Int. J. Inf. Secur. (2016) 15:413-432
DOI 10.1007/s10207-015-0313-x

@ CrossMark

REGULAR CONTRIBUTION

A cryptographic study of tokenization systems

Sandra Diaz-Santiago! - Lil Maria Rodriguez-Henriquez? - Debrup Chakraborty?

Published online: 22 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Payments through cards have become very pop-
ular in today’s world. All businesses now have options to
receive payments through this instrument; moreover, most
organizations store card information of its customers in some
way to enable easy payments in future. Credit card data are
a very sensitive information, and theft of this data is a seri-
ous threat to any company. Any organization that stores credit
card data needs to achieve payment card industry (PCI) com-
pliance, which is an intricate process where the organization
needs to demonstrate that the data it stores are safe. Recently,
there has been a paradigm shift in treatment of the problem of
storage of payment card information. In this new paradigm
instead of the real credit card data a token is stored, this
process is called “tokenization.” The token “looks like” the
credit/debit card number, but ideally has no relation with the
credit card number that it represents. This solution relieves

This is a substantially extended version of the paper: Sandra
Diaz-Santiago, Lil Maria Rodriguez-Henriquez and Debrup
Chakraborty, A Cryptographic Study of Tokenization Systems,
International Conference on Security and Cryptography (SECRYPT
2014), pp. 393-398.

B Debrup Chakraborty
debrup @cs.cinvestav.mx

Sandra Diaz-Santiago
sdiazsa@ipn.mx

Lil Maria Rodriguez-Henriquez
lilmaria@cic.ipn.mx

Escuela Superior de Computo, IPN, Av. Juan de Dios Bitiz,
Lindavista, 07738 Mexico City, Mexico

Centro de Investigacion en Computacion, IPN, Av. Juan de
Dios Batiz, Col. Nueva Industrial Vallejo, 07738 Mexico
City, Mexico

3 Department of Computer Science, CINVESTAV-IPN, Av.
IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico

the merchant from the burden of PCI compliance in several
ways. Though tokenization systems are heavily in use, to
our knowledge, a formal cryptographic study of this prob-
lem has not yet been done. In this paper, we initiate a study
in this direction. We formally define the syntax of a tokeniza-
tion system and several notions of security for such systems.
Finally, we provide some constructions of tokenizers and
analyze their security in light of our definitions.

Keywords Payment card industry standard - Tokenization -
Symmetric encryption - Format-preserving encryption -
Provable security

1 Introduction

In our digital age, credit cards have become a popular pay-
ment instrument. With increasing popularity of business
through Internet, every business requires to maintain credit
card information of its clients in some form. Credit card data
theft is considered to be one of the most serious threats to
any business. Such a breach not only amounts to a serious
financial loss to the business but also a critical damage to the
“brand image” of the company in question.

The payment card industry security standard council (PCI
SSC), which was founded by the major payment card brands,
is an organization responsible for the development and
deployment of various best practices in ensuring security of
credit card data. In particular, PCI SSC has developed a stan-
dard called the PCI data security standard (PCI DSS) [12],
which specifies security mechanisms required to secure pay-
ment card data. PCI DSS dictates that organizations, which
process card payments, must protect cardholder data when
they store, transmit and process them. The actual require-
ments specified by PCI DSS are elaborate and complex. To

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0313-x&domain=pdf

414

S. Diaz-Santiago et al.

obtain PCI compliance, a merchant needs to provide docu-
mentation on the usage and security policies regarding all
sensitive information stored in its environment. PCI compli-
ance is considered to be necessary for any business to acquire
the confidence of its customers. Moreover, a business that
has suffered theft of sensitive information while not being
compliant can be subject to hefty amounts of fines from the
government in some countries.

Traditionally credit card numbers have been used as a
primary identifier in many business processes in the merchant
sites. We quote from a document by Securosis [19]:

As the standard reference key, credit card numbers
are stored in billing, order management, shipping,
customer care, business intelligence, and even fraud
detection systems. Large retail organizations typically
store credit card data in every critical business process-
ing system.

Thus, in merchant sites, credit card numbers are scattered
across their environment. This makes it very difficult for a
merchant to formulate security policies and provide neces-
sary documentation to obtain PCI compliance.

But, in most systems where credit card numbers are stored,
the data itself are not required, and the system would function
as well as before if the credit card numbers are replaced by
some other information which would “look like” credit card
numbers. This observation has lead to a paradigm shift in
the way security of credit card numbers are viewed: instead
of securing sensitive data wherever it is present it is easier
to remove sensitive data from where it is not required. This
basic paradigm has been implemented using tokens. Tokens
are numbers that represent credit cards but are unrelated to
the real credit card numbers.

There have been numerous industry white papers and
similar documents which try to popularize tokenization and
discuss about the possible solutions to the tokenization
problem [7,17-19,21]. PCI SSC has also formulated its
guidelines regarding fokenization [13]. But to our knowl-
edge, a formal cryptographic analysis of the problem has not
been done. Even it is not clear which basic cryptographic
objects should be used and in what way, to achieve the goals
of tokenization.

Small domain encryption One obvious solution for secur-
ing credit card numbers in a merchant site is to encrypt them.
But as we stated, a typical merchant site heavily depends on
the credit card numbers for its functioning. In some cases,
even it uses them as the primary customer identifier in their
data bases. Hence, a strict requirement for applying encryp-
tion is that the cipher should look like a credit card number, so
that for using encryption one does not require to change the
database fields where these numbers are stored. This neces-
sity opened up an interesting problem. A typical credit card
number consists of sixteen (or less) decimal digits, if this is

@ Springer

treated as a binary string, it is about 53 bits long. This is much
less than the block size of a typical block cipher (say AES).
Thus, direct application of a block cipher to encrypt would
result in a considerable length expansion, and it would not
be possible to encode the cipher into sixteen decimal digits.

The general problem was named by Voltage Security
as format-preserving encryption (FPE), which refers to an
encryption algorithm which preserves the format of the mes-
sage. Formally, if we consider X’ to be a message space
which contains strings from an arbitrary alphabet satisfy-
ing certain format, D and K be finite sets called the tweak
space and key space, respectively, then a format-preserving
encryption scheme is formally defined to be a function
FP: KxDxX — X,suchthatforeveryd € Dand K € K,
FPx(,-) : X — X is a permutation. And FP should pro-
vide security as that of a tweakable strong pseudorandom
permutation (SPRP). Designing such schemes for arbitrary X’
is a challenging and interesting problem. In particular given
a SPRP on {0, 1}", designing a SPRP for a message space
{0, 1}, where ¢ < n is difficult. There have been some inter-
esting solutions to this problem, but none of them can be
considered to be efficient [1,2,5,8,11,20].

A credit card number encrypted by an FPE scheme can
act as a token. Such a solution is also provided by Volt-
age Security [21]. To the best of our knowledge, this is the
only solution to the tokenization problem with known cryp-
tographic guarantees. But again, there does not exist a formal
security model for tokenization, and it has been contested that
a token which is an encryption of the credit card data may
not be considered as a safe token as there exists a possibility
that the token can be inverted to get the original data [19].

Our contribution We study the problem of tokenization
from a cryptographic viewpoint; the main contributions of
this work can be summarized as follows. We point out the
basic needs for a tokenization system and develop a syntax for
the problem. The syntax follows closely the recommendation
of the PCI SSC, and it is general enough to accommodate var-
ious implementation options. Further, we develop a security
model for the problem in line with concrete provable secu-
rity. We propose three different security notions IND-TKR,
IND-TKR-CV, and IND-TKR-KEY, which depend on three
different threat models. We amply discuss the adequacy of
these new notions of security in practical scenarios.

Finally, we propose some constructions of tokenization
systems and prove their security in the proposed security
models. We propose three generic constructions, namely
TKR1, TKR2 and TKR2a, and discuss how these con-
structions can be instantiated with existing cryptographic
primitives. TKR1 is a construction which just uses a format-
preserving encryption to generate tokens. TKR2 and TKR2a
are similar, but both are very different from TKR1. Both
schemes use a lookup table for tokenization/detokenization
operations. In the constructions TKR2 and TKR2a, we

A cryptographic study of tokenization systems

415

demonstrate how the problem of tokenization can be solved
both securely and efficiently without using FPE. Both TKR2
and TKR2a use off the shelf cryptographic primitives; in
particular, we show how to instantiate them using ordinary
block ciphers, stream ciphers supporting initialization vec-
tors (IV) and physical random number generators. We also
prove security of our constructions in the proposed security
models.

2 Tokenization systems: requirements and PCI
DDS guidelines

The basic architecture of a tokenization system is described
in Fig. 1. In the diagram, we show three separate environ-
ments: the merchant site, the tokenization system and the
card issuer. The basic data objects of interest are the pri-
mary account number (PAN), which is basically the credit
card number and the token which represents the PAN. A cus-
tomer communicates with the merchant environment through
the “point of sale,” where the customer provides its PAN. The
merchant sends the PAN to the tokenizer and gets back the
corresponding token. The merchant may store the token in
its environment. At the request of the merchant, the tokenizer
can detokenize a token and send the corresponding PAN to
the card issuer for payments.

We show the tokenization system to be separated from the
merchant environment; this is true in most situations today,
as the merchants receive the service of tokenization from a
third party. But it is also possible that the merchant itself
implements its tokenization solution, and in that case, the
tokenization system is a part of the merchant environment.

As described in [13], a fokenization system has the follow-
ing components:

1. Amethod for token generation A process to create a token
corresponding to a primary account number (PAN).
In [13], there is no specific recommendation regard-
ing how this process should be implemented. Some of

s N
PAN
Point of - 1 - ’
= Sale
Q
£
=
2
z
o Application v .
g Server
=
5
. = J
”””” Encrypted Channel

Fig. 1 Architecture of the tokenization system

the mentioned options are encryption functions, crypto-
graphic hash functions and random number generators.

2. A token mapping procedure It refers to the method used
to associate a token with a PAN. Such a method would
allow the system to recover a PAN, given a token.

3. Card-vault Itis arepository which usually will store pairs
of PANs and tokens and maybe some other information
required for the token mapping. Since it may contain
PANS, it must be specially protected according the PCI
DSS requirements.

4. Cryptographic key management This module is a set of
mechanisms to create, use, manage, store and protect keys
used for the protection of PAN data and also data involved
in token generation.

The PCI guidelines for tokenization are quite vague (this has
been pointed out before in many places including [18]), and it
is difficult to make out what properties tokens and tokeniza-
tion systems should posses for functionality and security. We
state two basic requirements for tokens and tokenization sys-
tems. We assume that tokenization is provided as a service;
thus, multiple merchants utilize the same system for their
tokenization needs.

1. Format preserving The token should have the same for-
mat as that of the PANs, so that the stored PANs can
be easily replaced by the tokens in the merchant envi-
ronment. It has been said that in some scenarios it may
be important that the tokens can be easily distinguished
from the PANs. For example, most credit card numbers
have a Luhn checksum [9] of zero. One can make tokens
containing same number of digits as that of the PAN, but
the Luhn checksum should be 1. Such a distinguishing
criteria may make audits easier.

2. Uniqueness The token generation method should be
deterministic. As stated before, the application software
in the merchant side uses the PAN for indexing; thus, the
tokens for a specific PAN should be unique, i.e., if the
same PAN is tokenized twice by the same merchant, then
the same token should be obtained. Moreover, in a spe-
cific merchant environment two different PANs should
be represented by different tokens.

In addition to the above basic syntactic requirements,
a token and the tokenization system should satisfy certain
security properties. In order to analyze the security of a
tokenization system, we consider three possible threat sce-
narios. First, we consider a scenario where an adversary
only has access to the tokens. Perhaps this is a self-evident
situation, given that tokens are designed to be public. In
this threat model, we want to guarantee that an adversary
is unable to retrieve any information regarding the PAN if
he only sees the token. Another possible scenario consid-

@ Springer

416

S. Diaz-Santiago et al.

ers a more powerful adversary who has access not only to
the tokens but also to the card-vault. As the card-vault can
(possibly) reveal the relation between PANs and tokens, it
can be a target for attackers. Clearly if a scheme is secure
even if an adversary has access to the card-vault, then it is
stronger than the previous one. Finally, we consider an adver-
sary who has access to the tokens and the keys, but not the
card-vault. Again, keys can also be an attractive target for
attackers, because keys may be involved in token genera-
tion. We formally describe in detail these three scenarios in
Sect. 5.

3 Cryptographic preliminaries and notations

General notations For a finite alphabet AL, we denote the set
of all strings over AL as AL*, and the set of all strings of length
n over AL (i.e., containing n elements of the alphabet AL) by
AL". Specifically, the set of all n bit strings would be denoted
by {0, 1}". For Y € AL*, by |Y|aL we will denote the number
of characters in the string Y. If AL = {0, 1}, and X is a string
over AL, then we will use |X| to denote the length of X in
bits. If A is a finite set, then #A will denote the cardinality of
A.If X, Y are strings, X||Y will denote the concatenation of
X and Y.For X € {0, 1}*, format, (X) = X || X2]|... || Xm,
where |X;| = n,forl <i <m—1and 0 < |X,;] < n.
If X € {0, 1}* is such that |X| > ¢, then take,(X) will
denote the £ most significant bits of X. For a nonnegative
integer i < 2" — 1, bin, (i) will denote the n bit binary
representation of i, and for any n-bit string X, tolnt(X) will
denote the integer represented by the string X.

For a finite set S, x <$— S will denote x to be an ele-
ment chosen uniformly at random from S. We consider an
adversary as a probabilistic algorithm that outputs a bit b.
A9 = b, will denote the fact that an adversary .4 has access
to an oracle O and outputs b. In general, an adversary would
have other sorts of interactions, maybe with other adversaries
and/or algorithms before it outputs, these would be clear from
the context. Unless mentioned otherwise, whenever we refer
to resources of an adversary we would mean: the number of
oracle queries made by it and its running time.
Pseudorandom functions and permutations For finite sets A
and B, by Func(A, B) we would mean the set of all functions
mapping A to B, and Perm(A) would denote the set of all
permutations on A (i.e., all bijective functions mapping A to
A).If A = {0, 1}* and B = {0, 1}%, then we would denote
Func(A, B) by Func(n, £) and Perm(A) by Perm(n).

Consider the map F : K x D — R where K, D, R (com-
monly called keys, domain and range, respectively) are all
non-empty and K and R are finite. We view this map as
representing a family of functions F = {Fk}geKk, i.e., for
each K € K, Fg is a function from D to R defined as

@ Springer

Fg(X) = F(K, X). For every K € K, we call Fg to be
an instance of the family F.

Let F : K x D — R be a family of functions. We define
the PRF advantage of an adversary A in breaking F as

AdvP(A) = [Pk &K ATKO = 1

—Prlp & Func(D, R) : 4?0 = 1]].

Hence, the PRF advantage of the adversary A is computed
as a difference between two probabilities, the adversary A
is required to distinguish between two situations, the first
situation is where 4 is given a uniformly chosen member of
the family F (i.e., A has oracle access to the procedure Fy,

where K & K) and in the other A is given oracle access to
a uniformly chosen element of Func(D, R). The adversary
specifies its choice by outputting a bit. If the adversary cannot
tell apart these two situations then we consider F to be a
pseudorandom family. In other words, F is considered to be
pseudorandom if for all efficient adversaries A, AdV];,rf(.A)
is small.

Similarly, if £ : K x D — D is a family of permutations,
we define the PRP advantage of an adversary .4 in breaking
E as

AdVPP(A) = [Pk & K AEKO S

—Pr[x < Perm) : A0 = 1]|.

A tweakable enciphering scheme (TES) is a function & :
KxTx M — M where K is the key space, T is the
tweak set, and M is the message space and for every K € K
and T € T we have that E(K, T,-) = £} (-) is a length-
preserving permutation. We define the prp advantage of an
adversary A as

Advg‘rp(A) — Pk &K ASKG) S

—Prix & PermT(n) : A7) =5 17,

where PermT(./\/l) is the set of length-preserving tweak
indexed permutations on M. If the message space M =
{0, 1}", then & is called a tweakable block cipher.
Deterministic CPA secure encryption LetE : Kx T x M —
C be a deterministic encryption scheme with key space K,
tweak space T, message space M and cipher space C. We
define the DET-CPA advantage of any adversary A, which
does not repeat any query as

A cryptographic study of tokenization systems

417

Adv%et_Cpa(A)z Pr{K 3 Ko ABKC) 1) = prpaSe) = 1)

where $(., .) is an oracle, which on input (d,x) € T x M
returns a random string of the size of the cipher text of x.

4 A generic syntax
A tokenization system has the following components:

1. X, afinite set of primary account numbers or PAN’s. X
contains strings from a suitable alphabet with a specific
format.

2. T, a finite set of tokens. 7 also contains strings from a
suitable alphabet with a specific format. It may be the
case that 7 = X.

3. D, afinite set of associated data. The associated data can
be any data related to the business process .

4. CV, the card-vault. The card-vault is a repository where
PAN’s and tokens are stored, which may have a special
structure for the ease of implementation of the token map-
ping procedure. In our syntax, we shall use the CV to
represent a state of the tokenization system. Whenever
a new PAN is tokenized, possibly both the PAN and the
generated token are stored in the CV, along with some
additional data. Disregarding the structure of the CV, we
consider that “basic” elements of CV comes from a set
Y.

5. K, a key generation algorithm. A tokenization system
may require multiple keys, and all these keys are gener-
ated through the key generation algorithm.

6. TKR, the tokenizer. It is the procedure responsible for
generating tokens from the PANs. We consider the tok-
enizer receives as input: the CV as a state, a key K
generated by /C, some associated data d which comes
from a set D, and a PAN x € X. An invocation of TKR
outputs a token 7 and also changes the CV. Thus, other
than 7, TKR also produces an element from Y which is
used to update the CV. We use the square brackets to
denote this interaction. We formally see TKR as a func-
tion TKR[CV] : K x X x D — T x Y. For convenience,
we shall implicitly assume the interaction of TKR with
CV, and we will use TKR(,;)(x, d) and TKR([?) (x,d) to
denote the two outputs (in 7 and Y, respectively) of TKR.

7. DTKR, the detokenizer which inverts a token to a PAN.
As in case of tokenizer, we denote a detokenizer as a
function DTKR[CV] : K x T x D — X U {Ll}. For

' Tn our view, irrespective of other possible identifiers, the associated
data should contain an identifier of the merchant. Thus if d, d’ € D are
two associated data related to two different merchants, it should be that
d # d'. For our notion of correctness this requirement for the associated
data would be required.

detokenization also, we shall implicitly assume its inter-
action withCVandforK € K,d € Dandr € 7, weshall
write DTKRk (¢, d) instead of DTKR[CV](K, 1, d).

A tokenization procedure TKRg should satisfy the fol-
lowing:

— Foreveryx €e X,d e Dand K € K, DTKRK(TKRE(I)
(x,d),d) =x.

— For every d € D, and x,x’ € X, such that x # x/,
TKRY (x, d) # TKR (', d).

The second criteria focuses on a weak form of uniqueness.
We want that two different PANs with the same associated
data should produce different tokens; we do not disallow
the case where two different PANs with different associated
data have the same tokens. This requirement is clear if we
consider the associated data d to be an identifier for a mer-
chant. We do not want that a single merchant obtains the
same token for two different PANs, but we do not care if two
different merchants obtain the same token for two different
PANS.

5 Security notions

We define three different security notions, which consider
three different attack scenarios:

1. IND-TKR: Tokens are only public. This represents the
most realistic scenario where an adversary has access to
the tokens only, and the card-vault data remain inacces-
sible.

2. IND-TKR-CV: The tokens and the contents of the card-
vault are public. This represents an extreme scenario
where the adversary gets access to the card-vault data
also.

3. IND-TKR-KEY: This represents another extreme sce-
nario where the tokens and the keys are public.

We formally define the above three security notions based
on the notion of indistinguishability, as it is usually done
for encryption schemes. Three experiments corresponding
to the three attack scenarios discussed above are described in
Fig. 2. Each experiment represents an interaction between a
challenger and an adversary A. The challenger can be seen
as the tokenization system, which in the beginning selects a
random key from the key space and instantiates the tokenizer
with the selected key. Then (in lines 3—6 of the experiments),
the challenger responds to the queries of the adversary 4. The
adversary A in each case queries with (x,d) € X x D, i.e.,
it asks for the outputs of the tokenizer for pairs of PAN and
associated data of its choice. Finally, .4 submits two pairs of

@ Springer

418

S. Diaz-Santiago et al.

Fig. 2 Experiments used in the
security definitions: IND-TKR,
IND-TKR-CV and

IND-TKR-KEY
2.0« 0.

4.

Experiment Exp-IND-TKR?
1. The challenger selects K & X

3. for each query (x,d) € X x D of 4,
the challenger computes
t — TKRY (x,d).
and returns ¢ to 4.
5. Q< 0uU{(xd)} 5
6. until A4 stops querying 6.
7. 4 selects (xp,dp), (x1,d1) € (X xD)\Q| 7
and sends them to the challenger

8. The challenger selects a bit b & {0,1} 8. The challenger selects a bit b & {0,1}
and returns ¢ «— TKRg)(xl,,d;,) to 4. and returns (,c) < TKRK({CbW,lh) to 4.
9. The adversary 4 outputs a bit b’ 9. The adversary A outputs a bit b'.

10.If b = b’ output 1 else output 0.

Experiment Exp-IND-TKR-CV#

1. The challenger selects K & X
2.0« 0.
3. for each query (x,d) € X x D of 4,
4. the challenger computes
(t,¢) — TKRk(x,d),
and returns (¢,¢) to 4.
Q —QU{(x.d)}
until A4 stops querying
. A selects (xo,do), (x1,d1) € (X x D)\ O
and sends them to the challenger

10.1f b = b’ output 1 else output 0.

Experiment Exp-IND-TKR-KEY?

1

2
3.
4

oW

9.
10.1f b = b’ output 1 else output 0.

. The challenger selects K & X
.0 0.
for each query (x,d) € X x D of 4,
the challenger computes
t — TKRY (x,d),
and returns ¢ to 4.
Q< QU {(xv d)}
. until 4 stops querying
. A selects (xo,dp), (x1,d1) € (X x D)\ Q
and sends them to the challenger
. The challenger selects a bit b & {0,1}

and returns 7 «+— TKRg) (xp,dp) and K to 4.
The adversary 4 outputs a bit &'.

PANs and associated data to the challenger. The challenger
selects one of the pairs uniformly at random and provides
A with the tokenizer output for the selected pair. The task
of A is to tell which pair was selected by the challenger.
If A can correctly guess the selection of the challenger,
then the experiment outputs a 1 otherwise it outputs a O.
This setting is very similar to the way in which security of
encryption schemes are defined for a chosen plaintext adver-
sary.

The three experiments differ in what the adversary gets
to see. In experiment Exp-IND—TKRA, A, in response to
its queries gets only the tokens and in Exp-IND-TKR-CVA
it gets both the tokens and the data that is stored in the
card-vault. In Exp-IND-TKR-KEYA, A gets the tokens cor-
responding to its queries, and the challenger reveals the key
to A after the query phase.

Definition 1 Let TKR[CV] : K x X xD — 7 x Ybea
tokenizer. Then, the advantage of an adversary .4 in the sense
of IND-TKR, IND-TKR-CV and IND-TKR-KEY is defined
as

@ Springer

. 1
Advllplghtkr(A) = Pr[Exp»IND-TKRA = 1] - E ,
) 1
Adv}ﬁgl;{kr‘cv (A = Pr[ExprNDrTKR—CVA = 1] - E')

— 1
AdV}PIgRtkr key(A) = Pr[Exp—IND—TKR—KEYA =]] — E

3

respectively.

From the definitions, it is obvious that IND-TKR-CV —
IND-TKR and IND-TKR-KEY = IND-TKR, but IND-TKR
#= IND-TKR-CV and IND-TKR 7= IND-TKR-KEY.
Thus, IND-TKR-CV and IND-TKR-KEY are strictly stronger
than IND-TKR.

Adequacy of the notions We discuss some of the characteris-
tics and limitations of the proposed definitions next.

1. IND-TKR refers to the basic security requirement for
tokens. It adheres to the informal security notion for
tokens as stated in the PCI DSS guideline for tok-
enization. It models the fact that tokens and PANs are
unlinkable in a computational sense, if the key and

A cryptographic study of tokenization systems

419

card-vault are kept secret. Thus, if a merchant adopts
a tokenization scheme provided by a third party, which
is secure in the IND-TKR sense, then this will probably
relieve it from PCI compliance. As in this case the mer-
chant does not own the card-vault or the keys, and the
burden of security involved with the keys and the card-
vault lies with the provider who offers the tokenization
service.

2. The IND-TKR-CV is a stronger notion. If a tokenization
system achieves this security, then it implies that tokens
and PANs are unlinkable even with the knowledge of the
card-vault. This in turn implies that the contents of the
card-vault are not useful (in a computational sense) to
derive a relation between PANs and tokens. Thus, it pro-
vides security both to the tokenization service provider
and the merchant who uses this service.

3. IND-TKR-KEY is a stronger form of the IND-TKR
notion. Some public documents like [19] have been
stressed that encryption is not a good option for tok-
enization, as in theory there exists the possibility that
a token can be inverted to obtain the PAN. If tokens
are generated using a “secure” encryption scheme, then
it is infeasible for any “reasonably efficient” adversary
to invert the token without the knowledge of the key.
But, this computational guarantee does not seem to be
enough for users. The IND-TKR-KEY definition aims to
model this paranoid situation, where linking the PANs
with tokens becomes infeasible even with the knowledge
of the key. Note in IND-TKR-KEY we still assume that
the card-vault is inaccessible to an adversary.

4. All the definitions follow the style of a chosen plaintext
attack. The definitions may be made stronger by giving
the adversary additional power of obtaining PANs corre-
sponding to tokens of its choice. Though a stronger defin-
ition is always better, but in the current context, we think
that such strong definitions may not be required. Accord-
ing to the specifications given by the PCI DSS [13],
detokenization, i.e., to retrieve a PAN given a token, is
an operation which must be performed only in special
situations. It also specifies that this operation should be
restricted to authorized individuals or applications. Thus,
detokenization can be restricted with the suitable use of
authentication mechanisms, which falls outside the scope
of our abstraction of tokenization systems. We discuss a
bit more about this in Sect. 10.

In the following two sections, we discuss two class of con-
structions for tokenizers. The first construction TKR1 is the
trivial way to do tokenization using FPE. The other construc-
tions (TKR2 and a variant TKR2a) presented in Sect. 7 are
very different. For the later constructions, our main aim is
to bypass the use of FPE schemes and use standard crypto-
graphic schemes along with some encoding mechanism to

TKR1(x,d)
1.1t — FPy(d,x);
2. return (1,NULL)

DTKR1(t,d)
Lx—FP_'(d,1);
2. return x

Fig. 3 The TKR1 tokenization scheme using a format-preserving
encryption scheme FP

achieve both security and the format requirements for arbi-
trarily formatted PANs/tokens.

6 Construction TKR1: tokenization using FPE

The construction TKR1 is described in Fig. 3. TKR1 uses an
FPE scheme FP : L x D x X — 7 in an obvious way to
generate tokens, assuming that 7 = X.

For security, we assume that FPy () is a tweakable pseudo-
random permutation with a tweak space D and message space
7. Note that this scheme does not utilize a card-vault and
thus is stateless. The scheme is secure both in terms of
IND-TKR and in terms of IND-TKR-CV. We formally state
the security in the following theorem.

Theorem 1 /. Let ¥ = TKR1 be defined as in Fig. 3, and
let A be an adversary attacking W in the IND-TKR sense.
Then, there exists a prp adversary B such that

AdviPTRT () < AdvES (B),

where B uses almost the same resources as of A.

2. Let W = TKR1 be defined as in Fig. 3, and let A be an
adversary attacking W in the IND-TKR-CV sense. Then,
there exists a prp adversary B (which uses almost the
same resources as of A) such that

AdvIIEREY () < AdvRg (B).

The first claim of the Theorem is an easy reduction where
we design a PRP adversary 3 which runs .4 and finally relate
the advantages of the adversaries .A and B. The second claim
directly follows from the first, as in the construction TKR1,
there is no card-vault, we can also see this as if the card-
vault stores no information at all, and thus, an IND-TKR-CV
adversary for TKR1 does not have any additional information
compared to an IND-TKR adversary. The proof is provided
in the “Appendix”

This scheme can be instantiated using any format-
preserving encryption scheme as described in [1,2,5,8,11,
20]. According to [14], this method to generate tokens pro-
duces a reversible cryptographic token, i.e., we can recover
the PAN from the token. Clearly the security of this method
relies on the security of the FPE scheme.

@ Springer

420

S. Diaz-Santiago et al.

We discuss more on the impact of security and efficiency
for specific instantiations in Sect. 8.

7 Construction TKR2: tokenization without using
FPE

Here, we propose a class of constructions which avoids the
use of format-preserving encryption. Instead of a permutation
on 7 which we use for the previous construction, we assume
a primitive RNT(), which when invoked (ideally) outputs a
uniform random element in 7. This primitive can be keyed,
which we will denote by RNT[k](), where k is a uniform
random element of a pre-defined finite key space K. RNT()
can also be realized by using a keyed cryptographic primitive
fx, such instantiations would be more specifically denoted by
RNT[fx]10. We define the RND advantage of an adversary
A attacking RN7 () as

AV) = [Prik & K ARNTIIO o 1) — prpaST0 5 1)
(M

where $7 () is an oracle which returns uniform random strings
from 7. The task of a RND adversary A is to distinguish
between RNT[k]() and its ideal counterpart when oracle
access to these schemes is given to A.

We describe a generic scheme for tokenization in Fig. 4,
which we call as TKR2 that uses RNT(). For the descrip-
tion, we consider that the card-vault CV is a collection
of tuples, where each tuple has 3 components (x1, x3, x3),
where x1, x2, x3 are the token, the PAN and associated data,
respectively. For a tuple tup = (x1, x2, x3), we would use
tup) to denote x;. Given a card-vault CV, we also assume
procedures to search for tuples in the CV. SrchCV(i, x)
returns those tuples tup in CV such that tup(i) =x.IfS

TKR2; (x,d) DTKR2 (1, d)

1. 8] «+ SrchCV(2,x); 1.81 < SrchCV(1,1);
2.8, «—SrchCV(3,d);| 2.8, « SrchCV(3,d);
3.5 81NSy; 3.5 81NS8y;
4.ifS=0 4.ifS=0

5. t—RNT[K](); 5. return L ;

6. ¢« (t,x,d); 6. else let tup € S

7. InsertCV(c); 7. x—tup?;
8.elselettup € S 8. end if

9. t« tup) 9. return x

10. ¢« (t,x,d)

11. end if

12.return (¢,c)

Fig. 4 The TKR2 tokenization scheme using a random number gen-
erator RNT()

@ Springer

TKR2 (x,d)

1. S} « SrchCV(2,x);
2.8y « SrchCV(3,d);
3.5 S1NSy;
4.ifS=0

5. 1< RNZK();
6. ifrest) goto4;
7. ¢ (t,x,d);

8. InsertCV(c);
9.elselettup € §

10. ¢« tup®

11. ¢« (t,x,d)

12. end if

13.return (z,c)

Fig. 5 Modified TKR2 to ensure uniqueness

be a set of tuples, then by S@ we will denote the set of the
i-th components of the tuples in S.

As it is evident from the description in Fig. 4, the detok-
enization operation is made possible through the data stored
in the card-vault, and the detokenization is just a search pro-
cedure. Also, the determinism is assured by search.
Correctness A limitation of the TKR2 scheme is that it may
violate the property of uniqueness. It is not guaranteed that
TKR2;(x,d) # TKR2¢(x',d’) when (x,d) # (x',d’).
As discussed before, for practical purposes a weak form of
uniqueness is required, i.e., for x # x’, for any d € D,
TKR2(x, d) # TKR2(x', d). This requirement stems from
the fact that a specific merchant with associated data d may
use the tokens as a primary key in its databases. Thus if
d # d’,itcanbe tolerated that TKR2(x, d) = TKR2(x', d"),
for any x, x’ € X.

Let us assume that RN7 () behaves ideally. If ¢ unique
tokens have been already generated with a specific associ-
ated data d, the probability that the (¢ +1)'” token (generated
with associated data d) is equal to any of the g previously
generated tokens is given by g /#7 . Thus, this probability
of collision increases with the number of tokens already
generated. If the total number of tokens generated by the
tokenizer for a specific associated data is much smaller than
the size of the token space (which will be the case in a
practical scenario), this probability of collision would be
insignificant®. But, still the uniqueness can be guaranteed
by an additional search as shown in Fig. 5. Where RNT() is
repeatedly invoked unless a token different from one already
produced is obtained. Following the previous discussion, if ¢

2 According to [6], the total number of credit cards in 2012 from the
four primary credit card networks (i.e., VISA, MasterCard, American
Express, and Discover) was 546 millions (= 230). This can be consid-
ered as a reasonable upper bound for g. Assuming credit card numbers
to be of 16 decimal digits, #7 = 10'® &~ 253 These numbers lead to a
collision probability of 1/2%23 which is insignificant.

A cryptographic study of tokenization systems

421

is small compared to #7, the expected number of repetitions
required until a unique token is obtained would be small.

The detokenization corresponding to the modified tok-
enization scheme described in Fig. 5 remains the same as
described in Fig. 4.

We formally specify the security of TKR2 later in this

section, but it is easy to see that TKR2 is not secure in the
IND-TKR-CV sense, as in the card-vault the PANS are stored
in clear; hence, if the card-vault is revealed, then no security
remains. This can be fixed by encrypting the tokens in the
card-vault. To achieve security in terms of IND-TKR-CV,
any CPA secure encryption can be used to encrypt the PANs
stored in the card-vault. Note that for the encrypted PAN to
be stored in the card-vault the format-preserving requirement
is not required. We modify TKR2 to TKR2a to achieve this.
We discuss the details of TKR2 next.
Modifying TKR2 to TKR2a For this modification, the struc-
ture of the card-vault is a bit different than for TKR2. In this
case, each tuple contains two components. The first being the
encryption of the token and the second the encryption of the
PAN. We additionally use a deterministic CPA secure encryp-
tion (supporting associated data) scheme E : K x D x M —
C, with key space K, tweak (associated data) space D and
message space M. We assume that 7 = X’ € AL*, where AL
is an arbitrary alphabet, such that #AL > 2. We fixa, b € AL
and define the message space M of E to be

M={allx:x e X} Jibllr:1eT}.

Note that a and b are public quantities. The cipher space C
can be arbitrary, i.e., it is not required that C = X, as the
ciphers here would not be tokens but would be stored in the
card-vault. We assume that D, C C {0, 1}*.

The tokenization scheme TKR2a described in Fig. 6 uses
the objects described above. The main difference with TKR2

TKR2ay, 4, (x,d) DTKR2ay, (1,d)

1.z Ey (d,allx); 1. ¢ —Ey (d,b|]r);
2. S« SrchCV(2,z); 2. S+« SrchCV(1,1);
3. ifS=0, 3. ifS=0

4. do 4 return L ;

5. 1+ RNZ[k2](); 5. elselettupe s

6. 1" — By, (d,bl|t); 6. 7 tup®;

7. while SrchCV(1,1') # 0; 7 X <—E,?11(d7z);
8. c—(r2); 8 parse ¥’ as a|x;
9. InsertCV(c); 9. endif

10. elselettup € S 10. return x

1. " —tup®
2./ —E]N(d1")
13. ¢« tup;

14. parse ¢ as b||t;
15. endif

16. return (7,c)

Fig. 6 The TKR2a tokenization scheme

is that pairs of token and PAN are stored in the card-vault in
the encrypted form. An important characteristic of the way
the encryption is applied is that the inputs are differently
encoded in case of a token and a PAN. This ensures the even
if a PAN and a token are the same, they produce different
ciphertexts.

7.1 Realizing RN7 [k]

The heart of the procedures TKR2 and TKR2a is the keyed
primitive RN7 [k], which can be realized by standard crypto-
graphic objects. We discuss here a specific realization which
uses a pseudorandom function f : KxZy — {0, 1}£, where
L and N are sufficiently “large,” the exact requirements for
N and L will become clear later. We call the construction
RN[/10, and it is shown in Fig. 7.

For the construction shown in Fig. 7, we assume that 7

contains strings of fixed length p from an arbitrary alpha-
bet AL. Let #AL = ¢, and A = [lg¥f]. Let 0 : AL —
{0,1,2,...,¢ — 1} be a fixed bijection. The variable cnt
can be considered as a state of the algorithm, and it main-
tains its values across invocations. The basic idea behind the
algorithm is to generate a “long” binary string using fx(cnt)
and divide the string into blocks of X bits. If the integer corre-
sponding to ablock is less than £, then it is accepted otherwise
it is discarded. The accepted blocks are encoded as elements
in AL.
Choosing L and N: Let us define, p = Pr[y & {0, 1}* :
tolnt(y) < £] = ZK—A > % Thus, if we assume that the output
of fr() is uniformly distributed then an X; passes the test
in line 6 (of Fig. 7) with probability p. Thus, the expected
number of times the while loop will run is at most 2. Thus,
L = 3ux will be sufficient for all practical purposes, recall
that w is the length of each token if the tokens are treated as
strings in AL and A = [Ig#AL].

Note that each invocation of RN[f]() increases the value
of cnt by 1. Thus, the value of N should be a conservative
upper bound on the number of times RN[f;]() needs to be

RN[/](

1. X « fi(cnt);

2. X1]1X2|] - . . ||Xm < formaty (X);
3.Y <« &; (empty string)
4.i1;

5. while |Y |aL # 1,

6. iftolnt(X;) </,

7. Y — Y||lo~ ! (toInt(X;));
8. i—i+1;

9. end while

10.cnt «— cnt +1;

11.returnY;

Fig. 7 Construction of RN() using a pseudorandom function fi ()

@ Springer

422

S. Diaz-Santiago et al.

invoked. N = 280 — 1 should be sufficient for all practical
purposes.

If fi is a PRF, then RNT[fk] is secure in the RND sense.
We formally state this (easy to verify) security property in
the following theorem.

Theorem 2 Let A be an arbitrary adversary attacking
RN[fx] (as described in Fig. 7) in the RND sense. Then,
there exists a PRF adversary B (which uses almost the same
resources as of A) such that

f
AAVEY 10 (A < AdvE(B). 2)

This theorem asserts that as long as f;() is a PRF, the con-
struction achieves the desired security in the RND sense.

7.2 Candidates for f;()

fx(can be instantiated through standard symmetric key
primitives. We discuss three options below:

1. Stream cipher Modern stream ciphers, such as those in
the eStream [16] portfolio, take as input a short secret
key K and a short initialization vector (IV) and pro-
duce a “long” and random looking string of bits. Let
SCk : {0, 1}* — {0, 1}~ be a stream cipher with IV,
i.e., for every choice of K from a certain pre-defined key
space K, SCk maps an £-bit IV to an output string of
length L bits. The basic idea of security is that for a uni-
form random K and for distinct inputs I V1, ..., I'V,, the
strings SCx (IV1), ..., SCg (1V,) should appear to be
independent and uniform random to an adversary. This
is formalized by requiring a stream cipher to be a PRF.
See [3] for further discussion on this issue. Thus, a stream
cipher with the above security guarantees can be used to
instantiate f.

2. Block cipher A block cipher E : K x {0, 1}* — {0, 1}*
can also be used to construct fi as follows.

Si(ent)

1.m < [L/n];

2.Y <« bin,(cnt);

3. W <« Ex(Y);

4.Z < Ex(W)||Ex(W @ bin,(1)]] - --
< Er(W @ bin, (m — 1));

5. return take; (Z)

The above construction is same as the counter mode of
operation, and if Ej is assumed to be a PRF, then fj as
constructed above is also a PRF; in particular, it is easy
to verify the following holds

Proposition 1 Let B be an arbitrary PRF adversary attack-
ing fi() who asks at most q queries, then one can construct

@ Springer

a PRF adversary B’ for Ex () such that, B' asks at most mq
queries and
m2q?

AV (B) = Aavl' (B) + -

3. True random number generator We end this discussion
with another possible interesting instantiation of RN().
The specific construction that we depicted in Fig. 7 basi-
cally uses a stream of random bits generated through
a pseudorandom function. Currently there has been a
lot of interest in designing physical true random num-
ber generators. Such generators harvest entropy from its
“environment,” and they generate random streams with
some post-processing. It has been claimed that such gen-
erators are “true random number generators” (TRNG).
Such a generator can be used to design RN() as in Fig. 7
by replacing fi() with a TRNG, and by selecting suit-
able blocks from the generated stream according to the
format requirements of 7. As a TRNG is keyless, thus
this would lead to a keyless construction of RN, we call
such an instantiation as RN[TR]. As such a generator
gives us “true randomness”’; hence, for any adversary
A, Advi g, = 0.

From now onwards, where it is necessary, we will denote
TKR2 instantiated with RN[f;] and RN[TR] by TKR2][f;]
and TKR2[TRY], respectively. Similar convention would be
followed for TKR2a.

7.3 Realizing E; (d, x)

As discussed previously, Ex (-, -) is used to encrypt the PAN,
and the encryption is stored in the card-vault within the tok-
enization system. We do not require this encryption to be
format preserving. Here, we discuss two instantiations of E
using a secure block cipher E. If the block length of E is
n, then both the proposed constructions have {0, 1}" as their
cipher space, and X and D as their message space and tweak
space, respectively. For the constructions, we assume some
restrictions on X and D, but these restrictions would be sat-
isfied in most practical scenarios.

Let E : K x {0, 1}* — {0, 1} be a block cipher. As we
defined before, let X' contain strings of fixed length u from
an arbitrary alphabet AL where #AL = ¢ and A = [lg¥¢].
Let #D = ¢1 and A1 = [lg¥;]. Let n; and ny be positive
integers such that ny > pi, np > Ay and n; + ny = n.
Note that for practical choice of AL, D, i and n, such ny, nj
can be selected. Let pady : & — {0,1}", padp : D —
{0, 1}, pad, : AL¥ — {0, 1} and pad, : D — {0, 1}
be injective functions.

The two different proposed instantiations of E are shown
in Fig. 8. Both the constructions use a block cipher with a

A cryptographic study of tokenization systems

423

EIK(d,x)

1. 71 « pad;(x) ;
2.7 < pad,(d) ;
3.7 Ex(z1]|22);
4. return z

El.'(d,2)

Ly —Eg'(2);

2. 71 < take,, (y) ;
3.x— padfl(zl);
4. return x

EZK(d,x)

1.z; <« pady(x);

2. 75« padyp(d) ;
3.2 Ex(z1®Ex(22));
4. return z

E2.'(d,z)
Ly—Eg'(z);
2.zp + padp(d) ;
3.x —yDEk(z2);
4. return x

Fig. 8 The two instantiations of Ex

block length of , and the padding functions defined above. In
E1, the message x and the associated data d are suitably for-
matted to a n bit string, and this formatted string is encrypted
using the block cipher. E2 is same as the construction of a
tweakable block cipher proposed in [10]. If Eg is a secure
block cipher in the PRF sense, then both E1x and E2k are
DET-CPA secure; we state this formally next.

Proposition 2 Let A be an arbitrary DET-CPA adversary
attacking E1, who asks at most q queries, never repeats a
query, and runs for time at most T; then, there exists a PRF
adversary BB such that

det-cpa

AdVT P (4) < AV (B),

and B also asks exactly q queries and runs for time O (T).

Proposition 3 Let A be an arbitrary DET-CPA adversary
attacking E2, who asks at most q queries, never repeats a
query, and runs for time at most T then, there exists a PRF
adversary B such that

2q2
on’

det-cpa
Advg,

(A) < AV (B) +

and B also asks exactly q queries and runs for time O (T).

The proofs of the above propositions are presented in
“Appendix,” respectively. The above propositions suggest
that E1 has a better security bound compared to E2, and
for E2 two block cipher calls are required for each encryp-
tion, whereas only a single block cipher call is required for
E1. The formatting requirements are more stringent for E1,
where as E2 can be applied to any message space X and
tweak space D, where #X < 2" and #D < 2".

7.4 Security of TKR2 and TKR2a

The following three theorems specify the security of TKR2
and TKR2a.

Theorem 3 Let ¥ e {TKR2, TKR2a} and let A be an
adversary attacking WV in the IND-TKR sense. Then there
exists a RND adversary B (which uses almost the same
resources as of A) such that

Advi I (4) < AdvEN(B)

Theorem 4 Let ¥V = TKR2a and A be an adversary
attacking WV in the IND-TKR-CV sense. Then, there exist
adversaries B and B’ (which use almost the same resources
as of A) such that

ind-tkr-cv rnd det-cpa , 15/ (g+ 1)2
AdVlI, (.A) < AdVRN (B) +AdVE BHY+ W
where s is the size of the shortest element in the cipher space
of E.

Theorem 5 Let ¥ € {TKR2[TR], TKR2a[TR]} and A be
an arbitrary adversary attacking ¥V in the IND-TKR-KEY
sense. Then,

ind-tkr-key
Adv,,

(A)=0

The proofs of Theorems 3 and 4 use standard reduction-
ist arguments; we present them in “Appendix,” respectively.
Note, when TKR2 and TKR2a are instantiated with a true
random number generator then they are keyless schemes;
thus, Theorem 5 is immediate.

8 Discussions

Security The security properties of the various schemes as
stated in the previous security theorems are summarized in
Table 1. The security theorems in all cases are to be inter-
preted carefully. We note down some relevant issues below.

In TKR1, the security is gained from the security of
the format-preserving encryption. The scheme FP used in
TKR1 is required to be a tweakable pseudorandom permu-
tation with the message/cipher space 7 and the tweak space

Table 1 Summary of security

IND-TKR IND-TKR-CV IND-TKR-KEY
TKR1 J J
TKR2[fi] v
TKR2[TR] J J
TKR2a[fi, E] v
TKR2a[TR.E] ./ J J

@ Springer

424

S. Diaz-Santiago et al.

D. It is important to note that various instantiations of FP
can give different security guarantees. Most of the known
FPE schemes can only ensure security (in provable terms)
when the number of queries made by an adversary is highly
restricted. For example, the security claim of the scheme
based on Feistel networks discussed in [4] becomes vacu-
ous when the number of queries exceeds #7° 1/4 \whereas the
scheme in [11] can tolerate up to #7 '€ queries where €
is inversely related to the number of rounds in the construc-
tion. Some recent constructions in [8, 15] achieve much better
bounds, specially in [15] almost #7 queries can be tolerated
for the bound to be meaningful. As #7 can be much smaller
than the typical domain of a block cipher (2", for n = 128),
thus the exact security guarantees are important in this con-
text. Note that for a typical scenario we consider credit card
numbers of sixteen decimal digits then #7 ~ 233,

In TKRA1, there is no card-vault; hence, trivially it satisfies
the IND-TKR-CV notion, but in practical terms, the IND-
TKR-CV notion is not applicable in case of TKR1. Also,
among the schemes proposed in this paper, TKR1 is the only
construction where the tokens bear a relationship with the
PAN, i.e., the tokens are encrypted PANs. Thus, TKR1 does
not satisfy the ideal notion of tokens being independent of
the PANs. But, the security Theorem guarantees that to a
computationally bounded adversary (who does not have any
knowledge of the key), the tokens would look like random
strings. Such computational guarantees for cryptographic
schemes are generally enough in most practical applications.

In TKR2 and TKR2a, the security bounds are better than
TKR1.

If RN[f¢] is instantiated as in Fig. 7, and in turn fj is
constructed using a block cipher, then using Proposition 1
and Theorem 3, for any IND-TKR adversary .4 who asks at
most ¢ queries, we have

2,2

. _ m q
Advy () < =

+ €.

where W e {TKR2, TKR2a} and ¢, is the maximum PRF
advantage of any adversary (who asks at most g queries) in
attacking the block cipher E. Note that, n is the block length
of the block cipher used to construct f;. And m depends on
#7, as per the description of the block cipher-based con-
struction in Sect. 7.2, m = L/n, and we discussed that it
would be enough if we take L = 3uA, where u is the length
of each token where the tokens are treated as strings in AL
and A = [lg#AL]. Thus, the security bound is less sensitive

on #7". The bound only becomes vacuous when mgq is of the
order of 2"/2. A similar bound holds for AdviiGREICEY| (A),

when a block cipher-based construction for fj is used.

The IND-TKR-KEY definition is meant to model the prop-
erty of independence of the tokens with the keys, and this
represents a quite strong notion of security. The constructions

@ Springer

TKR2[f] and TKR2a][f;] do not achieve this security. But
TKR2[TR] and TKR2a[TR] achieve security in the IND-
TKR-KEY sense as here we are assuming an instantiation by
a “true” random number generator.

Efficiency The efficiency of TKR1 depends on the effi-
ciency of the FP scheme. As discussed there are various
ways to instantiate FP with varying amount of security and
efficiency. Also, most schemes with provable guarantees are
far inefficient than standard block ciphers.

The efficiency of TKR2 and TKR2a would be dominated
by the search procedure. Asymptotically, if #7 = N, then
tokenization and detokenization would take O(Ig N) time.
But the hidden constant would depend on how efficiently the
search has been implemented and how powerful the machine
is. We discuss more about this in Sect. 9.

9 Experimental results

We performed some preliminary experiments to determine
the efficiency and functionalities of the proposed construc-
tions in a practical environment. All experiments reported
used the following computing resources:

CPU Four-core 15-2400 Intel processor (3.1 GHz).
OS Ubuntu 12.04.4 LTS.

DataBase PostgreSQL 9.2.6

Compiler gcc 4.7.3

We implemented both TKR2[f;] and TKR2a[f;], instan-
tiated with RN[f;] (described in Fig. 7), where f; was
instantiated with block cipher-based construction described
in Sect. 7.2.

We implemented the card-vault in a PostgresSQL data-
base. For TKR2, we considered the card-vault to be a relation
with three attributes: the token (TKN), the associated data
(ASD) and the PAN. For this construction, the primary
key is composed by the token and the associated data. For
TKR2a, we considered the card-vault to be a relation with
two attributes EPAN and ETKN, representing the encrypted
PAN and token, respectively. We encrypt these data using the
construction E1 described in Sect. 7.3. In this case, ETKN
was considered as the primary key.

For implementation of f;() we used AES with 128 bit
key, and the implementation was done by using the new
Intel AES-NI instruction set, which provides a very efficient
and secure implementation of the AES. We assumed that X’
contains strings of 16 characters where each character is a
decimal digit,and 7 = X. Thus, in accordance with our nota-
tions introduced before, we had u = 16, AL ={0,1...,9},
thus A = [Ig(#AL)] = 4,and X =7 = AL*.

The reported times are based on an —03 optimized code.
The time was measured by first measuring the number of

A cryptographic study of tokenization systems

425

Table 2 Summary of the

. Experiment Time (ms)

experimental results: the

descriptions of Runl, TRK2 TKR2a

Run2a,: - - Run2e are provided

in the text Runl 0.19 0.26
Run2a 0.30 0.37
Run2b 0.83 0.96
Run2c¢ 1.27 1.30
Run2d 1.49 1.52
Run2e 1.69 1.98

cycles necessary for a specific operation using the rdtsc
instruction. This cycle counts we converted to real time using
the processor frequency.

We summarize our experiments and the results below:

1. The first experiment was to verify how many block cipher
calls are necessary for each call of fj () and the efficiency
of RNT[fk]. In Sect. 7, we discussed that if the range of
Jr 1s {0, l}L , then L < 3Au would be sufficient. Note
that the number of block cipher calls required for each
invocation of f; is m = [L/A]. We made 1,000,000
independent calls to fi, and in all cases, in each call we
required at most two block cipher calls. In fact in only
5% of the cases two calls were necessary. In all others,
only one call was sufficient. The average time required
for each invocation of RNT[fi] was 0.1 microseconds.

2. The second experiment was to see whether TKR2
implemented without the uniqueness test (as described
in Fig. 4) would be sufficient. Again, we generated
1,000,000 tokens using TKR2 and they were all unique.
Thus, in a practical scenario, where the card-vault would
be stored in a database, the uniqueness test (as included
in the description in Fig. 5) is not required to be explicitly
included. Once a token is generated and when the system
tries to insert it in the database, if the uniqueness condi-
tion is violated then the database would generate an error
message, and then the process may be repeated until a
unique token is generated.

3. Finally we measured efficiency of the tokenization pro-
cedures TKR2 and TKR2a. In Table 2, we summarize
the results, which are described as below:

— Runl denotes the average time required to generate
one token, including the insertion in the card-vault.
But here primary keys in the card-vault relations are
not specified, i.e., this run does not do any uniqueness
test. The average is computed over 1,000,000 tokens.

— Run2 denotes the scenario where the primary keys
are specified, i.e., the database checks for the unique-
ness. As it is obvious, in this case the time required to
tokenize (including the insertions in the card-vault)
would increase with the current size of the card-vault.

To measure this difference, we divided this run into
five different runs which we call Run2a, Run2b,- - -,
Run2e. For Run2a, we started with an empty card-
vault, and we generated 1,000,000 tokens. In Run2b,
we started with a card-vault already containing
1,000,000 tokens, and we generated 1,000,000 more
tokens. Similarly, in runs Run2¢, Run2d and RunZe,
we started with a card-vault containing 2,000,000,
3,000,000 and 4,000,000 tokens, respectively. In each
run, we generated 1,000,000 more tokens. Table 2
shows the average time required for generating one
token for each scenario.

The basic component for both TKR2 and TKR2a is the
procedure RNT, as mentioned, a call to RNT, costs only
0.1 microseconds. But the times reported in Table 2 (which
are in milliseconds) are more realistic, and it shows that the
database insertions dominate the cost of tokenization. Thus,
further optimization in this regard may be possible. But, still
our experimental results confirm that the schemes proposed
in this work can be implemented and used in a real tokeniza-
tion environment.

10 Conclusion

We studied the problem of tokenization from a cryptographic
viewpoint. We proposed a syntax for the problem and also
formulated three different security definitions. These new
definitions may help in analyzing existing tokenization sys-
tems. We also proposed three constructions for tokenization:
TKR1, TKR2 and TKR2a. The constructions TKR2 and
TKR2a are particularly interesting, as they demonstrate that
tokenization can be achieved without the use of format-
preserving encryption. We analyzed all the constructions in
light of our security definitions and also provided some pre-
liminary experimental results.

The security definitions formulated in this study consider
chosen plaintext adversaries (IND-CPA). Definitions secure
against stronger adversaries may be given. A recent doc-
ument from PCI DSS [14], which was made public after
our submission, describes a new categorization of tokens
as reversible and irreversible. In case of reversible tokens
(as is the case of all the schemes proposed in this work),
detokenization is a sensitive operation and should only be
permitted for authorized entities. This brings in the impor-
tant concern of authentication. Our model does not explicitly
consider authentication. The basic structure of tokenization
systems depicted in Fig. 1 considers that the connections
between the tokenizer/detokenizer with the point of sale
and the card issuer are secure, i.e., they are connected with
encrypted and authenticated channels. In such a structure, a
IND-CPA style definition should provide adequate security.

@ Springer

426

S. Diaz-Santiago et al.

But it may be possible to incorporate authentication as an
inherent component of the security definitions. We plan to
explore this possibility.

Acknowledgments The authors thank the reviewers for their com-
ments and suggestions. Debrup Chakraborty acknowledges the support
from Consejo Nacional de Ciencias y Technologia (CONACyT), Mex-
ico, through the grant 166763.

Appendix: Deferred Proofs
Proof of Theorem 1

We only prove the first claim in the theorem, as discussed ear-
lier, the second claim directly follows from the first one. We
construct a prp adversary BB which runs an arbitrary adversary
A who attacks TKR1. B being a prp adversary has access to
an oracle O(., .), which is either the real tweakable permu-
tation FPy(.,.) for a randomly chosen key k, or a random
permutation chosen uniformly at random from the set of all
tweak index permutations from 7 to 7. B with its oracle
provides the environment to .4 and simulates the experiment
EXP-IND-TKR#} 5, as shown in Fig. 9.

We assume without loss of generality that A does not
repeat queries, as A knows that TKR1 is a deterministic
scheme; hence, it does not gain anything by repeating a query.

It is easy to see that if the oracle O(., .) of B is FPx(., .),
then B® provides the perfect environment for A as in EXP-
IND-TKR#, .. Hence,

Prik & iC: BFP:() = 1)
= Pr{EXP-IND-TKR% o, = 1]. 3)

Adversary BO(+)
Whenever B gets a query (x,d) from 4
do the following until A4 stops querying
t; — O(x,d);
return (,NULL) to 4
After 4 submits (mg,d), (m1,d;)
do the following
b {0, 1};
1" — O(mh>db)
return (+*,NULL) to 4,
A returns a bit b';
ifb="p,
return 1;
else return 0;

Fig. 9 Adversary B for the proof of Theorem 1

@ Springer

Also,

Pr[r < PermP(T): B™¢) = 1] < =, 4)

S

as, when O(_, .) is a uniform random tweakable permutation
on 7, for each of its queries .4 gets uniform random elements
in 7, thus b’ which A outputs is independent of b which is
selected by 5.

Hence, from Egs. (3) and (4), we have

o 1
AdvPT (B) > Pr{EXP-IND-TKR#yg = 1] — >

and hence

AdvIndkr(4) < AdvES (B),

as desired. O

Proof of Proposition 2

To prove this proposition, we construct a PRF adversary B
(shown in Fig. 10) which runs an arbitrary adversary A who
attacks the encryption scheme E1 in the DET-CPA sense.
B being a PRF adversary has access to an oracle O which
can be either be the block cipher Ej or a function p, chosen
uniformly at random from Func(n).

We can easily see that if the oracle of 3 is the block cipher
E; then

Prlk < K : BEO = 1]=Pr[k < KC: AF1) = 1], (5)

As A never repeats a query, so if the oracle of 3 is a random
function p, then for each query A gets a uniform random n
bit string as a response. Thus,

Prlp < Func(n) : B°C) = 1] = Pr{A%C) = 1] 6)

Adversary B°0)
Whenever B gets a query (d,x) from 4
do the following until A4 stops querying
71 < pad; (%) ;
2 < pady(d) ;
7z 0(z1]]z2);
return (z) to 4
4 returns a bit b to B;
return b;

Fig. 10 Adversary B for the proof of Proposition 2

A cryptographic study of tokenization systems

427

Adversary B°0)
Whenever B gets a query (d,x) from 4
do the following until A4 stops querying
71+ pady(x) ;
2+ padp(d) ;
72+ 0(z1 9 0(z2));
return z to 4
4 returns a bit b to B;
return b;

Fig. 11 Adversary B for the proof of Proposition 3

Thus from the equations above, and the definition of the DET-
CPA advantage of A and the PRF advantage of 5, we obtain

AdVETP(4) = AdVD(B).

Proof of Proposition 3

As in the proof of Proposition 2, we construct a PRF adver-
sary B (shown in Fig. 11) which runs an arbitrary adversary
A who attacks the encryption scheme E2. Adversary B has
access to an oracle O, which can be either a secure block
cipher Ej or a pseudorandom function p, chosen uniformly
at random from Func(n).

We can easily see that if the oracle of B is the block cipher
E; then

Prik & K : BEO = 1] = Prik < K : AB2) 1] (7)

To analyze the situation when the oracle of 5 is a random
function, we consider the game GO0 shown in Fig. 12. The
game G0 describes a function Choose-p (), which acts as a
random function. It returns uniform random strings in {0, 1}"
when it is invoked, but it returns the same string if invoked
twice on the same input. It does this by maintaining a table p
of outputs that it has already returned. Additionally in the set
Dom, it maintains the points on which it has been queried.
The function sets the bad flag to true if it is queried twice on
the same input.

As Choose-p acts like a random function, hence it is
immediate that

Prlp < Func(n) : B°©) = 1] = PrA% = 1] (8)

Now, we do a small change in game GO0, i.e., we remove the
boxed entry in the function Choose-p, we call this changed
game as G1. Notice that games G1 and G0 are identical until
the flag bad is set to true; hence, we have

Prl A% = 1]—Pr[A°! = 1]<Pr[A°! sets bad] 9)

Also in game G1, the function Choose-p, returns random
strings for any input it gets, thus .A when interacts with
G1 gets random strings in {0, 1}"* in response to its queries.
Hence,

Pr[A%) = 1] = Pr[A°! = 1]. (10)

Now, we do some small syntactic changes in the game G1
to obtain the game G2, also shown in Fig. 12. Game G2 is
only syntactically different from G1. In G2, random strings
are returned immediately as a response to a query of .4, and
later in the finalization phase appropriate values are inserted
in the multiset Dom, note as Dom is a multiset; hence, there
can be several instances of the same element present here.

As there is no way that A can distinguish between G1 and
G2, hence

Pr[AC! = 1] = Pr[A°% = 1], (11)
also
Pr[AC! sets bad] = Pr[.A%? sets bad]. (12)

Thus, using Egs. (8), (9), (10), (11) and (12) we get

Prlp < Func(n) : B°© = 1]
=Pr[A% = 1)
< Pr[A%" = 1]+ Pr[AC! sets bad]
< Pr[A9? = 1] + Pr[A9? sets bad]
< Pr[A%) = 1] + Pr[A2 sets bad] (13)

Let COLLD be the event that there is a collision in the
multiset Dom in game G2, then from the description of game
G2, we have

Pr[A%? sets bad] = Pr[COLLD]

Now we concentrate on finding an upper bound for
Pr[COLLD]. The elements present in Dom are d’s and A’s.
Let Dom = Qg U Q;, where Qg € {d® : 1 <i < g}, and
0, =00 =001 <i <q).

Note that the way the game G2 is designed, all elements
in Qg are distinct; thus, there can be no collision among two
elements in Q4. Additionally we claim the following

Claim1 For1 <i,j <gq, i # j, Pr[A®¥Y = A(D] < 172",

Proof We have two cases to consider:
Case 1 If d) = dW) then x@ £ x(U), as A does not
repeat any query. This makes z) # z(/). According to the

@ Springer

428

S. Diaz-Santiago et al.

Fig. 12 Games G0, G1, G2
used for the proof of
Proposition 3

Game 7Gl

function Choose-p(X)
Y & {0, 1}
if X € Dom then
bad « true

Y —plX]
else
plX] —Y

return z

Dom «— DomU{X}

end if (i))
return Y 7y pady(x")
Initialization Z(z — Pad@(d)
bad « false; if z() () for j < i then
Dom = 0; /_,() <_'u(/)
Query Phase else
For ?i)query (d(i) ’EC;I)) of 4 do the following ,u(i) i (0,1}
ZE) «pady (¥ ()) ; Dom «— DomU {z§i>}
7y’ «—padp(d)); end if
if z() _ z(2 7) for some j < ithen y) — () A0 — Zg") ®ul
else ul) — Choose—p(z(zl)) Dom « DomU {A()}
end if ' endfor
A Z(l’) &l if there is a collision in Dom then
7 — Choose-p(A) bad < true

Game G2

Query Phase

For a query (d®,x()) of 4, do the following
{0 E {01y
return z()

Finalization
fori—1togq

game G2, if dV = dU then u® = p). Thus we have
A® = 1) Thus, making Pr(A®) = ()] = 0.

Case 21fd® £ dD | then u® and /) are uniform and
independent random elements in {0, 1}", thus making
Pr[k(i) —)\(./)] — Pr[z%i) ® M(i) — Zgj) ® M(j)] — >
Claim 2 For any d € Qg4 and any A € Q,, Pr[A = d] <
1/2".

Proof Any A € Q, is a uniform random string in {0, 1}",
and is independent of any d € Q.

Now, as #0y < g and #0Q, = ¢, using Claims 1, 2 and
the union bound, we have

2

L (q\ , 4> 24°

Now, using the definition of DET-CPA advantage of 4
and Egs. (7) and (13), we have the proposition. O

Proof of Theorem 3

Note that the token generation algorithm for both TKR2 and
TKR2a are the same, the only difference between the two

@ Springer

procedures is the structure and content of the card-vault.
Hence, the proof of security in IND-TKR sense for both
TKR2 and TKR2a are same, as in case of IND-TKR secu-
rity the adversary does not have access to the contents of the
card-vault.

The structure of the proof is same as the proof of Theo-
rem 1. We assume an arbitrary adversary A which attacks
TKR2 in IND-TKR sense, and we construct a RND adver-
sary I3 which attacks RN [k] using A.

BB has an oracle O, which is either RNT[k] for a random
key, or $T(), which on each invocation returns a random
element in 7.

Bresponds to queries of A as follows. First B initiates with
an empty card-vault and then B performs the query phase,
which in fact is the procedure TKR2y, in Fig. 5. Only when
a call to RN [k]() is required, it is replaced by a call to its
oracle O. After A stops querying and outputs the challenge
pair (mo, dp), (m1, dy), B selects a bit b uniformly at random
from {0, 1} and provides A with computed by following
TKR2.() (the call to RNT[k] () replaced by a call to O).
Finally, A outputs abit»’, and if b = b’, then B outputs 1 else
outputs a 0. Note that the challenge pair (mo, do), (m1, d1)
is different from any previous query of A.

From the above description, it is clear that if the oracle
O(.,.) of Bis RNT[k](), then B is performing experiment
EXP-IND-TKR} . Hence,

A cryptographic study of tokenization systems

429

Prfk & & - BRNTIKI0 o 1]=Pr[EXP-IND-TKR7} g0 = 1.

(14)

Otherwise, i.e., if the oracle O(., .) of B is $7 (), then

PrBY 0 = 1] < (15)

N =

As in this case the output that 3 provides to A is independent
of (mo, do), (m1, d1).
From Egs. (14), (15), we have

1
AdVEN(B) = Pr{EXP-IND-TKRgp = 11— 5.
and from the definition of IND-TKR advantage of A it fol-
lows

Advindlr4) < AdvEd(B).

Proof of Theorem 4

For this proof, we use the sequence of games. The three games
EXP;!, EXP{' and EXP3' are described in Fig. 13. Each
game depicts the interaction of an IND-TKR-CV adversary
with a tokenization procedure. In all the three games, we
assume that the adversary A does not repeat a query in the
query phase, and the queries presented in the challenge phase
are also distinct from the queries made in the query phase.
Also, to keep things simple in terms of notations, without loss
of generality we assume that the ciphertext space C of the
encryption algorithm E contains strings of length s. The proof
can be made to work without this restriction. We describe the
three different games briefly next:

1. In game EXP64, A interacts with TKR2a, instantiated
by RN [k>]() and Ey, (-, -), where k| and k; are chosen
uniformly at random from the respective key spaces K
and /Cy. The game is designed with the assumption that,
A does not repeat a query.

2. Game EXP{4 is almost same as the game EXP(;‘. The
differences are as follows:

— Here the encryption scheme Ey, (-, -), is no more used.
Instead, each call to Eg, (-, -) is responded by a ran-
dom string from C. To maintain the same behavior
of Eg,, a set Ran; is maintained to keep track of the
values already returned as output, and it is ensured
that the same value is not returned for two different
inputs.

— In the game EXP64, in lines 11 to 14 and 53 to 56
it is ensured that a distinct token is ¢ returned for

each distinct (x, d). This is done by a search in the
card-vault (see lines 14 and 56), as the card-vault con-
tains encryption of the token ¢ with associated data
d. As in the game EXP'lA, a real encryption scheme
is not used, so this search is not possible. Hence, a set
Tok is maintained which contains pairs of tokens and
associated data (¢, d) and the uniqueness of tokens is
ensured using this set Tok.

3. Game EXPé4 is obtained from game EXP{4 by replac-
ing RNT[IQ]() by a procedure which on each invocation
returns a random element in 7. This game also used the
sets Ran; and Tok to ensure injectivity and the unique-
ness of the tokens.

It is easy to see that EXP()4 is a restatement of the experi-
ment Exp-IND-TKR-CV“ in Fig. 2. Hence,

Pr[Exp-IND-TKR-CVA = 1] = Pr[EXP{' = 1]. (16)

Also, we make the following claims:

Claim 3 There exists a DET-CPA adversary B for E such
that

Pr[EXP;' = 1] — Pr[EXP{' = 1]

(g +1)?
2S

det-cpa

< Advg (B) +

Proof To prove this claim, we construct a DET-CPA adver-
sary B which has access to an oracle O. This oracle is either
the encryption scheme Ej, for a random key k; or $(-, -)
which on input (x, d) returns random strings of length s. B
has the objective of distinguishing between these two scenar-
ios. B runs A in the following way. First 3 initiates with an
empty card-vault and selects a random key k> from /Cp, and
also initializes a multi-set Dom to empty. Then, it answers
queries of A according to the procedure TKR2a (shown in
Fig. 6). To answer the queries, whenever a call to the encryp-
tion scheme Ey, is required, it is replaced by a call to its
oracle O. 3 also stores each output it gets from its oracle O
in the set Dom. Note, as .4 does not repeat any query, hence
all queries made by B to its oracle is distinct. After A stops
querying and outputs a challenge pair (xo, dp), (x1,d;), B
selects a bit uniformly at random from {0, 1} and provides
A with the pair (¢, ¢). For responding to A’s challenge, B
makes another call to O and the output of O for this call is
also inserted in Dom. Finally, A outputs a bit 4. Now, B
checks if there is a collision in Dom, i.e., if O ever returned
two same values for two distinct queries. If there is a collision
in Dom, then B outputs 0. On the other hand, if there is no
collision in Dom and b = b/, then B outputs 1, otherwise it
outputs a 0.

@ Springer

430

S. Diaz-Santiago et al.

Game EXP{

Initialization:
01. CV «+ NULL;

02.k & %
03. ky & %

Query Phase
Respond to a query (x,d)
by A4 as follows
10. z—Ey, (x,d);
11. do
12. 1+ RN7[k]();
13. ¢ —Ey (d,b|]r);
14. while SrchCV(1,t') # 0;
15. ¢ (,2);
16. InsertCV(c);
17. return (f,c) to 4

Challenge Phase
After 4 submits (xo,dy), (x1,d})
do the following:
51 b {01}
52. 7+ Ekl (xb,db);
53. do
54. t—RN7[k]();
55. 1" —E (d,bl|r);
56. while SrchCV(1,) # 0;
57. ¢ (t',2);
58. return (7,c) to 4

Finalization Phase
After 4 outputs the bit &’
do the following:
80. if b = b output 1
81. else output 0

Game EXP;!

Initialization:
01. CV «— NULL;
02. kr — %K3;
03. Ran; <0
04. Tok — 0

Query Phase
Respond to a query (x,d)
by 4 as follows

10. Zi(C\Ranl;

11. Ran; < RanjU{z};

12. do, — RN [k]();

13. while TokN{(z,d)} #0;
14. Tok «— TokU{(r,d)};
15. t’i(C\Ranl;

16. Ran; < Ran; U{¢'};

17. ¢+« (¢,2);

18. InsertCV(c);

19. return (7,c) to 4

Challenge Phase
After 4 submits (xo,dp), (x1,d;)
do the following:
5L b {0,1);
52. z & C\Rany;
53. Ran; %Ranlu{z};
54. dot — RN7 [ky]();
55. while TokN{(z,dp)} # 0;
56. Tok « TokU{(z,dp)};
57. t’ﬁ(C\Ram;
58. Ran; « Ran; U{/'};
59. ¢ (1,z);
60. return (7,c) to 4

Finalization Phase
After 4 outputs the bit &’
do the following:
80. if b = b’ output 1
81. else output O

Game EXP3!

Initialization:
01. CV «— NULL;
02. Ran; <0
03. Tok <— 0

Query Phase
Respond to a query (x,d)
by A4 as follows:

10. zﬁ(C\Ranl;

11. Ran; < Ran;U{z};
12. dot & T,

13. while TokN{(r,d)} # 0;
14. Tok « TokU{(z,d)};
15. ¢ & C\Rany;

16. Ran; < Ran; U{¢'};
17. ¢+« (¢,2);

18. InsertCV(c);

19. return (7,c¢) to 4

Challenge Phase
After 4 submits (xo,do), (x1,d1)
do the following:
51 b3 {0,1);
52. z&(C\Ranl;
53. Ran; <+ Ran;U {Z};
54. do,1 & T
55. while TokN{(z,dp)} # 0;
56. Tok « TokU{(t,dp)};
57. 7 & C\Rany;
58. Ran; « Ran; U{'};
59. ¢+ (¢,2);
60. return (z,c) to 4

Finalization Phase
After 4 outputs the bit &’
do the following:
80. if b =1’ output 1
81. else output 0

Fig. 13 The three games used to prove Theorem 4

From the description above, we can easily see that if the
oracle of B is the encryption scheme Ey, (-, -), then there is

never a collision in Dom as Eg, (-, -) is injective, and in this

scenario B is providing the exact environment of the game
EXP{lie.,

Prlk; & K : BEKC) = 1] < PrEXPE = 1]. 17)

On the other hand, if the oracle of B is $(-,-), then B is
providing the environment of EXP{‘, given that there is no

@ Springer

Pr[B%) = 0]

collisionin Dom.If COLL be the event that there is a collision
in Dom, then we have

= Pr[(B*) = 0) A (COLL v COLL)]

= Pr[(B%¢) = 0) A COLL]+Pr[(B%) = 0) ACOLL)]

= Pr[(B%) = 0)|COLL] Pr[COLL]
+Pr[(B*") = 0)|COLL] Pr[COLL]
> Pr[EXP{' = 0](1 — Pr[COLLY]).

A cryptographic study of tokenization systems 431
Thus, Thus, from Claims 3, 4,
Pr(B%¢) = 1] < Pr[EXP{! = 1] Pr[EXPj' = 1] — Pr[EXP4 = 1]
A 1 2
+Pr[EXj)1 = 0] Pr[COLL] < AdV%et_Cpa(B) I Advgﬁq’ B + (q ‘:_1) @1
< Pr[EXP{' = 1] + Pr[COLL] (18) 2
. Using Eq. (16) and claim 5,
Now from Eqgs. (17) and (18), and the definition of DET-CPA
advantage of B, we have A 1
Pr[Exp-IND-TKR-CV"* = 1] — 3
det-cpa A A
Adv (B) > Pr[EXP{' = 1] — Pr[EXP{" = 1] (g + 1)?
E 0 1 det-cpa rnd / q
_ P{COLLL. < Advy (B) + AdVRNT(B)+ ol (22)
- Finally, we have
As, A asks g queries in the query phase, hence Dom has
q + 1 elements in it, and each element is a uniform random ind-tkr-cv nd det-cpa, oy
element in C, and each element in C is s bits long. Hence, Advy (A) < Advgy(B) + Advy (B
Lat 1)?
1\ 1 1)? By
Pr[COLL] = (q T)_ < g+ 1~ 2
2 2s 2s+1
as desired.]

This completes the proof of the claim. O

Claim 4 There exists a RND adversary B' such that

Pr[EXP{' = 1] — Pr[EXP3' = 1] < Advid, (B

Proof The proof of this claim is an easy reduction. Again we
have an adversary A attacking TKR2a and we must construct
aRND adversary B, which runs A. B’ has access to an oracle
O, that could be either RN’ [k2]() or $7, which on each
invocation it returns a random element in 7. As in Claim 3,
adversary 13’ do an initialization and a query phase, but now
when a call to RN” [k]() is required, it is substituted by a call
to the oracle 0. Now we can see that

$ B/RNT[k

Prik < K : 10 = 1] = PrEXP = 1] (19)

in the case that the oracle of B is RNT[k](), otherwise, i.e.,
if O is $7 then

Pr(8* 0 = 1] < PHEXPS = 1] (20)

Again from Egs. (19) and (20), the claim follows. O

Claim 5 For any arbitrary adversary A
A 1
PrlEXP3" = 1] = 3

Proof In game EXPZ'A, in the query phase A receives ¢ tuples
(t, ¢) where t and ¢ are distinct random elements in 7 and C,
respectively. Finally, in the challenge phase it receives (¢, ¢)
which is independent of (xq, do), (x1, d1). Hence, A cannot
only guess the bit b with probability more than %

References

1. Bellare, M., Ristenpart, T., Rogaway, P., Stegers T.: Format-
preserving encryption. In: Jacobson Jr., M.J., Rijmen V., Safavi-
Naini R., (eds.), Selected Areas in Cryptography, volume 5867 of
Lecture Notes in Computer Science, pp. 295-312. Springer (2009)

2. Bellare, M., Rogaway, P., Spies, T.: The FFX Mode of Oper-
ation for Format-Preserving Encryption. NIST submission
(2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/ffx/ffx-spec

3. Berbain, C., Gilbert, H.: On the security of IV dependent stream
ciphers. In: Biryukov, A., (ed.) FSE, volume 4593 of Lecture Notes
in Computer Science, pp. 254-273. Springer (2007)

4. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In:
Preneel, B., (ed.) CT-RSA, volume 2271 of Lecture Notes in Com-
puter Science, pp. 114-130. Springer (2002)

5. Brier, E., Peyrin, T., Stern, J.: BPS: A Format-Preserving Encryp-
tion Proposal. NIST submission (2010). http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-
spec

6. CardHub: Number of Credit Cards and Credit Card Holders (2012).
http://www.cardhub.com/edu/number-of-credit-cards/

7. EMV: Payment Tokenisation Specification. Technical Framework
(2014). https://www.emvco.com/specifications.aspx?id=263

8. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme
based on a card shuffle. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pp- 1-13. Springer (2012)

9. ISO/IEC 7812-1: Identification Cards-Identification of Issuers-
Part 1: Numbering System (2006)

10. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers.
In: Yung, M. (ed.) CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pp. 31-46. Springer (2002)

11. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages
on a small domain. In: Halevi, S. (ed.) CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pp. 286—302. Springer (2009)

12. PCI Security Standards Council: Payment Card Industry
Data Security Standard Version 1.2 (2008). https://www.
pcisecuritystandards.org/security_standards/pci_dss.shtml

@ Springer

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec
http://www.cardhub.com/edu/number-of-credit-cards/
https://www.emvco.com/specifications.aspx?id=263
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

432

S. Diaz-Santiago et al.

13. PCI Security Standards Council: Information Supplement:
PCI DSS Tokenization Guidelines (2011). https://www.
pcisecuritystandards.org/documents/Tokenization_Guidelines_
Info_Supplement

14. PCI Security Standards Council: Tokenization Product Secu-
rity Guidelines-Irreversible and Reversible Tokens (2015).
https://www.pcisecuritystandards.org/documents/Tokenization_
Product_Security_Guidelines

15. Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: Small-domain
encryption secure against n queries. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO (1), volume 8042 of Lecture Notes in Computer
Science, pp. 392—409. Springer (2013)

16. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs-
The eSTREAM Finalists, volume 4986 of Lecture Notes in
Computer Science. Springer (2008)

@ Springer

17.

18.

19.

20.

21.

RSA White Paper: Tokenization: What Next After PCI (2012).
http://www.emc.com/collateral/white-papers/h11918-wp-
tokenization-rsa-dpm

Securosis White Paper: Tokenization Guidance: How to Reduce pci
Compliance Costs (2011). http://gateway.elavon.com/documents/
Tokenization_Guidelines_White_Paper

Securosis White Paper: Tokenization vs. Encryption: Options for
Compliance (2011). https://securosis.com/research/publication/
tokenization-vs.-encryption-options-for-compliance

Stefanov, E., Shi, E.: Fastprp: fast pseudo-random permutations for
small domains. IACR Cryptol. ePrint Arch. 2012, 254 (2012)
Voltage Security White Paper: Payment Security Solution—
Processor Edition (2012). http://www.voltage.com/
wp-content/uploads/Voltage_White_Paper_SecureData_
PaymentsProcessorEdition

https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement
https://www.pcisecuritystandards.org/documents/Tokenization_Product_Security_Guidelines
https://www.pcisecuritystandards.org/documents/Tokenization_Product_Security_Guidelines
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm
http://gateway.elavon.com/documents/Tokenization_Guidelines_White_Paper
http://gateway.elavon.com/documents/Tokenization_Guidelines_White_Paper
https://securosis.com/research/publication/tokenization-vs.-encryption-options-for-compliance
https://securosis.com/research/publication/tokenization-vs.-encryption-options-for-compliance
http://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_PaymentsProcessorEdition
http://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_PaymentsProcessorEdition
http://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_PaymentsProcessorEdition

	A cryptographic study of tokenization systems
	Abstract
	1 Introduction
	2 Tokenization systems: requirements and PCI DDS guidelines
	3 Cryptographic preliminaries and notations
	4 A generic syntax
	5 Security notions
	6 Construction TKR1: tokenization using FPE
	7 Construction TKR2: tokenization without using FPE
	7.1 Realizing RNmathcalT[k]
	7.2 Candidates for fk()
	7.3 Realizing Ek(d,x)
	7.4 Security of TKR2 and TKR2a

	8 Discussions
	9 Experimental results
	10 Conclusion
	Acknowledgments
	Appendix: Deferred Proofs
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 3
	Proof of Theorem 4

	References

