
Int. J. Inf. Secur. (2017) 16:1–22
DOI 10.1007/s10207-015-0307-8

REGULAR CONTRIBUTION

Double-authentication-preventing signatures

Bertram Poettering1 · Douglas Stebila2

Published online: 12 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Digital signatures are often used by trusted
authorities to make unique bindings between a subject and
a digital object; for example, certificate authorities certify
a public key belongs to a domain name, and time-stamping
authorities certify that a certain piece of information existed
at a certain time. Traditional digital signature schemes how-
ever impose no uniqueness conditions, so a trusted authority
could make multiple certifications for the same subject but
different objects, be it intentionally, by accident, or follow-
ing a (legal or illegal) coercion. We propose the notion of a
double-authentication-preventing signature, inwhich avalue
to be signed is split into two parts: a subject and a mes-
sage. If a signer ever signs two different messages for the
same subject, enough information is revealed to allow any-
one to compute valid signatures on behalf of the signer. This
double-signature forgeability property discourages signers
frommisbehaving—a form of self-enforcement—and would
give binding authorities like CAs some cryptographic argu-
ments to resist legal coercion.We give a generic construction
using a new type of trapdoor functions with extractability
properties,whichwe showcanbe instantiated using the group
of sign-agnostic quadratic residues modulo a Blum integer;
we show an additional application of these new extractable
trapdoor functions to standard digital signatures.

B Bertram Poettering
bertram.poettering@rub.de

Douglas Stebila
stebila@qut.edu.au

1 Ruhr University Bochum, Bochum, Germany

2 Queensland University of Technology, Brisbane, QLD,
Australia

Keywords Digital signatures · Double signatures ·
Dishonest signer · Coercion · Compelled certificate creation
attack · Self-enforcement · Two-to-one trapdoor functions

Mathematics Subject Classification 94A60 Cryptography

1 Introduction

Digital signatures are used in several contexts by authorities
who are trusted to behave appropriately. For instance, cer-
tificate authorities (CAs) in public key infrastructures, who
assert that a certain public key belongs to a party with a
certain identifier, are trusted to not issue fraudulent certifi-
cates for a domain name; time-stamping services, who assert
that certain information existed at a certain point in time, are
trusted to not retroactively certify information (they should
not “change the past”).

In both of these cases, the authority is trusted to make a
unique binding between a subject—a domain name or time—
and a digital object—a public key or piece of information.
However, traditional digital signatures provide no assurance
of the uniqueness of this binding. As a result, an authority
could make multiple bindings per subject.

Multiple bindings per subject can happen due to several
reasons: poor management practices, a security breach, or
coercion by external parties. Although there have been a few
highly publicized certificate authority failures due to either
poor management practices or security breaches, the vast
majority of certificate authorities seem to successfully apply
technological measures—including audited key generation
ceremonies, secret sharing of signing keys, and use of hard-
ware security modules—to securely and correctly carry out
their role.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0307-8&domain=pdf

2 B. Poettering, D. Stebila

However, CAs have few tools to resist coercion, espe-
cially in the form of legal demands from governments. This
was identified by Soghoian and Stamm [40] as the compelled
certificate creation attack. For example, a certificate author-
ity may receive a national security letter compelling it to
assist in an investigation by issuing a second certificate for
a specified domain name but containing the public key of
the government agency, allowing the agency to impersonate
Internet services to the target of the investigation. Regardless
of one’s opinions on the merits of these legal actions, they
are a violation of the trust promised by certificate author-
ities: to never issue a certificate to anyone but the correct
party. The extent to which legal coercion of CAs occurs is
unknown; however, there are indications that the technique
is of interest to governments. A networking device company
named Packet Forensics sells a device for eavesdropping on
encrypted web traffic in which, reportedly, “users have the
ability to import a copy of any legitimate key they obtain
(potentially by court order)”.1 Moreover, various documents
released by NSA contractor Edward Snowden in disclosures
in June–September 2013 indicate government interest in exe-
cuting man-in-the-middle attacks on SSL users.2

Twocertificates for the samedomain signedbya singleCA
indeed constitute a cryptographic proof of fraud. However,
in practice, it is currently up to the “market” to decide how to
respond: the nature of the response depends on the scope and
nature of the infraction and the CA’s handling of the issue.
The consequences that have been observed from real-world
CA incidents range from minimal, such as the CA revoking
the extra certificates amid a period of bad publicity (as in
the 2011 Comodo incident3), up to the ultimate punishment
for a CA on the web: removal of its root certificate from
web browsers’ lists of trusted CAs (as in the 2011 DigiNotar
incident [20], which was found to have issued fraudulent
certificates that were used against Iranian Internet users [23],
and which lead to the bankruptcy of DigiNotar).

For a CA making business decisions on management and
security practices, such consequences may be enough to con-
vince the CA to invest in better systems. For a CA trying to
resist a lawful order compelling it to issue a fraudulent cer-
tificate, however, such consequences may not be enough to
convince a judge that the CA should not be compelled to
violate the fundamental duty with which it was entrusted.

1.1 Contributions

We propose a new type of digital signature scheme for which
the consequences of certain signer behaviours are unam-

1 http://www.wired.com/threatlevel/2010/03/packet-forensics/
2 https://www.schneier.com/blog/archives/2013/09/new_nsa_
leak_sh.html
3 http://comodo.com/Comodo-Fraud-Incident-2011-03-23.html

biguous: any double signing, for any reason, leads to an
immediate, irreversible, incontrovertible loss of confidence
in the signature system. On the one hand, this “fragility” pro-
vides no room formistakes but, on the other hand, encourages
“self-enforcement” of correct behaviour and allows a signer
to make a more compelling argument resisting lawful coer-
cion. If a CA fulfils a request to issue a double signature
even to a lawful agency, the agency, by using the certificate,
enables the attacked party to issue arbitrary certificates as
well.

In a double-authentication-preventing signature (DAPS),
the data to be signed are split into two parts: a subject and
a message. If a signer ever signs two messages for the same
subject, then enough information is revealed for anyone to be
able to forge signatures on arbitrary messages, rendering the
signer immediately and irrevocably untrustworthy. Depend-
ing on the nature of the subjects, in some applications an
honest signer may need to track the list of subjects signed to
avoid signing the same subject twice.

In addition to unforgeability, we require one of two new
security properties for DAPS: double-signature forgeabil-
ity, where a signer who signs two messages for the same
subject reveals enough information for anyone to sign arbi-
trarymessages, and a stronger notion called double-signature
extractability, where two signatures on the same subject
allow full recovery of the signing key.

We give a generic construction for DAPS based on a new
primitive called extractable two-to-one trapdoor function
which allows anyone, given two preimages of the same value,
to recover the trapdoor required for inverting the function.
We show how to construct these functions using the group
of sign-agnostic quadratic residues modulo a Blum integer
(RSA modulus), an algebraic reformulation of a mathemati-
cal construction that has been used in several cryptographic
primitives. The resulting double-authentication-preventing
signature scheme is efficient; with 1024-bit signing and ver-
ification keys, the signature size is about 20KiB, and the
runtime of our implementation using libgcrypt is about 0.3 s
for signing and 0.1 s for verifying. Note that in applications
such as PKI, signing happens rarely, and verifications may
be cached.

Our quadratic residue-based construction provides
double-signature extractability in what we call the trusted
set-up model, where it is assumed that the signer follows
the correct procedure for key generation. This model is
suitable for scenarios where signers want to be honest and
create their keys with best intention—andwe hopemost CAs
belong to this group, facing coercive requests only after they
have completed set-up. Our construction can be translated
to the untrusted set-up model, where parties do not have
to trust the signer to generate keys following the scheme
specification, using zero-knowledge techniques for proving
well-formedness of the verification key.

123

http://www.wired.com/threatlevel/2010/03/packet-forensics/
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
http://comodo.com/Comodo-Fraud-Incident-2011-03-23.html

Double-authentication-preventing signatures 3

We also show how to use extractable two-to-one trap-
door functions to construct tightly secure standard digital
signatures, demonstrating the utility of extractable two-to-
one trapdoor functions beyond our immediate application of
DAPS.

1.2 Outline

We recall some notation and standard definitions in Sect. 2.
We define a double-authentication-preventing signature in
Sect. 3 and its unforgeability as well as double-signature
forgeability and double-signature extractability properties.
We introduce in Sect. 4 extractable 2:1 trapdoor functions,
and as a warm-up we show in Sect. 5 how to construct a
tightly secure standard digital signature scheme. We provide
a factoring-based instantiation of extractable 2:1 trapdoor
functions in Sect. 6 using sign-agnostic quadratic residues.
In Sect. 7, we generically construct a DAPS scheme from
extractable 2:1 trapdoor functions and prove the scheme’s
security and double-signature extractability in the trusted
set-up model, as well as discuss its use with untrusted set-
up. Sect. 8 examines applications of DAPS to certification
and time-stamping authorities. We conclude in Sect. 9. The
appendices contain a review of basic results from number
theory (“Appendix 1”), a construction of a random oracle
that maps into the group of sign-agnostic quadratic residues
(“Appendix 2”), and proofs of results from the main body
(“Appendix 3”).

1.3 Related work

Certificate auditing and other techniques.Mechanisms such
as Certificate Transparency4 and others aim to identify mali-
cious or incorrect CA behaviour by collecting and auditing
public certificates. Incorrect behaviour, such as a CA issuing
two certificates for the same domain name, can be identi-
fied and then presented as evidence possibly leading to a loss
of trust. DAPS differs in that it provides an immediate and
irrevocable loss of confidence and, importantly, provides a
completely non-interactive solution. Recently, several dis-
tinct technical measures [19,26,35] have been proposed to
try to wrest some trust decisions away from CAs, for exam-
ple by allowing websites to make assertions to users about
what certificates to accept in the future.

Self-enforcement and traitor tracing. Dwork et al. [18]
introduced the notion of self-enforcement in cryptography,
in which the cryptosystem is designed to force the user to
keep the functionality private, that is, to not delegate or trans-
fer the functionality to another user. There are a variety of
techniques for ensuring self-enforcement: trade-offs in effi-
ciency [18] or by allowing recovering of some associated

4 http://www.certificate-transparency.org/

secret value with any delegated version of the secret infor-
mation [13,28,31]. Broadcast encryption schemes often aim
for a related notion, traitor tracing [12], in which the broad-
caster aims to detect which of several receivers have used
their private key to construct and distribute a pirate device;
typically, the broadcaster can identify which private key was
leaked. DAPS differs from this line of research in that it does
not aim to deter delegation or transferring of keys; rather it
aims to deter a single party from performing a certain local
operation (double signing).

Accountable IBE. Goyal [24] aimed to reduce trust in the
key generation centre (KGC) in identity-based encryption:
How can a user demonstrate that the KGC created a second
key for the user’s identity? In accountable IBE, the key gener-
ation protocol between the user and theKGC results in one of
a large number of possible keys being generated, and which
one is generated is unknown to the KGC. Thus if the KGC
issues a second key, it will with high probability be different,
and the two different keys for the same identity serve as a
proof that the KGC misbehaved. This effectively allows IBE
to achieve the same level of detection as normal public key
infrastructures: two certificates for the same subject serve as
a proof that the CA misbehaved. However, neither approach
has the stronger level of deterrence offered by DAPS: double
signing leads to an immediate and irrevocable loss of confi-
dence, rather than just proof ofmisbehaving for consideration
of prosecution.

Digital cash.Digital cash schemes [11] often aim to detect
double-spending: a party who uses a token once maintains
anonymity, but a partywho uses a token twice reveals enough
information for her identity to be recovered and traced.DAPS
has some conceptual similarities, in that a party who signs
twomessages with the same subject reveals enough informa-
tion for her secret key to be recovered. In both settings, double
operations leak information, but double-spending in digital
cash typically leaks only an identity, whereas double signing
in DAPS leaks the signer’s private key. It is interesting to
note that the number-theoretic structures our DAPS scheme
builds on are similar to those used in early digital cash to
provide double-spending traceability [11]: both schemes use
RSA moduli that can be factored if signers/spenders misbe-
have. However, there does not seem to be a direct connection
between the primitives.

One-time signatures. One-time signatures, first proposed
by Lamport using a construction based on hash func-
tions [32], allow at most one message to be signed. Many
instances can be combined using Merkle trees [33] to allow
multiple signatures with just a single verification key, but key
generation time becomes a function of the total number of
signatures allowed.

Double-authentication-preventing signatures are funda-
mentally different from one-time signatures: in DAPS, the
number of messages to be signed need not be fixed a pri-

123

http://www.certificate-transparency.org/

4 B. Poettering, D. Stebila

ori, and our construction relies on number-theoretic trapdoor
functions, rather than solely hash functions. A natural first
attempt at creating aDAPS scheme is to begin with aMerkle-
tree construction, in which each subject identifies a path from
the root to a leaf and hence which keys must be used to sign
the message. However, this requires a key generation time
at least linear in the size of the subject space and therefore
limits the size of the latter. Moreover, in such a scheme two
signatures under the same subject do not immediately lead
to the ability to forge signatures on arbitrary messages. Our
scheme allows for arbitrary subject spaces and has efficient
key generation time, so we leave the construction of a tree-
based DAPS as an open problem.

Fail-stop signatures. Fail-stop signatures considered in [7,
38,43–45] allow a signer to prove to a judge that a forgery
has occurred; a signer is protected against cryptanalytic
attacks by even an unbounded adversary. Verifiers too are
protected against computationally bounded signers who try
to claim a signature is a forgery when it is not. When a
forgery is detected, generally the security of the scheme col-
lapses, because some secret information can be recovered,
and so the security of previous signatures is left in doubt.
Forgery-resilient signatures [34] aim to have similar proper-
ties to fail-stop signatures—the ability for a signer to prove
a cryptanalytic forgery—but discovery of a forgery does not
immediately render previous signatures insecure. Both fail-
stop and forgery-resilient signatures focus on the ability of
an honest signer to prove someone else has constructed a
forgery,whereasDAPS is aboutwhat happenswhen adishon-
est or coerced signer signs twomessages for the same subject.

Chameleon hash functions. Chameleon hash functions
[30] are trapdoor-based and randomized. Hashing is collision
resistant as long as only the public parameters are known.
However, given the trapdoor and the message-randomness
pair used to create a specific hash value, a collision for that
value can be efficiently found. Some constructions allow the
extraction of the trapdoor from any collision [1,10,41]. How-
ever, it remains open how DAPS could be constructed from
Chameleon hash functions.

2 Preliminaries

In this section, we introduce some notation and recall some
standard cryptographic definitions.

Notation. If S is a finite set, let U (S) denote the uniform
distribution on S and x ←R S denote sampling x uniformly
from S. If A and B are two probability distributions, then
notation A ≈ B denotes that the statistical distance between
A and B is negligible. IfA is a (probabilistic) algorithm, then
x ←R AO(y) denotes running A with input y on uniformly
random coins with oracle access toO, and setting x to be the
output. For a given x , we writeAO(y) ⇒ x for the event that

Aoutputs x .Weuse the notationA(y; r) to explicitly identify
the random coins r on which the otherwise deterministic
algorithm A is run.

Definition 1 (Pseudorandom function) A pseudorandom
function (PRF) with output length c is a family F = (Fλ)λ∈N
of efficient functions Fλ : {0, 1}λ × {0, 1}∗ → {0, 1}c. It is
secure if the advantage Adv prf

F,D(λ) of any efficient distin-
guisher D is a negligible function in λ, where we define

Adv prf
F,D(λ) :=

∣
∣
∣Pr

[

ϕ ←R Func{0,1}∗→{0,1}c : Dϕ ⇒ 1
]

−Pr
[

K ←R {0, 1}λ : DFλ(K ,·) ⇒ 1
]∣
∣
∣

anddenotewith Func{0,1}∗→{0,1}c the set of all functionsmap-
ping domain {0, 1}∗ to range {0, 1}c.
Definition 2 (Signature scheme) A signature scheme is a
tuple of efficient algorithmsΣ = (KGen,Sign,Ver) as fol-
lows:

– KGen(1λ): On input security parameter 1λ, this algo-
rithm outputs a signing key sk and a verification key vk.

– Sign(sk,msg): On input signing key sk and message
msg ∈ {0, 1}∗, this algorithm outputs a signature σ .

– Ver(vk,msg, σ): On input verification key vk, message
msg ∈ {0, 1}∗, and candidate signature σ , this algorithm
outputs either 0 or 1.

Definition 3 (Correctness) Signature schemeΣ is correct if,
for allλ ∈ N, for all key pairs (sk, vk) ←R KGen(1λ), for all
msg ∈ {0, 1}∗, and for all signatures σ ←R Sign(sk,msg),
we have that Ver(vk,msg, σ) = 1.

Definition 4 (Existential unforgeability) A signature
schemeΣ is existentially unforgeable under adaptive chosen
message attacks if the success probability Succ EUF

Σ,A(λ) :=
Pr[Exp EUF

Σ,A(λ) = 1] in the EUF experiment of Fig. 1 is a
negligible function in λ, for all efficient adversaries A.

ExpEUF
Σ,A(λ):

1 SignedList ← ∅
2 (sk, vk) ←

R
KGen(1λ)

3 (msg∗, σ∗) ←
R

AOSign(vk)
4 If A queries OSign(msg):
5 Append msg to SignedList
6 σ ←

R
Sign(sk,msg)

7 Return σ to A
8 Return 1 iff all the following hold:
9 - Ver(vk,msg∗, σ∗) = 1

10 - msg∗ SignedList

Fig. 1 Experiment for existential unforgeability of signature schemes

123

Double-authentication-preventing signatures 5

3 Double-authentication-preventing signatures

In this section, we present the central definitions of the
paper: a double-authentication-preventing signature and, as
security requirements, the standard (though slightly adapted)
notion of existential unforgeability, as well as the new prop-
erties of forgeability and signing key extractability given two
signatures on the same subject.

Definition 5 (Double-authentication-preventing signature)
A double-authentication-preventing signature (DAPS) is a
tuple of efficient algorithms (KGen,Sign,Ver) as follows:

– KGen(1λ): On input security parameter 1λ, this algo-
rithm outputs a signing key sk and a verification key vk.

– Sign(sk, subj,msg): On input signing key sk and sub-
ject/message pair subj,msg ∈ {0, 1}∗, this algorithm
outputs a signature σ .

– Ver(vk, subj,msg, σ): On input verification key vk,
subject/message pair subj,msg ∈ {0, 1}∗, and candidate
signature σ , this algorithm outputs either 0 or 1.

Definition 6 (Correctness) A double-authentication-
preventing signature scheme is correct if, for all λ ∈ N, for
all key pairs (sk, vk) ←R KGen(1λ), for all subj,msg ∈
{0, 1}∗, and for all signatures σ ←R Sign(sk, subj,msg),
we have Ver(vk, subj,msg, σ) = 1.

3.1 Unforgeability

Our unforgeability notion largely coincides with the stan-
dard unforgeability notion for digital signature schemes [22];
the main difference is that, for DAPS, forgeries crafted by
the adversary are not considered valid if the adversary has
requested forgeries on different messages for the same sub-
ject.

Definition 7 (Existential unforgeability) A double-
authentication-preventing signature scheme is existentially
unforgeable under adaptive chosen message attacks if,
for all efficient adversaries A, the success probability
Succ EUF

DAPS,A(λ) := Pr[Exp EUF
DAPS,A(λ) = 1] in the EUF

experiment of Fig. 2 is a negligible function in λ.

3.2 Double-signature forgeability

Although Definition 7 ensures that signatures of DAPS are
generally unforgeable, we do want signatures to be forgeable
in certain circumstances, namely when two different mes-
sages have been signed for the same subject. First, we define
the notion of compromising pairs of signatures, which says
when two signatures should lead to a forgery, and then define
double-signature forgeability.

ExpEUF
DAPS,A(λ):

1 SignedList ← ∅
2 (sk, vk) ←

R
KGen(1λ)

3 (subj∗,msg∗, σ∗) ←
R

AOSign(vk)
4 If A queries OSign(subj,msg):
5 Append (subj,msg) to SignedList
6 σ ←

R
Sign(sk, subj,msg)

7 Return σ to A
8 Return 1 iff all the following hold:
9 - Ver(vk, subj∗,msg∗, σ∗) = 1

10 - (subj∗,msg∗) SignedList
11 - ∀ subj,msg0,msg1:
12 if (subj,msg0), (subj,msg1) ∈ SignedList
13 then msg0 = msg1

Fig. 2 Experiment for existential unforgeability of DAPS

Definition 8 (Compromising pair of signatures) For a fixed
verification key vk, a pair (S1, S2) of subject/message/
signature triples S1 = (subj1,msg1, σ1) and S2 = (subj2,
msg2, σ2) is compromising if σ1, σ2 are valid signatures
on different messages for the same subject; that is, if
Ver(vk, subj1,msg1, σ1) = 1,Ver(vk, subj2,msg2, σ2) =
1, subj1 = subj2, and msg1 �= msg2.

We now define the double-signature forgeability require-
ment. Here, the adversary takes the role of a malicious signer
that aims to generate compromising pairs of signatures that
do not lead to successful double-signature forgeries.We con-
sider two scenarios: the trusted set-up model, where key
generation is assumed to proceed honestly, and the untrusted
set-up model, where the adversary has full control over key
generation as well.

Definition 9 (Double-signature forgeability) A double-
authentication-preventing signature DAPS is double-
signature forgeable (resp. double-signature forgeable with
trusted set-up) if an efficient algorithm

– Forge(vk, (S1, S2), subj∗,msg∗): On input verification
key vk, compromising pair (S1, S2), and subject/message
pair subj∗,msg∗ ∈ {0, 1}∗, this algorithm outputs a sig-
nature σ ∗.

is known such that, for all efficient adversaries A, the prob-
ability Succ DSF(∗)

DAPS,A(λ) := Pr[Exp DSF(∗)

DAPS,A(λ) = 1] of
success in the DSF (resp. DSF∗) experiment of Fig. 3 is a
negligible function in λ.

3.3 Double-signature extractability

While the notion of double-signature forgeability expresses
the desired functionality of the scheme from a theoretical

123

6 B. Poettering, D. Stebila

ExpDSF
DAPS,A(λ):

1 (vk, (S1, S2), subj∗,msg∗) ←
R

A(1λ)
2 σ∗ ←

R
Forge(vk, (S1, S2), subj∗,msg∗)

3 Return 1 iff all the following hold:
4 - (S1, S2) is compromising
5 - Ver(vk, subj∗,msg∗, σ∗) = 1

ExpDSF∗
DAPS,A(λ):

1 (sk, vk) ←
R
KGen(1λ)

2 ((S1, S2), subj∗,msg∗) ←
R

A(sk, vk)
3 σ∗ ←

R
Forge(vk, (S1, S2), subj∗,msg∗)

4 Return 1 iff all the following hold:
5 - (S1, S2) is compromising
6 - Ver(vk, subj∗,msg∗, σ∗) = 1

Fig. 3 Experiments for double-signature forgeability (without and
with trusted set-up)

point of view, froman engineering perspective itmay bemore
natural to consider double-signature extractability, in which
two signatures for the same subject lead to full recovery of
the signing key; obviously, full recovery of the signing key
gives the ability to forge.

Definition 10 (Double-signature extractability) A double-
authentication-preventing signature DAPS is double-
signature extractable (resp. double-signature extractable
with trusted set-up) if an efficient algorithm

– Extract(vk, (S1, S2)): On input verification key vk and
compromising pair (S1, S2), this algorithm outputs a
signing key sk′.

is known such that, for all efficient adversaries A, the prob-
ability Succ DSE(∗)

DAPS,A(λ) := Pr[Exp DSE(∗)

DAPS,A(λ) = 1] of
success in the DSE (resp. DSE∗) experiment of Fig. 4 is
a negligible function in λ.

ExpDSE
DAPS,A(λ):

1 (vk, (S1, S2)) ←
R

A(1λ)
2 sk ←

R
Extract(vk, (S1, S2))

3 Return 1 iff all the following hold:
4 - (S1, S2) is compromising
5 - sk is not the signing key corresponding to vk

ExpDSE∗
DAPS,A(λ):

1 (sk, vk) ←
R
KGen(1λ)

2 (S1, S2) ←
R

A(sk, vk)
3 sk ←

R
Extract(vk, (S1, S2))

4 Return 1 iff all the following hold:
5 - (S1, S2) is compromising
6 - sk = sk

Fig. 4 Experiments for double-signature extractability (without and
with trusted set-up)

Note that the DSE experiment assumes existence of an
efficient predicate that verifies that a candidate sk′ is the sign-
ing key corresponding to a verification key. In some schemes,
there may be several signing keys that correspond to a ver-
ification key or it may be inefficient to check. However, for
the scheme presented in Sect. 7, when instantiated with the
factoring-based primitive of Sect. 6, it is easy to check that a
signing key (p, q) corresponds to a verification key n; note
that there is a canonical representation of such signing keys
(take p < q).

Clearly, double-signature extractability implies double-
signature forgeability. In fact, DSE implies that the forger can
generate signatures that are perfectly indistinguishable from
signatures generated by the honest signer. This is an impor-
tant feature that plain double-signature forgeable schemes do
not necessarily offer, and indeed one can construct degener-
ate examples of schemes that are double-signature forgeable
but for which forged signatures are obviously different from
honest signatures.

4 2:1 Trapdoor functions and extractability

We introduce the concept of 2:1 trapdoor functions (2:1-
TDF). At a high level, such functions are trapdoor one-way
functions, meaning that they should be hard to invert except
with knowledge of a trapdoor. They are two-to-one, mean-
ing that the domain is exactly twice the size of the range,
and every element of the range has precisely two preimages.
We also describe an additional property, extractability, which
means that given two distinct preimages of an element of the
range, the trapdoor can be computed.

Consider two finite sets, A and B, such that A has twice
the size of B. Let f : A → B be a surjective function such
that, for any element b ∈ B, there are exactly two preimages
in A; f is not injective, so the inverse function does not exist.
Define instead f −1 : B × {0, 1} → A such that for each
b ∈ B the two preimages under f are given by f −1(b, 0)
and f −1(b, 1). Observe that this effectively partitions set A
into two subsets A0 = f −1(B, 0) and A1 = f −1(B, 1) of
the same size.

Function f is a 2:1-TDF if the following additional prop-
erties hold: sets A0, A1, and B are efficiently samplable,
function f is efficiently computable, and inverse function
f −1 is hard to compute unless some specific trapdoor infor-
mation is known. We finally require an extraction capability:
there should be an efficient way to recover the trapdoor for
the computation of f −1 from any two elements a0 �= a1 with
f (a0) = f (a1) (we will also write a0

x∼ a1 for such con-
figurations). The setting of 2:1-TDFs is illustrated in Fig. 5.
We will formalize the functionality and security properties
below.

123

Double-authentication-preventing signatures 7

A

A0

A1

B

Fig. 5 Illustration of a 2:1 trapdoor function f : A → B. Each element
of B has exactly two preimages, one in A0 and one in A1

4.1 Definition

We give a formal definition of 2:1-TDF and its correct-
ness and establish afterwards that it implements the intuition
developed above.

Definition 11 (2:1 trapdoor function) A 2:1 trapdoor func-
tion (2:1-TDF) is a tuple of efficient algorithms (TdGen,

SampleA,SampleB,Apply,Reverse,Decide) as follows:

– TdGen(1λ): On input security parameter 1λ, this ran-
domized algorithm outputs a pair (td,pub), where td is
a trapdoor and pub is some associated public informa-
tion. Each possible outcome pub implicitly defines finite
sets A = A(pub) and B = B(pub).

– SampleA(pub, d; r): On input public information pub,
bit d ∈ {0, 1}, and randomness r ∈ {0, 1}λ, this algorithm
outputs a value a ∈ A(pub).
As shortcuts:

– SampleA(pub, d) := r ←R {0, 1}λ; return
SampleA(pub, d; r)

– SampleA(pub) := d ←R {0, 1}; return
SampleA(pub, d)

– SampleA0
(pub) := return SampleA(pub, 0)

– SampleA1
(pub) := return SampleA(pub, 1)

– SampleB(pub; r): On input public information pub
and randomness r ∈ {0, 1}λ, this algorithm outputs a
value b ∈ B(pub).

– Apply(pub, a): On input public information pub and
element a ∈ A(pub), this deterministic algorithm
outputs an element b ∈ B(pub).

– Reverse(td, b, d): On input trapdoor td, element
b ∈ B(pub), and bit d ∈ {0, 1}, this deterministic
algorithm outputs an element a ∈ A(pub).

– Decide(pub, a): On input public information pub
and element a ∈ A(pub), this deterministic algo-
rithm outputs a bit d ∈ {0, 1}.

Definition 12 (Correctness) A 2:1-TDF is correct if, for all
(td,pub) ←R TdGen, all d ∈ {0, 1}, all a ∈ A(pub), and
all b ∈ B(pub), we have that

(1) a ∈ Reverse(td,Apply(pub, a), {0, 1}),
(2) Apply(pub,Reverse(td, b, d)) = b, and
(3) Decide(pub,Reverse(td, b, d)) = d.

We further requireDecide(pub,SampleA(pub, d; r)) = d
for all d ∈ {0, 1} and r ∈ {0, 1}λ.

Let (td,pub) be output by TdGen. Consider partition
A(pub) = A0(pub)

.∪ A1(pub) obtained by setting
Ad(pub) = {a ∈ A(pub) : Decide(pub, a) = d}, for
d ∈ {0, 1}. It follows from correctness requirement (3) that
function ψd := Reverse(td, ·, d) is a mapping B(pub) →
Ad(pub). Note that ψd is surjective by condition (1), and
injective by condition (2). Hence, we have bijections ψ0 :
B(pub) → A0(pub) and ψ1 : B(pub) → A1(pub). Thus,
|A0(pub)| = |A1(pub)| = |B(pub)| = |A(pub)|/2.

Define now relation
x∼ ⊆ A(pub) × A(pub) such that

a
x∼ a′ ⇐⇒ Apply(pub, a) = Apply(pub, a′) ∧
Decide(pub, a) �= Decide(pub, a′).

Note that for each a ∈ A(pub), there exists exactly one
a′ ∈ A(pub) such that a

x∼ a′; indeed, if a ∈ Ad(pub),
then a′ = ψ1−d(ψ

−1
d (a)) ∈ A1−d(pub). Observe how algo-

rithmsApply andReverse correspond to functions f : A →
B and f −1 : B × {0, 1} → A discussed at the beginning of
Sect. 4.

4.2 Security notions

We proceed with the specification of the principal security
properties of 2:1-TDFs, samplability and one-wayness. The
treatment of extraction follows in the next section. The proofs
of Lemmas 1 and 2 appear in “Proofs from Section 4” of
Appendix 3.

4.2.1 Samplability

The task of a 2:1-TDF’sSampleA andSampleB algorithms
is to provide samples from sets A(pub) and B(pub), respec-
tively, that are distributed nearly uniformly. The samplability
security property refers to the extent to which these samples
are close to uniform.

Definition 13 (Sampling distance) Let X be a 2:1-TDF
and S0, S1 be (sampling) algorithms. We define the sam-
pling distance of S0, S1 with respect to a distinguisher D
as Dist S0,S1X,D (λ) := |P0(λ) − P1(λ)|, where Pd(λ) =
Pr[(td,pub) ←R TdGen(1λ); x ←R Sd(pub) : D(pub, x)
= 1].

123

8 B. Poettering, D. Stebila

We consider different strategies to obtain samples from
set B: using the SampleB algorithm directly, or using
SampleA (or SampleA0

, or SampleA1
) and mapping

obtained samples from set A to set B using the Apply
algorithm. The latter hybrid constructions are formalized in
Definition 14. We show in Lemma 1 that they yield rea-
sonable results, assuming good SampleA and SampleB
algorithms.

Definition 14 (Hybrid sampling) For a 2:1-TDF, let (td,

pub) be output by TdGen. Then sampling algorithm
SampleA

B for set B(pub) is defined as SampleA
B(pub) :=

Apply(pub,SampleA(pub)). We define sampling algo-
rithms SampleA0

B and SampleA1
B correspondingly.

Lemma 1 (Quality of hybrid sampling) Let X be a 2:1-TDF
and letDB be an efficient distinguisher. Then there exist effi-
cient distinguishers D′

A,D′
A0

,D′
A1

,D′
B,D′′

B,D′′′
B such that

Dist
SampleB ,SampleA

B
X,DB

(λ) ≤
Dist SampleA,U (A)

X,D′
A

(λ) + Dist SampleB ,U (B)

X,D′
B

(λ)

Dist
SampleB ,Sample

A0
B

X,DB
(λ) ≤

Dist
SampleA0

,U (A0)

X,D′
A0

(λ) + Dist SampleB ,U (B)

X,D′′
B

(λ)

Dist
SampleB ,Sample

A1
B

X,DB
(λ) ≤

Dist
SampleA1

,U (A1)

X,D′
A1

(λ) + Dist SampleB ,U (B)

X,D′′′
B

(λ).

In Lemma 1, the terms on the left-hand side are small
if the terms on the right-hand side are. This observation
motivates the following security requirement on 2:1-TDFs.

Note that if Dist SampleA,U (A)

X,D is negligible, then so are

Dist
SampleA0

,U (A0)

X,D and Dist
SampleA1

,U (A1)

X,D .

Definition 15 (Samplability of 2:1-TDF) Let X denote a
2:1-TDF. We say that X is samplable if, for all efficient

distinguishers D,D′, we have that Dist SampleA,U (A)

X,D and

Dist SampleB ,U (B)

X,D′ are negligible functions.

4.2.2 One-wayness

We next define one-wayness for 2:1-TDFs. Intuitively, it
should be infeasible to find preimages and second preimages
of the Apply algorithm without knowing the corresponding
trapdoor.

Definition 16 (Preimage resistance of 2:1-TDF) A 2:1-
TDF X is preimage resistant and second preimage resis-
tant if Succ INV−1

X,A (λ) := Pr[Exp INV−1
X,A (λ) = 1] and

Succ INV−2
X,B (λ) := Pr[Exp INV−2

X,B (λ) = 1] are negligible

Exp INV-1
X,A (λ):

1 (td, pub) ←
R
TdGen(1λ)

2 b ←
R
SampleB(pub)

3 a ←
R

A(pub, b)
4 Return 1 iff Apply(pub, a) = b

Exp INV-2
X,B (λ):

1 (td, pub) ←
R
TdGen(1λ)

2 a ←
R
SampleA(pub)

3 a ←
R

B(pub, a)
4 Return 1 iff a x∼ a

Fig. 6 Experiments for preimage and second preimage resistance of
2:1-TDFs

functions in λ, for all efficient adversaries A and B, where
Exp INV−1

X,A and Exp INV−2
X,B are as in Fig. 6.

The following simple lemma shows that second preim-
age resistance implies preimage resistance. We will see in
Sect. 4.3 that these notions are actually equivalent for an
extractable variant of 2:1-TDF.

Lemma 2 (INV−2 ⇒ INV−1 if 2:1-TDF samplable) Let
X be a 2:1-TDF and let A be an efficient algorithm for
the INV−1 experiment. Then there exist an efficient algo-
rithm B for the INV−2 experiment and an efficient distin-
guisher DB such that Succ INV−1

X,A (λ) ≤ 2 · Succ INV−2
X,B (λ) +

Dist
SampleB ,SampleA

B
X,DB

(λ).

4.3 Extractable 2:1 trapdoor functions

Weextend the functionality of 2:1-TDFs to include extraction
of the trapdoor: knowledge of any two elements a0, a1 ∈ A
with a0 �= a1 ∧ f (a0) = f (a1) shall immediately reveal the
system’s inversion trapdoor.

Definition 17 (Extractable 2:1-TDF) A 2:1-TDF is
extractable if an efficient algorithm

– Extract(pub, a, a′): On input public information pub
and a, a′ ∈ A(pub), this algorithm outputs a trap-
door td∗.

is known such that we have Extract(pub, a, a′) = td for
all (td,pub) output by TdGen and all a, a′ ∈ A(pub) with
a

x∼ a′.

Surprisingly, extractability of 2:1-TDFs has an essential
effect on the relationship between INV−1 and INV−2 secu-
rity notions. In combination with Lemma 2, we see that
notions INV−1 and INV−2 are equivalent for (samplable)

123

Double-authentication-preventing signatures 9

KGen(1λ) :
1 (td, pub) ←

R
TdGen(1λ2)

2 K ←
R

{0, 1}λf

3 Return (sk, vk) = ((td, K), pub)

Sign(sk,msg) :
1 b ← Hpub(msg)
2 d ← F (K,msg)
3 σ ← Reverse(td, b, d)
4 Return σ

Ver(vk,msg, σ) :
1 b ← Hpub(msg)
2 If Apply(pub, σ) = b
3 then return 1
4 else return 0

Fig. 7 Signature scheme 2 : 1−Sig

extractable 2:1-TDFs. The proof of Lemma 3 appears in
“Proofs from Section 4” of Appendix 3.

Lemma 3 (INV−1 ⇒ INV−2 if 2:1-TDF extractable) Let
X be an extractable 2:1-TDF and let B be an efficient
algorithm for the INV−2 experiment. Then there exists an
efficient algorithm A for the INV−1 experiment such that
Succ INV−2

X,B (λ) = Succ INV−1
X,A (λ).

5 Tightly secure signatures from 2:1 trapdoor
functions

As a first application of our new primitive, we present a
signature scheme. The construction essentially extends the
well-known full-domain hash paradigm (FDH, see [8]) from
bijective trapdoor functions, e.g. TDPs, to the new 2:1-TDF
notion. While security reductions of regular FDH signatures
are necessarily highly untight (the security loss in compar-
ison with TDP security is qH , the number of adversary’s
hash function evaluations; but see [15] for tighter bounds
for homomorphic TDPs), it turns out that our new sig-
nature scheme is tightly secure if the deployed 2:1-TDF
is extractable. We note that our construction is similar in
spirit with the tightly secure signature constructions found
in [4,21]; however, our abstraction model is quite different.

Construction 1 (Signatures from 2:1-TDF) Let λ be a secu-
rity parameter, and letλ2 andλ f be parameters polynomially
dependent on λ. Let X = (TdGen,SampleA,SampleB,

Apply,Reverse,Decide) be an extractable 2:1 trapdoor
function and let F : {0, 1}λ f ×{0, 1}∗ → {0, 1} be a PRF. For
each pub output by TdGen, let Hpub : {0, 1}∗ → B(pub)

be a hash function. Signature scheme 2 : 1−Sig consists of
the algorithms specified in Fig. 7.

We assess the security of 2 : 1−Sig in Theorem 1; the
corresponding proof appears in “Proofs from Section 5” of
Appendix. A factor of qH appears in the bounds claimed in
Theorem 1. That factor scales a purely statistical quantity
that can easily be forced to be smaller than (say) 2−256, and
this matches the notion of “tightness” in works like [4] (in
which the sampling issues that we factor in are actually left
implicit).

Theorem 1 (2 : 1−Sig is EUF) In the setting of Construc-
tion 1, if X is extractable, samplable, and second preimage

resistant, F is a secure PRF, and Hpub is a random oracle,
then signature scheme 2 : 1−Sig is existentially unforgeable
under adaptive chosen message attacks. More precisely, for
any efficient EUF algorithm A making at most qH queries
to the Hpub(·) oracle, there exist efficient distinguishersDA,
DB, and C, and an efficient algorithm B such that

Succ EUF
2:1−Sig,A(λ) ≤ qH · Dist SampleA,U (A)

X,DA
(λ2)

+ qH · Dist SampleB ,U (B)

X,DB
(λ2)

+ 2 · Succ INV−2
X,B (λ2) + Adv prf

F,C(λ f).

6 Constructing extractable 2:1 trapdoor functions

Having introduced 2:1-TDFs and extractable 2:1-TDFs, we
now show how to construct these primitives: we propose an
efficient extractable 2:1-TDF and prove it secure, assuming
hardness of the integer factorization problem.

Our construction builds on the group of sign-agnostic
quadratic residues, a specific structure from number theory.
This group was introduced to cryptography by Goldwasser,
Micali, and Rivest in [22], and rediscovered 20 years later
by Hofheinz and Kiltz [25]. We first reproduce the results
of [22,25] and then extend them towards our requirements. 5

In our exposition, we assume that the reader is familiar
with definition and structure of groups Z

×
n , Jn , and QRn , for

Blum integers n. If we additionally define Jn = Z
×
n \ Jn and

QRn = Jn \ QRn , these five sets are related to each other
as visualized in Fig. 8 (left). Also illustrated is the action of
the squaring operation: it is 4:1 from Z

×
n to QRn , 2:1 from

Jn to QRn , and 1:1 (i.e. bijective) from QRn to QRn . For
reference, we reproduce all number-theoretic details relevant
to this paper in Facts 1–6 and Corollary 2, in “Appendix 1”.

6.1 Sign-agnostic quadratic residues

For an RSA modulus n, it is widely believed that efficiently
distinguishing elements in QRn from elements in QRn is
a hard problem. It also seems to be infeasible to sample

5 Goldwasser et al. gave no name to this group; Hofheinz and Kiltz
called it the group of signed quadratic residues, but this seems to be
a misnomer as the whole point is to ignore the sign, taking absolute
values and forcing the elements to be between 0 and (n − 1)/2; hence
our use of the term sign-agnostic.

123

10 B. Poettering, D. Stebila

elements from QRn without knowing a square root of the
samples, or to construct hash functions that map to QRn

and could be modelled as random oracles. However, such
properties are a prerequisite in certain applications in cryp-
tography [25], what renders group QRn unsuitable for such
cases. As we see next, by switching from the group of
quadratic residues modulo n to the related group of sign-
agnostic quadratic residuesmodulo n, sampling and hashing
become feasible.

The use of sign-agnostic quadratic residues in cryptogra-
phy is explicitly proposed in [22,25]. However, some aspects
of the algebraical structure of this group are concealed in both
works by the fact that the group operation is defined to act
directly on specific representations of elements. The intro-
duction to sign-agnostic quadratic residues that we give in
the following paragraphs uses a new and more consistent
notation that aims at making the algebraical structure more
readily apparent. Using this new notation, it will not be dif-
ficult to establish Lemmas 5–8 below.

Let (H, ·) be an arbitrary finite abelian group that contains
an element T ∈ H \ {1} such that T 2 = 1. Then {1, T } is
a (normal) subgroup in H , that is, quotient group H/{1,T } is
well-defined, ψ : H → H/{1,T } : x �→ {x, T x} is a group
homomorphism, and |ψ(H)| = |H/{1,T }| = |H |/2 holds.
Further, for all subgroups G ≤ H , we have that ψ(G) ≤
ψ(H) = H/{1,T }. In such cases, if G is such that T ∈ G,
then |ψ(G)| = |G/{1,T }| = |G|/2 as above; otherwise, if
T /∈ G, then |ψ(G)| = |G| and thus ψ(G) ∼= G.

Consider now the specific group H = Z
×
n , for a Blum

integer n. Then T = −1 has order 2 in Z
×
n and above

observations apply, with mapping ψ : x �→ {x,−x}. For
any subgroup G ≤ Z

×
n , let G/±1 := ψ(G). For subgroup

QRn ≤ Z
×
n , as −1 /∈ QRn , we have QRn/±1 ∼= QRn

and thus |QRn/±1| = ϕ(n)/4. Moreover, as Jn ≤ Z
×
n and

−1 ∈ Jn , we have |Jn/±1| = |Jn|/2 = ϕ(n)/4. Simi-
larly, we see |Z×

n /±1| = ϕ(n)/2. After setting QRn/±1 :=
(Z×

n /±1)\(QRn/±1),wefinally obtain |QRn/±1| = ϕ(n)/4.
Note that we just observed QRn/±1 ≤ Jn/±1 ≤ Z

×
n /±1

and |QRn/±1| = ϕ(n)/4 = |Jn/±1|. The overall struc-
ture is hence QRn/±1 = Jn/±1 � Z

×
n /±1, as illustrated

in Fig. 8 (right). After agreeing on notations {±x} =
{x,−x} and {±x}2 = {±(x2)}, we additionally obtain
the following result (proven in “Proofs from Section 6” of
Appendix 3):

Lemma 4 Let n be a Blum integer. Then QRn/±1 =
{{±x}2 : {±x} ∈ Z

×
n /±1

}

.

Moreover, by exploiting identity QRn/±1 = Jn/±1, we
directly get the following characterizations of QRn/±1 and
QRn/±1. Observe that the sets are well-defined since

(x
n

) =
(−x

n

)

for all x ∈ Z
×
n .

Z
×
n

Jn

QRn

QRn

Jn

Z
×
n /±1

QRn/±1

= Jn/±1
QRn/±1

Fig. 8 Illustration of Z×
n and Z

×
n /±1 (for Blum integers n), and sub-

groups QRn , Jn , and Jn/±1 = QRn/±1. Also visualized is the action
of the squaring operation (see Corollaries 1 and 2)

QRn/±1 = {{±x} ∈ Z
×
n /±1 : (x

n

) = +1
}

(1)

QRn/±1 = {{±x} ∈ Z
×
n /±1 : (x

n

) = −1
}

. (2)

Many facts on the structure of Z
×
n can be lifted to Z

×
n /±1.

This holds in particular for Lemmas 5 and 6, which directly
correspond with Facts 4 and 5 from “Appendix 1”. Similarly,
Corollaries 1 and 2 correspond. We stress that the following
results do not appear in [22,25]; the corresponding proofs
appear in “Proofs from Section 6” of Appendix 3.

Lemma 5 (Square roots in Z
×
n /±1) If n is a Blum inte-

ger, every element {±y} ∈ QRn/±1 has exactly two square
roots in Z

×
n /±1. More precisely, there exist unique {±x0} ∈

QRn/±1 and {±x1} ∈ QRn/±1 such that {±x0}2 = {±y} =
{±x1}2. The factorization of n can readily be recovered from
such pairs {±x0}, {±x1}: non-trivial divisors of n are given
bygcd(n, x0−x1)andgcd(n, x0+x1). Square roots inZ

×
n /±1

can be efficiently computed if the factors of n = pq are
known.

Corollary 1 (Squaring inZ
×
n /±1, QRn/±1, QRn/±1) If n is

a Blum integer, the squaring operation Z
×
n /±1 → QRn/±1 :

{±x} �→ {±x}2 is a 2:1 mapping. Moreover, squaring is a
1:1 function from QRn/±1 to QRn/±1 and from QRn/±1 to
QRn/±1. These relations are illustrated in Fig. 8 (right).

Lemma 6 (Computing square roots in Z
×
n /±1 is hard) Let

n be a Blum integer. Computing square roots in Z
×
n /±1 is as

hard as factoring n.

Lemma 7 (Samplability and decidability) Let n be a Blum
integer and t ∈ Z

×
n be fixed with

(t
n

) = −1. The algo-
rithm that samples a ←R Zn and returns {±a} generates a
distribution that is statistically indistinguishable from uni-
form on Z

×
n /±1. If the algorithm is modified such that it

returns {±a} if
(a
n

) = +1 and {±ta} if
(a
n

) = −1, then
the output is statistically indistinguishable from uniform on
QRn/±1. Elements in QRn/±1 can be sampled correspond-
ingly. Sets QRn/±1 and QRn/±1 are efficiently decidable
(within Z

×
n /±1) by Eqs. (1) and (2).

123

Double-authentication-preventing signatures 11

We anticipate the following result from “Appendix 2”.

Lemma 8 (Indifferentiable hashing into QRn/±1) There
exist efficient functions � and ϕ : {0, 1}�(n) → QRn/±1

such that if a hash function h : {0, 1}∗ → {0, 1}�(n) behaves
like a (programmable) random oracle then so does H =
ϕ ◦ h : {0, 1}∗ → QRn/±1.

Remark 1 (Representation of elements) An efficient and
compact way to represent elements {±x} ∈ Z

×
n /±1 is by

the binary encoding of x = min{x, n − x} ∈ [1, (n − 1)/2],
as proposed by [22]. The corresponding decoding procedure
is x �→ {x,−x}.

6.2 Construction of Blum-2:1-TDF from sign-agnostic
quadratic residues

We use the tools from Sect. 6.1 to construct a factoring-based
extractable 2:1-TDF, which will map Z

×
n /±1 → QRn/±1.

While theApply algorithm corresponds to the squaring oper-
ation, extractability will be possible given distinct square
roots of an element.

Construction 2 (Blum-2:1-TDF) Define algorithms
Blum − 2 : 1 − TDF = (TdGen,SampleA,SampleB,

Apply,Reverse,Decide,Extract) as follows:

– TdGen(1λ): Pick random Blum integer n = pq of
length λ such that p < q. Pick t ∈ Z

×
n with

(t
n

) =
−1. Return pub ← (n, t) and td ← (p, q). We will
use sets A0(pub) := QRn/±1, A1(pub) := QRn/±1,
A(pub) := Z

×
n /±1, and B(pub) := QRn/±1.

– SampleA(pub, d): Implement SampleA(pub, 0),
SampleA(pub, 1), and SampleA(pub) using the sam-
plers for sets QRn/±1, QRn/±1, and Z

×
n /±1 from

Lemma 7.
– SampleB(pub): Implement SampleB(pub) using the
sampler for set QRn/±1 from Lemma 7.

– Apply(pub, {±a}): Return {±b} ← {±a}2.
– Reverse(td, {±b}, d): By Lemma 5, element {±b} ∈

QRn/±1 has precisely two square roots: {±a0} ∈
QRn/±1 and {±a1} ∈ QRn/±1. Return {±ad}.

– Decide(pub, {±a}): Return 0 if {±a} ∈ QRn/±1; oth-
erwise return 1.

– Extract(pub, {±a0}, {±a1}): Both gcd(n, a0 − a1) and
gcd(n, a0+a1) are non-trivial factors of n = pq. Return
td∗ ← (p, q) such that p < q.

These algorithms are all efficient. Correctness of
Blum-2:1-TDF and the various security properties follow
straightforwardly from the number-theoretic facts estab-
lished in Sect. 6.1. The proof appears in “Proofs from
Section 6” of Appendix 3.

Theorem 2 (Security and extractability of
Blum-2:1-TDF) Blum-2:1-TDF is samplable (Def. 15),
(second) preimage resistant (Def. 16) under the assumption
that factoring is hard, and extractable (Def. 17).

Remark 2 (Choice of element t) In Construction 2, public
element t can be any quadratic non-residue; small values
likely exist and might be favourable for storage efficiency.
Observe that, if p ≡ 3 mod 8 and q ≡ 7 mod 8, for t = 2
we always have

(t
n

) = −1, so there is not need to store t at
all.

7 Double-authentication-preventing signatures
from extractable 2:1-TDFs

We now come to the central result of this paper, a double-
authentication-preventing signature generically constructed
from any extractable 2:1 trapdoor function; of course
factoring-based Blum-2:1-TDF from the previous section
is a suitable candidate for instantiating the scheme.

Construction 3 (DAPS from 2:1-TDF) Let λ be a secu-
rity parameter, and let λ2 and λh be parameters poly-
nomially dependent on λ. Let X = (TdGen,SampleA,

SampleB,Apply,Reverse,Decide) be an extractable 2:1
trapdoor function and let H# : {0, 1}∗ → {0, 1}λh be
a hash function. For each pub output by TdGen, let
Hpub : {0, 1}∗ → B(pub) be a hash function. Double-
authentication-preventing signature scheme 2 : 1−DAPS
consists of the algorithms specified in Fig. 9.

The basic idea of the signing algorithm is as follows. From
any given subject, the signer derives message-independent
signing elements b1, . . . , bλh ∈ B. The signer also hashes
subject and message to a bit string d1 . . . dλh ; for each bit di ,
she finds the preimage ai of the signing element bi which is
in the di partition of A, either in A0 or in A1. The signature σ

is basically the vector of these preimages. Intuitively, the
scheme is unforgeable because it is hard to find preimages of
signing elements bi without knowing the trapdoor.Moreover,
the scheme is extractable because the signing elements bi
are only dependent on the subject, so the signatures of two
different messages for the same subject use the same bi . But,
assuming collision resistance of H#, at least one different di
is used in the two signatures, so two distinct preimages of bi
are involved, which allows anyone to recover the trapdoor.

We give further explanation on the subject-dependent
value s that we embed into every signature. Consider the
standard security reduction for proving FDH-TDP signatures
unforgeable [9], and in particular how adversary’s queries
to random oracle H are answered. Usually, random oracle
H is programmed such that H(m) = g(x), where m is

123

12 B. Poettering, D. Stebila

KGen(1λ) : Return (sk, vk) = (td, pub) where (td, pub) ←
R
TdGen(1λ2)

Sign(sk, subj,msg) :
1 s ← Reverse(td, Hpub(subj), 0)
2 (d1, . . . , dλh

) ←H#(subj, s,msg)
3 For 1 ≤ i ≤ λh :
4 bi ← Hpub(subj, s, i)
5 ai ← Reverse(td, bi, di)
6 Return σ ← (s, a1, . . . , aλh

)

Ver(vk, subj,msg, σ) :
1 Parse (s, a1, . . . , aλh

) ← σ
2 If Decide(pub, s) = 0, return 0
3 If Apply(pub, s) = Hpub(subj), return 0
4 (d1, . . . , dλh

) ← H#(subj, s,msg)
5 For 1 ≤ i ≤ λh :
6 If Apply(pub, ai) = Hpub(subj, s, i), return 0
7 If Decide(pub, ai) = di, return 0
8 Return 1

Fig. 9 Double-authentication-preventing signature scheme 2 : 1−DAPS

the queried message, g is the TDP, and x is sampled uni-
formly from the domain of g. This construction exploits that
g (as opposed to g−1) can be efficiently computed without
knowledge of any trapdoor, and it ensures that the simulation
‘knows’ the preimage of hash values H(m), for all mes-
sagesm. When switching to 2:1-TDFs, however, we observe
that this method of reduction does not work satisfyingly:
While for any H query a corresponding preimage a ∈ A of
the 2:1-TDF could be uniformly sampled, it might be related
value a′ ∈ A, a

x∼ a′, that needs to be revealed in later
queries to the signing oracle. But computing a′ from a, or
even jointly sampling them, is infeasible without knowledge
of 2:1-TDF’s trapdoor. In our DAPS construction, value s
ensures that the simulation is not required to program Hpub
oracle until the point where it learns subj andmsg, i.e. learns
which preimage it will have to reveal. For further details, we
refer to the proof of Theorem 3.

7.1 Unforgeability of 2 : 1−DAPS

We next establish existential unforgeability of 2 : 1−DAPS
(cf. Definition 7). The proof proceeds by changing the EUF
simulation so that it performs all operations without using
the signing key and without (noticeably) changing the distri-
bution of verification key and answers toA’s oracle queries;
these changes cannot be detected if 2:1-TDF X is samplable.
From any forgery crafted by adversary A, either a preim-
age or second preimage of X , or a collision of H# can be
extracted. Observe that, by Lemma 2, it suffices to require
second preimage resistance of X in Theorem 3. The detailed
proof appears in “Proof of unforgeability (Theorem 3)” of
Appendix 3.

Theorem 3 (2 : 1−DAPS is EUF) In the setting of Con-
struction 3, if X is samplable and second preimage resistant,
H# is collision resistant, and Hpub is a random oracle, then
double-authentication-preventing signature 2 : 1−DAPS is
existentially unforgeable under adaptive chosen message
attacks. More precisely, for any efficient EUF algorithm A

making at most q1 queries to Hpub(·) and qS queries toOSign
oracle, there exist efficient distinguishers DA and DB and
efficient algorithms B1, B2, and C such that

Succ EUF
2:1−DAPS,A(λ) ≤

(q1 + (λh + 1)qS + 1)Dist SampleA,U (A)

X,DA
(λ2) +

(q1 + (λh + 1)qS)Dist
SampleB ,U (B)

X,DB
(λ2) +

q1Succ
INV−1
X,B1

(λ2) + 2qSλh Succ
INV−2
X,B2

(λ2) +
Succ CR

H#,C(λh),

where Succ CR
H#,C(λh) is the success probability of algo-

rithm C in finding collisions of hash function H#.

Remark 3 (2 : 1−DAPS is deterministic and S−EUF) Note
that 2 : 1−DAPS is not only deterministic but also unique
[15] and, in particular, strongly unforgeable.

7.2 Double-signature extractability of 2 : 1−DAPS

Assuming collision resistance of H#, two signatures for dif-
ferent messages but the same subject result in some index i
where the hashes H#(subj, s,msg1) and H

#(subj, s,msg2)
differ. The corresponding i th values ai in the two signa-
tures can be used to extract the signing key. This is the
intuition behind Theorem 4; the detailed proof appears in
“Proof of double-signature extractability (Theorem 4)” of
Appendix 3.

Theorem 4 (2 : 1−DAPS is DSE∗) In the setting of Con-
struction 3, if X is extractable and H# is collision resis-
tant, then double-authentication-preventing signature 2:1−
DAPS is double-signature extractable with trusted set-up.
More precisely,with the notation fromTheorem3, there exists
an efficient algorithm Extract (described in the proof of the
theorem) and an efficient algorithm C such that, for all algo-
rithms A, Succ DSE∗

DAPS,A(λ) ≤ Succ CR
H#,C(λh).

123

Double-authentication-preventing signatures 13

KGen(1λ) :
1 Pick random Blum integer n = pq of length λ such that p < q.
2 Pick t ∈ Z

×
n with t

n
= −1.

3 Return sk ← (p, q) and vk ← (n, t).

Let H# : {0, 1}∗ → {0, 1}λh be a cryptographic hash function.

Let Hvk : {0, 1}∗ → QRn/±1 using the construction in Appendix B. Specifically, if h : {0, 1}∗ → {0, 1} is a cryptographic
hash function with λ, then:

Hvk(z):
1 r ← h(z) ∈ [0 .. 2 − 1] (interpreting the -bit string h(z) as an integer)
2 x ← r mod n
3 If x

n
= +1, return {±x} ∈ QRn/±1

4 If x
n

= −1, return {±xt} ∈ QRn/±1

Sign(sk, subj,msg) :
1 y ← Hvk(subj) ∈ QRn/±1
2 Compute s ← x0 ∈ QRn/±1 such that x2

0 = y using factors (p, q) of n and the Chinese Remainder Theorem.
3 (d1, . . . , dλh

) ← H#(subj, s,msg) ∈ {0, 1}λh

4 For 1 ≤ i ≤ λh :
5 bi ← Hvk(subj, s, i) ∈ QRn/±1
6 If di = 0: compute ai ∈ QRn/±1 such that a2

i = bi using factors (p, q) of n and the Chinese Remainder Theorem.
7 If di = 1: compute ai ∈ QRn/±1 such that a2

i = bi using factors (p, q) of n and the Chinese Remainder Theorem.
8 Return σ ← (s, a1, . . . , aλh

)

Ver(vk, subj,msg, σ) :
1 Parse (s, a1, . . . , aλh

) ← σ
2 If s

n
= +1, return 0

3 s ← Hvk(subj) ∈ QRn/±1
4 If s2 = s , return 0
5 (d1, . . . , dλh

) ← H#(subj, s,msg) ∈ {0, 1}λh

6 For 1 ≤ i ≤ λh :
7 a ← Hvk(subj, s, i) ∈ QRn/±1
8 If a2

i = a , return 0
9 If di = 0 and ai

n
= +1, return 0

10 If di = 1 and ai

n
= −1, return 0

11 Return 1

Fig. 10 Double-authentication-preventing signature scheme 2 : 1−DAPS instantiated using sign-agnostic quadratic residues (Blum-2:1-TDF).
In algorithm Ver, for any element x̄ = {±x} ∈ Z

×
n /±1 we write

(x̄
n

)

as shortcut for
(x
n

) = (−x
n

)

Observe that the double-signature extractability of
2 : 1−DAPS in Theorem 4 relies on the assumption that
signer’s verification key is well-formed. When instantiated
with Blum-2:1-TDF (see Sect. 7.3), this means assuming
that signer’s public information n is a Blum integer, as
extractability of Blum-2:1-TDF is guaranteed only in this
case.Well-formedness can be shownusing interactive or non-
interactive zero-knowledge proofs. In particular, there is an
interactive zero-knowledge protocol of van deGraaf and Per-
alta [42] for demonstrating that an integer n is of the form
prqs where p and q are both primes such that p ≡ q ≡ 3
mod 4, which can be combined with the interactive protocol
ofBoyar et al. [6] for demonstrating that an integer n is square
free, to ultimately show that a modulus n is a Blum integer.
Alternatively, a non-interactive zero-knowledge proof for the
well-formedness of a Blum integer was given by De Santis et
al. [16] and for products of safe primes (which includes Blum
integers) by Camenisch and Michels [14].

7.3 DAPS instantiation based on sign-agnostic
quadratic residues

Figure 10 shows the instantiation of2 : 1−DAPS fromFig. 9
using theBlum-2:1-TDF fromConstruction2. InTable 1,we
analyse the corresponding sizes of verification keys, signing
keys, and signatures, and the cost of signature generation and
verification, with abstract results as well as results with 1024-
and 2048-bit keys. We assume the element representation
from Remark 1 and the verification key optimization from
Remark 2.

We also report the results of our implementation of DAPS
using the libgcrypt cryptographic library.6 As libgcrypt does
not have routines for square roots or Jacobi symbols, we
implemented our own, and we expect that there may be space
for improvement with optimized implementations of these

6 http://www.gnu.org/software/libgcrypt/

123

http://www.gnu.org/software/libgcrypt/

14 B. Poettering, D. Stebila

Table 1 Efficiency of 2 : 1−DAPS based on sign-agnostic quadratic residues

General analysis Libgcrypt implementation

λh — 160 160

λ2 (size of n in bits) — 1024 2048

Key generation time — 0.097s 0.759s

Signing key size (bits) log2 n 1024 2048

Verification key size (bits) log2 n 1024 2048

Signature generation cost (λh + 1) · Jac, (λh + 1) · sqrt 0.341s 1.457s

Signature size (bits) (λh + 1) log2 n 164 864 = 20KiB 329 728 = 40KiB

Signature verification cost (2λh + 2) · Jac, (λh + 1) · sqr 0.105s 0.276s

Jac: computation of Jacobi symbol modulo n; sqrt: square root modulo n; sqr: squaring modulo n

operations. Timings reported are an average of 50 iterations,
performed on a 2.6 GHz Intel Core i7 (3720QM) CPU, using
libgcrypt 1.5.2, compiled in x86_64mode using LLVM 3.3
and compiler flag -O3. Source code for our implementation
is available online at http://eprints.qut.edu.au/73005/.

With 1024-bit signing and verification keys, a signature
is about 20KiB in size and takes about 0.341s to gener-
ate and 0.105s to verify. While our scheme is less efficient
than a regular signature scheme, we believe these timings
are still in the acceptable range; this holds in particular if our
scheme is used to implement CA functionality where signa-
ture generation happens rarely and verification results can be
cached.

8 Applications

DAPS allows applications that employ digital signatures
for establishing unique bindings between digital objects to
provide self-enforcement for correct signer behaviour, and
resistance by signers to coercion or the “compelled certifi-
cate creation attack” [40]. Whenever the verifier places high
value on the uniqueness of the binding, it may be worthwhile
to employ DAPS instead of traditional digital signatures,
despite the potential for increased damage in the case of acci-
dental errors by the signer.

It should be noted that use of DAPS may impose an addi-
tional burden on honest signers: they need to maintain a list
of previously signed subjects to avoid double signing. Some
signers may already do so, but the importance of the cor-
rectness of this list is increased with DAPS. As noted below,
signers may wish to use additional protections to maintain
their list of signed subjects, for example by cryptographi-
cally authenticating it using a message authentication code
with a key in the same hardware security module as the main
signing key.

In this section, we examine a few cryptographic appli-
cations involving unique bindings and discuss the potential
applicability of DAPS.

8.1 Certificate authorities

The potential use of DAPS for certificate authorities has been
discussed in some detail in the Introduction.

DAPS could be used to ensure that certification authorities
in the web PKI behave as expected. For example, by having
the subject consist of the domain name and the year, and the
message consist of the public key and other certificate details,
a CA who signs one certificate for “www.example.com”
using DAPS cannot sign another for the same domain and
time period without invalidating its own key. A CA using
DAPS must then be stateful, carefully keeping track of the
previous subjects signed and refusing to sign duplicates. In
commercial certificate authorities, where the signing is done
on a hardware security module (HSM), the list of subjects
signed should be kept under authenticated control of the
HSM.

A DAPS-based PKI would need to adopt an appropri-
ate convention on validity periods to accommodate expiry
of certificates without permitting double-signing. For exam-
ple, a DAPS PKI may use a subject with a low-granularity
non-overlapping validity period (“www.example.com‖
2015”) since high-granularity overlapping validity periods
in the subject give a malicious CA a vector for issuing two
certificates without signing the exact same subject twice
(“www.example.com‖20150501-20160430” versus
“www.example.com‖20150502-20160501”).

Furthermore, a DAPS-based PKI could support revoca-
tion using standardmechanisms such as certificate revocation
lists. Reissuing could be achieved by including a counter in
the DAPS subject (e.g. “www.example.com‖2015‖0”)
and using DAPS-based revocation to provide an unambigu-
ous and unalterable auditable chain from the initial certificate
to the current one.

One of the major problems with multi-CA PKIs such as
the web PKI is that clients trust many CAs, any one of which
can issue a certificate for a particular subject. A DAPS-based
PKI would prevent one CA from signingmultiple certificates
for a subject, but not other CAs from also signing certificates

123

http://eprints.qut.edu.au/73005/

Double-authentication-preventing signatures 15

for that subject. We could consider a multi-CA PKI in which
other DAPS-based CAs agree to issue a “void certificate” for
a domain name when presented with a valid certificate from
another CA, thereby disqualifying them from issuing future
signatures on that subject. In general, though, coordination of
CAs is challenging. We believe it remains a very interesting
open question to find cryptographic constructions that solve
the multi-CA PKI problem.

8.2 Time-stamping

A standard approach to preventing time-stamping authorities
from “changing the past” is to require that, when a digital
signature is constructed that asserts that certain pieces of
information x exist at a particular time t , the actual mes-
sage being signed must also include the (hash of) messages
authenticated in the previous time periods. The authority
is prevented from trying to change the past and assert that
x ′ �= x existed at time t because the signatures issued at time
periods t+1, t+2, . . . chain back to the original message x .

DAPS could be used to alternatively discourage time-
stamping authority fraud by having the subject consist of
the time period t and the message consist of whatever infor-
mation x is to be signed at that time period. A time-stamping
authority who signs an assertion for a given time period using
DAPS cannot sign another for the same time period without
invalidating its own key. Assuming an honest authority’s sys-
tem is designed to only sign once per time period, the signer
need not statefully track the list of all signed subjects, since
time periods automatically increment.

8.3 Hybrid DAPS + standard signatures

DAPS could be combined with a standard signature scheme
to provide more robustness in the case of an accidental error,
but also provide a clear and quantifiable decrease in security
due to a double signing, giving users a window of time in
which to migrate away from the signer.

We can achieve this goal by augmenting a generic stan-
dard signature scheme with our factoring-based DAPS as
follows. The signer publishes a public key consisting of the
standard signature’s verification key, the2 : 1−DAPS verifi-
cation keyn, and a verifiableRabin encryption under keyn of,
say, the first half of the bits of the standard scheme’s signing
key. The hybrid DAPS signature for a subject/message pair
would consist of the standard scheme’s signature on subject
and message concatenated, and the DAPS signature on sep-
arated subject and message. If two messages are ever signed
for the same subject, then the signer’s DAPS secret key can
be recovered, which can then be used to decrypt the Rabin
ciphertext containing the first half of the standard scheme’s
signing key. This is not quite enough to readily forge signa-
tures, but it substantially and quantifiably weakens trust in

this signer’s signatures, making it clear that migration to a
new signer must occur but still providing a window of time in
which to migrate. As the sketched combination of primitives
exhibits non-standard dependencies between different secret
keys, a thorough cryptographic analysis of the construction
is indispensable.

9 Conclusions

We have introduced a new type of signatures, double-
authentication-preventing signatures, in which a subject/
message pair is signed. In certain situations, DAPS can
provide greater assurance to verifiers that signers behave hon-
estly since there is a great disincentive for signers who mis-
behave: if a signer ever signs two different messages for the
same subject, then enough information is revealed to allow
anyone to forge arbitrary signatures or even fully recover the
signer’s secret key. Although this leads to less robustness in
the face of accidental behaviour, it also provides amechanism
for self-enforcement of correct behaviour and gives trusted
signers such as certificate authorities an argument to resist
coercion and the compelled certificate creation attack.

Our construction is based on a new primitive called
extractable 2:1 trapdoor function. We have shown how to
instantiate this using an algebraic reformulation of sign-
agnostic quadratic residuesmoduloBlum integers; the result-
ing DAPS is unforgeable assuming factoring is hard, with
reasonable signature sizes and computation times.

We believe DAPS can be useful in scenarios where trusted
authorities are meant to make unique bindings between
identifiers and digital objects. This includes the cases of
certificate authorities in PKIs who are supposed to make
unique bindings between domain names and public keys, and
time-stamping authorities who are supposed to make unique
bindings between time periods and pieces of information.

Besides the practical applications of DAPS, several
interesting theoretical questions arise from our work. Are
there more efficient constructions of DAPS? How else can
extractable 2:1 trapdoor functions be instantiated? Given
that DAPS and double-spending-resistant digital cash use
similar number-theoretic primitives, can DAPS be used to
generically construct untraceable digital cash? Can these
techniques be applied to key generation in the identity-based
setting? Can DAPS be adapted to provide assurance in a
multi-CA setting?

Acknowledgements Parts of this research were funded by EPSRC
Leadership Fellowship EP/H005455/1 (for the first author), and by
the Australian Technology Network and German Academic Exchange
Service (ATN-DAAD) Joint Research Co-operation Scheme (for the
second author). This work has also been supported by the European
Commission through the ICT Programme under Contract ICT-2007-
216676 ECRYPT II and by Australian Research Council (ARC)
Discovery Project DP130104304.

123

16 B. Poettering, D. Stebila

Appendix 1: Basic results from number theory

We recall some definitions and results (without proof) from
number theory as well as establish notation that we use in the
paper. We refer the reader to classic textbooks on cryptogra-
phy [36, Ch. 2–3],[29, Ch. 7, 11], or on number theory [27]
for details.

Fact 1 (Quadratic residues modulo p) If p is a prime num-
ber, the group of quadratic residues modulo p is denoted

by QRp =
{

x2 : x ∈ Z
×
p

}

. The Legendre symbol
(·
p

) :
Z

×
p → {−1, 1} : a �→ (a

p

) = a(p−1)/2 serves as an indica-

tor function for QRp: a ∈ QRp ⇔ (a
p

) = 1. We have

|QRp| = |Z×
p |/2 = (p − 1)/2. If p ≡ 3 mod 4 then

−1 /∈ QRp, in which case
(−a

p

) = −(a
p

)

for all a ∈ Z
×
p .

The Legendre symbol can be efficiently computed.

Fact 2 (Structure of Zn and Z
×
n) Let n be an RSA modulus,

that is, n = pq is the product of distinct prime numbers
p and q. When p ≡ q ≡ 3 mod 4, n is called a Blum
integer. The Chinese Remainder Theorem states that Zn ∼=
Zp × Zq (as rings), and hence Z

×
n

∼= Z
×
p × Z

×
q (as groups).

An isomorphism ψ : Zn → Zp × Zq is given by x �→
(x mod p, x mod q). Both ψ and ψ−1 can be efficiently
computed if the factors of n = pq are known.

Fact 3 (Quadratic residuesmodulo n)Let n = pq be anRSA
modulus. Then QRn = {

x2 : x ∈ Z
×
n

}

denotes the group of
quadratic residuesmodulo n. The Jacobi symbol

(·
n

) : Z
×
n →

{−1, 1} : a �→ (a
n

)

is defined by
(a
n

) = (a mod p
p

)(a mod q
q

)

.

Although
(a
n

) = 1 for all a ∈ QRn, the Jacobi symbol does
not serve as an indicator for QRn: if n is a Blum integer,
then

(−1
n

) = 1 and thus
(a
n

) = (−a
n

)

for all a ∈ Z
×
n , but fact

a ∈ QRn ⇒ −a /∈ QRn implies that at most one of a, a′ can
be in QRn. If n is a Blum integer such that p ≡ 3 mod 8
and q ≡ 7 mod 8, then

(2
n

) = −1. The Jacobi symbol can
be efficiently computed, even if the factorization of n is not
known.

The set Jn = {

a ∈ Z
×
n : (a

n

) = 1
}

is a subgroup of Z
×
n ,

and QRn is a subgroup of Jn. Define Jn = Z
×
n \ Jn and

QRn = Jn \ QRn. If we set ϕ(n) = (p − 1)(q − 1)
then |Z×

n | = ϕ(n), |Jn| = |Jn| = ϕ(n)/2, and |QRn| =
|QRn| = ϕ(n)/4. These relations are illustrated in Fig. 8
(left).

Fact 4 (Square roots inZ
×
n) Let n be an RSAmodulus. Every

element y ∈ QRn has exactly four square roots in Z
×
n ,

namely {±x0,±x1}, where x0, x1 ∈ Z
×
n . If n is a Blum inte-

ger, then
(x0
n

) �= (x1
n

)

and exactly one of {±x0,±x1} is in
QRn. Since (x0 − x1)(x0 + x1) ≡ x20 − x21 ≡ y − y ≡ 0
mod n, non-trivial divisors of n are given by gcd(n, x0 − x1)
and gcd(n, x0+x1). Square roots modulo n can be efficiently
computed if the factors of n = pq are known.

Corollary 2 (Squaring in Z
×
n , Jn, and QRn) Let n be an

RSA modulus. The squaring operation Z
×
n → QRn : x �→

x2 is a 4:1 mapping. If n is a Blum integer, then squaring
is a 2:1 function from Jn to QRn, while squaring is a 1:1
function both from QRn to QRn and from QRn to QRn.
These relations are illustrated in Fig. 8 (left).

Fact 5 (Computing square roots in Z
×
n is hard) Let n be

an RSA modulus. Computing square roots modulo n is as
hard as factoring n. In particular, given an algorithm A
that computes square roots of elements in QRn, factors of
n can be found by randomly picking x ←R Z

×
n and running

x ′ ←R A(n, x2) to obtain a second, potentially different,
square root of x2. With probability 1/2, x ′ �≡ ±x; by Fact 4,
a non-trivial factor of n is given by gcd(n, x − x ′).

Fact 6 (Samplability and decidability ofZn,Z×
n , Jn, J n) Let

n = pq be an RSA modulus, t ∈ Z
×
n a fixed element with

(t
n

) = −1, and � � log n. Identify set {0, 1}� with [0, 2�−1]
using a canonical bijection and consider functions

E : {0, 1}� → Zn : r �→ r mod n

F : Z
×
n → Jn : x �→

{

x if
(x
n

) = +1

xt if
(x
n

) = −1
.

A common method (see [17,39] and [37, §B.5.1.3]) for
sampling random elements x from Zn is to pick a seed
r ←R {0, 1}� and to output x = E(r). The resulting distri-
bution is statistically close to uniform [39]. If p and q grow
exponentially in a security parameter, then |Z×

n |/|Zn| =
1 − (p + q − 1)/pq becomes negligibly close to 1, so
function E can be used without modification for sampling
from Z

×
n with a distribution statistically close to uniform.

Note that membership in Z
×
n can be efficiently decided since

Z
×
n = {x ∈ Zn : gcd(x, n) = 1}.
Elements in Jn and Jn can be efficiently recognized by

evaluating the Jacobi symbol. Moreover, it is not difficult
to see that elements y can be uniformly sampled from Jn
by picking a random x ←R Z

×
n and outputting y = F(x).

Elements from Jn can be sampled in a similar fashion.
It is widely believed that, unless the factorization of n

is known, distinguishing elements in QRn from elements
in QRn is a hard problem. It also seems to be infeasible to
sample elements from QRn without knowing a square root
of these samples.

Appendix 2: Indifferentiable hashing onto QRn/±1

Specific applications of the group of sign-agnostic quadratic
residues modulo a Blum integer n, including our construc-
tions in Sects. 5 and 7, might rely on the existence of a

123

Double-authentication-preventing signatures 17

hash function H : {0, 1}∗ → QRn/±1. Moreover, the corre-
sponding security arguments might require modelling H as
a random oracle, as in Theorem 3. We show in the following
how to construct such hash functions onto QRn/±1 from a
hash function onto bitstrings.

Let � � log n be an integer and assume h : {0, 1}∗ →
{0, 1}� is a hash function that may be modelled as a random
oracle. From h, we construct H : {0, 1}∗ → QRn/±1 as
H = G ◦ F ◦ E ◦ h, where

E : {0, 1}� → Zn , F : Z
×
n → Jn , G : Jn → QRn/±1

are the functions specified by Fact 6 and (implicitly) by
Lemma 7 (observe that E maps onto Zn , not onto Z

×
n as

syntactically required for composing E with F ; however, as
described in Fact 6, operations involving elements from Zn

are statistically indistinguishable from operations involving
elements from Z

×
n).

Thismethod of constructing hash functions followsBoneh
and Franklin [5] andBrier et al. [2,3]. Specifically, Brier et al.
show that if functionϕ = G◦F◦E is an admissible encoding
and h is a random oracle, then H = ϕ ◦ h is indifferentiable
from a random oracle [2, §3]. To program H , we can take a
preimage of ϕ and program h accordingly. We reproduce the
definition and main theorem from [2] as follows.

Definition 18 (Admissible encoding [2]) A function ϕ :
S → R between finite sets is an admissible encoding if it
satisfies the following properties:

(1) Computable: ϕ is computable in deterministic polyno-
mial time.

(2) Regular: for s uniformly distributed in S, the distrib-
ution of ϕ(s) is statistically indistinguishable from the
uniform distribution in R.

(3) Samplable: there is an efficient randomized algorithm
I such that, for any r ∈ R, I(r) induces a distribution
that is statistically indistinguishable from the uniform
distribution in ϕ−1(r).

Theorem 5 (Construction of random oracle [2]) Let ϕ :
S → R be an admissible encoding. If h : {0, 1}∗ → S is
a random oracle, then the construction H(m) = ϕ(h(m)) is
statistically indifferentiable from a random oracle. ��

As admissibility is a transitive property, it suffices to show
that E, F,G are admissible encodings.Define corresponding
inversion algorithms IE , IF , IG as

IE : Zn → [0, 2� − 1] : x �→ x + kn (k ←R [0, �2�/n� − 1])
IF : Jn → Z

×
n : x �→ x/tb (where b ←R {0, 1})

IG : QRn/±1 → Jn : {±x} �→ (−1)b · x (b ←R {0, 1})

(and observe that IG is actually well-defined). Functions
E, F,G and inversion algorithmsIE , IF , IG are clearly effi-
cient. While the regularity of F andG is obvious, function E
is regular by Fact 6. It is also easy to see that E, F,G are
samplable. Thus E, F,G are admissible encodings, and so
is ϕ = G ◦ F ◦ E . Hence H = ϕ ◦ h : {0, 1}∗ → QRn/±1

behaves like a random oracle by Theorem 5.

Appendix 3: Proofs

Proofs from Section 4

Proof of Lemma 1

We only prove the first inequality; the remaining two follow
analogously. Define the required distinguishers as D′

A(a) =
DB(Apply(a)) and D′

B(b) = DB(b), where we assume
implicit parameter ‘pub’. After observing that Apply is 2:1
and hence we have that Dist U (B),Apply(U (A))

X,D (λ) = 0 for any
distinguisher D, the triangle inequality shows

Dist
SampleB ,SampleA

B
X,DB

(λ) ≤ Dist SampleB ,U (B)

X,DB
(λ)

+ DistU (B),Apply(U (A))

X,DB
(λ)

+ Dist Apply(U (A)),Apply(SampleA)

X,DB
(λ)

= Dist SampleB ,U (B)

X,D′
B

(λ)

+ DistU (A),SampleA
X,D′

A
(λ).

��

Proof of Lemma 2

Construct INV−2 algorithm B and distinguisher DB as fol-
lows: Upon receiving (pub, a), B computes b ← Apply
(pub, a) and outputs a′ ←R A(pub, b). For any element b
to be decided,DB outputs 1 iffApply(pub,A(pub, b)) = b.
Inspection shows

Dist
SampleB ,SampleA

B
X,DB

(λ)

=
∣
∣
∣
∣
∣
∣

Pr[(td,pub) ←R TdGen(1λ); b ←R SampleB(pub) :
DB(pub, b) = 1] − Pr[(td,pub) ←R TdGen(1λ);
b ←R SampleA

B(pub) : DB(pub, b) = 1]

∣
∣
∣
∣
∣
∣

=
∣
∣
∣Succ INV−1

X,A (λ) − Pr
[

Exp INV−2∗
X,B (λ) = 1

]∣
∣
∣ ,

whereExp INV−2∗
X,B is identical toExp INV−2

X,B (cf. Fig. 6) except

that it returns 1 iff (a
x∼ a′∨a = a′). AsApply is 2:1,we have

Pr
[

Exp INV−2∗
X,B (λ) = 1

]

= 2 ·Pr
[

Exp INV−2
X,B (λ) = 1

]

= 2 ·
Succ INV−2

X,B (λ). We combine these results to obtain

123

18 B. Poettering, D. Stebila

Dist
SampleB ,SampleA

B
X,DB

(λ)

=
∣
∣
∣Succ INV−1

X,A (λ) − 2 Succ INV−2
X,B (λ)

∣
∣
∣ .

The statement of Lemma 2 follows immediately. ��

Proof of Lemma 3

Construct algorithmA as follows: Upon receiving (pub, b),
A runs a′ ←R SampleA(pub) and lets B compute
a′′ ←R B(pub, a′) such that a′ x∼ a′′. Then A computes
td′ ← Extract(pub, a′, a′′) and inverts challenge b via
Reverse(td′, b, 0). Algorithm A is successful in finding a
preimage for b whenever B is successful in finding a second
preimage for a′, that is, Succ INV−1

X,A (λ) = Succ INV−2
X,B (λ). ��

Proofs from Section 5

Proof of Theorem 1

Fix an efficient adversary A. Without loss of generality,
we assume that each of A’s queries to the signature oracle
is preceeded by a query on the same message to ran-
dom oracle Hpub. We also assume that A doesn’t make
redundant queries (i.e. doesn’t query multiple times the
same message to Hpub or to OSign oracle; note that sig-
nature generation in 2 : 1−Sig is deterministic) and that
A queries Hpub(msg∗) before outputting forgery candidate
(msg∗, σ ∗). We finally assume that the output distribution
of random oracle Hpub is the one induced bySampleB algo-
rithm; see “Appendix 2” for the constructionof such a random
oracle.

The proof proceeds with a sequence of games.
Game G0 is the regular unforgeability game from Fig. 1.
Game G1 is like G0 except that in the specification of

the OSign oracle we replace PRF F by a random function
ϕ : {0, 1}∗ → {0, 1}; by a standard argument we obtain

∣
∣
∣Succ G0

Σ,A(λ) − Succ G1
Σ,A(λ)

∣
∣
∣ ≤ Adv prf

F,C(λ f),

for an efficient PRF distinguisher C.
GameG2 is likeG1 except thatwe change theway random

oracle Hpub is implemented. Concretely, instead of assign-
ing values Hpub(msg) using the SampleB algorithm, we
compute amsg ←R SampleA(pub, d) for d = ϕ(msg) and
return b = Apply(pub, amsg). We obtain

∣
∣
∣Succ G1

Σ,A(λ) − Succ G2
Σ,A(λ)

∣
∣
∣

≤ qH · Dist SampleB ,SampleA
B

X,DB
(λ2),

for some efficient distinguisher DB .

In Game G2, this new way of processing Hpub queries
allows us to accurately answer signature queries without
requiring knowledge of td. Let (msg∗, σ ∗) denote a valid
forgery in game G2. We then have Apply(pub, amsg∗) =
Apply(pub, σ ∗) (by the validity of the forgery) and, with
probability (close to) 1/2, Decide(pub, amsg∗) �= Decide
(pub, σ ∗) (as bit ϕ(msg∗) remains hidden from A). If this
condition is met it allows the extraction of td from amsg∗
and σ ∗. Once td is known, winning the INV−2 game is
trivial: Succ G2

Σ,A(λ) ≤ 2 · Succ INV−2
X,B (λ2) for an efficient

INV−2 solver B. ��

Proofs from Section 6

Proof of Lemma 4

“⊆”: Let {±y} ∈ QRn/±1 be arbitrary. Without loss of gen-
erality assume y ∈ QRn , i.e. there exists x ∈ Z

×
n with x2 =

y. But then {±x} ∈ Z
×
n /±1 and {±x}2 = {±(x2)} = {±y}.

“⊇”: Fix an element {±x} ∈ Z
×
n /±1 and let y ∈ Z

×
n be

the (unique) value such that y = x2. Then y ∈ QRn and
{±x}2 = {±y} ∈ QRn/±1. ��

Proof of Lemma 5

Let {±y} ∈ QRn/±1 be arbitrary. Without loss of generality
assume y ∈ QRn . By Fact 4 there exist exactly four square
roots {±x0,±x1} of y in Z

×
n . These correspond to the two

elements {±x0}, {±x1} ∈ Z
×
n /±1. Fact 4 further states that

(x0
n

) �= (x1
n

)

, that is, one of {±x0}, {±x1} is in QRn/±1 and
the other in QRn/±1, by Eq. (1). Factorization and compu-
tation of square roots immediately follow from Fact 4. ��

Proof of Lemma 6

Assume towards contradiction the existence of an effi-
cient algorithm A that computes square roots of elements
in QRn/±1. By picking {±x} ∈ Z

×
n /±1 at random and run-

ning {±x ′} ←R A(n, {±x}2)we obtain a second, potentially
different, square root of {±x}2. By Corollary 1, with prob-
ability 1/2 we have {±x ′} �= {±x} and thus obtain the
factorization of n by Lemma 5. ��

Proof of Lemma 7

ByFact 6, the distribution of a is statistically close to uniform
onZ

×
n . Mapping a �→ {±a} is 2:1, so it preserves uniformity,

i.e. the sampler for Z
×
n /±1 has the required property. For the

QRn/±1 sampler, we notice that if
(a
n

) = +1, then {±a} is
already close to uniform in Jn/±1 = QRn/±1. If

(a
n

) = −1,
then

(ta
n

) = +1; since multiplication by t is a permutation
of Zn , ta is close to uniformly distributed in Jn , so {±ta}

123

Double-authentication-preventing signatures 19

is close to uniformly distributed in Jn/±1 = QRn/±1. A
similar argument holds for the QRn/±1 sampler. ��

Proof of Theorem 2

Samplability. That Dist SampleA,U (A)

X and Dist SampleB ,U (B)

X
are negligible for all efficient distinguishers is precisely the
statement of Lemma 7.

(Second) preimage resistance. By Lemma 2, it suffices to
show second preimage resistance. Given an arbitrary element
{±x0} ∈ Z

×
n /±1, assume an efficient adversary could com-

pute {±x1} ∈ Z
×
n /±1 such that {±x0} x∼ {±x1}, i.e. such that

{±x0} �= {±x1} and {±x0}2 = {±x1}2. By Lemma 5, this
suffices for factoring n.

Extractability. Given are {±x0}, {±x1} ∈ Z
×
n /±1 such

that {±x0} x∼ {±x1}, i.e. such that {±x0} �= {±x1} and
{±x0}2 = {±x1}2. By Lemma 5, this suffices for factoring n
and recovering trapdoor td = (p, q). ��

Proof of unforgeability (Theorem 3)

We use a sequence of games; wavy lines and under-
lines are used to highlight changes and additions between
games, respectively. Let A be an adversary for experiment
Exp EUF

2:1−DAPS. Without loss of generality, we assume thatA
queries itsOSign oracle at most once per subject. We further
assume that the distribution of random oracle Hpub is the one
induced by SampleB algorithm; see “Appendix 2” for the
construction of such a random oracle. Let Si be the event that
game i outputs 1 when running A.

Game 0. This is the original EUF experiment for
2 : 1−DAPS. For clarity, we reproduce it in full detail:

1 (td,pub) ←R TdGen(1λ2)

2 (subj∗,msg∗, σ ∗) ←R AOSign,Hpub(pub)

3 If A queries Hpub(subj):
4 If (subj, b) ∈ HList1, return b to A
5 b ←R SampleB(pub)

6 Append (subj, b) to HList1
7 Return b to A
8 If A queries Hpub(subj, s, i):
9 If (subj, s, i, bi) ∈ HList3, return bi to A

10 bi ←R SampleB(pub)

11 Append (subj, s, i, bi) to HList3
12 Return bi to A
13 If A queries OSign(subj,msg):
14 Append (subj,msg) to SignedList
15 s ← Reverse(td, Hpub(subj), 0)
16 (d1, . . . , dλh) ← H#(subj, s,msg)

17 bi ← Hpub(subj, s, i) for all 1 ≤ i ≤ λh
18 ai ← Reverse(td, bi , di) for all 1 ≤ i ≤ λh
19 σ ← (s, a1, . . . , aλh)

20 Return σ to A
21 Return 1 iff all the following hold:

22 - Ver(pub, subj∗,msg∗, σ ∗) = 1
23 - (subj∗,msg∗) /∈ SignedList
24 - ∀ subj,msg0,msg1 :
25 (subj,msg0), (subj,msg1)∈SignedList⇒msg0=msg1

By definition,

Pr[S0] = Succ EUF
2:1−DAPS,A(λ). (3)

Game 1. In this game, we change the simulator so that it
performs all operations without using the signing key. We
also change the random oracles that currently sample from
set B with SampleB(pub) algorithm to instead use, in some
occasions, the hybrid construction fromDefinition 14. These
changes will not be detected unless one can either invert the
2:1-TDF or can distinguish the two sampling methods.

1
���������������������
(·,pub) ←R TdGen(1λ2)

2 (subj∗,msg∗, σ ∗) ←R AOSign,Hpub(pub)

3 If A queries Hpub(subj):
4 If (subj, a, b) ∈ HList1, return b to A
5

��������������������
a ←R SampleA(pub, 0)

6
����������������
b ← Apply(pub, a)

7 Append (subj, a, b) to HList1
8 Return b to A
9 If A queries Hpub(subj, s, i):

10 If (subj, s, i, ·, bi) ∈ HList3, return bi to A
11 bi ←R SampleB(pub)

12 Append (subj, s, i, ·, bi) to HList3
13 Return bi to A
14 If A queries OSign(subj,msg):
15 Append (subj,msg) to SignedList
16 t ← Hpub(subj)
17 Event F1: Abort if there is (subj, s′, ·, ·, ·) ∈ HList3
18 such that Apply(pub, s′) = t .
19 Retrieve (subj, s, t) from HList1
20 (d1, . . . , dλh) ← H#(subj, s,msg)

21
��������������������
ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh

22
�����������������
bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh

23 Append (subj, s, i, ai , bi) to HList3 ∀1 ≤ i ≤ λh
24 σ ← (s, a1, . . . , aλh)

25 Return σ to A
26 Return 1 iff all the following hold:
27 - Ver(pub, subj∗,msg∗, σ ∗) = 1
28 - (subj∗,msg∗) /∈ SignedList
29 - ∀ subj,msg0,msg1 :
30 (subj,msg0), (subj,msg1)∈SignedList⇒msg0=msg1

Analysis of distribution of values given to A in game 1.
First, we show that the distribution of values returned toA in
game 1 is indistinguishable from in game 0. Let us consider
each of the values given to A in turn. Suppose abort event
F1 does not occur.

Of key importance in the following is Lemma 1, which
gives an upper bound on the distinguishability of values
returned bySampleB(pub) from values returned by running
a ←R SampleA(pub) and then returning Apply(pub, a).

123

20 B. Poettering, D. Stebila

– pub in line 1: This value is distributed identically to
game 0.

– Hpub(subj) queries: These values are always consistent
with other queries in this game.Any algorithm that distin-
guishes the values used for this query in this game from
the previous game allows us to construct a distinguisher
DB between SampleA0

B and SampleB .
– OSign(subj,msg) queries: These values are always con-

sistent with Hpub(subj) queries. Moreover, they are
also consistent with Hpub(subj, s, i) queries unless the
OSign(subj,msg) query is asked after an Hpub(subj,
s′, i) query with Apply(pub, s′) = Hpub(subj). As this
case is covered by the F1 event, we disregard it for now.
Any algorithm that distinguishes the values used for this
query in this game from the previous game allows us
to construct a distinguisher DB between SampleA0

B and

SampleB or between SampleA1
B and SampleB .

Thus,

|Pr[S0] − Pr[S1]| ≤
(q1 + (λh + 1)qS)Dist

SampleA
B ,SampleB

X,DB
(λ2) + Pr[F1].

(4)

Analysis of abort event F1. We claim that, if A makes at
most q1 queries to its Hpub(·) oracle, then we can construct
an efficient algorithm B1 against preimage resistance of 2:1-
TDF X such that

Pr[F1] ≤ q1 Succ
INV−1
X,B1

(λ2). (5)

Proof of claim: Let (pub, b∗) be the INV−1 challenge. Con-
struct B1 as a modification of game 1 in which B1 guesses
a value ĵ ←R [1, q1] and, upon A’s ĵ th (unique) query to
Hpub(·), B1 returns the challenge value b∗ to A instead of
following the algorithm in game 1. If event F1 occurs, then
with probability 1/q1 the value subj for which it occurs
is the value of subj that was queried to the ĵ th Hpub(·)
query. But then there is some (subj, s′, ·, ·, ·) ∈ HList3
such that Apply(pub, s′) = Hpub(subj) = b∗. In other
words, s′ in an inverse of b∗, and hence B1 has success-
fully inverted the INV−1 challenge,winningExp INV−1

X,B1
(λ2).

Thus, Pr[F1] ≤ q1 Pr
[

Succ INV−1
X,B1

(λ2) = 1
]

.

Game 2. In this game, we place an additional condition on
the simulator to output 1, namely that the signature returned
by the adversary must include an s value which was pre-
viously queried to Hpub. However, since the s value for a
subject is only known to the challenger before anOSign query,
no adversary should be able to construct a valid signature
without querying OSign.

1 (·,pub) ←R TdGen(1λ2)

2 (subj∗,msg∗, σ ∗) ←R AOSign,Hpub(pub)

3 If A queries Hpub(subj):
4 If (subj, a, b) ∈ HList1, return b to A
5 a ←R SampleA(pub, 0)
6 b ← Apply(pub, a)

7 Append (subj, a, b) to HList1
8 Return b to A
9 If A queries Hpub(subj, s, i):

10 If (subj, s, i, ai , bi) ∈ HList3, return bi to A
11 ai ←R SampleA(pub, 0)
12 bi ← Apply(pub, ai)
13 Append (subj, s, i, ai , bi) to HList3
14 Return bi to A
15 If A queries OSign(subj,msg):
16 Append (subj,msg) to SignedList
17 t ← Hpub(subj)
18 Event F1: Abort if there is (subj, s′, ·, ·, ·) ∈ HList3
19 such that Apply(pub, s′) = t .
20 Retrieve (subj, s, t) from HList1
21 (d1, . . . , dλh) ← H#(subj, s,msg)

22 ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh
23 bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh
24 Append (subj, s, i, ai , bi) to HList3 ∀1 ≤ i ≤ λh
25 σ ← (s, a1, . . . , aλh)

26 Return σ to A
27 Return 1 iff all the following hold:
28 - Ver(pub, subj∗,msg∗, σ ∗) = 1
29 - (subj∗,msg∗) /∈ SignedList
30 - ∀ subj,msg0,msg1 :
31 (subj,msg0), (subj,msg1)∈SignedList⇒msg0=msg1
32 - Event ¬F2: ∀ i ∃ (subj∗, s∗, i, a∗

i , bi) ∈ HList3 :
33 Apply(pub, a∗

i) = bi

Analysis of difference in success probabilities in game 1 and
game 2. The messages that A sees in game 2 have exactly
the same distribution as in game 1. The only difference is
the additional condition ¬F2 for the experiment to output 1.
Clearly, then,

|Pr[S1] − Pr[S2]| ≤ Pr[F2]. (6)

If event F2 occurs, then there is some i such that A
never queried Hpub(subj

∗, s∗, i) but, since the signature
σ ∗ verified, Apply(pub, a∗

i) = Hpub(subj
∗, s∗, i). In other

words, the value bi = Hpub(subj
∗, s∗, i) was first com-

puted when the challenger tried to verify the signature in
step 27. If bi had been picked uniformly at random, the
probability of it being guessed would be 1/|B|. If bi had
been picked using SampleB , the probability of it being
guessedwould have been at most the probability of a uniform
bi being guessed plus the probability of distinguishing the
uniform distribution from SampleB’s distribution, namely:

1/|B| + Dist U (B),SampleB
X,D1

B
(λ2) for an efficient distinguisher

D1
B . Finally, if bi had been picked using SampleA

B (which
is indeed the case), the probability of it being guessed

123

Double-authentication-preventing signatures 21

would have been at most the probability of a uniform bi
being guessed plus the probability of distinguishing the
uniform distribution from SampleB’s distribution plus the
probability of distinguishing SampleB’s distribution from
SampleA

B’s distribution, namely:

Pr[F2] ≤ 1

|B| + Dist U (B),SampleB
X,D1

B
(λ2)

+Dist
SampleB ,SampleA

B

X,D2
B

(λ2).

Analysis of success in game 2. Claim: For every probabilistic
algorithmAmaking qS queries toOSign, there exists proba-
bilistic algorithms B2 and C with running time linear in that
of A such that

Pr[S2] ≤ 2qSλh Succ
INV−2
X,B2

(λ2) + Succ CR
H#,C(λh). (7)

Proof of claim: We will construct an adversary B2 for
Exp INV−2

X,· (λ2) using algorithmA. Let (pub, a∗) be the chal-
lenge received by B2 in Exp

INV−2
X,B2

(λ2).
Next, B2 guesses a value ĵ ←R [1, qS] and, uponA’s ĵ th

query to OSign, B2 further guesses a value ı̂ ←R [1, λh]. If
dı̂ �= Decide(pub, a∗), then B2 aborts. Otherwise, it sets
aı̂ ← a∗.

Suppose game 2 outputs 1. Then A has output (subj∗,
msg∗, σ ∗) which is a valid signature under pub, was not
signed by OSign, and there was no double signature for any
subject queried to OSign. Moreover, since neither event F1
nor F2 occurred, A must have queried OSign(subj

∗,msg′)
for some msg′ �= subj∗. With probability 1/qS , A issued
this query on its ĵ th to OSign. If this was not the case, then
B2 aborts.

Now, either H#(subj∗, s∗,msg∗) = H#(subj∗, s∗,
msg′), or not. If so, then a collision has been found
in H#, then this experiment serves as an efficient algo-
rithm C which finds collisions in H#. Hence, suppose no
such collision occurs, namely that H#(subj∗, s∗,msg∗) �=
H#(subj∗, s∗,msg′). In particular, there is some bit i where
H#(subj∗, s∗,msg∗) and H#(subj∗, s∗,msg′) differ. With
probability 1/λh , i = ı̂ . When this is the case, we have that
ai

x∼ a∗. This is a solution to the INV−2 challenge a∗, which
B2 outputs to win Exp

INV−2
X,B2

(λ2).
By the argument above, if B2 correctly guesses ĵ and ı̂ ,

and ifDecide(pub, a∗) = dı̂ , thenwheneverAwins game 2,
B wins Exp INV−2

X,B2
(λ2).

Final result. Thefinal result follows fromcombiningEqs. (4)
through (7) and applying Lemma 1. ��

Proof of double-signature extractability (Theorem 4)

Wepropose the followingDSE∗ extractor (cf. Definition 10):

– Extract(pub, (subj,msg1, σ1), (subj,msg2, σ2)) :
Parse (s1, a11, . . . , a

1
λh

) ← σ1 and (s2, a21 , . . . , a
2
λh

) ←
σ2. Let (d11 , . . . , d

1
λh

) ← H#(subj, s1,msg1) and (d21 ,

. . . , d2λh) ← H#(subj, s2,msg2). Let i ∈ [1, λh] be

such that d1i �= d2i . Use 2:1-TDF’s Extract algorithm
to output td ← Extract(pub, a1i , a

2
i).

It is straightforward to see that this is a valid extractor. Given
twovalid subject–message–signature tuples (subj,msg1, σ1)
and (subj,msg2, σ2) for whichmsg1 �= msg2, except with
negligible probability, H#(subj, s1,msg1) �= H#(subj, s2,
msg2). Assume no such collision occurs and the hash values
are (d11 , . . . , d

1
λh

) and (d21 , . . . , d
2
λh

). Then there exists some

position i ∈ [1, λh] such that d1i �= d2i .
Now, since both σ1 and σ2 are valid, we have that

Apply(pub, a1i) = Hpub(subj, s1, i) = Hpub(subj, s2, i) =
Apply(pub, a2i), butDecide(pub, a1i) �= Decide(pub, a2i).

In other words, a1i
x∼ a2i . Thus, 2:1-TDF’s Extract(pub, a1i ,

a2i) returns the trapdoor td corresponding to pub. ��

References

1. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and
applications. In Juels, A. (ed.) FC 2004, LNCS, vol. 3110, pp. 164–
180. Key West, USA, February 9–12. Springer, Heidelberg (2004)

2. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H.,
Tibouchi, M.: Efficient indifferentiable hashing into ordinary ellip-
tic curves. In: Cryptology ePrint Archive, Report 2009/340. http://
eprint.iacr.org/2009/340 (2009)

3. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H.,
Tibouchi, M.: Efficient indifferentiable hashing into ordinary ellip-
tic curves. In: Rabin, T. (ed.) CRYPTO 2010, LNCS, vol. 6223, pp.
237–254, Santa Barbara, CA, USA, August 15–19. Springer, Hei-
delberg (2010)

4. Bernstein, D.J.: Proving tight security for Rabin–Williams signa-
tures. In: Smart, N.P. (ed.) EUROCRYPT 2008, LNCS, vol. 4965,
pp. 70–87, Istanbul, Turkey, April 13–17. Springer, Heidelberg
(2008)

5. Boneh,D., Franklin,M.K.: Identity-based encryption from theWeil
pairing. In: Kilian, J. (ed.) CRYPTO 2001, LNCS, vol. 2139, pp.
213–229, Santa Barbara, CA, USA, August 19–23. Springer, Hei-
delberg (2001)

6. Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs:
giving hints and using deficiencies. J. Cryptol. 4(3), 185–206
(1991)

7. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop
signature schemes without trees. In Fumy, W. (ed.) EURO-
CRYPT’97, LNCS, vol. 1233, pp. 480–494, Konstanz, Germany,
May 11–15. Springer, Heidelberg (1997)

8. Bellare,M., Rogaway, P.: Randomoracles are practical: a paradigm
for designing efficient protocols. In Ashby, V. (ed.) ACM CCS 93,
pp. 62–73, Fairfax, Virginia, USA, November 3–5. ACM Press
(1993)

9. Bellare, M., Rogaway, P.: The exact security of digital signatures:
how to sign with RSA and Rabin. In Maurer, U.M. (ed.) EURO-
CRYPT’96, LNCS, vol. 1070, pp. 399–416, Saragossa, Spain,
May 12–16. Springer, Heidelberg (1996)

123

http://eprint.iacr.org/2009/340
http://eprint.iacr.org/2009/340

22 B. Poettering, D. Stebila

10. Bellare, M., Ristov, T.: Hash functions from sigma protocols and
improvements to VSH. In: Pieprzyk, J. (ed.) ASIACRYPT 2008,
LNCS, vol. 5350, pp. 125–142, Melbourne, Australia, Decem-
ber 7–11. Springer, Heidelberg (2008)

11. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In:
Goldwasser, S. (ed.) CRYPTO’88, LNCS, vol. 403, pp. 319–327,
Santa Barbara, CA, USA, August 21–25. Springer, Heidelberg
(1990)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.)
CRYPTO’94, LNCS, vol. 839, pp. 257–270, Santa Barbara, CA,
USA, August 21–25. Springer, Heidelberg (1994)

13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-
transferable anonymous credentials with optional anonymity revo-
cation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001, LNCS, vol.
2045, pp. 93–118, Innsbruck, Austria, May 6–10. Springer, Hei-
delberg (2001)

14. Camenisch, J., Michels, M.: Proving in zero-knowledge that a
number is the product of two safe primes. In: Stern, J. (ed.)
EUROCRYPT’99, LNCS, vol. 1592, pp. 107–122, Prague, Czech
Republic, May 2–6. Springer, Heidelberg (1999)

15. Coron, J.-S.: Optimal security proofs for PSS and other signa-
ture schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002, LNCS,
vol. 2332, pp. 272–287, Amsterdam, The Netherlands, April 28 –
May 2. Springer, Heidelberg (2002)

16. De Santis, A., Di Crescenzo, G., Persiano, G.: Secret sharing
and perfect zero knowledge. In: Stinson, D.R. (ed.) CRYPTO’93,
LNCS, vol. 773, pp. 73–84, Santa Barbara, CA, USA, August 22–
26. Springer, Heidelberg (1994)

17. Desmedt, Y.: Securing traceability of ciphertexts—towards a
secure software key escrow system (extended abstract). In: Guil-
lou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT’95, LNCS, vol.
921, pp. 147–157, Saint-Malo, France, May 21–25. Springer, Hei-
delberg (1995)

18. Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: self-
enforcing protection of digital information (preliminary version).
In: 28th ACM STOC, pp. 489–498, Philadephia, Pennsylvania,
USA, May 22–24. ACM Press (1996)

19. Evans, C., Palmer, C., Sleevi, R.: RFC 7469: public key pinning
extension for HTTP. https://tools.ietf.org/html/rfc7469 (2015)

20. Fox-It. Black tulip: Report of the investigation into the Dig-
iNotar certificate authority breach. http://www.rijksoverheid.
nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/
black-tulip-update/black-tulip-update.pdf (2012)

21. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature
schemes with tight reductions to the Diffie–Hellman problems. J.
Cryptol. 20(4), 493–514 (2007)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput.
17(2), 281–308 (1988)

23. Google Online Security Blog. An update on attempted man-in-
the-middle attacks. http://googleonlinesecurity.blogspot.de/2011/
08/update-on-attempted-man-in-middle.html (2011)

24. Goyal, V.: Reducing trust in the PKG in identity based cryptosys-
tems. In Menezes, A. (ed.) CRYPTO 2007, LNCS, vol. 4622, pp.
430–447, Santa Barbara, CA, USA, August 19–23. Springer, Hei-
delberg (2007)

25. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and
applications. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677,
pp. 637–653, Santa Barbara, CA, USA, August 16–20. Springer,
Heidelberg (2009)

26. Hoffman, P., Schlyter, J.: RFC 6698: the DNS-based authentication
of named entities (DANE) transport layer security (TLS) protocol:
TLSA. https://tools.ietf.org/html/rfc6698 (2012)

27. Ireland, K.,Rosen,M.: A classical introduction to modern number
theory. In: Axler, S., Gehring, F.W., Ribet, K.A. (eds.) Graduate
Texts in Mathematics. Springer, New York (1990)

28. Jakobsson, M., Juels, A., Nguyen, P.Q.: Proprietary certificates. In:
Preneel, B. (ed.)CT-RSA2002,LNCS, vol. 2271, pp. 164–181, San
Jose, CA, USA, February 18–22. Springer, Heidelberg (2002)

29. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, Boca Raton (2007)

30. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000,
San Diego, California, USA, February 2–4. The Internet Society
(2000)

31. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring
public-key cryptosystems. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (ed.) ACM CCS 13, pp. 943–954, Berlin, Germany, Novem-
ber 4–8. ACM Press (2013)

32. Lamport, L.: Constructing digital signatures from a one way func-
tion. In: Technical Report CSL-98, SRI International (1979)

33. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.)
CRYPTO’89, LNCS, vol. 435, pp. 218–238, Santa Barbara, CA,
USA, August 20–24. Springer, Heidelberg (1990)

34. Mashatan, A., Ouafi, K.: Forgery-resilience for digital signature
schemes. In Youm, H.Y., Won, Y. (ed.) ASIACCS 12, pp. 24–25,
Seoul, Korea, May 2–4. ACM Press (2012)

35. Marlinspike, M., Perrin, T.: Trust assertions for certificate keys
(Internet-draft). http://tools.ietf.org/html/draft-perrin-tls-tack-02
(2013)

36. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (2001)

37. NIST—National Institute of Standards and Technology. Special
publication 800-90. In: Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. http://
csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
(2012)

38. Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM J. Com-
put. 26(2), 291–330 (1997)

39. Shoup, V.: A Computational Introduction to Number Theory and
Algebra. Cambridge University Press, New York (2005)

40. Soghoian, C., Stamm, S.: Certified lies: detecting and defeating
government interception attacks against SSL (short paper). In:
Danezis, G. (ed.) FC 2011, LNCS, vol. 7035, pp. 250–259, Gros
Islet, St. Lucia, February 28–March 4. Springer, Heidelberg (2012)

41. Shamir, A., Tauman, Y.: Improved online/offline signature
schemes. In: Kilian, J. (ed.) CRYPTO 2001, LNCS, vol. 2139,
pp. 355–367, Santa Barbara, CA, USA, August 19–23. Springer,
Heidelberg (2001)

42. van de Graaf, J., Peralta, R.: A simple and secure way to show the
validity of your public key. In: Pomerance, C. (ed.) CRYPTO’87,
LNCS, vol. 293, pp. 128–134, Santa Barbara, CA, USA, August
16–20. Springer, Heidelberg (1988)

43. vanHeyst, E., Pedersen, T.P.: How tomake efficient fail-stop signa-
tures. In: Rueppel, R.A. (ed.) EUROCRYPT’92, LNCS, vol. 658,
pp. 366–377, Balatonfüred, Hungary, May 24–28. Springer, Hei-
delberg (1993)

44. van Heijst, E., Pedersen, T.P., Pfitzmann, B.: New constructions
of fail-stop signatures and lower bounds (extended abstract). In:
Brickell, E.F. (ed.) CRYPTO’92, LNCS, vol. 740, pp. 15–30, Santa
Barbara, CA, USA, August 16–20. Springer, Heidelberg (1993)

45. Waidner, M., Pfitzmann, B.: The dining cryptographers in the
disco—underconditional sender and recipient untraceability with
computationally secure serviceability (abstract) (rump session). In:
Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT’89, LNCS,
vol. 434, pp. 690, Houthalen, Belgium, April 10–13. Springer, Hei-
delberg (1990)

123

https://tools.ietf.org/html/rfc7469
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://googleonlinesecurity.blogspot.de/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.de/2011/08/update-on-attempted-man-in-middle.html
https://tools.ietf.org/html/rfc6698
http://tools.ietf.org/html/draft-perrin-tls-tack-02
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

	Double-authentication-preventing signatures
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline
	1.3 Related work

	2 Preliminaries
	3 Double-authentication-preventing signatures
	3.1 Unforgeability
	3.2 Double-signature forgeability
	3.3 Double-signature extractability

	4 2:1 Trapdoor functions and extractability
	4.1 Definition
	4.2 Security notions
	4.2.1 Samplability
	4.2.2 One-wayness

	4.3 Extractable 2:1 trapdoor functions

	5 Tightly secure signatures from 2:1 trapdoor functions
	6 Constructing extractable 2:1 trapdoor functions
	6.1 Sign-agnostic quadratic residues
	6.2 Construction of Blum-2:1-TDF from sign-agnostic quadratic residues

	7 Double-authentication-preventing signatures from extractable 2:1-TDFs
	7.1 Unforgeability of 2:1-DAPS
	7.2 Double-signature extractability of 2:1-DAPS
	7.3 DAPS instantiation based on sign-agnostic quadratic residues

	8 Applications
	8.1 Certificate authorities
	8.2 Time-stamping
	8.3 Hybrid DAPS + standard signatures

	9 Conclusions
	Acknowledgements
	Appendix 1: Basic results from number theory
	Appendix 2: Indifferentiable hashing onto QRn
	Appendix 3: Proofs
	Proofs from Section 4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Proofs from Section 5
	Proof of Theorem 1

	Proofs from Section 6
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 2
	Proof of unforgeability (Theorem 3)
	Proof of double-signature extractability (Theorem 4)

	References

