)
and be adequate for expressing rights, prohibitions, obliga-
tions, dispensations (deferred obligations), and delegation.
A policy engine for Rei has been developed using Prolog as
a reasoning engine. One mechanism for resolving conflicts
in Rei is priorities such that a rule or an entire policy has
precedence over another rule or another policy. The priori-
ties conflict resolution resembles to some extent the XACML
combining algorithms, but the goal and scope of Rei is dif-
ferent from our work in this paper.

Several other efforts define various policy languages; two
examples are mentioned next. Both efforts are concerned
with the specification of authorization,whereas ourwork also
has a component on the analysis of authorization. Woo and
Lam [57] recommend the use of logic for the specification of
authorization. The authors argue that separation of policies
and mechanisms has been accepted because a mechanism
deals with an actual implementation, whereas a policy speci-
fies what needs to be done. The authors advocate the use of a
logical framework, which is independent of an actual imple-
mentation, with formal semantics for policy specifications.
Their proposed language is a many-sorted first-order logic,
and the rule constructing in their proposal uses default logic.
Becker et al. define an authorization language called Sec-
PAL [7]. The authors indicate the inclusion of three features
in their language: flexible delegations, domain-specific con-
straints (e.g., temporal constraint), and negation expressions.

The analysis of access control policies in general, but not
in the context of XACML, is discussed by several authors.
Jürjens et al. [30] describe UMLsec, which extends UML
using stereotypes to enable security (both authorizations and
authentications) specifications. They use a permission-based
access control (i.e., associating permissions with entities)
and annotate UML class diagrams with these permissions,
which are subsequently translated into the language of a first-
order theorem prover, such as SPASS, for analysis. Similarly,
their work does not include rule- and policy-combining algo-
rithms. Basin et al. [6] use OCL to write queries for policies
of secureUML, which is based on RBAC. They introduce a
tool called SecureMOVA, an extension of MOVA, to imple-
ment their approach.MOVA enables drawingUML class and
object diagrams pluswriting and evaluatingOCLconstraints.
In comparison, our analysis is related to policies in XACML
with the inclusion of combining algorithms and is also based
on the specification of LTL properties.

Finally,we examine the newdirection of theMargrave tool
used by Fisler et al. [18] and described in Sect. 6.7. Nelson

et al. [46] indicate that their work on Margrave extends “an
earlier tool of the same name.” The authors explain that their
tool models policies in first-order logic, whereas many other
firewall analysis tools use propositional models. Nelson et
al. provide valuable analysis that is beyond the scope of our
work in this paper. The authors explain that “Existing firewall
analysis tools, includingMargrave, largely ignore states,” but
the approach that we have shown takes advantage of states,
and as a result we are able to express ordered versions of
XACML combining algorithms.

8 Conclusion

This paper has first described a new formal representation for
rule- and policy-combining algorithms (of policy languages)
using state machines in which the transitions are governed
by elements of the defined AC rules.

The approach can express and verify formally all-known
policy- and rule-combining algorithms, a result not seen in
the literature. The algorithms related to history of policy out-
comes that include ordered-permit-overrides, ordered-deny-
overrides, and only-one-applicable are expressed. The formal
expressions of algorithms related to consensus that include
weak-consensus, weak-majority, strong-consensus, strong-
majority, and super-majority-permit are also described.

In addition, our approach supports automated formal veri-
fication of properties of AC policies that use these combining
algorithms. We have used the access control policies and
properties of a conference management system that has
appeared frequently in the literature, and therefore, the com-
parison of results is possible. This case study is extended
to include the verification of AC policies that use policy-
combining algorithms involving history that have not been
supported in the literature. We have also shown the verifica-
tion results.

Acknowledgements We would like to thank K. Fisler and her co-
authors [18] for making the XACML policies and the related properties
of CONTINUE publicly available. We also thank the Natural Sciences
and Engineering Research Council of Canada and the Ontario Research
Fund for supporting this research.

Appendix 1: The CONTINUE policies

A prose description of twenty-five AC policies for CON-
TINUEconferencemanagement follows.Thefirst-applicable
combining rule within each of the following policies holds.
These policies are available in the XACML format from the
CONTINUE Web site.4

4 http://www.cs.brown.edu/research/plt/software/margrave/versions/
01-01/examples/continue/.

123

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/
http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/

A formal modeling and analysis approach for access control rules, policies. . . 67

In CONTINUE, a review-set consists of four resources:
paper-review,paper-review-info,paper-review-info-reviewer,
andpaper-review-info-submissionStatus. Similarly, a review-
content-set consists of four resources: paper-review-content,
paper-review-content-rating,paper-review-content-comment
sAll, and paper-review-content-commentsPc. Furthermore,
the first-applicable combining rule within each of the fol-
lowing policies holds.

Convention The dashes within names and the suffix rc (rc
stands for resource class) are omitted; therefore, paper-
review is used instead of paper-review_rc.

Policy one An administrator has permission to read and
write conference resources, and a pc chair possesses per-
mission to read these resources. A pc member at a meeting
is permitted to read conference resources; an unidentified
subject has no access to these resources.

Policy two An unidentified subject has access to read confer-
ence info resources. Any other permission to these resources
is based on the same access rules applicable to conference
resources.

Policy three A pc member has access to read pc member
resources. An administrator possesses permission to write,
create, and delete pc member resources. A pc member whose
user-id is equal to the user-id of a pc member resources has
no permission to perform any action on these resources. Any
other individual’s access to these resources follows the same
rules for accessing conference resources.

Policy four A pc chair possesses permission to read and
write pc member assignment resources, whereas a pc mem-
ber is allowed to read his/her own assignments (i.e., a pc
member’s user-id is equal to the user-id of a pc member
assignment resources). An unidentified subject has no access
to these resources. Other types of access to these resources
follow the same rules for accessing pc member resources.

Policy five A pc chair has read and write access to pc mem-
ber conflict resources, whereas a pc member is capable of
reading his/her conflict resources. An unidentified subject
has no access to these resources. In addition, other types of
access to pc member conflict resources follow the same rules
for accessing pc member resources.

Policy six Access to pc member assignment count resources
is according to the rules for accessing pc member resources.

Policy seven A pc chair possesses permission to read
and write pc member info resources, whereas a pc mem-

ber has access to read and write his/her pc member info
resources. An unidentified subject has no permission to
access these resources. Furthermore, the same permission
rules for accessing pc member resources hold for pc member
info resources too.

Policy eight A pc member has write access to his/her pc
member info password resources, and an administrator has
the same permission whenever pc member info password
resources are not pending. An unidentified subject does not
possess any access to these resources. Additionally, the same
permission rules for accessing pc member info resources also
hold for accessing pc member info password resources.

Policy nine A pc member has access to read pc member
isChairFlag resources, whereas a pc member whose user-
id is equal to the user-id of these resources has no access to
pc member isChairFlag resources. An unidentified subject
has no access to these resources. Furthermore, the same per-
mission rules for accessing pc member info resources also
hold to access pc member isChairFlag resources.

Policy ten A pc chair possesses access to delete paper
resources. A pc member has permission to read a paper if
the paper is designated for a meeting; in addition, a pc mem-
ber is allowed to create paper resources. Any other access
to paper resources is based on the same rules for accessing
conference resources.

Policy eleven A pc chair and a pc member are permitted to
read paper submission resources, whereas a sub-reviewer is
allowed to read only his/his own paper submission resources.
In addition, the same permission rules for accessing paper
resources are also applicable for accessing paper submission
resources.

Note: A pc member, P, designates a sub-reviewer, S, to
reviewP’s papers. S submits reviews for the assigned papers;
after submitting these reviews, S has no future access to these
reviews. P can access the reviews by S and modify and sub-
mit them. This arrangement makes S capable of using the
conference management interface to read submitted papers
and to write reviews. Otherwise,P has tomake copies of sub-
mitted papers for S and retrieve S’s reviews without using the
conference management interface.

Policy twelve Access to paper submission info resources
follows the same criteria as those for accessing paper sub-
mission resources.

Policy thirteen The same rules for accessing paper sub-
mission resources are also applicable for accessing paper
submission file resources.

123

68 V. R. Karimi et al.

Policy fourteen A pc chair in a meeting has read and write
access to paper decision resources. Other criteria for access-
ing paper decision resources are based on the same rules as
those for accessing paper resources.

Note In the following policies, the words “conflicted” and
“unconflicted” indicate that people in a role may face con-
flicts of interest, such as when reading and writing reviews.

Policy fifteen A pc chair and an administrator are allowed
to read and write paper conflict resources, whereas a pc
member who is conflicted is permitted to read paper con-
flict resources. In addition, a pc member in a meeting has
access to read paper conflict resources. An unidentified sub-
ject has no access to paper conflict resources. Furthermore,
other types of access to paper conflict resources follow the
same rules for accessing paper resources.

Policy sixteen A pc chair and an administrator are permitted
to read and write paper assignment resources. An unidenti-
fied subject who is conflicted possesses no access to paper
assignment resources. A pc chair in a meeting is allowed to
read a paper assignment resource that is related to the meet-
ing. An unidentified subject who is in the meeting is allowed
to read paper assignment resources. An unidentified subject
has no access to paper assignment resources. In addition,
the same criteria for accessing paper resources are applica-
ble for determining access permission for paper assignment
resources.

Policy seventeen An unconflicted pc chair has all types of
access to paper-review resources, whereas a pc chair in a
meeting for particular paper-review resources is allowed to
read only those resources. A pc chair is permitted to cre-
ate and delete paper-review resources. A conflicted subject
has no access to paper-review resources. An unconflicted
pc member is permitted to read paper-review resources.
All have all types of access to their own paper-review
resources. All types of access are permitted to discussion
phase paper-review resources. An unidentified subject who
is assigned to paper-review resources and has already done
his/her task is allowed to have any type of access to the
resources, whereas an unidentified one assigned to partic-
ular paper-review resources has all types of access to them.
An unidentified subject is not allowed to have any access
to unassigned paper-review resources. Furthermore, other
access rules to paper resources are also applicable to paper-
review resources.

Policy eighteen A pc chair has all types of access to paper-
review info resources; in addition, other types of access to
paper-review info resources are based on the same criteria
for accessing paper-review resources.

Policy nineteen A pc member is permitted to write, create,
and delete paper-review content resources if a pc member’s
user-id is equal to the user-id of the paper-review content
resources, whereas a sub-reviewer is allowed to create paper-
review content resources only if the sub-reviewer user-id is
equal to the user-id of the paper-review content resources.
Furthermore, other types of access to paper-review content
resources follow the same criteria for accessing paper-review
resources.

Policy twenty A pc member has permission to write paper-
review info submission status resources if the pc member’s
user-id equals the user-id of these resources and the con-
tent of these resources is already in place. Other types of
access to paper-review info submission status resources are
based on the same rules for accessing paper-review info
resources.

Policy twenty-one All types of access to paper-review-
content-rating resources are based on the same rules as those
for accessing paper-review content resources.

Policy twenty-two All types of access to paper-review con-
tent comments all resources are based on the same rules as
those for accessing paper-review content resources.

Policy twenty-three All types of access to paper review con-
tent comments pc resources are based on the same rules as
those for accessing paper-review content resources.

Note: CONTINUEcurrently does not permit comments by
pc members who have not written reviews for a paper, and
therefore, have not read the paper in as much detail as the
reviewers of that paper have but intend to provide comments,
which are distinct from reviews, for authors.

Policy twenty-four All types of access to paper-review-info-
reviewer resources are based on the same rules as those for
accessing paper-review info resources.

Policy twenty-five A pc chair has read and write access to is
meeting flag resources, whereas a pc member possesses only
read access. In addition, other types of access criteria for is
Meeting flag resources follow the same rules for accessing
conference resources.

Appendix 2: Other policy-combining algorithm
representation

Figure 19 shows theweak-consensus policy-combining algo-
rithm according to the approach shown so far and is presented
next.

123

A formal modeling and analysis approach for access control rules, policies. . . 69

Weak-majority [38] “A decision (permit or deny) wins if
it has more votes than the opposite. Permit (deny, resp.) a
request if the number of sub-policies permitting (denying,
resp.) the request is greater than the number of sub-policies
denying (permitting, resp.).”

Figure 20 shows the weak-majority policy-combining
algorithm, and the corresponding state machine is presented
in Fig. 21.

As mentioned previously, the algorithmic forms and
state machines of the strong-consensus policy-combining
algorithm, strong-majority policy-combining algorithm, and

initial state = state q00;
set PermitRes to false;
set DenyRes to false;
set ConflictRes to false;
for i = 1 to n do

// n = the number of policies in a policy set
if premise-policyi = false then

move to state qi0 ;
else

move to state qi1;
if EventiAccess(permit) = true for every element of EventResult then

set PermitRes to true;
move to state permitRes;

else if EventiAccess(deny) = true for every element of EventResult then
set DenyRes to true;
move to state denyRes;

end
end

end
if i = n and PermitRes = true and DenyRes = false then

move to state permit;
else if i = n and DenyRes = true and PermitRes = false then

move to state deny;
else if i = n and PermitRes = true and DenyRes = true then

set ConflictRes to true;
move to state conflict;

end

Fig. 19 The algorithmic form for weak-consensus policy-combining algorithm

initial state = state q00;
set NumPermit to zero;
set NumDeny to zero;
for i = 1 to n do

// n = the number of policies in a policy set
if premise-policyi = false then

move to state qi0 ;
else

move to state qi1;
if EventiAccess(permit) = true for every element of EventResult then

add one to NumPermit;
move to state permitRes;

else if EventiAccess(deny) = true for every element of EventResult then
add one to NumDeny;
move to state denyRes;

end
end

end
if i = n and NumPermit > NumDeny then

move to state permit;
else if i = n and NumDeny > NumPermit then

move to state deny;
end

Fig. 20 The algorithmic form for weak-majority policy-combining algorithm

123

70 V. R. Karimi et al.

Weak-majority

[p-policy1 = true]

PolicyEvaluation

[p-policy2 [p-policy2
= false]

[p-policyn = false]

[p-policyn = true]

q20

q(n−1)0

qn1

[p-policy2 = false]

/NumDeny + 1

[p-policy2 = true]

= true]

[
m1

i=1
EventiAccess (deny) = true]

qn0

[p-policy1
= false]

[p-policyn = true]

permit

[
mn

i=1
EventiAccess (permit) = true]

[
mn

i=1
EventiAccess (deny) = true]

/NumDeny + 1

permitRes

denyRes

q10q11

[
m1

i=1
EventiAccess (permit) = true]

/NumPermit +1
permitRes

deny

q00

denyRes

[p-policy2 = true]

[p-policy2 = false]

q21

/NumPermit + 1

[NumPermit > NumDeny]

[p-policyn = true]
[NumDeny > NumPermit]

[N
um

De
ny

>
Nu
mP

erm
it]

[NumPermit > NumDeny]

[NumDeny > NumPermit]

[NumPermit > NumDeny]

Fig. 21 A UML state machine for weak-majority policy-combining algorithm

super-majority-permit policy-combining algorithm are very
similar to what has described so far.

Appendix 3: [34]: An AC rule format in Extended
Backus–Naur Form (EBNF)

As explained in Sect. 3, one can view access control models
as providing the basis for access control policies and rules.
For instance, based on Fig. 2 and using the terms resources,
events, and agents that we have described in Sect. 3, we can
define an access control policy that consists of a single rule.
The general form for this rule follows:

ACRule = (AgentExp and ResourceExp and
EventExp and AgeEveRel and
ResEveRel) implies EventResult

Thefirst expressiondefines an access control rule (ACRule)
as an agent expression (AgentExp), a resource expression
(ResourceExp), an event expression (EventExp), relation-
ships related to agents and events (AgeEveRel), relationships
related to resources and events (ResEveRel). The conjunc-
tions of these expressions imply an event result (Even-
tResult). We use Extended Backus–Naur Form (EBNF)
to describe a general syntax of AC rules. Table 8 (ISO
14977) [54] shows the EBNF elements and their mean-
ings.

Before describing the format of an AC rule in detail, an
AC rule example is provided next. Terms enclosed by square
quotation marks identify terminal elements in EBNF, and
an EBNF rule termination is represented by a semicolon,
as shown in Table 8. Therefore, we can rewrite the ACRule
expression, just provided, as follows:

123

A formal modeling and analysis approach for access control rules, policies. . . 71

ACRule = (AgentExp "and" ResourceExp "and"
EventExp "and" AgeEveRel "and"
ResEveRel) "implies" EventResult;

The AC rule expressions are divided into six sections
based on these six elements: AgentExp, ResourceExp, Event-
Exp, AgeEveRel, ResEveRel, and EventResult. Each element
is shown in detail in a following subsection with some prose
explanations provided for a few expressions to make them
easier to comprehend.

The first section, i.e., AgentExp, also shows the expres-
sions for the general form of AC rules and presents some
general expressions, such as class name (ClassName) and
attribute name (attrName), that can be used by other sections.

AgentExp expressions

This section describes expressions that are mainly related to
AgentExp, and some general definitions, such as attribute
name (attrName), also apply to the other sections.

Figure 22 presents the expressions for this section, iden-
tified as “Part I.”

– The expression starting with equA: equA can be expres-
sions either about agents, or agent types, or agent groups
(ATG), which are called agent-related expressions, or
about the attributes of agents, or agent types, or agent
groups (attrATG).

– The expression starting with equArep: zero or more
agent-related expression(s) is (are) possible using ‘"and"
and "or" connectives. An optional "not" can also pre-
cede equArep.

– The expression starting with attrATG: it identifies an
attribute name, and its value in conjunction with an iden-
tification of AgeAttIde, which is defined shortly.

– The expression startingwithAgeAttIde: an agent attribute
identification can be either an agent designation, the class
name of an agent, agent type, or agent group, or can be an

Table 8 Extended BNF (EBNF)

EBNF elements Meaning

Unquoted words Non-terminal symbol

"…" Terminal symbol

(…) Grouping

[. . .] Optional symbols

{. . .} Symbols repeated zero or more times

= Defining symbol

| Alternative

; Rule termination

agent designation along with the class name of the agent
designation.

ResourceExp expressions

This section presents expressions for ResourceExp that are
similar to AgentExp, which is just described, and therefore
additional prose descriptions are not provided for this part.

The expressions for ResourceExp are shown in Fig. 23
and are identified as “Part II.”

EventExp expressions

This section presents the EventExp expressions in Fig. 24.
The expressions for EventExp,which are similar to theAgen-
tExp and ResourceExp, are identified as “Part III.”

AgeEveRel expressions

This section identifies the AgeEveRel expressions, as shown
in Fig. 25, that are expressions about different agent and event
relationships. The expressions for AgeEveRel are identified
as “Part IV” in this figure. This figure can be explained as
follows:

– The expression starting with AgeEveRel: the expres-
sion identifies the existence of one or more relationships
involving agents and events. An optional negation is pos-
sible to indicate such a relationship is not true.

– The expression starting with AgeERel: the relationships
involving agents and events can be between one of the
following elements: agent type and event type, agent and
event, agent type and agent group, agent type and agent,
agent and agent group.

– The expression starting with AgeERelrep: this expres-
sion describes zero or more repetition(s) of relationships
involving agents and events, as just described.

ResEveRel expressions

The ResEveRel expressions are presented in this section.
These expressions describe different resource and event rela-
tionships and are similar to theAgeEveRel section. Figure 26
provides the expressions for ResEveRel that are identified as
“Part V.” These expressions are similar to AgeEveRel; there-
fore, the prose descriptions are not provided.

EventResult expressions

This section identifies and explains the EventResult expres-
sions. Figure 27 shows the related EventResult expressions
that are identified as “Part VI.” This figure can be described
as follows.

123

72 V. R. Karimi et al.

ACRule = (AgentExp "and" ResourceExp "and" EventExp "and" AgeEveRel "and"
ResEveRel) "implies" EventResult;

AgentExp = ([uop] equA equArep);
uop = "not";
equA = ATG | attrATG;
equArep = {bop [uop] equA};
bop = ("and" | "or");
ATG = Agent "=" className | AgentTG "=" identifier
attrATG = AgeAttIde"."attrNameValue {"," AgeAttIde"."attrNameValue};
AgentDesignation = Agent | AgentType | AgentGroup;
AgentTG = AgentType | AgentGroup;
AgeAttIde = ATG | ATClassName | AClassName | AGClassName | AgentDesignation
className = "string";
identifier = "instance" "string";
instanceName = "string";
Agent = "var" "string" identifierA;
AgentType = "var" "string" identifierAT;
AgentGroup = "var" "string" identifierAG;
attrNameValue = attrName attrValue;
identiferA = "Agent";
identiferAT = "AgentType";
identiferAG = "AgentGroup";
attrName = "string";
attrValue = relationN valueNum | relationC valueC;
relationN = "<" | ">" | "≥" | "≤" | "=" | "=";
relationC = "equals" | "notEquals"
valueNum = number;
number = "integer" | "real";
valueC = "character" | "string" | bool;
bool = "True" | "False";
ATClassName = identifier "in" (AgentType "=" identifier);
AClassName = className "in" (Agent "=" className);
AGClassName = identifier "in" (AgentGroup "=" identifier);

Fig. 22 AC rule definition in extended BNF, Part I

ResourceExp = ([uop] equR equRrep);
equR = RTG | attrRTG;
equRrep = {bop [uop] equR};
RTG = Resource "=" className | ResourceTG "=" identifier ;
ResourceDesignation = Resource | ResourceType | ResourceGroup;
ResourceTG = ResourceType | ResourceGroup;
Resource = "var" "string" idenitiferR;
ResourceType = "var" "string" identifierRT;
ResourceGroup = "var" "string" identifierRG;
attrRTG = ResAttIde"."attrNameValue {"," ResAttIde"."attrNameValue};
identifierR = "Resource";
identifierRT = "ResourceType";
identifierRG = "ResourceGroup";
ResAttIde = RTG | RTClassName | RClassname | RGClassname | ResourceDesignation
RTClassName = identifier "in" (ResourceType "=" identifier);
RClassname = className "in" (Resource "=" className);
RGClassname = identifier "in" (ResourceGroup "=" identifier);

Fig. 23 AC rule definition in extended BNF, Part II

– The expression startingwith EventResult: this expression
describes the format of an event and its result. One or
more events are possible.

– The expression starting with accETG: this expression
describes the result of an event, or event type, or event
group along with its class name.

– The expression starting with accETGrep: accETGrep
describes zero or more repetition of accETG, which is
just described.

– The expression starting with result: result can be either a
permit or deny.

123

A formal modeling and analysis approach for access control rules, policies. . . 73

EventExpr = ([uop] ETG ETGrep);
ETG = Event "=" className | EventTG "="

identifier;
ETGrep = {bop [uop] ETG};
EventDesignation = Event | EventType | EventGroup;
EventTG = EventType | EventGroup;
Event = "var" "string" identifierE;
EventType = "var" "string" identifierET;
EventGroup = "var" "string" identifierEG;
identifierE = "Event";
identifierET = "EventType";
identifierEG = "EventGroup";

Fig. 24 AC rule definition in extended BNF, Part III

AgeEveRel = ([uop] AgeERel AgeERelrep);
AgeERel = "RelATET"(ATClassName "," ETClassName)

| "RelAE"(AClassName "," EClassName) |
"RelATG"(ATClassName "," AGClassName)

| "RelAT"(AClassName "," ATClassName)
| "RelAG"(AClassName "," AGClassName);

AgeERelrep = {bop [uop] AgeERel}

Fig. 25 AC rule definition in extended BNF, Part IV

ResEveRel = ([uop] ResERel ResERelrep);
ResERel = "RelRTET"(RTClassName "," ETClassName)

| "RelRE"(RClassName "," EClassName) |
"RelRTG"(RTClassName "," RGClassName) |
"RelRT"(RClassName "," RTClassName) |
"RelRG"(RClassName "," RGClassName);

ResERelrep = {bop [uop] ResERel};

Fig. 26 AC rule definition in extended BNF, Part V

EventResult = ([uop] accETG accETGrep);
accETG = accessETG "=" result;
accETGrep = {bop [uop] accETG};
result = "permit" | "deny";
accessETG = (ETClassName | EClassName) "Access"
ETClassName = identifier "in" (EventType "="

identifier);
EClassName = className "in" (Event "=" className);

Fig. 27 AC rule definition in extended BNF, Part VI

– The expression starting with accessETG: this expression
defines the class name of an event type or event along
with the word access.

– The expression starting with ETClassName: ETClass-
Name distinguishes an identifier, previously defined, of
an event type.

– The expression starting with EClassName: this expres-
sion describes the class name of an event.

References

1. Anderson, A.: A comparison of two privacy policy languages:
EPAL and XACML. In: Proceedings of the 3rd ACM Workshop
On Secure Web Services, pp. 53–60 (2006)

2. Arkoudas, K.: Athena, http://proofcentral.org/athena/ (2004)
3. Arkoudas, K., Chadha, R., Chiang, J.: Sophisticated access control

via SMT and logical frameworks. ACM Trans. Inf. Syst. Secur.
16(4), 17 (2014)

4. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enter-
prise Privacy Authorization Language (EPAL 1.2). W3C Member
Submission (2003)

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press,
Cambridge (2008)

6. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of
security-designmodels. Inf. Softw.Technol.51(5), 815–831 (2009)

7. Becker, M., Fournet, C., Gordon, A.: Design and semantics of
a decentralized authorization language. In: Proceedings of the
IEEEComputer Security Foundations Symposium (CSF), pp. 3–15
(2007)

8. Ben-Ari, M.: Principles of the Spin Model Checker. Springer,
Berlin (2008)

9. Beimel, D., Peleg, M.: Using OWL and SWRL to represent and
reason with situation-based access control policies. Data Knowl.
Eng. 70(6), 596–615 (2011)

10. Bray, H.: Payroll Website Still Not Secured. The Boston Globe,
March 1 (2005)

11. Bruns, G., Huth, M.: Access control via belnap logic: intuitive,
expressive, and analyzable policy composition. ACM Trans. Inf.
Syst. Secur. 14(1), 9 (2011)

12. Bryans, J.: Reasoning about XACML policies using CSP. In: Pro-
ceedings of the Workshop on Secure Web Services, pp. 28–35
(2005)

13. Constantin, L.: Twitter flaw gave third-party apps unauthorized
access to private messages, researcher says. InfoWorld (2013)

14. Emerson, E.: The beginning of model checking: a personal per-
spective. In: Proceedings of the 25 Years of Model Checking, pp.
27–45 (2008)

15. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role-Based Access
Control, 2nd edn. Artech House, London (2007)

16. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli,
R.: Proposed NIST standard for role-based access control. ACM
Trans. Inf. Syst. Secur. 4(3), 224–274 (2001)

17. Ferraiolo, D., Kuhn,D.: Role-based access control. In: Proceedings
of theNationalComputer SecurityConference, pp. 554–563 (1992)

18. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tschantz, M.: Veri-
fication and change-impact analysis of access-control policies. In:
Proceedings of the International Conference on Software Engineer-
ing (ICSE), pp. 196–205 (2005)

19. Fisler, K., Krishnamurthi, S., Dougherty, D.: Embracing policy
engineering. In: Proceedings of the Workshop on Future of Soft-
ware Engineering Research (FoSER), pp. 109–110 (2010)

20. Geerts, G.,McCarthy,W.: Policy-level specifications inREAenter-
prise information systems. J. Inf. Syst. 20(2), 37–63 (2006)

21. Halpern, j, Weissman, V.: Using first-order logic to reason about
policies. ACM Trans. Inf. Syst. Secur. 11(4), 1–41 (2008)

22. Holzmann, G.: Parallelizing the Spin model checker. In: Proceed-
ings of the International SPIN Workshop, pp. 155–171 (2012)

23. Holzmann, G.: The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, Reading (2004)

24. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng.
23(5), 279–295 (1997)

25. Holzmann, G., Joshi, R., Groce, A.: Swarm verification techniques.
IEEE Trans. Softw. Eng. 37(6), 845–857 (2011)

123

http://proofcentral.org/athena/

74 V. R. Karimi et al.

26. Hruby, P. with contributions by Kiehn, J., Scheller, C.: Model-
Driven Design Using Business Patterns. Springer, Berlin (2006)

27. Hughes, G., Bultan, T.: Automated verification of access control
policies using a SAT solver. STTT 10(6), 503–520 (2008)

28. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis, Rev edn. MIT Press, Cambridge (2011)

29. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.:
Towards formal verification of role-based access control policies.
IEEE Trans. Dependable Sec. Comput. 5(4), 242–255 (2008)

30. Jürjens, J., Schreck, J., Yu, Y.: Automated analysis of permission-
based security using UMLsec. In: Proceedings of the International
Conference Fundamental Approaches to Software Engineering
(FASE), pp. 292–295 (2008)

31. Kagal, L., Berners-Lee, T., Connolly, D., Weitzner, D.: Using
semantic Web technologies for policy management on the Web.
In: Proceedings of the Association for the Advancement of Artifi-
cial Intelligence (AAAI) Conference, pp. 1337–1344 (2006)

32. Kagal, L., Finin, T., Joshi, A.: A policy language for a perva-
sive computing environment. In: Proceedings of Policy, pp. 63–74
(2003)

33. Karimi, V.: A Uniform Formal Approach to Business and Access
Control Models, Policies and Their Combinations. Ph.D. thesis,
University of Waterloo (2012)

34. Karimi, V., Alencar, P., Cowan, D.: A uniform approach for access
control and business models with explicit rule realization. Int. J.
Inf. Secur. (2015). doi:10.1007/s10207-015-0275-z

35. Kern, A., Walhorn, C.: Rule support for role-based access control.
In: Proceedings of theACMSymposiumonAccessControlModels
and Technologies (SACMAT), pp. 130–138 (2005)

36. Kolovski, V., Hendler, J., Parsia, B.: AnalyzingWeb access control
policies. In: Proceedings of the International Conference onWorld
Wide Web (WWW), pp. 677–686 (2007)

37. Krishnamurthi, S.: The CONTINUE server (or, how I administered
PADL 2002 and 2003). In: Proceedings of the International Sym-
posium Practical Aspects of Declarative Languages (PADL), pp.
2–16 (2003)

38. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin,
D.: Access control policy combining: theory meets practice. In:
Proceedings of the ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 135–144 (2009)

39. Mankai, M., Logrippo, L.: Access control policies: modeling and
validation. In: Proceedings of the NOTEREConference, pp. 85–91
(2005)

40. Martin, J., Odell, J.: Object-Oriented Methods: A Foundation,
UML edn. Prentice Hall, Englewood Cliffs (1998)

41. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and implementa-
tion of the XACML access control mechanism. In: Proceedings of
the International Symposium of Engineering Secure Software and
Systems (ESSoS), pp. 60–74 (2012)

42. Motschnig-Pitrik, R., Kaasbøll, J.: Part-whole relationship cate-
gories and their application in object-oriented analysis. IEEETrans.
Knowl. Data Eng. 11(5), 779–797 (1999)

43. Motschnig-Pitrik, R., Storey, V.: Modelling of set membership: the
notion and the issues. Data Knowl. Eng. 16(2), 147–185 (1995)

44. Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction
and applications. Commun. ACM 54(9), 69–77 (2011)

45. Mouratidis, H., Giorgini, P.,Manson,G.:When securitymeets soft-
ware engineering: a case of modelling secure information systems.
Inf. Syst. 30(8), 609–629 (2005)

46. Nelson, T., Barratt, C., Dougherty, D., Fisler, K., Krishnamurthi,
S.: The Margrave tool for firewall analysis, In: Proceedings of the
Large Installation System Administration Conference (LISA), pp.
1–18 (2010)

47. Ni, Q., Bertino, E.: xfACL: an extensible functional language for
access control. In: Proceedings of the ACMSymposium on Access
Control Models and Technologies (SACMAT), pp. 61–72 (2011)

48. Ruys, T.: SPIN tutorial: How to become a SPIN doctor. In: Pro-
ceedings of the International SPIN Workshop, pp. 6–13 (2002)

49. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based
access control model. IEEE Comput. 29(2), 38–47 (1996)

50. Schaad, A., Lotz, V., Sohr, K.: A model-checking approach to
analysing organisational controls in a loan origination process. In:
Proceedings of the ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 139–149 (2006)

51. Schaad, A.,Moffett, J.: A lightweight approach to specification and
analysis of role-based access control extensions. In: Proceedings of
the ACMSymposium onAccess ControlModels and Technologies
(SACMAT), pp. 13–22 (2002)

52. Shanks, G., Tansley, E., Nuredini, J., Tobin, D.: Representing part–
whole relations in conceptual modeling: an empirical evaluation.
MIS Q. 32(3), 553–573 (2008)

53. Toahchoodee, M., Ray, I: Validation of policy integration using
Alloy. In: Proceedings of the International Conference on Distrib-
uted Computing and Internet Technology (ICDCIT), pp. 420–431
(2005)

54. The International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC): International
Standard, ISO/IEC 14977. Information technology-Syntactic
metalanguage-Extended BNF (1996)

55. Organization for the Advancement of Structured Information Stan-
dards (OASIS),Moses, T. (ed.): eXtensibleAccessControlMarkup
Language (XACML), Version 2.0 (2005)

56. Organization for the Advancement of Structured Information Stan-
dards (OASIS): eXtensible Access Control Markup Language
(XACML), Rissanen, E. (ed.) Version 3.0 (2013)

57. Woo, T., Lam, S.: Authorizations in distributed systems: a new
approach. J. Comput. Secur. 2(2–3), 107–136 (1993)

58. Zeller, T.: Not Yet in Business School, and Already Flunking
Ethics. The New York Times (2005)

59. Zhang,N., Ryan,M.,Guelev,D.: Evaluating access control policies
through model checking. In: Proceedings the International Confer-
ence on Information Security (ISC), pp. 446–460 (2005)

123

http://dx.doi.org/10.1007/s10207-015-0275-z

	A formal modeling and analysis approach for access control rules, policies, and their combinations
	Abstract
	1 Introduction
	2 An overview of our approach
	2.1 Access control policies and rules
	2.2 The formal model and properties
	2.3 Formal analysis

	3 Access control (AC), rules, and policies
	4 AC policy and rule combinations
	4.1 The use of algorithmic forms
	4.2 The use of state machines
	4.3 Policy-combining algorithms
	4.4 A key advantage of our approach

	5 Formal properties
	5.1 General form of AC property specification

	6 CONTINUE conference management case study
	6.1 CONTINUE, policies, and properties
	6.2 AC rule combination by algorithmic form and state machine
	6.3 An advantage of this paper's approach
	6.4 Formal analysis
	6.5 Formal specification of AC policies in PROMELA
	6.6 Formal specification of AC properties in LTL
	6.7 Verification results and expressive advantage
	6.8 Discussion and future work

	7 Related work
	8 Conclusion
	Acknowledgements
	Appendix 1: The CONTINUE policies
	Appendix 2: Other policy-combining algorithm representation
	Appendix 3: : An AC rule format in Extended Backus--Naur Form (EBNF)
	AgentExp expressions
	ResourceExp expressions
	EventExp expressions
	AgeEveRel expressions
	ResEveRel expressions
	EventResult expressions

	References

