
Int. J. Inf. Secur. (2016) 15:637–657
DOI 10.1007/s10207-015-0309-6

SPECIAL ISSUE PAPER

Unpicking PLAID: a cryptographic analysis
of an ISO-standards-track authentication protocol

Jean Paul Degabriele1 · Victoria Fehr2 · Marc Fischlin2 · Tommaso Gagliardoni2 ·
Felix Günther2 · Giorgia Azzurra Marson2 · Arno Mittelbach2 ·
Kenneth G. Paterson1

Published online: 2 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The Protocol for Lightweight Authentication of
Identity (PLAID) aims at secure and private authentication
between a smart card and a terminal. Originally developed
by a unit of the Australian Department of Human Services
for physical and logical access control, PLAID has now
been standardized as an Australian standard AS-5185-2010
and is currently in the fast-track standardization process for
ISO/IEC 25185-1. We present a cryptographic evaluation of
PLAID. As well as reporting a number of undesirable cryp-
tographic features of the protocol, we show that the privacy
properties of PLAID are significantly weaker than claimed:
using a variety of techniques, we can fingerprint and then
later identify cards. These techniques involve a novel appli-
cation of standard statistical and data analysis techniques in

B Giorgia Azzurra Marson
giorgia.marson@cased.de

Jean Paul Degabriele
jean.degabriele@rhul.ac.uk

Victoria Fehr
victoria.fehr@cased.de

Marc Fischlin
marc.fischlin@cryptoplexity.de

Tommaso Gagliardoni
tommaso.gagliardoni@cased.de

Felix Günther
guenther@cs.tu-darmstadt.de

Arno Mittelbach
arno.mittelbach@cased.de

Kenneth G. Paterson
kenny.paterson@rhul.ac.uk

1 Information Security Group, Royal Holloway, University of
London, London, UK

2 Cryptoplexity, Technische Universität Darmstadt, Darmstadt,
Germany

cryptography. We discuss potential countermeasures to our
attacks and comment on our experiences with the standard-
ization process of PLAID.

Keywords Protocol analysis · ISO standard · PLAID ·
Authentication protocol · Privacy

1 Introduction

PLAID, the Protocol for Lightweight Authentication of Iden-
tity, is a contactless authentication protocol intended to be
run between terminals and smartcards. The protocol was
designed by Centrelink, an agency of the Australian govern-
ment’s Department of Human Services (DHS). According
to the developers, it is supposed to provide a cryptographi-
cally strong, fast, and private protocol for physical and logical
access control, without exposing “card or cardholder identi-
fying information or any other information which is useful
to an attacker” [7,19,38].

PLAID was initially proposed for use in the internal ID
management ofCentrelink [29].However, the intended scope
of applications has since significantly broadened to include
the whole of DHS and the Australian Department of Defence
[39]. Indeed, the protocol’s promoters aspire to broader
commercial and governmental deployment, including on an
international level [13]. Strategies that are mentioned to sup-
port these aspirations include freely available intellectual
property and outreach to other governmental organizations.
To the latter end, NIST organized a workshop to explore the
potential of PLAID for US Federal Agencies in July 2009
[32].

Another strategy that is being actively pursued is standard-
ization. PLAID was previously registered as the Australian
standard AS-5185-2010 [38] and was then entered into the
ISO/IEC standardization process via the fast-track proce-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0309-6&domain=pdf

638 J. P. Degabriele et al.

IFD ICC

retrieve list of KeySetIDs1 choose first matching KeySetID or else
use ShillKey in 3 on random string

2
KeySetIDs

compute
STR1= KeySetID DivData RND1 RND1

eSTR1= RSAIAKey
Encrypt(STR1)

3
try all keys to decrypt

eSTR1 and check for RND1 RND1
if unsuccessful “authentication fails”

4
eSTR1

INITIAL AUTHENTICATE

FINAL AUTHENTICATE

FAKey(Div) = AESFAKeyEncrypt(DivData)

KeysHash= SHA-256(RND1 RND2)0,...,127
STR2= OpModeID RND2 [Payload] KeysHash

eSTR2= AESFAKey
(Div)

Encrypt (STR2)

5
decrypt and check KeysHash

if unsuccessful use ShillKey in 76
eSTR2

compute
STR3= ACSRecord [Payload] DivData

eSTR3= AESKeysHashEncrypt (STR3)
7

decrypt and check DivData
if correct “process” data
else “authentication fails”

8
eSTR3

Fig. 1 PLAID protocol overview. See Sect. 2 for a detailed description of the protocol steps

dure. At the time of writing, the current ISO/IEC version
is draft international standard (DIS) 25185-1.2 [19] and
is currently in the “Publication stage” 60.00 (International
Standard under publication). Minor changes in the origi-
nal protocol to match the international standard have been
applied. Reference implementations, based on the Australian
standard, are available from both the Australian Department
of Human Services (in Version 8.04) and the Australian
Department of Defence (in draft version 1.0.0).

1.1 The protocol

The main goal of the protocol is to perform mutual authenti-
cation and establish a shared key between the terminal (IFD)
and the card (ICC). To this end, the terminal and the card
exchange nonces RND1 and RND2 in encrypted form and
then derive the session key as part of the hash value of the two
nonces. Encryption here uses both asymmetric RSA-based
encryption (when the card transmits RND1 to the terminal)
and symmetric AES-based encryption (when the terminal
sends RND2 to the card). Authentication of the partner is
presumably guaranteed by the fact that a party should know
the secret key in order to be able to decrypt the other party’s
nonce. An overview of the protocol is depicted in Fig. 1,

where the encrypted nonces are exchanged with transmis-
sions eSTR1 and eSTR2. The card confirms the receipt of
RND2 by sending a string encrypted under the derived key
in eSTR3.

The role of the terminal’s initial message KeySetIDs is
as follows. Each PLAID deployment involves a set of key
pairs consisting of an RSA key and an AES key. Each ter-
minal and each card stores a certain subset of these pairs.
More precisely, each terminal holds a set of RSA key pairs
(both encryption anddecryptionkey) and correspondingAES
master keys, while each card holds a set of RSA public keys
and card-specific AES keys, derived from the correspond-
ing AES master keys using a card identity. The keys held by
a card are intended to control what types of access the card
should have, so each key represents a capability. The actually
deployed pair of keys is negotiated during the protocol itself,
by having the terminal send a sequence of supported RSA
key identifiers KeySetID in the first message. Even though
the encryption key in RSA is usually public, in PLAID it is
kept secret to enhance privacy (since, for example, the set of
RSA keys held by a card could be used to identify the card
and track its use in a deployment).

One distinctive feature of the PLAID protocol is that the
card switches to using a pair of the so-called shill keys in

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 639

case of an error. That is, if the card detects some potential
error, then it uses its card-specific RSA shill key and AES
shill key to encrypt random data. This mechanism is intended
to hide information about failures from an adversary and
thereby prevent leakage about which keys are possessed by
a particular card.

1.2 Previous security analyses

Centrelink’s accompanying description of PLAID [7] claims
that PLAID is highly resistant against leakage of card or
cardholder identifying information, against various forms of
active attacks, and provides mutual authentication. The doc-
ument states as a goal that the protocol shall be “evaluated
by the most respected cryptographic organisations, and the
broader cryptographic community.” For version 8, the docu-
ment [7] refers to the input by various agencies likeNIST and
of “a number of independent cryptographic experts and con-
sultants, a number of respected commercial cryptographic
teams, as well as the internal Centrelink team.”

However, we are not aware of any publicly available cryp-
tographic evaluation of PLAID. None of the claimed security
properties is backed up by arguments, nor matched against
more precise formalizations in the description [7] or stan-
dards [19,38]. Some useful comments about the protocol’s
security have been given by the national representatives on
the first DIS version of the ISO standard [18] during the dis-
position of comments [21]. These comments refer partly to
the points discussed in Sect. 5, where we assess them in a
cryptographic context.

PLAID has been scrutinized to some extent by using for-
mal methods and automated tools. Watanabe [41], using
Scyther, and Sakurada [36], using ProVerif, confirmed that
PLAID satisfies some form of mutual authentication and
some level of secrecy of the session key, assuming ideal-
ized cryptographic primitives. It remained unclear to us what
this assurance means in a cryptographic sense. Neither of the
works considers privacy aspects.

Finally, the Master’s thesis of Kiat and Run [28] at the
Naval Postgraduate School compares PLAID with a similar
protocol, the ANSI/INCITS 504-1-2013 standard OPAC-
ITY. The conclusion is indecisive and is primarily based
on deployment characteristics. The authors evaluate crypto-
graphic properties only on a superficial level. Indeed, while
the thesis does not pinpoint at any major weakness in OPAC-
ITY, a cryptographic analysis [9] was less positive.

1.3 Our results

According to the developers of PLAID, the lack of privacy
in previous efforts was one of the main reasons to intro-
duce a new authentication protocol [35]. Indeed, PLAID is
described as highly resistant against “the leakage of individ-

ually identifiable, unique or determinable data or character-
istics of the smart card or the holder during authentication.”
[7]. We argue here that PLAID does not achieve this ambi-
tious goal.More precisely, we describe and evaluate a suite of
attacks that break the privacy goals of PLAID, enabling cards
to be efficiently identified in a number of realistic scenarios.
We also identify some countermeasures to our attacks.

In more detail, our first attack (which further divides
into three sub-scenarios) exploits PLAID’s use of shill keys,
which, being card-specific, can serve as a proxy for the card
identity. While the shill keys themselves are not transmit-
ted in the protocol, we show how they can be statistically
estimated from RSA ciphertexts observed in protocol runs,
enabling cards to be first fingerprinted and then later re-
identified. This “shill-key fingerprinting” attack, presented in
Sect. 3, deploys different techniques to perform the statistical
estimation in three distinct attack scenarios. For two scenar-
ios, our attack uses the standard solution to what is known
as the “German Tank Problem,” which concerns estimating
the maximum of a discrete uniform distribution from a num-
ber of samples, while, for the third scenario, it uses clustering
techniques (and in particular the standard k-means clustering
algorithm) to perform the estimation of the shill keys.

Our second attack, targeting the terminal’s initial message
KeySetIDs, is called “keyset fingerprinting” and is presented
in Sect. 4. It exploits specific properties of the protocol flow
to extract information about the set of keys held by a given
card, potentially allowing us to draw conclusions about the
cardholder (e.g., via access authorizations). We show that
this information can be efficiently extracted by interacting
with a card a number of times and observing how the proto-
col proceeds (or fails to proceed). The information obtained
in this attack may already be sufficient to identify individ-
ual cards from among a population, depending on the exact
characteristics of a given deployment. The attack can also be
combined with all three variants of our first attack to increase
their efficiency (by reducing the number of possible keys that
need to be considered in the re-identification phase).

In Sect. 5, we make a number of other observations on
cryptographic aspects of the PLAID protocol, focusing in
particular on its lack of forward security, the use ofweakRSA
encryption, the lack of integrity protection for the symmetric
encryption and a number of imprecisions in its specification.
Some of the issues have already been briefly touched upon
in the national body comments [21] on the previous ISO
standard version [18]; some aspects, like the lack of forward
security, are new.

1.4 Interaction with the responsible authorities

We promptly communicated our findings to the ISO 25185-
1 project editor and a contact person at the Department of
Human Services. We report and comment on their responses

123

640 J. P. Degabriele et al.

to our technical results in Sect. 6. In Sect. 7, we then take a
step back and look at the standardization process to which
PLAID was subjected, which we find interesting in its own
right, and offer our own views and reflections on it.

1.5 Note

A preliminary version of this paper appears in the proceed-
ings of the 1st International Conference on Research in
Security Standardisation (SSR 2014), December 2014 [11].
This is an extended version. In particular, more simulation
results for our original shill-key fingerprinting attacks, a sta-
tistical analysis in Sect. 3.1, the lunchtime attack of Sect. 3.3,
the report on our interaction with the ISO representatives of
Sect. 6, and our reflections on the standardization process of
PLAID of Sect. 7 are new to this version of the paper.

2 PLAID protocol description

In this section, we give a detailed description of PLAID
according to the specification of the draft ISO/IEC DIS
25185-1.2 [19]. A more concise overview of the protocol
flow is depicted in Fig. 1. To make our description as close
as possible to the original specification [19], we denote ter-
minal and card by IFD (interface device) and ICC (integrated
circuit card), respectively. Table 1 provides a summary of the
most important fields and objects occurring in the protocol.

2.1 PLAID setup

In the setup phase, PLAID initializes both terminals (IFDs)
and cards (ICCs). PLAID supports up to 216 key sets,
each consisting of an RSA key pair IAKeyi and an AES
key FAKeyi . Each terminal and each card hold a sub-
set of these overall possible key pairs, according to some
access-control policy. However, the card only holds the
public key part of the IAKey as well as a processed ver-
sion of the original FAKey. More concretely, the card does
not keep the FAKeys directly, but only a diversified ver-
sion FAKey(Div) = AESFAKeyEncrypt(DivData), whereDivData is a
128-bit card identifier. The standard [19] highlights that these
diversification data should be “random or unique.” Using the
diversified key instead of FAKey should retain security for
other cards, in the case of a card being compromised, and
hence, some of the (diversified) keys are disclosed. In addi-
tion to the RSA keys, FAKey(Div) and the value DivData,
each card receives a pair of individual distress-keys (called
ShillKey): a random RSA encryption key and a randomAES
key. These “shill keys” should be used to encrypt random
data in case an error is detected, thus camouflaging errors or
de-facto aborts on the card.

2.2 Initial authenticate

The IA phase aims at exchanging the necessary information
to compute the symmetric keys used in the FA phase as well
as transferring DivData, the card-specific data later needed
to guarante authenticity of the final message, securely to the
terminal.

Step 1 (IFD)—IA Command: The interaction is initiated
by the IFD, which transmits the complete sequence of
supported KeySetIDs (in order of preference) to the ICC.
Step 2 (ICC)—IA Command Evaluation: Upon receiv-
ing a set of KeySetIDs, the ICC traverses the entire list of
indices to find the first KeySetID it supports, which deter-
mines the IAKey for RSA encryption. To prevent timing
attacks, it does not abort the search, even if a match has
occurred. If no match is found, in Step 3 the ICC will
encrypt a randomly generated string using its shill key. 1

Step 3 (ICC)—IA Response: The ICC generates RND1,
retrieves its DivData, and derives string STR1, together
with an encryption of it under IAKey, as follows:

STR1 = KeySetID ‖DivData ‖RND1 ‖RND1,
eSTR1 = RSAIAKey

Encrypt(STR1).

The encrypted string eSTR1 is sent to the IFD. Here
PKCS#1 v1.5 padding [26] is used.
Step 4 (IFD)—IA Response Evaluation: The IFD trial-
decrypts eSTR1with all possible private IAKeys indexed
by its KeySetID list, and for each valid decryption, it
checks whether the last two 16-byte blocks are equal.
Again, to prevent timing attacks the IFDwill continue the
search even if a matching string has already been found.
The (first) match is then used to extract KeySetID2,
DivData, and RND1. If no plaintext is of the anticipated
format, authentication fails. 3

2.3 Final authenticate

The FA phase permits to specify the operation mode and
to exchange data, like a PIN or biometrics, needed to com-
plete the authentication. Here the diversified key FAKey(Div)

(stored on the card and previously computed by the terminal
during the IA phase) and a derived session key are used to
secure the communication. The card authenticates by prov-
ing its ability to decrypt eSTR2 as well as to include the

1 The standard neither specifies the exact format nor the length of this
randomly generated string.
2 The standard is ambiguous in whether the trial KeySetID of the IFD
or the value contained in eSTR1 is stored.
3 The standard does not specify what is meant by “authentication fails.”
We assume the protocol aborts in this case.

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 641

Table 1 Most important fields
and identifiers of PLAID

Variable Description

ACSRecord An access-control system record for each operation mode required for authentication

DivData A “random or unique” 16-byte ICC identifier

FAKey A 16-byte AES key which can be seen as master key to compute the diversified key used
in the protocol (only known to the IFD)

FAKey(Div) A 16-byte AES key derived from the FAKey and used in the FA phase

IAKey A 2048-bit pre-shared RSA key pair used in the IA phase. The ICC only knows the
public key part

KeySetID A 2-byte index value identifying an IAKey and FAKey or FAKey(Div), respectively

OpModeID A 2-byte index value identifying the operation mode. This value indicates which
ACSRecord and payload the ICC needs to provide for authentication

RNDi A 16-byte random string for i = 1, 2

KeysHasha A 16-byte session key computed by IFD and ICC used in the FA phase

ShillKey A pair of 2048-bit RSA public key and 16-byte AES key of the ICC (randomly chosen
per ICC during setup). These keys are to be used instead of error messages to simulate
the next step of the protocol camouflaging that something went wrong

a Note that in the original draft KeysHash refers to the entire 32 byte output of SHA-256(RND1 ‖RND2)
and the term session key is used to refer to the first 16 bytes which are used as secret key in the final
message. For simplicity, we refer to the session key as KeysHash in this paper

correct DivData (transmitted in the previous IA phase) in the
final message eSTR3.

Step 5 (IFD)—FA Command: The IFD generates the 16-
byte nonce RND2 and computes the unique session key
KeysHash (see footer of Table 1) as the first 128 bits of

SHA-256(RND1 ‖RND2).

Next, using the master FAKey indexed by KeySetID, it
computes the diversified AES key

FAKey(Div) = AESFAKeyEncrypt(DivData),

which corresponds to the AES key stored on the ICC
under index KeySetID. The latter is used to encrypt

STR2 = OpModeID ‖RND2 ‖ [Payload] ‖KeysHash,

usingAES inCBCmodewith the all-zero string as initial-
ization vector, where Payload is an optional, variable-size
field that depends on the operation mode. Concern-
ing padding, the standard refers to the ISO/IEC 9797-1
method 2, where one byte 0x80 is appended, followed
by blocks of 0x00 bytes until the length is a multiple of
the block length. 4 The resulting string

eSTR2 = AESFAKey
(Div)

Encrypt (STR2),

is then transmitted to the ICC.

4 Though referring to ISO/IEC 9797-1method 2, the PLAID draft stan-
dard explicitly describes a different padding method and thus makes
unambiguous decoding impossible (cf. Sect. 5.4).

Step 6 (ICC)—FA Command Evaluation: The ICC
decrypts
eSTR2with FAKey(Div) and retrieves RND2. It computes
the session key as described above as first half of the
hash value SHA-256(RND1 ‖RND2) and compares the
result to the valueKeysHash extracted from the decrypted
eSTR2. If they do not match, the ICC encrypts a random
byte string 5 using its AES ShillKey in the FA Response.
Else Payload, if given, should be processed as specified
by the implementation.
Step 7 (ICC) – FA Response: The ICC retrieves the
Payload data specified by the operation mode (if nec-
essary) and encrypts

STR3 = ACSRecord ‖ [Payload] ‖DivData,

using AES in CBC mode with the all-zero string as ini-
tialization vector. Again, Payload is an optional, variable-
size field which may (and usually will) differ from the
Payload in Step 5. The resulting ciphertext

eSTR3 = AESKeysHashEncrypt (STR3),

is transmitted as final message to the IFD.
Step8 (IFD)—FAResponseEvaluation:The IFDdecrypts
the value eSTR3 and checks whether the recovered
DivData matches the one received in the IA phase: if
so, then the other data are considered authenticated and

5 Again, the standard does neither specify the exact format nor the
length (note that STR3 in Step 7 contains a variable sized field Payload)
of this random byte string.

123

642 J. P. Degabriele et al.

processed according to the implementation; otherwise,
authentication fails.

3 Shill-key fingerprinting: tracing cards in PLAID

According to the developers of PLAID, privacy was one of
the main reasons to introduce a new authentication proto-
col. In this and the next section, we present two attacks on
the privacy of PLAID contradicting the claims that no static
information is available to be exploited.

In this section,we focus on the traceability of cards, that is,
we consider an adversarywho learns some information about
one or more cards and then tries to identify these cards at a
later time. We consider three distinct attack scenarios, each
consisting of a fingerprinting phase and then an identification
phase. The difference is roughly that in the first scenario the
fingerprinting is a supervised learning phase in the sense that
we can attribute execution traces to several cards,whereas the
second setting corresponds to unsupervised learning where
we get a set of random traces. In the third scenario, we focus
on tracing a specific card throughout a system independent of
the overall number cards. More precisely, the three settings
are as follows.

– In thefirst scenario,we allow the adversary tofirst interact
in turn with each and every card in the system in a num-
ber of protocol runs (the fingerprinting phase). We then
draw a card at random and let the adversary interact with
this specific card a number of times, with the adversary’s
goal being to identify which of the cards was selected.
The adversary’s ability to interact with each card in the
system in turn in the fingerprinting phase (first phase)
is not wholly realistic. However, given the high success
rates of this attack that we will report below, we believe
that good success rateswould still be achieved in themore
realistic scenario where the adversary does not have the
guarantee of being able to interact with each distinct card
in turn in a first phase, but insteadmust build up its picture
of the system as it goes along.

– In the second scenario, which is much more challenging
for the adversary,wedonot allow the adversary to interact
in turn with every card in a number of protocol runs,
but simply present it with a sequence of transcripts of
individual protocol executions, each execution involving
a randomly chosen card. The identification phase and the
adversary’s goal are the same as before. This much more
demanding attack scenario models a situation where the
adversary cannot interact many times with each distinct
card during fingerprinting, but only in one protocol run
at a time with a random card.

– The third scenario focuses the attention on tracing a spe-
cific card without any knowledge of the other cards in the

system or even their number. Here, the adversary is given
a sequence of transcripts of protocol executions by a cer-
tain card in the fingerprinting phase. In the identification
phase, the adversary is presented a second sequence of
transcripts, which was produced by either the same card
or a randomly generated one, and has to decide which is
the case. This attack scenario captures an adversary that
is interested in tracing a specific user throughout a sys-
tem after being able to interact with this card initially for
a certain amount of time and without knowing the total
number of cards in the system.

In Sect. 4, we will consider a different type of attack and
show how an adversary can learn the capabilities of a card
(that is, it learns which keys are stored on a card). Besides
being a serious breach of privacy on its own, this attack can
also be combined with the attack (in all variants) described
in this section to gain better performance.

Our attack in this section specifically targets the shill key
values used by PLAID. A shill-key pair, generated for every
card, contains an RSA public key and an AES key that are to
be used in the IA and in the FA phases, respectively, in place
of the actual keys should an error in the terminal message be
detected. Intended as a security measure—to prevent attack-
ers from exploiting potential information leaked by error
messages—the use of the shill key turns out to drastically
weaken the anonymity properties of PLAID.

Before explaining the details of the different attack vari-
ants, we note that in order to run the attack in this section,
we need to be able to force cards into replying with RSA
ciphertexts generated using their shill key in the first phase
of the protocol. This is easily arranged by sending the card
a first message containing an empty sequence of KeySetIDs,
or a set of KeySetIDs containing a single and particularly
high index that is not in use in any card on the system. Thus,
we may assume that the adversary is able to gather samples
of shill-key ciphertexts from cards at will.

3.1 Tracing cards via shill-key ciphertexts

We consider the following situation: we assume the system
has t cards with corresponding shill-key moduli N1, . . . , Nt ,
where each N j is an n-bit RSA modulus (the current draft
version gives n = 2048 [19]). We start with our basic attack,
tailored to the first scenario. In a first phase, the adver-
sary learns, for every card in the system, k1 encryptions
of a random message under the card’s shill key (N j , e j);
then, in a challenge phase the adversary is given k2 fresh
ciphertexts (again for random messages) computed under
shill key (N j∗ , e j∗), for j∗ chosen uniformly at random
from {1, . . . , t}. The adversary’s goal is to identify from
which card the challenge ciphertexts come, that is, to output
the correct index j∗. We define the adversary’s advantage

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 643

as its success probability bounded away from the guessing
probability 1

t .
The idea of our basic attack is that, although the shill keys

are meant to be kept private, each of the k1 ciphertexts Xi, j

computed using (N j , e j) leaks some information about the
modulus N j . Specifically, we learn that Xi, j < N j for each
i . Similarly, in the challenge phase, where we have k2 cipher-
texts computed using (N j∗ , e j∗), each ciphertext leaks some
information about the challenge shill-key modulus. Starting
from this observation, we now seek a procedure to obtain a
good estimate of the shill-key moduli given only a certain
number of corresponding ciphertexts for each modulus.

The problem can be reposed as follows. Notice that each
ciphertext Xi, j canbe regarded as a uniformly random integer
in the range

[
1, N j − 1

]
. We are then faced with the task of

estimating N j , which is one more than the size of the interval
fromwhich the sample comes. This is essentially an instance
of a classical statistical problem that is known as theGerman
Tank Problem6. A naive approach would be to use twice the
mean value of the samples Xi, j as an estimate for N j . A
statistically strictly better approach is to use as an estimator
for N j the value

Ñ j = Mj + Mj

k1
,

whereMj is themaximumvalue of the observed samples Xi, j

for i = 1, . . . , k1, and k1 is the number of samples for each
shill key. It basically corresponds to the maximum plus the
average distance of observed samples. This estimator arises
from a frequentist interpretation of the problem, and has the
benefit of providing what is known as a minimum-variance
unbiased estimator (MVUE). It can be replaced by a more
appropriate Bayesian estimator, but the estimator above is
sufficient for our purposes.

Our basic attack proceeds using this estimator as follows.
In the first phase, we use it to produce estimates Ñ j for each
of the shill-key moduli N j . In the challenge phase, we again
use it to produce an estimate Ñ∗ for the challenge shill-key
modulus (now with parameter k2, representing the number
of samples available in that phase). We finally output as our
guess for the challenge index j∗ the index j for which Ñ∗ is
closest in absolute value to Ñ j , that is,

argmin
j

∣
∣∣Ñ∗ − Ñ j

∣
∣∣ .

This concludes the description of our basic attack tackling
the first scenario.

6 See [24] for a good introduction. The name stems from the problem
initially being posed as that of estimating the total number of tanks in
the German army from observing a subset of their serial numbers.

3.1.1 Simulation results

We have conducted extensive simulations of the basic attack
detailed above for various values of t (the number of cards) up
to t = 10,000, k1 (the number of ciphertext samples per card
available in the first phase), and k2 (the number of ciphertext
samples in the challenge phase). Figure 2 depicts the results
of our simulations for k1 = 100 first-phase samples on the
left and k1 = 1000 samples on the right side.

It can be seen that, independently of the number of cards
in the system, our attack significantly outperforms the basic
probability for guessing the card’s identity. To be precise, for
any fixed value of k1 and k2, the attack’s success probability
exceeds the guessing probability by a constant factor. For
k1 = 100 samples in the fingerprinting phase, shown in the
left plot of Fig. 2, k2 = 10 challenge samples already suffice
to surpass the baseline by a factor of three. This advantage
increases to 15 times and 30 times the guessing probabil-
ity for k2 = 50 (resp. k2 = 100) challenge samples, which
can be obtained from a card within approximately 15s (resp.
30 s) given the target execution time of the PLAID proto-
col of 300ms. Our analysis also indicates that the maximal
achievable success probability is bounded by the number of
fingerprinting samples k1 as values for k2 higher than k1 do
not increase the attack’s success probability further.

Unsurprisingly, increasing the number k1 of samples avail-
able in the first phase of the attack improves the attack
performance, as exemplified for k1 = 1000 in the right plot
of Fig. 2. While the success rates for k2 values of 10, 50,
and 100 are very close to those for the same k2 values with
k1 = 100 fingerprinting samples, higher values of k2 make
the attack perform significantly better. Given k1 = 1000 for
fingerprinting, the attack exceeds the guessing probability by
factors of over 100 or even 300 for k2 = 500 resp. k2 = 1000
challenge samples and large numbers of cards t .

In terms of concrete success probabilities of our simu-
lation, our attack can with k2 = 1000 challenge samples
(collectable within 5min) identify a card among 10000 cards
with approximately 3% probability (compared to 0.01%
with guessing), among 1000 cards with approximately 25%
probability (guessing: 0.1%), and among 100 cards with
approximately 75% probability (guessing: 1%).

3.1.2 Statistical analysis

In the following, we derive theoretical predictions for the
success probability of our basic attack. For a variable X ,
we denote by E [X] its expected value, and by Var [X] its
variance. In the following analysis, we will assume that
the moduli N1, . . . , Nt are uniformly distributed over the
(integer) interval [2n−1 + 1, 2n − 1] which, with abuse of
notation, we denote henceforth by [�

2 ,�] to ease readabil-
ity. We assume, without loss of generality, that N1 ≤ · · · ≤

123

644 J. P. Degabriele et al.

10 100 1,000 10,000

0.01%

0.1%

1%

10%

100%

number of cards t

su
cc
es
s
pr
ob
ab
ili
ty

(l
og
-s
ca
le
)

k1 = 100

10 100 1,000 10,000

0.01%

0.1%

1%

10%

100%

number of cards t

su
cc
es
s
pr
ob
ab
ili
ty

(l
og
-s
ca
le
)

k1 = 1000

k2 = 1000 k2 = 500 k2 = 100 k2 = 50 k2 = 10 baseline

Fig. 2 Simulations of the basic shill-key attack for k1 (the number
of samples during the fingerprinting phase) equal to 100 on the left
and 1000 on the right, and varying values of k2 for each. The simula-
tion was done with t = 10, 15, 20, 25, 50, 100, 250, 500, 1000, 10,000
cards, and the success probability is averaged over four runs with t2

repetitions of the identification phase for all values except t = 10,000,

which was averaged over four runs with 100,000 repetitions only due to
computational complexity reasons. The baseline indicates the success
probability of an adversary that tries to win the game by pure guessing.
Both axes are in logarithmic scale, and error bars show the standard
deviation

Nt . Similarly, for all j ∈ {1, . . . , t} we assume that the
sample ciphertexts {Xi j }i=1,...,k1 are uniformly distributed
over [0, N j − 1], as are the ciphertexts {Yi }i=1,...,k2 over the
interval [0, N j∗ −1]. To ease the analysis, we further assume
that the estimated moduli in the first phase are exact, i.e.,
Ñ j = N j for all j . We note that the latter assumption is
equivalent to allowing for an infinite number of observations
in the first phase (i.e., k1 = ∞).

Let N j ′ be such that δ := |N j∗ − N j ′ | is minimum among
the distances |N j∗ − N j | for j �= j∗, as illustrated below.
In other words, if in our attack we would predict the wrong
index, then that index will most likely be j ′. This observation
allows us to deduce (a lower bound for) the success proba-
bility of our attack (Fig. 3):

psucc := Pr [attack succeeds] ≥ Pr

[
|Ñ∗−N j∗ | ≤ δ

2

]
.

(1)

We consider the German Tank estimator Ñ∗ for the tar-
geted modulus N j∗ :

Ñ∗ = M + M

k2
, where M = max

i=1,...,k2
Yi ,

Equation (1) yields in this case:

psucc ≥Pr

[
N j∗ − δ

2
≤ M

(
1 + 1

k2

)
≤ N j∗ + δ

2

]

=Pr
[
z− ≤ M ≤ z+

] = FM (z+) − FM (z−)

where z± = k2
k2+1 ·(N j∗ ± δ

2) and FM is the cumulative distri-
bution function of the maximum sample M . More explicitly,

FM (x) = Pr [M ≤ x] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < 0
(

x
N j∗

)k2
if 0 ≤ x ≤ N j∗

1 otherwise

A good approximation of δ is given by the average distance
between any two adjacent moduli. Since they are uniformly
distributed in [�

2 ,�], we have E
[
N j∗

] = 3�/4, and for
all j = 1, . . . , t−1wehaveE

[|N j+1 − N j |
] = �/2t . So, in

particular, we use the approximations δ ≈ �/2t , and N j∗ ≈
3�/4. A direct calculation using these values produces:

psucc ≈

⎧
⎪⎨

⎪⎩

(
k2
3t · 3t+1

k2+1

)k2 −
(
k2
3t · 3t−1

k2+1

)k2
if k2 ≤ 3t

1 −
(
k2
3t · 3t−1

k2+1

)k2
otherwise

(2)

A graphical representation of the estimated probability
functions psucc, for fixed k2 = 100, 1000 and variable t , is
given in Fig. 4. In the same figure, we compare the theoret-
ical predictions with the corresponding simulation results.
Notice that the observed success rates and their theoretical
predictions are close and coincide asymptotically. Also note
that psucc provides a lower bound for the attack’s success
probability under the assumption that the moduli N1, . . . , Nt

are known, or equivalently that k1 = ∞. In fact, within our
simulations—and in any realistic scenario—the attack relies

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 645

Nj∗ Ñ∗ Nj

δ

Fig. 3 Results of the statistical analysis for the basic shill-key finger-
printing scenario: the predicted success probability of the attack refers
to k1 = 1000, k2 = 100 (loosely dashed) and k2 = 1000 (densely
dashed). The baseline indicates the success probability of an adversary
that tries to win the game by pure guessing. The number of cards t on
both sides and the success probability on the right side are displayed in
logarithmic scale; error bars show the standard deviation

on the first-phase estimates Ñ1, . . . , Ñt rather than on the
exact moduli N1, . . . , Nt . We thus expect the actual success
probabilities to be smaller than the respective predictions.
This behavior is indeed visible in Fig. 4.

3.2 Tracing cards from a mixed set of shill-key
ciphertexts

For the first scenario and our basic attack in Sect. 3.1, we
assumed that during the initial phase the attacker was able
to identify ciphertexts computed from the same key. In our
second scenario, we relax this assumption: we now give the
attacker a large mixed set of k1 × t ciphertext samples, each
sample coming from a randomly selected card. The challenge
phase of the attack proceeds as before where the attacker
obtains a small sample of k2 ciphertexts computed by the
same card, and the attacker’s goal is to identify this card.

The challenge now is to somehow process this mixed set
of samples in order to extract reasonable estimates of the
individual RSA moduli. We accomplish this by means of a
heuristic clustering technique. Assuming that we know the

number of cards t used to produce the mixed sample set,
let N1, . . . , Nt represent their shill-key moduli in increas-
ing order. From the mixed sample of ciphertexts, we ignore
all samples smaller than 22047. We then use a standard clus-
tering technique based on the k-means algorithm to group
the remaining ciphertext samples into t clusters approxi-
mating the intervals [N j , N j+1), for j ∈ {0, 1, . . . , t} and
N0 = 22047. Once we have this set of clusters, we then
obtain an estimate for the shill-key modulus Ni+1 by using
the German Tank estimator on the cluster corresponding to
the interval [Ni , Ni+1).

We now describe this clustering attack for the second sce-
nario in more detail. We initially assign to each of the t
clusters a uniformly randomvalue in the range (22047, 22048).
This value is called the centroid of the cluster. For each
ciphertext sample greater than 22047, we calculate its distance
from each of the cluster centroids and assign that ciphertext
to the cluster to whose centroid it is closest. The distance
metric is merely the absolute value of the arithmetic differ-
ence. Once that every ciphertext sample has been assigned
to a cluster, we ensure that no cluster is empty. If an empty
cluster is found, we pick another cluster at random whose
size is greater than one and move its largest element to the
empty cluster. We then set the centroid of each cluster to be
the mean of the ciphertext samples contained in that cluster,
as per the standard k-means algorithm.We iterate this process
of assigning ciphertext samples to clusters and recalculating
their centroids until the centroids converge to stable values,
or the maximum number of iterations is exceeded.

In the challenge phase, the attacker is given k2 ciphertexts
which are all computed by the same card.Here, our clustering
attack proceeds identically to the previous one: the attacker

10 100 1,000 10,000
0%

20%

40%

60%

80%

100%

number of cards t

su
cc
es
s
pr
ob
ab
ili
ty

10 100 1,000 10,000

0.01%

0.1%

1%

10%

100%

number of cards t

su
cc
es
s
pr
ob
ab
ili
ty

(l
og
-s
ca
le
)

simulation for k1 = 1000, k2 = 1000 simulation for k1 = 1000, k2 = 100
German-Tank prediction for k2 = 1000 German-Tank prediction for k2 = 100

baseline

Fig. 4 A pictorial explanation of Eq. (1): if N j∗ is the target modulus, N j ′ its closest modulus, and Ñ∗ our estimate of N j∗, then our attack succeeds
whenever Ñ∗ is at most |N j∗ − N j ′ |/2-close to N j∗

123

646 J. P. Degabriele et al.

uses the estimator to produce an estimate Ñ∗ for the challenge
shill-key modulus and outputs as its guess the index of the
modulus from the first phase that is closest to Ñ∗.

3.2.1 Simulation results

We ran simulations of the above clustering attack for a mixed
sample set of size t×k1 for various values of t (the number of
cards) up to t = 100, values of k1 first-phase samples equal
to 100 and 1000, and different numbers k2 of second-phase
samples. Figure 5 depicts the results of our simulations for
k1 = 100 on the left and k1 = 1000 samples on the right
side.

Working in a more ambitious scenario, the success prob-
abilities for the clustering attack are considerably lower than
for the basic attack in the first scenario. In particular, it
does not significantly benefit from higher numbers k2 of
challenge-phase samples like the previous attack. Even for
k2 = 1000 challenge ciphertexts the success rate for t = 100
cards stays around 5% (independent of k1), while the basic
attack (cf. Fig. 2) successfully identified the challenge card
with probability 20% (for k1 = 100) or even 74% (for
k1 = 1000).Nonetheless,we see that our clustering approach
is able to correctly identify a cardwith a significant advantage
over the guessing probability, i.e., with a success probability
approximately four times higher than the latter.

Notably, as we increase the number k1 of first-phase
samples to 1000, we do not get a corresponding increase
in performance as in the previous attack but rather obtain
roughly the same success probabilities as for k1 = 100. On
the other hand, for low parameter values k2 the clustering

attack in both cases performs comparable to the basic attack.
In fact, if we compare Figs. 2 and 5, we see that for k2 = 10
the two attacks achieve almost identical success rates. There-
fore, if the attacker is limited to a small number of samples
(≈10) during the identification phase, he can trace cards as
effectively using the clustering attack without requiring a
sorted set of ciphertext samples during fingerprinting.

3.3 Tracing cards during lunchtime

We now turn to the third scenario which models an attacker
that tries to trace a single card throughout a system with an
unknown total number of cards, after being able to interact
with the target card for a certain (short) amount of time (e.g.,
during lunch) at the beginning of the experiment. In con-
trast to the previous two scenarios involving many keys to
be re-identified and where the attacker was able to sample
ciphertexts from all cards in the experiment’s first phase, this
third scenario now poses a distinguishing challenge between
a target card fromwhich the attacker is able to sample cipher-
texts up-front and a second, random card (which it did not
have access to before).

More precisely, in the fingerprinting phase the attacker is
given a set of k1 ciphertext samples under a fixed, but ran-
domly generated shill key. The challenge phase proceeds by
providing the attacker with a sample of k2 ciphertexts gen-
erated either by the same shill key as in the first phase, or by
a second, randomly generated shill key. The attacker’s goal
is to decide whether it is interacting with the same card as
before or a new card, andwe define its advantage to be its suc-

0 20 40 60 80 100

1%

10%

number of cards t

su
cc
es
s
pr
ob

ab
ili
ty

k1 = 100

0 20 40 60 80 100

1%

10%

number of cards t

su
cc
es
s
pr
ob

ab
ili
ty

k1 = 1000

k2 = 1000 k2 = 100 k2 = 10 baseline

Fig. 5 Simulations of the clustering attack for k1 (the number of sam-
ples during the fingerprinting phase) equal to 100 on the left and 1000
on the right, and varying values of k2 for each. The success probability,
shown in log-scale, is averaged over fifty runs, and the simulation was

done with t = 10, 15, 20, 25, 50, 100 cards. The baseline indicates the
success probability of an adversary that tries to win the game by pure
guessing

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 647

cess probability in doing so, suitably adjusted by subtracting
the guessing probability 1

2 .
While this third scenariomight at first glance seem strictly

weaker than our first scenario, it is actually not, since the
first scenario allows the attacker to sample ciphertexts from
all cards, while the third scenario is about distinguishing a
“known” card from an “unknown” one. This setting is indeed
quite realistic. First of all, it does not make the assumption
that all cards, as in the previous scenarios, can be sampled
up-front—which might indeed be a hard task for many types
of attackers. Secondly, tracing a single card and thereby,
e.g., the movements of a particular person within a cer-
tain area where the attacker is able to set up fake PLAID
terminals constitute a realistic threat scenario for a PLAID
deployment.

Coming to our lunchtime attack tailored to this third sce-
nario, the strategy to decide in the second phase whether the
attack faces the previously sampled card or a newone is based
on the simple idea that if the ciphertexts in the second phase
come from the same card, then an estimate for the modulus
in the second phase should be close to the estimate in the first
phase. The question then becomes how to define “close” so
as to produce an effective attack. For this, we note that the
variance of the MVUE estimator,

Var
[
Ñ

]
= 1

k
· (N − k)(N + 1)

k + 2
,

only depends on the estimate of the target card’s modulus Ñ
and the number of samples k. We then define “close” accord-
ing to the “3-sigma rule of thumb”, i.e., we say that the
samples come from the original card if the absolute differ-

ence between the two estimates falls within three times the
standard deviation,

3σ = 3 ·
√

Var
[
Ñ

]

where the variance is computed relative to k = min(k1, k2)
and the estimated modulus Ñ of the target card. This
means that the probability that an estimate produced using
ciphertexts sampled from the original card lies within the
confidence interval is about 98%. While giving us a false
reject rate (FRR) of 2% choosing 3σ as the confidence inter-
val also provides us with an estimate for the false accept rate
(FAR), i.e., the likelihood of a randomcard being classified as
the actual target card. False positives occur with large proba-
bility if the modulus of the random card is within distance of
the confidence interval (3σ) from the modulus of the target
card. For k = 100, the confidence interval ranges over about
5% of the modulus space:

3σ

22047
≈ 5% for themeanmodulus N = 22048−1−22046

and k = 100

Hence, for k = 100 we should expect an FAR increase in
about 5%. This value drops linearly with higher values of k,
that is for k = 1000 we only get an increase in the FAR of
about 0.5%.

3.4 Simulation results

We ran simulations of the lunchtime attack described above
for various values of k1 (the number of first-phase samples)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

50%

60%

70%

80%

90%

100%

number of identification-phase samples k2

su
cc
es
s
pr
ob
ab
ili
ty

k1 = 2000

k1 = 1000

k1 = 100

baseline

Fig. 6 Simulations of the lunchtime attack for different numbers k1
of samples during the fingerprinting phase and varying numbers of
identification-phase samples k2. The success probability is averaged

over 100 runs with 100 challenge phases each. The baseline indicates
the success probability of an adversary that tries to win the game by
pure guessing. Error bars show the standard deviation

123

648 J. P. Degabriele et al.

and k2 (the number of second-phase samples) 7; Fig. 6 depicts
the results.

As expected, the success rates of our lunchtime attack are
quite high. (But note that they are formally incomparable
to the simulation results in previous attack scenarios as the
attacker here is only challenged with making a binary deci-
sion.) Notably, even with small numbers of fingerprinting
and identification samples such as k1 = 100 and k2 = 50
(which can be obtained from a card within approximately
30 s for fingerprinting and 15s for identification given the
target execution time of the PLAID protocol of 300ms), our
lunchtime attack already shows a success rate of 90% (the
guessing probability is 50%). If the attacker is given more
time in the second phase, the probability of correctly distin-
guishing the initial from a random card stabilizes above 90%
for values k2 > 100.

Wemoreover observe the same pattern seen already in the
basic attack (cf. Fig. 2) with respect to the ratio between k1
and k2: obtaining more identification-phase samples (k2)
than fingerprinting-phase samples (k1) seems not to help
the lunchtime attack to further increase its success proba-
bility. In more detail, the success probabilities for k1 = 100,
k1 = 1000, and k1 = 2000 settle at approximately 94, 97,
resp. 98% from k2 ≈ k1 on. The seen success rates thus
nicely fit into our theoretical predictions of having an over-
all error between 2 and 7% stemming from our choice of
fixing the confidence interval to a size of 3σ giving us an
FRR of about 2% and depending on the value of k an FAR
of between 0.25% (for k = 2000) and 5% (for k = 100).
The upper bound for the achievable success probability of
1 − FAR − FRR for our lunchtime attack is also reflected
in the standard deviation (shown by the error bars in Fig. 6)
of our experimental results. In order to further increase the
success rate, one should thus aim for minimizing the overall
error rate FAR + FRR noting that an increase in the con-
fidence interval (e.g., to 6σ) decreases the false reject rate
(FRR) while increasing the FAR, and an increase in the num-
ber of samples k decreases both the FAR and the FRR but,
of course, comes at the price of needing extra time to mount
the attack.

3.5 Connection to key privacy of RSA encryption

We remark that our shill-key fingerprinting attack only con-
siders properties of RSA moduli and is, thus, of independent
interest in the study of key privacy (or key anonymity) of
RSA encryption, a security notion introduced by Bellare et
al. in [3]. In the key privacy security model of [3], an adver-
sary plays against two key pairs and is given both the public

7 Note that, in contrast to the first two scenarios, the third scenario and
our according lunchtime attack is independent of the overall number of
cards in the system.

keys. Security is modeled in terms of key indistinguishabil-
ity, requiring that it is infeasible for any efficient adversary,
that can request encryptions of messages of its choice under
one of the two public keys, to tell which key was chosen
with probability higher than guessing. As already pointed
out in [3], the RSA cryptosystem does not provide key pri-
vacy. Security is trivially brokenwhen the two key lengths are
different. However, RSA keys of the same bit length are easy
to tell apart, too: let N0 < N1 be two RSA moduli: indepen-
dently of the underlying plaintext, a ciphertext c computed
under one of the two corresponding keys satisfies c < Nb.
A single-query attack which succeeds with non-negligible
advantage simply requests to encrypt an arbitrary message
and then compares the resulting ciphertext c with the smaller
modulus: if c < N0, then it returns 0 and else guesses 1.

This attack is not directly applicable to the PLAID setting
because there the RSA encryption keys are kept secret. Still,
our shill-key fingerprinting attack variants on PLAID can be
seen as similar in spirit to, but obviously harder to perform
than the above single-query attack. In particular, the third
scenario (lunchtime attack) explicitly poses a distinguishing
challenge (though, of course,without providing the adversary
with the RSA moduli) and hence can be considered to be
closest to the security notion of key privacy. Moreover, if
the encryption scheme used within PLAID were to enjoy
key privacy, then the attacks presented would be completely
thwarted (and the public keys would no longer need to be
kept secret).

3.6 Countermeasures to our attacks

Avery simple countermeasure to our attacks is for every card
to use the same RSA shill key. This does not seem to have
any negative security consequences and renders ineffective
any tracing attacks based on the analysis of RSA shill-key
ciphertexts.

A second countermeasure to our attacks is to modify the
RSA encryption scheme so that it is key private. This can
be done in two ways: padding by adding multiples of the
modulus to the ciphertext, and selection of RSA moduli that
all lie in a small interval.

The first approach for the second countermeasure simply
adds a random multiple kN j of the modulus to the RSA
ciphertext. Here, the range fromwhich k is selected is chosen
to make all the resulting ciphertexts for the different RSA
moduli (approximately) uniformly distributed in the same
interval. The larger k is, the better the key privacy is attained,
but the larger is the bandwidth needed to transmit ciphertexts.

The second approach is to choose theRSAmoduli for shill
keys to lie in amuch smaller interval than

[
2n−1, 2n − 1

]
. For

example, one could generate the prime factors of the mod-
uli N j in such a way that each N j begins with an MSB of 1
followed by 256 0-bits, i.e. so that the moduli lie in the range

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 649

[
2n−1, 2n−1 + 2n−256

]
. This would ensure that the distribu-

tions of RSA ciphertexts aremuch harder to distinguish using
our methods and, heuristically, does not affect the security of
the RSA encryption scheme (since there are still many RSA
moduli that can be generated in this range, and there are no
known speedups for factoring algorithms for RSA moduli in
such a range).

Detailed analysis of the specifics of these countermeasures
is beyond the scope of the current work.

4 Keyset fingerprinting: determining a card’s
capabilities

In this section, we present another type of attack on PLAID’s
privacy, which we call keyset fingerprinting. This attack
reveals the exact set of keys a card knows8, thereby deter-
mining its capabilities in terms of which keyset it can use,
i.e., which specific terminal it is able to talk to. In order
to mount the attack, we exploit the following observations:
(i) the KeySetIDs list sent by the terminal (in the clear)
in the IA Command contains all keys known by the termi-
nal [19, Section 6.1], and is not authenticated 9 , (ii) in its
IA Response, the card is required to use the first key of the
received KeySetIDs list it knows [19, Section 6.2], and (iii)
if the card uses its ShillKey, in the IA Response, then the
terminal aborts [19, Section 6.4].

4.1 The attack in a nutshell

We first explain the core idea of our attack by describing a
concrete attack scenario. Assume an adversary observes a
successful protocol run between a card and a terminal where
the latter had sent (in the clear) KeySetIDs = (2, 5, 8). From
this, the attacker not only learns that the ICC holds at least
one of the keys with IDs {2, 5, 8}, but it can also determine
all of the keys the ICC supports, independently of the identi-
fiers announced in KeySetIDs. To this end, the adversary can
trigger a protocol run and mount a man-in-the-middle attack
as described below.

In a first phase, the attacker sequentially replaces the
IFD’s original initial message by one containing only a sin-
gle identifier from the original list of KeySetIDs, that is, 2,
5 or 8 in our example; by observing the subsequent protocol
run, the attacker deduces that the ICC supports the selected

8 Recall that terminals announce their supported keysets by sending
corresponding KeySetIDs in the clear. As a consequence, any observer
can see which keys are related to which resource/terminal.
9 We note that the unauthenticated nature of the PLAID protocol mes-
sages has already been criticized in the national body comments on
an earlier ISO draft [18]. In our attack, we exploit this weakness,
refuting the claim of the current ISO draft [19, Annex H.1.1] that send-
ing KeySetIDs in clear is “of no use to an attacker.”

key if and only if the protocol execution reaches the third
step, i.e., if the terminal responds with a third message. In
a second phase, the attacker sequentially prepends to the
IFD’s original initial message all key identifiers that were
not contained in KeySetIDs, e.g., (1, 2, 5, 8), (3, 2, 5, 8), …,
(65536, 2, 5, 8) in our example. Then, from each of the sub-
sequent protocol runs, the attacker learns that the ICC knows
the inserted key if and only if the IFD does not respond with
a third message. This is because of observation (ii) above
about the first matching key in the list to be used. At the end
of the two phases, the attacker knows the identifiers of all
keys supported by the ICC.

We stress the attack above can be performed in a remote
fashion (in the sense that the card and the reader can be
far from each other) where two attackers, placed in physi-
cal proximity to the terminal, respectively, the card relay the
exchanged messages between each other, playing the role of
a card resp. a terminal. Moreover, this attack can be mounted
independently of the values announced inKeySetIDs, as long
as the attacker observes a single, successful protocol execu-
tion.

Note that knowledge of all the keys supported by a
card also reveals its capabilities (e.g., access authorizations),
thereby potentially disclosing highly sensitive information.
While this is not, in general, sufficient to identify a card
uniquely, it effectively allows to derive capability classes,
containing cardswith the same capabilities.Moreover, in cer-
tain scenarios, capabilities like access authorizations might
even leak the identity of a card’s owner, hence breaking its
anonymity, as some keys might be used exclusively to access
security-critical infrastructure [19, Annex C] such as server
rooms or the CEO’s office. The impact of keyset fingerprint-
ing is furthermore increased by the remote nature and the
low cost of the attack (in terms of the number of interactions
between terminal and card). Even in large-scale, realistic sce-
narios, the attack requires only few seconds (and no physical
proximity of card and terminal) to determine a card’s capa-
bilities. See Sect. 4.2 for a more detailed discussion.

We remark that keyset fingerprinting can, in addition, be
used as a prefilter for (all variants of) ourShillKeyfingerprint-
ing attack discussed in Sect. 3. Recall that the performance of
these attacks heavily depends on the number of cards in the
system that have to be distinguished. By first performing key-
set fingerprinting on the card(s) in question, this number can
potentially be reduced substantially (thereby improving the
overall efficiency), as the ShillKey fingerprinting in a second
step only has to discriminate among the smaller number of
cards belonging to the same capability class. Finally, we note
that there are cases where the cheaper keyset fingerprinting
attack on its own is actually already sufficient for a tracing
attack: whenever a traced card has a unique set of supported
keys (i.e., is the only member in its capability class), this
attack is able to uniquely (re)identify that card. Furthermore,

123

650 J. P. Degabriele et al.

keyset fingerprinting suffices to distinguish two cards as long
as there is a key supported by only one of the cards.

4.2 The attack details

Suppose that we observe a successful authentication between
an honest terminal (IFD) and an honest card (ICC). In the
course of the protocol execution, the IFD starts by sending the
list KeySetIDs = (KeySetIDi1 , . . . ,KeySetIDi�) containing
(all) KeySetIDs it supports. The keyset fingerprinting attack
proceeds in two phases, focusing first on the keys supported
by the IFD and then on the remaining keys.

Phase 1. In the first phase, we replace the initial
KeySetIDs list with a list containing only one of the keys
supported by the IFD at a time, i.e., we replace the first
message by (KeySetIDi j) for j = 1, . . . , � in � sequential
interactions. We relay the response of the ICC unmodi-
fied to the IFD. If the IFD replies with a third message in
the j th interaction, we can infer that the ICC knows the
key with KeySetIDi j . Otherwise, the ICC did not support
this key and hence used its ShillKey, leading the IFD to
abort.
Phase 2. In the second phase, we prepend the initial
KeySetIDs list with one (or multiple, see below) values
KeySetID j /∈ {KeySetIDi1 , . . . ,KeySetIDi�} at a time.
We relay the response of the ICC unmodified to the IFD.
If the IFD replies with a third message, we can infer that
the ICC knows none of the prepended keys. Otherwise,
the ICC did know at least one of these keys (which the
IFD does not support), leading the IFD to abort. This
relies on observations (ii) and (iii) above.

We measure the attack costs in terms of the number of
interactions between IFD and ICC needed to extract the keys
supported by the ICC. In the first phase, which requires
� interactions between the IFD and the ICC, we are able
to determine exactly which of the keys {KeySetIDi1 , . . . ,

KeySetIDi�} supported by the IFD the ICC knows. The sec-
ond phase aims at determiningwhich of the remaining 216−�

KeySetIDs are known by the ICC. There are different strate-
gies to proceed in Phase 2:

1. The basic approach is to simply prepend each one of
the 216 − � KeySetIDs not supported by the IFD one at a
time, resulting in 216−� interactions in order to determine
exactly which of the keys the ICC knows. Together with
the first phase, this approach leads to 216 interactions to
fingerprint a card.

2. In the binary search approach, the set of KeySetIDs is
partitioned along a binary tree with the full set of all
216 − � KeySetIDs at the root, the first half of them as

the left child, the second half of them as the right child,
etc. In the second phase, first the root (i.e., all 216 −
� KeySetIDs) is prepended. If the IFD replies, the ICC
knows none of these keys andwe have thus completed the
keyset fingerprinting for the card. Otherwise, both the left
half and the right half are prepended (sequentially) and,
again, if the IFD replies, then the ICC knows none of the
prepended keys. This process can be repeated recursively
until the IFD replies for each branch.
Using this approach, we can quickly rule out those parts
of the KeySetID space where the ICC does not know
any key. More precisely, denote by n the number of keys
the ICC knows in total and by �′ the number of keys
the ICC knows among the � keys supported by the IFD.
Then we can upper bound the number of interactions
needed to fingerprint a card by (n − �′) · log(216) + � =
(n−�′) ·16+�, since a traversal of the binary search tree
in order to pinpoint a single key requires at most log(216)
(i.e., height of the tree) additional interactions.

3. The binary search with known maximum approach is
a further optimization which is applicable in scenarios
where the highest KeySetID in the system, MaxID, is
known in advance. In this case, the binary tree can be
reduced to the tree having only the MaxID − � remain-
ing unknownKeySetIDs (instead of all 216−�) as leaves.
The number of interactions to fingerprint a card therefore
is reduced to (n − �′) · �log(MaxID)� + �.

When comparing the strategies for the second phase, in the
(unlikely) worst case where the card knows all 216 possible
keys, the basic approach requires 216 interactions, whereas
the binary search approach takes approximately 220 inter-
actions. We observe however that the binary search is more
efficient as long as the card holds less than 212 keys (which
we assume to be the case in any real scenario).

4.2.1 A practical example

For the sake of providing the reader with some estimates on
a more realistic, but still large-scale example, consider a sce-
nario where MaxID = 5000 keys are deployed (enough for,
e.g., a large building or a small campus) and the considered
terminal and card both hold � = n = 10 keys, from which
�′ = 1 key is known by both.

We chose these parameters in light of the targeted execu-
tion time for PLAID and the resource restrictions imposed by
the terminal and card hardware. Most notably, in every exe-
cution of the PLAID protocol, the terminal has to perform �

RSA decryptions, which is an expensive cryptographic oper-
ation for a computationally constrained embedded device. 10

10 For 2048-bit RSA decryptions or signatures, [34] reports times of
over 100ms for mobile devices (without cryptographic coprocessor),
while our simulations on an Intel Core i7 2.4 GHz are around 10 ms.

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 651

But since the previous ISO draft aims at an overall protocol
execution time of less than 300ms [18, p. 27], this means
that � cannot be too large.

With these parameters, the binary search approach would
require (10 − 1) · 16 + 10 = 154 interactions to fingerprint
the card. Knowing the highest KeySetID MaxID, this can
be further optimized to (10 − 1) · log(5000) + 10 ≈ 121
interactions using the binary search with known maximum.

4.3 Potential countermeasures against our attack

As the keyset fingerprinting attack relies heavily on the
malleability of the initial KeySetIDs message sent by the
terminal, tamper-protecting this message is the obvious way
to prevent this attack. One potential and immediate remedy
to detect and to prevent tampering with the initial message
would be to let the ICC include a hash value of theKeySetIDs
value in the plaintext of STR1. The terminal could then check
whether the ICC obtained the unmodified initial message by
comparing the hash value that it receives with the hash of
the original KeySetIDs value. However, a rigorous analysis
would be required to put this idea on a profound foundation.
More importantly, this modification would also essentially
rely on STR1 being integrity protected, which is not the case
in PLAID as we discuss in the next section.

5 Further security considerations

Here we discuss further security considerations and mainly
the secrecy of the established keys which, according to the
standard, can be optionally used “as a secure messaging, ses-
sion or encryption key in subsequent sessions.”We also point
out that the design of PLAID deviates in several ways from
good cryptographic practice. We observe that some of these
issues have already been pointed out in the comments [21]
on the previous ISO draft version [18].

5.1 Forward (in)security

Forward security [2] demands that one cannot recover session
keys generated in the past, even if the long-term secrets of a
party become known. In the case of PLAID, the long-term
secrets correspond to the secret RSA keys and the FAKey on
the terminal side, and to the public RSA keys, DivData, and
the diversified keys FAKey(Div) on the card side. The loss of
keys of either party immediately reveals all past session keys,
and also of future sessions, even if they are executed honestly
between the parties and the adversary merely observes these
execution traces. Furthermore, revealing a card’s secrets also
allows the identification, a posteriori, of traces belonging to
that card and so breaches privacy in this sense.

Assume first that a terminal’s long-term secrets become
known to the adversary and consider the trace of an execution
between this terminal with an arbitrary card: the adversary
can, analogously to the genuine server, try to decrypt the
ciphertext encrypting string eSTR1 under all possible RSA
private keys of the terminal, until it succeeds with one key.
It then obtains DivData, hence can compute FAKey(Div) by
executing AESFAKeyEncrypt(DivData) and then decrypt

eSTR2 sent
by the honest terminal to recover the session key KeysHash.

Next, suppose that the adversary gets hold of the diver-
sification data DivData and the diversified key FAKey(Div)

of a card. It can then try to decrypt eSTR2 with this key to
obtain some candidate KeysHash for the session key. The
adversary can verify the validity of this candidate by check-
ing that eSTR3 decrypts under the candidate key to the given
DivData. This way, the adversary is able to identify traces
belonging to the specific card and to determine correct ses-
sion keys of the card.

Most importantly, any such breach would lead to the dis-
closure of the payload data which may be highly sensitive
(for example, a user’s biometric data).

5.2 Key (in)security in the Bellare–Rogaway model

The PLAID protocol specifies the option of reusing the
negotiated session keyKeysHash for subsequent secure com-
munication.We comment on possible consequences of doing
so. Our starting point is the widely used Bellare–Rogaway
(BR) security model [1] for key exchange protocols. This
model demands that all session keys should look random to
the adversary. Neglecting technical details, this is formalized
by presenting the adversary either the genuine session key
or an independent random key and challenging it to decide
which is the case. This immediately requires of a protocol
that its session keys are not themselves used in a trivial way
in the key exchange steps; otherwise, the adversary can try
to test the given key against a protocol execution trace. In
the specific case of PLAID, the adversary can try to decrypt
eSTR3 with the given key and will recover a meaningful
plaintext with overwhelming probability if and only if this
key equals the genuine key KeysHash. Thus, PLAID cannot
achieve security in the BR model.

Note that the lack of security in the BR sense does not nec-
essarily imply that a protocol is insecure. Itmerelymeans that
other models must be used to assess its security. PLAID is
not unique in this respect: a prominent example of a protocol
not achieving BR security is TLS up to version 1.2, leading
researchers to investigate various alternative security evalu-
ations [4,6,17,22,30]. The usage of the session key in the
exchange step is often alleviated by the fact that messages in
this part and in the channel protocol differ in format, e.g., if a
counter value is used and incremented with each application.

123

652 J. P. Degabriele et al.

This form of “domain separation,” however, is not necessar-
ily given in case of PLAID, because the subsequent channel
message format has not been specified.

Interestingly, PLAID could easily avoid the problemswith
the session key being used in the key exchange phase. Recall
that the session key KeysHash for AES (with 128 bits) is
derived as the first 128 bits of the value SHA-256(RND1 ‖
RND2). Since the hash value has 256 bits, one could eas-
ily use the remaining 128 bits as the AES-128 key for the
final message in the key exchange step and then switch to
KeysHash as before in the channel protocol. In the original
protocol, the card in some sense demonstrates knowledge
of FAKey(Div) by being able to decrypt the terminal’s mes-
sage and answer under the derived key. This would still be
true with the proposed modification. Note however that this
modification still requires a formal security treatment.

5.3 On the applicability of Bleichenbacher’s attack

Recall that PLAID uses PKCS#1 v1.5 padding for RSA
encryption. The accompanying protocol description [7]
argues that there is no need to use OAEP padding, because
“PLAIDdoesn’t expose themodulus or any otherRSAprimi-
tive” and that “there is a significant performance advantage in
using PKCS#1 v1.5 padding.” While we do not feel inclined
to comment on the performance-related issue, the first part
of the argument is debatable in light of the fact that expo-
sure of a card’s secrets does reveal the public keys. Further,
our attacks in the previous sections show that some informa-
tion about the moduli is revealed, and the exponent e may
be fixed. We note that the comments section in the previous
ISO version of PLAID [18] also asks for investigations of the
possibility of mounting Bleichenbacher’s attack.

Once the RSA public key is known, one can in principle
mount Bleichenbacher’s attack [5] on PKCS# v1.5 padding.
In this attack, the adversary takes a ciphertext c ∈ Z

∗
N of some

unknown padded message m and “shifts” the message by
multiplying cwith a random se mod N .With sufficiently high
probability, the derived “message” smmod N is PKCS#1
v1.5 padding compliant. The adversary could thus potentially
deduce information about m in case of an error message 11

indicating correct or incorrect padding, and given sufficiently
many error messages, recover m. The attack has been signif-
icantly improved in a series of papers, e.g., [23,31].

For PLAID, the message format carries some redundancy
in terms of repeating RND1. Therefore, the shifted message
smmod N may not be accepted by the terminal, indepen-
dently of the padding. However, the detailed behavior in
the end is implementation specific. For example, the cur-

11 The protocol explicitly notes that no errormessages should be issued,
but wrong implementations or side-channel attacks may reveal such
information.

rent implementation is based on the JavaCard framework and
the decryption procedure of PKCS#1 v1.5 merely throws an
exception in case of incorrect padding and leaves it up to the
higher-level program to treat this exception.

5.4 CBC-mode encryption

PLAID proposes to use CBC-mode encryption based on
AES. The standard explicitly demands that the initialization
vector IV is set to the all-zero string for both eSTR2 (from
the terminal to the card) and eSTR3 (from the card to the ter-
minal). This usage does not conform with standard practice,
which demands the use of random IVs to achieve security
against chosen plaintext attacks. As remarked before, the
PLAID specification states that padding is only applied “if
necessary” and is thus not compliant with ISO/IEC 9797-1
padding method 2, where padding is always applied. Indeed,
this imprecision makes the standard unimplementable as
currently specified, since there will be cases arising during
decryptionwhere it is not possible to discernwhether padding
should be removed or not. It is well known that CBC-mode
encryption is especially vulnerable to padding oracle attacks
[40] and that careful implementation is needed to avoid them.
The lack of precision in this aspect of the PLAID specifica-
tion does not bode well.

It is also now well understood in the cryptographic com-
munity that CBC-mode encryption does not offer sufficient
integrity guarantees on its own to provide adequate security
against active attacks. The usual solution is to add explicit
integrity protection through the application of a MAC algo-
rithm to the CBC-mode ciphertext. PLAID does not do so,
and a justification for why this lack of integrity does not
endanger security was requested in the comments of the pre-
vious ISO standard draft [21], but was not addressed in the
latest version [19].

PLAID does offer mild forms of plaintext integrity. For
example, STR2 contains the session keyKeysHash computed
as the hash of RND1 ‖RND2,while STR3 contains DivData.
These elements can be checked for after decryption by the
relevant party, and this would detect some forms of adver-
sarial plaintext manipulation through simple bit flipping in
the corresponding ciphertexts eSTR2 and eSTR3. However,
it is easy to see that an attacker can still manipulate other
fields in STR2 and STR3 by bit flipping in ciphertexts (even
with a fixed IV). While this lack of integrity has not led us to
the discovery of specific attacks on PLAID, it is a worrying
feature that could be easily avoided through the application
of mainstream cryptographic design principles.

5.5 Entity authentication

Note that both parties, IFD (reader) and ICC (card), basi-
cally authenticate one another by proving knowledge of a

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 653

secret key. For the terminal, this is done via the secret RSA
key, whereas the card uses its unique DivData and there-
fore unique key FAKey(Div) = AESFAKeyEncrypt(DivData). The
standard mechanism to do so would be either to compute
a signature or a message authentication code for a random
challenge, or to return, in clear, a nonce encrypted under the
party’s key.

PLAID follows the encryption-based approach. Yet the
usual security argument for this type of authentication
requires chosen-ciphertext security for the deployed encryp-
tion scheme. PLAID, on the other hand, uses two encryption
schemes which are known not to provide this level of secu-
rity, i.e., RSA-PKCS#1 v1.5 andplainAES-CBCencryption.
This does not mean that the protocol is insecure and does not
provide any form of entity authentication. However, one can-
not infer security from known results but would instead need
carefully constructed de novo arguments.

5.6 Payload insecurity

During the ISO standardization process, the PLAID protocol
was changed to introduce anoptional payloadfield in the third
protocol message and the second message from the IFD to
the card (see Step 5 in Fig. 1) [18]. The standard motivates
the purpose of this payload field—this field should not be
confusedwith the payloadfield in the lastmessage by the card
in Step 7 (Fig. 1)—for scenarios where, for example, a user
enters a PIN and the verification should be done on the card.
In this case, the PIN is to be sent to the cardwithin the payload
field [19, AnnexG]. The problem is that sensitive information
send by the IFD can always be intercepted via a simple man-
in-the-middle attack, assuming an adversary has corrupted
an arbitrary card. Breaking a card allows the attacker to learn
the diversified FAKey(Div) of the card, the card’s DivData
field as well as the public part of one (or more) IAKeys.
Thus, an adversary can simply replace the second message
during an honest execution with one corresponding to the
broken card. This will lead to the IFD encrypting the third
message under the FAKey(Div) of the broken card, and hence,
if a PIN (or any other payload) is included, the adversary
can trivially learn it by a simple decryption operation. Note
that this problem is not due to the payload being sent in the
third message, but that a user, when entering a PIN, cannot
tell whether or not the terminal is actually communicating
with his/her card. Therefore, PIN comparison on the card
as proposed [19, AnnexG] is generically insecure due to the
given attack scenario.

5.7 On the impossibility of key revocation

Although PLAID uses a public-key encryption system (i.e.
RSA) during the initial authentication phase, the overall setup

resemblesmore a symmetric settingwhere all static keys used
by parties are exchanged during system setup (abstracting
away the diversification procedure of PLAID). As a conse-
quence, it is not possible to revoke any compromised keys
within PLAID. In order to exemplify the resulting conse-
quences, assume that an attacker is able to break into an IFD
(terminal). The IFD contains a list of IAKeys and a list of
FAKeys which thereby are revealed to the attacker. With this
information, the attacker can generate arbitrary new cards
with the capabilities of any of the KeySetIDs known by the
broken IFD. Furthermore, there is no way to revoke the com-
promised keys in the system without issuing new cards, as
the keys known by IFDs are hardcoded into the cards. Thus,
even the break of a single IFD can lead to an entire PLAID
setup becoming insecure.

5.8 Key legacy attack

A key legacy attack is related to the same issues allowing for
the keyset fingerprinting attack, namely the lack of authen-
tication in the list of keys used by a card and a terminal to
establish a connection. Recall that the protocol specifies that
the first commonly shared key in the list has to be used, even
if there are other shared keys. This means that an adversary
could force the card to use one particular key (among those
supported by both card and terminal) by reordering the list
of keys sent by the terminal in a man-in-the-middle fashion.
This could be dangerous in case one or more of the keys
in the system are compromised, or turn out to provide infe-
rior security for any reason, even if the use of these keys is
de-prioritized (e.g., by having the terminals set them always
last in order of preference). We note that this type of attack
was already mentioned in the national body comments to the
first ISO draft [21], but remained unconsidered in the current
version [19].

6 Responses of the ISO authority regarding
technical aspects

Wecommunicatedour results to both the ISO25185-1project
editor and to a contact person at the Department of Human
Services. Aspects of the e-mail discussion that followed this
communication can be found in a public, written response
from the ISO project editor [15]. We stress, however, that
we disagree with many points in this response, leading us to
produce a statement concerning this response, which is also
publicly available [10].Herewe report on technical aspects of
the authority’s response and leave discussion of other aspects
to the next section, where we focus on our experience of the
ISO standardization process.

The ISOproject editorGraemeFreedmanpointed out to us
[16] (see also [15]) that card identifying informationmay also

123

654 J. P. Degabriele et al.

be available to an adversary by other means, such as through
the so-called Card Production Life Cycle (CPLC) data. The
CPLC data contain information like serial numbers andman-
ufacturers, uniquely identifying cards on a global scale. For
privacy reasons, access to the CPLC data must therefore be
restricted for PLAID. Indeed, the ISO draft standard itself
already mentions this issue: “Consider switching off access
to administrative applications from contactless interfaces,
particularly oneswhich store unique card identification infor-
mation such as the GlobalPlatform Card Production Life
Cycle (CPLC) data.” [19] Our results show, however, that
even if one restricts access to such administrative data, then
PLAID still leaks card and cardholder identifying informa-
tion.

The editor’s response in [15] concerning the ShillKey fin-
gerprinting attack was to persist in insisting that the standard
leaves open the implementation details about the ShillKey
deployment. The report [15] states that “any change required
to eliminate the attack (if desired) is solely up to the imple-
menter/developer, since any implementation of ShillKey is
interoperable with any other and the Standards are actually
mute on howShillKey is implemented and consequently how
it is implemented is not an issue.” We believe that a security-
related standard should not introduce potential attack vectors
by being ambiguous and leaving such important issues to
developers. Otherwise, an implementation could be correct
according to the ISO standard, but vulnerable to the ShillKey
fingerprinting attack from our paper, allowing an attacker to
identify cards.

We could not identify any comment in [15] concerning
our keyset fingerprinting attack.

Most of our concerns presented in Sect. 5 were dismissed
in [15] by stating that they are not supported by concrete
attacks. For example, the lack of forward security of PLAID
was countered in [15] by stating that “the Researchers have
not described a method to obtain the keys in the first place,”
ignoring the fact that forward security exactly deals with the
question of what security guarantees still hold if keys are
leaked. However, the state of the art in cryptographic proto-
col design is now well beyond the approach of assuming that
the absence of attacks is sufficient for judging a protocol to
be sound. Instead, what is expected is rigorous formal analy-
sis, using one or more of a variety of approaches (typically
based on formal methods or the methodology of “provable
security”).

7 A cryptographer’s perspective on the
standardization process of PLAID

In this section,we consider our technical results in the context
of PLAID’s standardization in ISO. While some may argue
that themain purpose of standardization is to provide interop-

erability and to increase productivity, ISO itself lists safety,
reliability, and good quality as additional goals [20,37]. We
view this as a clear indication that cryptographic protocols
considered for ISO standardization should be also assessed
according to their security guarantees.

Assuming one adopts the viewpoint that quality assurance
should be an essential part of standardization, the question
then arises of how this can be best accomplished. Below we
review this question in light of the ISO standardization of
PLAID, from our perspective as cryptographers who first
became interested in the protocol out of scientific curiosity.

7.1 The pre-ISO phase

As already laid out in Sect. 1, the development of PLAID
began in 2006 andwas conducted byCentrelink, an agency of
the Australian government’s Department of Human Services
(DHS). According to the report of PLAID’s ISO project edi-
tor [15] on a preliminary version of this work, PLAID was in
the following years subject to several private reviews, includ-
ing by the Australian Defence Signals Directorate (now
Australian Signals Directorate), the US National Institute
of Standards and Technology (NIST), as well as by com-
mercial vendors and workshops [hosted by the Australian
DHS, NIST, Microsoft’s security team, and the Asia Pacific
Smart CardAssociation (APSCA)]. To the best of our knowl-
edge, there are no publicly available results on the security
of PLAID originating from these events.

Notwithstanding the above, we do think that a crypto-
graphic protocol like PLAID which is supposed to become
a national, or even an international standard, should receive
thorough review by experts and that the results should be
made public. Indeed, Centrelink’s smart card architect in an
interview in 2009 [35] agreed that “any cryptographic algo-
rithm […] which is supposed to be used for high security
applications needs to be open and needs to be reviewed by
the wider cryptographic community.” Much to our surprise
he continued by saying

PLAID isn’t a cryptographic algorithm, it’s a protocol.
PLAID […] uses two cryptographic algorithms [RSA
and AES]. […] So, the actual cryptographic exchange
[…] is based on two well established, well reviewed
and considered secure algorithms […].

While indeed PLAID is a protocol and not an algorithm,
this does not obviate the need for a thorough (public) review.
Indeed, our analysis here shows that equal care has to be taken
when combiningwell-studied cryptographic algorithms (like
RSAorAES) into a higher-level protocol. PLAID is not alone
in this respect. For example, the long history of attacks on the
most prominent cryptographic protocol to date, the Transport
Layer Security (TLS) protocol [14], shows how delicate the

123

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 655

process of combining well-understood cryptographic primi-
tives into a larger-scale protocol can be.

In 2010, PLAID was standardized as Australian standard
AS 5185-2010 [38].

7.2 The ISO standardization process

In 2012, PLAID entered the ISO/IEC standardization process
via the fast-track procedure as draft international standard
(DIS) 25185-1 [18]. Inside ISO, working group WG 4 (Inte-
grated circuit card with contacts) of subcommittee SC 17
(Cards and personal identification) within the Joint Techni-
calCommittee JTC1 (Information technology)was entrusted
with handling the standardization process. Given the neces-
sary focus on the specification of a cryptographic protocol,
we would suggest that cryptographic protocols like PLAID
be assigned to cryptography-relatedworking groups too, e.g.,
WG2 (Cryptography and security mechanisms) of SC27 (IT
security techniques), in order to ensure a thorough examina-
tion of their cryptographic mechanisms.

The current ISO/IEC draft international standard version
25185-1.2 [19] was put forth in 2014 and incorporated minor
changes to the original protocol for the purpose of alignment
with other ISO standards. More important, in our opinion,
were the changes and improvements requested in various
formal comments made by several national bodies on the
initial DIS that, as already mentioned in Sect. 5, were not
resolved in version 25185-1.2.

For example, concerns that not authenticating the first
message could lead to undetected manipulation of the
KeySetIDs sent in that message were dismissed as an imple-
mentation issue. Our keyset fingerprinting attack (cf. Sect. 4)
in contrast shows how to exploit this unauthenticated mes-
sage to generically determine a card’s capabilities, severely
damaging the privacy properties of PLAID. In another case,
CBC-mode encryption was wrongly claimed to providemes-
sage integrity, despite being otherwise noted and criticized
in national body comments. Furthermore, remarks that there
are no results indicating that RSA public keys cannot be
recovered from RSA ciphertexts were written off with the
irrelevant argument that, despite that concern, RSA is in use
inmost public-key infrastructures and also in TLS—ignoring
that in the latter cases the public keys used are indeed made
public and do not have to be kept secret for privacy reasons
as is the case in PLAID. It turns out that these concerns were
justified: RSA public keys can be accurately estimated from
ciphertexts, and this directly allows our ShillKey fingerprint-
ing attack (cf. Sect. 3) to trace cards and break their privacy.
Finally, one editor comment challenged the usefulness of
security proofs—demanded by some national bodies as a
security guarantee—merely because RSA itself has no such
security proof. We feel that such reasoning disregards the
cryptographic community’s substantial progress in establish-

ing reliable frameworks for the analysis of security protocols
over the last two decades.

Conducting this work as outsiders to the ISO standard-
ization process, we received the impression that current
procedures at ISO are not very amenable to encouraging pub-
lic comments, e.g., from the academic community. Indeed,
we took notice of the PLAID protocol and its status in the
standards track by mere coincidence and had to first pur-
chase the current DIS version in order to be able to begin
investigating the protocol. After the completion of our analy-
sis, we again struggled to find a formal mechanism to report
our results back into the ISO process. Eventually, the kind
facilitation of, in particular, German and UK national stan-
dardization body members enabled our findings to be taken
into account in follow-up ISO discussions. Despite this coop-
eration, we still found it difficult to stay abreast of ongoing
developments in PLAID’s standardization, since the results
of those discussions again remained inaccessible to the pub-
lic.

We believe that a process that is more open toward pub-
lic comment, especially by the academic community, would
have the potential to result in a broader and more thorough
examination of standards-track cryptographic algorithms and
protocols. Prime examples of such processes are those fol-
lowed by the Internet Engineering Task Force (IETF) in the
development of widely deployed security protocols such as
TLS and IPsec, and those adopted by NIST when develop-
ing the Advanced Encryption Standard (AES) and the new
hash function standard SHA-3. Emphasizing this point,NIST
recently announced its intention to open up its cryptography
standardization processes even further and plans to handle
public comments in a consistent, public, and accountable
manner, seeking an even more extensive exchange with the
academic community [27,33].

7.3 The aftermath of our work

At the time of writing, the ISO/IEC DIS [19] of PLAID is
still in the “Enquiry stage” 40.60 (close of voting), as it was
when we initially began our analysis. A preliminary version
of this work, made public in September 2014 [12], has in
the meantime been considered in discussions at several ISO
JTC 1/SC 17/WG 4 meetings. We are, however, at this point
in time unaware of any final decision having been taken on
the ISO/IEC DIS of PLAID and, hence, its future as an ISO
standard.

Besides gaining some attention at ISO and in the wider
public arena, ourworkwas in particular commented on by the
Australian and ISO/IEC standard project editor for PLAID.
The report produced by the project editor [15] claims to
reveal errors in our work that render the described attacks
both “mute” and “easily preventable.” It also claims to iden-
tify mis-definitions and made-up privacy notions. We do not

123

656 J. P. Degabriele et al.

wish to reiterate our view on that report here beyond the tech-
nical comments already made in Sect. 6, but instead refer the
interested reader to our official response [10] in which we
clarify why our concerns remain unchanged.

8 Conclusion

Our results show that PLAID has significant privacy weak-
nesses. The shill key attack and the keyset fingerprinting
attack reveal card identifying information and, via access
authorizations, information about the cardholder. As for
entity authentication and the secrecy of established keys
for subsequent communication, in several places the design
of PLAID follows some uncommon strategies and reveals
potential attack vectors, such as the lack of forward security.
The case of PLAID also shows that standards should specify
details thoroughly, in order to avoid vulnerable implementa-
tions. An example here is the ISO/IEC 9797-1 non-compliant
CBC padding in PLAID, which potentially enables padding
attacks (see our remark in Sect. 5).

We do not recommend the indiscriminate usage of PLAID
in its current form, especially not for privacy-critical sce-
narios. While our proposed countermeasures seem to thwart
our attacks on privacy, a more comprehensive analysis of
the protocol in light of clearly stated security goals would be
necessary. The PLAID description promises that the protocol
should be scrutinized by “the most respected cryptographic
organisations, as well as the broader cryptographic commu-
nity” [7]. Unfortunately, we are not aware of any available
documents in this regard. Indeed, standardization processes
in general would benefit if supporting material, arguing the
security of a proposal, were to be available at the time of
evaluation.

As is, PLAID provides no privacy against active attacks, is
not forward secure, and is ultimately based on symmetric-key
cryptography (setting aside the use of public-key cryp-
tography on top). One might expect that there should be
easier approaches to obtaining secure authentication and key
exchange protocols. Indeed, it seems that this problem and
even approaches offering enhanced privacy have been dis-
cussed for a long time in the RFID community—see, for
example, [25] for an early survey and [8] for a more recent
one. Identifying specific protocol solutions from that area and
discussing their security and efficiency features, however, is
beyond the scope of our analysis of PLAID here.

Acknowledgments We thank Pooya Farshim for his contributions
during the early stages of this paper, Andrew Waterhouse for provid-
ing insights on the ISO standardization process, and the anonymous
reviewers for valuable comments. Marc Fischlin is supported by the
Heisenberg grants Fi 940/3-1 and Fi 940/3-2 of the German Research
Foundation (DFG). Tommaso Gagliardoni and Felix Günther are sup-
ported by the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE. Felix Günther and Giorgia Azzurra Mar-

son are supported by the DFG as part of the CRC 1119 CROSSING.
Giorgia Azzurra Marson and Arno Mittelbach are supported by the
Hessian LOEWE excellence initiative within CASED. Kenneth G.
Paterson and Jean Paul Degabriele are supported by the Engineering
and Physical Sciences Research Council (EPSRC) Leadership Fellow-
ship EP/H005455/1.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribu-
tion. In: CRYPTO 1993, pp. 232–249. Springer Berlin, Hidelberg
(1994)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key
exchange secure against dictionary attacks. In: Eurocrypt 2000,
pp. 139–155. Springer Berlin, Hidelberg (2000)

3. Bellare,M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy
in public-key encryption. In: ASIACRYPT 2001, pp. 566–582.
Springer Berlin, Hidelberg (2001)

4. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.,
Zanella Béguelin, S.: Proving the TLS handshake secure (as it is).
235–255 (2014). doi:10.1007/978-3-662-44381-1_14

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. 1–12 (1998)

6. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams,
S.C.: Less is more: relaxed yet composable security notions for
key exchange. Int. J. Inf. Secur. 12(4), 267–297 (2013)

7. Centrelink: Protocol for Lightweight Authentication of Identity
(PLAID)—Logical Smartcard Implementation Specifica-
tion PLAID Version 8.0—Final. http://www.humanservices.
gov.au/corporate/publications-and-resources/plaid/technical-
specification (2009)

8. Coisel, I., Martin, T.: Untangling RFID privacymodels. J. Comput.
Netw. Commun. doi:10.1155/2013/710275

9. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mit-
telbach, A., Onete, C.: A cryptographic analysis of OPACITY—
(extended abstract). pp. 345–362 (2013). doi:10.1007/978-3-642-
40203-6_20

10. Degabriele, J.P., Fehr, V., Fischlin, M., Gagliardoni, T., Günther,
F., Marson, G.A., Mittelbach, A., Paterson, K.G.: Response to
“Nit-Picking PLAID AS & ISO Project Editors Report into
‘Unpicking Plaid’ ”. Cryptology ePrint Archive Forum, http://
www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/
plaid-editorreport-response.pdf (2014)

11. Degabriele, J.P., Fehr, V., Fischlin, M., Gagliardoni, T., Gün-
ther, F., Marson, G.A., Mittelbach, A., Paterson, K.G.: Unpick-
ing PLAID—a cryptographic analysis of an ISO-standards-track
authentication protocol. In: 1st International Conference on
Research in Security Standardisation (SSR 2014). Springer, Lec-
ture Notes in Computer Science, vol. 8893, pp. 1–25 (2014)

12. Degabriele, J.P., Fehr, V., Fischlin, M., Gagliardoni, T., Gün-
ther, F., Marson, G.A., Mittelbach, A., Paterson, K.G.: Unpick-
ing PLAID—a cryptographic analysis of an ISO-standards-
track authentication protocol. Cryptology ePrint Archive, Report
2014/728. http://eprint.iacr.org/ (2014)

13. Department of Human Services: Protocol for Lightweight Authen-
tication of Identity (PLAID). (2014). http://www.humanservices.
gov.au/corporate/publications-and-resources/plaid/

14. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (Proposed Standard). http://www.ietf.
org/rfc/rfc5246.txt, updated by RFCs 5746, 5878, 6176 (2008)

15. Freedman, G.: Nit-Picking PLAID: AS & ISO Project
Editors Report into “Unpicking Plaid”. Cryptology ePrint
Archive Forum. https://dl.dropboxusercontent.com/u/41736374/
UnpickingReport%20V1.pdf (2014)

123

http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/technical-specification
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/technical-specification
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/technical-specification
http://dx.doi.org/10.1155/2013/710275
http://dx.doi.org/10.1007/978-3-642-40203-6_20
http://dx.doi.org/10.1007/978-3-642-40203-6_20
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/plaid-editorreport-response.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/plaid-editorreport-response.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/plaid-editorreport-response.pdf
http://eprint.iacr.org/
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://dl.dropboxusercontent.com/u/41736374/UnpickingReport%20V1.pdf
https://dl.dropboxusercontent.com/u/41736374/UnpickingReport%20V1.pdf

Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol 657

16. Freedman, G.: Personal communication by e-mail (2014)
17. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renego-

tiation. In: ACM Conference on Computer and Communications
Security, pp. 387–398. ACM, New York (2013)

18. ISO: DRAFT INTERNATIONAL STANDARD ISO/IEC DIS
25185–1 Identification cards—Integrated circuit card authentica-
tion protocols—Part 1: Protocol for Lightweight Authentication of
Identity. International Organization for Standardization, Geneva
(2012)

19. ISO: DRAFT INTERNATIONAL STANDARD ISO/IEC DIS
25185-1.2 Identification cards—Integrated circuit card authenti-
cation protocols—Part 1: Protocol for Lightweight Authentication
of Identity. International Organization for Standardization, Geneva
(2014)

20. ISO: Benefits of international standards. (2015). http://www.iso.
org/iso/home/standards/benefitsofstandards.htm

21. ISO 25185–1 Editor (2013) Disposition of comments on ISO/IEC
25185–1 Protocol for a lightweight authentication of devices

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of
TLS-DHE in the standard model. 273–293 (2012)

23. Jager, T., Schinzel, S., Somorovsky, J.: Bleichenbacher’s attack
strikes again: breaking PKCS#1 v1.5 in XML encryption. 752–
769 (2012)

24. Johnson, R.: Estimating the size of a population. Teach. Stat. 16(2),
50–52 (1994). http://www.mcs.sdsmt.edu/rwjohnso/html/tank.pdf

25. Juels, A.: RFID security and privacy: a research survey. IEEE J.
Selected Areas Commun. 24(2), 381–394 (2006)

26. Kaliski, B.: PKCS#1: RSA Encryption Version 1.5. RFC 2313
(1998)

27. Kelsey, J.: Dual EC DRBG and NIST crypto process review. In:
Invited talk at the Real World Cryptography Workshop 2015, Jan-
uary 7–9, London (2015)

28. Kiat, K.H., Run, L.Y.: An analysis of OPACITY and PLAID
protocols for contactless smart cards. Master’s thesis, Naval Post-
graduate School, Monterey (2012)

29. Kline, R.: Improving contactless security is goal of emerging
PLAID project. http://secureidnews.com/news-item/improving-
contactless-security-is-goal-of-emerging-plaid-project/, secureI-
DNews (2010)

30. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS
protocol: a systematic analysis. (2013). doi:10.1007/978-3-642-
40041-4_24

31. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J.: Revisiting
SSL/TLS Implementations: New Bleichenbacher Side Channels
and Attacks. In: 23rd USENIX Security Symposium (USENIX
Security 14), USENIX Association, San Diego (2014). https://
www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/meyer

32. National Institute of Standards andTechnology: Protocol for Light-
weight Authentication of Identity (PLAID) Workshop (2009).
http://csrc.nist.gov/news_events/plaid-workshop/

33. National Institute of Standards and Technology: Cryptographic
Standards and Guidelines Development Process (Second Draft).
National Institute of Standards and Technology Interagency
Report 7977. http://csrc.nist.gov/publications/drafts/nistir-7977/
nistir_7977_second_draft.pdf (2015)

34. Rifà-Pous, H., Herrera-Joancomartí, J.: Computational and energy
costs of cryptographic algorithms on handheld devices. Future
Internet 3(1), 31–48 (2011)

35. Riskybiz: Risky Business 106—Centrelink’s new PLAID auth pro-
tocol. http://risky.biz/netcasts/risky-business/risky-business-106-
centrelinks-new-plaid-auth-protocol (2009)

36. Sakurada, H.: Security evaluation of the PLAID protocol using the
ProVerif tool. http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_
Protocols/25185-1/25185-1_ProVerif.pdf (2013)

37. Sanders, T.: The Aims and Principles of Standardization. Interna-
tional Organization for Standardization—ISO (1972)

38. Standards Australia: AS 5185-2010 Protocol for Lightweight
Authentication of IDentity (PLAID). Standards Australia (2010)

39. Taylor, J.: Centrelink ID protocol still in trial phase. http://
www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-
1339336953/, zDNet (2012)

40. Vaudenay, S.: Security flaws induced by CBC padding - applica-
tions to SSL, IPSEC, WTLS. pp. 534–546 (2002)

41. Watanabe, D.: Security analysis of PLAID. http://crypto-
protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-
1_Scyther.pdf (2013)

123

http://www.iso.org/iso/home/standards/benefitsofstandards.htm
http://www.iso.org/iso/home/standards/benefitsofstandards.htm
http://www.mcs.sdsmt.edu/rwjohnso/html/tank.pdf
http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
http://dx.doi.org/10.1007/978-3-642-40041-4_24
http://dx.doi.org/10.1007/978-3-642-40041-4_24
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
http://csrc.nist.gov/news_events/plaid-workshop/
http://csrc.nist.gov/publications/drafts/nistir-7977/nistir_7977_second_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-7977/nistir_7977_second_draft.pdf
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf

	Unpicking PLAID: a cryptographic analysis of an ISO-standards-track authentication protocol
	Abstract
	1 Introduction
	1.1 The protocol
	1.2 Previous security analyses
	1.3 Our results
	1.4 Interaction with the responsible authorities
	1.5 Note

	2 PLAID protocol description
	2.1 PLAID setup
	2.2 Initial authenticate
	2.3 Final authenticate

	3 Shill-key fingerprinting: tracing cards in PLAID
	3.1 Tracing cards via shill-key ciphertexts
	3.1.1 Simulation results
	3.1.2 Statistical analysis

	3.2 Tracing cards from a mixed set of shill-key ciphertexts
	3.2.1 Simulation results

	3.3 Tracing cards during lunchtime
	3.4 Simulation results
	3.5 Connection to key privacy of RSA encryption
	3.6 Countermeasures to our attacks

	4 Keyset fingerprinting: determining a card's capabilities
	4.1 The attack in a nutshell
	4.2 The attack details
	4.2.1 A practical example

	4.3 Potential countermeasures against our attack

	5 Further security considerations
	5.1 Forward (in)security
	5.2 Key (in)security in the Bellare--Rogaway model
	5.3 On the applicability of Bleichenbacher's attack
	5.4 CBC-mode encryption
	5.5 Entity authentication
	5.6 Payload insecurity
	5.7 On the impossibility of key revocation
	5.8 Key legacy attack

	6 Responses of the ISO authority regarding technical aspects
	7 A cryptographer's perspective on the standardization process of PLAID
	7.1 The pre-ISO phase
	7.2 The ISO standardization process
	7.3 The aftermath of our work

	8 Conclusion
	Acknowledgments
	References

