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Abstract A well-established method of constructing hash
functions is to base them on non-compressing primitives,
such as one-way functions or permutations. In this work, we
present Sr , an rn-to-n-bit compression function (for r ≥ 1)
making 2r − 1 calls to n-to-n-bit primitives (random func-
tions or permutations). Sr compresses its inputs at a rate (the
amount of message blocks per primitive call) up to almost
1/2, and it outperforms all existing schemes with respect to
rate and/or the size of underlying primitives. For instance,
instantiated with the 1600-bit permutation of NIST’s SHA-
3 hash function standard, it offers about 800-bit security at
a rate of almost 1/2, while SHA-3-512 itself achieves only
512-bit security at a rate of about 1/3. We prove that Sr

achieves asymptotically optimal collision security against
semi-adaptive adversaries up to almost 2n/2 queries and that
it can be made preimage secure up to 2n queries using a
simple tweak.

Keywords Hash function · Small primitives ·
Collision resistance · Preimage resistance ·
Parallelizable

1 Introduction

For decades, the leading approach in hash function design
has been blockcipher-based: A cipher E is employed in a
certain mode to obtain a hash function that satisfies some
security guarantees. This approach has been analyzed in
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detail [13,14,20,23,24,26,28,34,37,38,47], and is followed
by numerous hash functions, including thewell-knownSHA-
{0, 1, 2} and MD{4, 5}. The recent trend is, however, pre-
dominantly permutation-based. Notably, three out of the five
finalists in NIST’s SHA-3 competition [36], including the
eventual winner Keccak [8], are built on permutations, and
also the recently started CAESAR authenticated encryption
competition [15] received awide range of permutation-based
submissions [1,2,5,10,11,17,22,25,35,43,44].

Permutations do not require a key schedule (and par-
ticularly, there is no need to re-key, which could be quite
expensive for some blockciphers) and are simpler to design
and analyze. Additionally, the study of constructions start-
ing from small domain random functions or permutations is
highly relevant [19,30]. Note that, furthermore, a small set of
permutations can be easily generated from one blockcipher
by fixing a handful of keys.

Consider a compression function F : {0, 1}M+n → {0, 1}n
making d calls to an s-bit primitive f (a blockcipher, non-
compressing function, or permutation). The efficiency of
such a construction is commonly expressed in terms of a rate:
M
ds , the number of message bits divided by the (scaled) num-
ber of primitive calls. Intuitively, a larger rate corresponds
to less primitive calls per message compression and thus to
a higher efficiency. The “scaling” is done by the term s in
the denominator, and a construction with a larger underlying
primitive has a larger value s and thus a lower rate.

Many blockcipher-based compression functions achieve
a high rate. For instance, the classical 2n-to-n-bit Davies–
Meyer compression function F(h,m) = E(m, h) ⊕ h has
rate 1. Double-length blockcipher-based compression func-
tion such as Tandem-DM [28] compress at a rate 1/2: They
map 3n bits to 2n bits making 2 calls to an n-bit blockcipher.

For non-compressing primitives, which do not offer com-
pression on their own, a high rate appears harder to achieve.
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One approach of designing a hash function H: {0, 1}∗ →
{0, 1}n with optimal n/2-bit collision security is using non-
compressing primitives of size significantly larger than n bits.
This approach is for instance followed by the Sponge [9]: It
iterates a permutation on c + m bits, where c is the capac-
ity and m equals the message block size.1 Sponge functions
make one primitive call per message block, have a rate m

c+m ,
and are proven secure up to 2c/2 queries [6]. (We remark that
sponge functions allow for variable output sizes, by making
extra primitive calls in the squeezing phase and outputtingm
bits at a time. This approach, however, requires extra primi-
tive calls, which influences the rate.) The newSHA-3 hashing
standard is a sponge using a 1600-bit permutation, and above
computations apply. For example, SHA-3-256 offers 256-bit
security by compressing at a rate of about 2/3, and SHA-3-
512 offers 512-bit security by compressing at a rate of about
1/3.Note that, intuitively, one should be able to achieve about
800-bit security using a 1600-bit primitive.

Black et al. [12], however, showed that it is impossible to
construct a secure n-bit hash or compression function using
one call to an n-bit non-compressing primitive. More gen-
erally, for a function F : {0, 1}M+n → {0, 1}n making d
calls to an s-bit primitive, collisions can be found in at most
2(ds−M)/(d+1) queries, a bound commonly known as “Stam’s
bound” and proven in [41,46,48,49]. Stam’s bound implies
that a 2n-to-n-bit function requires at least three n-bit primi-
tive calls to achieve optimal collision resistance; hence, such
a function has rate at most 1/3. The problem of designing
such a function has been well studied [29,31,42,45], and we
highlight the Shrimpton–Stam compression function, which
we will refer to as S2:

S2(x0, x1) = f0(x0) ⊕ f2( f0(x0) ⊕ f1(x1)).

The design is proven asymptotically optimally collision
secure if f0, f1, f2 are three independent n-bit random func-
tions or if they are instantiated as fi (x) = πi (x) ⊕ x for
distinct permutations πi [31]. It is, however, known to be
insecure if one takes f0 = f1 = f2 [31,45]. This and other
functions have a rate of 1/3 or worse, and improving it has
turned out to be a very difficult theoretical problem.

1.1 Our contributions

We introduce the family of compression functions
Sr : {0, 1}rn → {0, 1}n for r ≥ 1. For r = 8, the function
S8 is depicted in Fig. 1. The function makes 2r − 1 function
calls to 2�log2 r� + 1 distinct primitives. Our class of func-
tions is a graphical generalization of the Shrimpton–Stam
compression function S2, but it offers a higher rate r−1

2r−1 ,

1 The authors originally refer tom as the “rate,” but in our terminology
“rate” has a different meaning.

u0 u1 u2 u3 u4 u5 u6 u7

v

f0,0 f0,1 f0,0 f0,1 f0,0 f0,1 f0,0 f0,1

f1,0 f1,1 f1,0 f1,1

f2,0 f2,1

f3,0

x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1

x3,0

y0,0 y0,1 y0,2 y0,3 y0,4 y0,5 y0,6 y0,7

y1,0 y1,1 y1,2 y1,3

y2,0 y2,1

y3,0

z1,0 z1,1 z1,2 z1,3

z2,0 z2,1

z3,0

Fig. 1 Compression function S8: {0, 1}8n → {0, 1}n making 15 prim-
itive calls. Here, f j,b (for ( j, b) ∈ ({0, 1, 2} × {0, 1}) ∪ {(3, 0)})
are one-way functions, but these can be instantiated as f j,b(x) =
π j,b(x) ⊕ x at no collision security loss

approaching 1/2 for increasing values of r , and thus allow-
ing for a more efficient throughput of data while achieving
comparable collision security. This rate is in fact optimal,wit-
nessed by Stam’s bound which suggests that at least 2r − 1
function calls need to be made. Additionally, Sr is well par-
allelizable and generally benefits from the same advantages
as tree-based hash functions.

1.2 Efficiency

Based on the SHA-3 permutationπ : {0, 1}1600 → {0, 1}1600,
our function Sr achieves almost2 800-bit security with a rate
approaching 1/2. This is in sharp contrast to SHA-3-512
which only achieves 512-bit security by compressing at a rate
of about 1/3. If we instantiate our function Sr using smaller
versions of the SHA-3 permutation, for instance on 400 or
200 bits, we can still get a high security level of almost 200 or
100 bits, respectively, while hashing at a rate that approaches
1/2. This is of particular interest for lightweight cryptogra-
phy, because Sr shows that approximately the same level of
security can be achieved as comparable schemes, but using
much smaller underlying primitives.

We present a generic comparison of Sr in a Merkle–
Damgård mode of operation (MD-Sr ) [16,33] or in a Merkle
tree (MT-Sr ) [32] with sponge functions [9], Grøstl [21], and
MD6 [39] in Table 1. In this analysis (see “Appendix 1” for
the technical details), we aim for comparable 2n/2 collision

2 Sr makes use of p := 2�log2 r� + 1 distinct primitives, so �log2 p�
bits of the input to π are reserved for domain separation.

123



Efficient parallelizable hashing using small non-compressing primitives 287

Ta
bl
e
1

Si
m
pl
ifi
ed

co
m
pa
ri
so
n
of

M
D
-S

r
w
ith

th
e
sp
on
ge

fu
nc
tio

n
an
d
G
rø
st
l(
fir
st
),
an
d
M
T-
Sr

w
ith

M
D
6
(s
ec
on
d)

Fu
nc
tio

n
G
en
er
al
bo
un
ds

Fo
r
r

=
4
an
d
n

=
m

=
51
2

R
at
e

Pr
im

iti
ve

si
ze

#
D
is
tin

ct
pr
im

iti
ve
s

C
ol
lis
io
n
se
cu
ri
ty

R
at
e

Pr
im

iti
ve

si
ze

#
D
is
tin

ct
pr
im

iti
ve
s

C
ol
lis
io
n
se
cu
ri
ty

M
D
-S

r
r−

1
2r

−1
n

2�
lo
g 2

r�
+

1
2n

/
2
/
n

3/
7

51
2

5
22

47

Sp
on
ge

[9
]

m
n+

m
n

+
m

1
2n

/
2

1/
2

10
24

1
22

56

G
rø
st
l[
21

]
1/
2

2n
2

2n
/
2

1/
2

10
24

2
22

56

M
T-
Sr

r−
1

2r
−1

M
M

−1
n

2�
lo
g 2

r�
+

1
2n

/
2
/
n

3/
7

M
M

−1
51
2

5
22

47

M
D
6
[3
9]

3/
4

M
M

−1
4n

1
2n

/
2

3/
4

M
M

−1
20
48

1
22

56

m
de
no

te
s
th
e
m
es
sa
ge

bl
oc
k
si
ze

(i
ts
ra
te
).
Se

e
al
so

“A
pp

en
di
x
1”

security and adopt the design parameters accordingly. We
also include a comparison for a specific set of parameters.
We observe that Sr achieves comparable rate and efficiency,
but using primitives that are a factor 2 to 4 smaller. However,
the security analysis of Sr requires more distinct primitives
than the other functions, and the proof is performed in a
slightly different model (see Sect. 1.3).

1.3 Security

We prove that Sr , either based on random functions or ran-
dom permutations, is collision secure up to about 2n/2/n
queries. In otherwords, Sr is asymptotically nearly optimally
collision secure. In Fig. 2, we compare the rates and collision
security guarantees of various instantiations of Sr , both for
the general case and for n = 512. The proof is performed in
a model where the adversary makes its queries layer-wise,
which means that all queries to f j−1,0 and f j−1,1 must be
made before all queries to f j,0 and f j,1, for j = 1, . . . , �.
We also present a proof of n/3-bit security in the fully adap-
tive model and justify why it cannot be easily improved.
This is in part as security proofs are known to become sig-
nificantly harder when based on non-compressing primitives
[30]. We conjecture that Sr does achieve optimal collision
security. Additionally, for technical reasons we require dis-
tinctness of the 2�log2 r� + 1 underlying primitives. This
can be achieved by employing a single blockcipher for a
fixed set of distinct keys. In Sect. 7, we show that it is
non-trivial to reduce the number of distinct primitives in
Sr .

Next, we prove that S2 based on random functions is
preimage resistant up to 22n/3 queries (solving an open prob-
lem of Shrimpton and Stam [45]). This result does not apply
to the permutation-based setting: An attack on Sr proving
tight 2n/2 security is derived for any r ≥ 2. We also show
that a simple tweak can make Sr optimally preimage secure.
Formally, if we consider a hash or compression function F
followed by a sufficiently strong finalization function G, the
design is as collision secure as the weakest of both and as
preimage secure as G (see also Lemma 1). The efficiency
(rate) of the design is dominated by the rate of F . Con-
cretely:

H(M) = f ◦ MD-Sr (M),

where G := f is a random function, is collision resistant
up to about 2n/2/n queries (the bound of Sr ), and is preim-
age resistant up to about 2n queries (the preimage security
of f ), and it has a rate of more or less r−1

2r−1 . Hence, in this
way, one combines the efficiency and collision security of
Sr with the preimage security of f . The same result holds
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Fig. 2 Rates of
Sr : {0, 1}rn → {0, 1}n for
various values of r , with on the
right a supporting graph for
n = 512

3 4 5 6 7 8 9
r

0.2

0.3

0.4

0.5
rate

if f (x) = π(x) ⊕ x for a permutation π .3 We remark
that this trick does not apply to second preimage resis-
tance.

1.4 Outline

Wepresent our family of functions Sr based on functions f j,b
in Sect. 2. Next, we give a security analysis of Sr : The model
is introduced in Sect. 3, collision resistance is analyzed in
Sect. 4, and preimage resistance in Sect. 5. In Sect. 6, we dis-
cuss the effect of instantiating the underlying primitives f j,b
using permutations π j,b. The work is concluded in Sect. 7.

2 Hash function proposal Sr

Throughout, r and � always denote integral parameters. We
consider n ∈ N and put N = 2n . For simplicity, we first
introduce Sr for r being a power of two. Next, we generalize
it to arbitrary r ≥ 1.

2.1 Sr for r = 2�

Write r = 2� with � ≥ 0, and let f j,b: {0, 1}n → {0, 1}n be
one-way functions for ( j, b) ∈ ({0, . . . , � − 1} × {0, 1}) ∪
{(�, 0)}. A description of Sr : {0, 1}rn → {0, 1}n is given
in Fig. 3 together with an illustration of S4. Sr makes in
total 2r − 1 primitive calls, which is optimal with respect to
Stam’s bound. These calls are made to in total 2�+1 distinct
primitives.

The description of Sr can informally be described by
the following two steps. First, the inputs u0, . . . , ur−1 are
“processed” using functions f0,0, f0,1. Second, for j =
1, . . . , � and i = 0, . . . , 2�− j − 1, at position ( j, i), the
function Sr proceeds as follows: Given the outcomes of the
rounds at positions ( j − 1, 2i) and ( j − 1, 2i + 1), the prim-
itive f j,i mod 2 is evaluated on input of the XOR of these, and
its output is XORed with the outcome of round ( j − 1, 2i).
Eventually, the output of Sr is the value obtained after the

3 These findings seem to violate the preimage bound of Rogaway and
Steinberger [41], but note that their bound does not apply: The con-
struction H has a high preimage degeneracy.

last step (for j = �). The feed-forwards in the evaluation
are necessary: Absence of them would allow an adversary to
find a collision in, say, x1,0—typically found in about 2n/4

queries—in order to obtain a collision for Sr . They also pre-
vent trivial attacks where, e.g., the left and right input halves
are swapped.

2.2 Sr for arbitrary r

The description of Sr for arbitrary r ≥ 1 is given in
Fig. 4 together with an illustration of S3. The generalized
Sr , indeed, also makes 2r − 1 primitive calls (to in total
2�log2 r� + 1 distinct primitives). Although this description
is significantly more complex than the one of Fig. 3, the intu-
ition is rather simple and we give it for r = 3.

To define S3, we first consider S4 (see the illustration of
Fig. 3). Now, S3 only has inputs (u0, u1, u2) and no u3,
and therefore, the “fork” that processes inputs u2 and u3
in S4 only gets u2. We can then simply discard the two
corresponding calls f0,0 and f0,1 and define u2 to be the
input to f1,1. The resulting function matches the illustra-
tion of S3 in Fig. 4. In general, if the function has r input
blocks, where 2�−1 < r ≤ 2�, the idea is to have 2�−1 input
blocks right before the second layer. This means that in the
first layer, 2(r − 2�−1) input blocks have to be processed to
obtain r−2�−1 blocks x1,i . These are then appended with the
remaining r − 2(r − 2�−1) = 2� − r compression function
input blocks to obtain 2�−1 input values to the second layer.
From this point onwards, the function description is the same
as in Fig. 3.

3 Security model

For two sets S, T ⊆ {0, 1}n , we denote S ⊕ T = {s ⊕ t |
(s, t) ∈ S × T }. For n ∈ N, we denote by Func(n) the set of
all functions {0, 1}n → {0, 1}n and by Perm(n) its subset of
all permutations on n bits. We consider the security of Sr in
the ideal model, where its underlying primitives, denoted as
a setP , are considered to be randomly drawn from Func(n).
(Later on, we consider Sr where its underlying functions f j,b
are instantiated as f j,b(x) = π j,b(x) ⊕ x , and in this case,
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Fig. 3 Sr for r = 2� with
� ≥ 0 and an illustration of S4.
Here, we write
(y ⊕ z) j,i = y j,i ⊕ z j,i

u0 u1 u2 u3

v

f0,0 f0,1 f0,0 f0,1

f1,0 f1,1

f2,0

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1

x2,0

y0,0 y0,1 y0,2 y0,3

y1,0 y1,1

y2,0

z1,0 z1,1

z2,0

Fig. 4 Sr for r ≥ 1 with
� = �log2 r� and an illustration
of S3 u0 u1

u2

v

f0,0 f0,1

f1,0 f1,1

f2,0

x0,0 x0,1

x1,0 x1,1

x2,0

y0,0 y0,1

y1,0 y1,1

y2,0

z1,0

z2,0

u0 u1

u2

v

f0,0 f0,1

f1,0 f1,1

f2,0

x0,0 x0,1

x1,0 x1,1

x2,0

y0,0 y0,1

y1,0 y1,1

y2,0

z1,0

z2,0

we consider Sr based on ideal permutations from Perm(n).)
We consider adversaries A that have unbounded computa-
tional power and query access to these random primitives P ,
and their complexities are solely measured by the number of
queries they make to their oracles. We assume that the adver-
sarial queries are stored in a query historyQ. We require that
Q always contains the queries necessary for the evaluation
of the mounted collision or preimage attack.

Collision resistance Adversary A finds a collision for Sr

if it obtains two distinct tuples u = (u0, . . . , ur−1), u′ =
(u′

0, . . . , u
′
r−1) that satisfy Sr (u) = Sr (u′). The advantage

of a collision-finding adversary A is defined as

AdvcolSr [A] = P

[
P $←− Func(n)2�log2 r�+1, u, u′ ← AP

: u �= u′ ∧ Sr (u) = Sr (u′)
]
.

For a set of adversariesA, we define by AdvcolSr [A] the max-
imum advantage of any adversary A ∈ A.

Preimage resistance We consider preimage security for
every range point (also known as everywhere preimage resis-
tance [40]). Prior to making any query to its oracles, A is
given a range value v ∈ {0, 1}n , and A succeeds in finding
a preimage for v if it detects a u satisfying Sr (u) = v. The
success probability of A is then maximized over all possi-
ble chosen range values. The advantage of an everywhere
preimage-finding adversary A is defined as

AdvepreSr [A]
= max

v ∈ {0,1}n P
[
P $←− Func(n)2�log2 r�+1, u ← AP (v): Sr (u) = v

]
.

For a set of adversaries A, we define by AdvepreSr [A] the
maximum advantage of any adversary A ∈ A.
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Composition Evidently, equivalent definitions can be given
for functions F : {0, 1}s → {0, 1}n based on a different
amount of primitives P from Func(n), or even on different
primitives. We present the following useful lemma regarding
the collision and preimage security of G ◦ F for any hash or
compression function F and any sufficiently strong finaliza-
tion function G based on P . One can think of F being Sr or
even MD-Sr and G an element from Func(n).

Lemma 1 Consider G ◦ F based on random primitives P .
Then, for any adversary A,

AdvcolG◦F [A] ≤ AdvcolG [A] + AdvcolF [A],
AdvepreG◦F [A] ≤ AdvepreG [A].

Proof For G ◦ F , denote the input to F as u, the input to G
(the output of F) as v and the output ofG asw. In order to find
a collision forG◦F , the adversary needs to find two different
u, u′ with w = w′. Clearly, if the intermediate values v, v′
are distinct, such a collision implies a collision for G, and
otherwise it implies a collision for F . Next, for preimage
resistance, consider a given range value w and assume the
adversary finds a preimage u. Then, F(u) is a preimage of w

under G. ��

4 Collision security of Sr

In this section,we analyze the collision resistance of Sr . First,
in Sect. 4.1, we consider the case of r = 2� (with security
proofs in Sects. 4.2, 4.3). Next, in Sect. 4.4, we show how
the result generalizes to arbitrary values of r .

4.1 Sr for r = 2�

We derive the following result for the collision resistance of
Sr for r = 2� with � ≥ 0 (Fig. 3).

Theorem 1 Let r = 2� with � ≥ 0. Let Alw(q) denote the
set of all adversaries that make at most q queries and make
those layer-wise (all queries to f j−1,b are made before all
queries to f j,b′ (for j = 1, . . . , � and b, b′ arbitrary)). Then,
for any positive integer value τ ≥ 2,

AdvcolSr [Alw(q)] ≤ 2(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

.

The proof is presented in Sect. 4.2. At a very high level,
it is performed in a recursive manner: We demonstrate that
a collision for Sr either happens in the last round or that
“something happened at an earlier stage.” In more detail,
we first claim that associated with every query (x j,b, y j,b)
to f j,b, there are at most τ j possible values z j,b, for some

105 110 115 120 125 130

0.2

0.4

0.6

0.8

1.0
Collision Resistance

Fig. 5 The function AdvcolSr [Alw(q)] of Theorem 1 for n = 256 for
� = 16, 8, 4, 2 (from left to right), in comparison with the trivial bound
q(q + 1)/2n (dashed line)

threshold value τ . Then, the adversary wins in either of the
following two cases: (i) It finds a collision assuming that our
claim holds, or (ii) it breaks the claim. Putting τ = n1/� and
recalling N = 2n , we find that for any ε > 0,

AdvcolSr [Alw(N 1/2/n1+ε)] ≤ 2

n2ε
+ 2

(
2�e

n2ε

)n1/�

,

which approaches 0 for n → ∞. For various �, the bound of
Theorem 1 is depicted in Fig. 5.

Theorem 1 is restricted to adversaries that make their
queries layer-wise (hence the “lw” in Alw(q)). Intuitively,
this does not limit the impact of the security proof: The best
way for an adversary to find a collision is to make queries to
f j,b for increasing values of j in such a way to obtain a max-
imal yield (the number of inputs to Sr that can be evaluated
using the queries made by the adversary). In fact, Shrimp-
ton and Stam [45] already pointed out that for S2, it is fair
to just consider adversaries that query their oracles sequen-
tially (top layer first, bottom layer next). Unfortunately, the
proof of Theorem 1 cannot straightforwardly be generalized
to the fully adaptive case due to a complicated technicality: A
query to f j,b influences all possible lower-level feed-forward
values. Nevertheless, using a simple tweak, it is possible to
generalize Theorem 1 to adaptive security up to about 2n/3

queries:

Theorem 2 Let r = 2� with � ≥ 0. Let A(q) denote the set
of all adversaries that make at most q queries. Then, for any
positive integer value τ ≥ 2,

AdvcolSr [A(q)] ≤ 2(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

+ 2τ 2�q3

N
.

The proof is given in Sect. 4.3. We conjecture that this result
can be improved to approximately 2n/2 collision secure (in
the fully adaptive model).
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4.2 Proof of Theorem 1

We consider the security of Sr : {0, 1}rn → {0, 1}n , for r =
2� with � ≥ 0, based on 2� + 1 functions

{
f j,b | ( j, b) ∈

({0, . . . , � − 1} × {0, 1}) ∪ {(�, 0)}} randomly drawn from
Func(n). The focus is on adversaries that make all queries
to f j−1,b before all queries to f j,b′ .

We consider any adversary A that has query access to its
oracles P and makes q queries. These queries are stored in
a query history Q as indexed tuples of the form (xkj,b, y

k
j,b),

where k is the query index (omitted if irrelevant) and ( j, b)
refers to the oracle index. For q ≥ 0, by Qq , we define the
query history after q queries.

Associated with each query (x j,b, y j,b) is a multiset Z j,b

of all possible feed-forward values z j,b occurring for this
query. For example, for a query (x0,0, y0,0), we have Z0,0 =
{0}, and for an additional query (x1,0, y1,0) for which also
(x0,1, y0,0 ⊕ x1,0) to f0,1 exists, Z1,0 = {y0,0}. Abusing
notation, we sometimes refer to the query and its feed-
forward set as (x j,b, y j,b,Z j,b) or simply (x, y,Z) j,b. We
recall notation (y ⊕ z) j,b = y j,b ⊕ z j,b. Note that Z j,b is
independent of the position at which x j,b may occur in Sr : It
may occur at position ( j, b+2λ) forλ ∈ {0, . . . , 2�− j−1−1},
but for every such position, its corresponding feed-forward
set is the same.

Denote by colSr (Qq) the event that A finds two dis-
tinct evaluations of Sr satisfying Sr (u0, . . . , ur−1) =
Sr (u′

0, . . . , u
′
r−1).Wewrite x j,i , y j,i , z j,i for all intermediate

values corresponding to the first evaluation and x ′
j,i , y

′
j,i , z

′
j,i

for all values of the second evaluation. By definition:

AdvcolSr [A] = P
[
colSr (Qq)

]
. (1)

For the analysis of P
[
colSr (Qq)

]
, we introduce two helping

events. Here, let τ ≥ 2 be any integer value.

eA(Q) j,b: ∃ (x, y,Z) j,b, (x
′, y′,Z ′) j,b ∈ Qq such that

x j,b �= x ′
j,b ∧ y j,b ⊕ y′

j,b ∈ Z j,b ⊕ Z ′
j,b;

eB(Q) j : max
z∈{0,1}n

∣∣∣∣
{

(x, y,Z) j−1,0, (x, y,Z) j−1,1 ∈ Qq
∣∣

y j−1,0 ⊕ y j−1,1 ⊕ z ∈ Z j−1,0 ⊕ Z j−1,1

}∣∣∣∣
> τ j .

We simply write eA(Q) j = eA(Q) j,0 ∪ eA(Q) j,1 and
eX(Q) = ⋃

j eX(Q) j for X = A,B. We furthermore write
e(Q) = eA(Q)∪eB(Q). First, in Lemma 2, we demonstrate
that finding a collision is at least as hard as finding a solution
for eA(Qq).

Lemma 2 colSr (Qq) ⇒ eA(Qq).

Proof The proof is by contradiction. Assume¬eA(Qq), and
suppose an adversary makes all queries for the computation

of Sr on input of two different vectors (u0, . . . , ur−1) and
(u′

0, . . . , u
′
r−1). By construction:

Sr (u0, . . . , ur−1) = (y ⊕ z)�,0 = (y′ ⊕ z′)�,0
= Sr (u′

0, . . . , u
′
r−1).

First, assume x�,0 �= x ′
�,0. Then, the collision forms a

valid solution to eA(Qq)�,0, contradicting our assumption.
Next, assume x�,0 = x ′

�,0. Then also y�,0 = y′
�,0 and thus

z�,0 = z′�,0. By construction, this implies (y ⊕ z)�−1,0 =
(y′ ⊕ z′)�−1,0 and (y ⊕ z)�−1,1 = (y′ ⊕ z′)�−1,1. Note that
Sr without the �th layer corresponds to two parallel indepen-
dent Sr/2 evaluations: One with inputs (u0, . . . , ur/2−1) and
output (y ⊕ z)�−1,0 and onewith inputs (ur/2, . . . , ur−1) and
output (y ⊕ z)�−1,1. Given that the collision for Sr is non-
trivial, it implies a non-trivial collision of either of the two
Sr/2’s. Consider the Sr/2 with the non-trivial collision and
apply the same reasoning using eA(Qq)�−1,b. Here, b = 0
iff the non-trivial collision is in the left half. At some point,
one indeed ends up with a distinct pair x j,i �= x ′

j,i for some
j = �, . . . , 0, as (u0, . . . , ur−1) �= (u′

0, . . . , u
′
r−1). ��

Therefore, we obtain for (1):

P
[
colSr (Qq)

] ≤ P
[
eA(Qq)

] ≤ P
[
e(Qq)

]
.

A bound on this probability is derived in Lemma 3.

Lemma 3 P
[
e(Qq)

] ≤ 2(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

.

Proof Recall the notation e(Qq) = eA(Qq) ∪ eB(Qq). By
basic probability theory:

P
[
e(Qq)

] ≤
�∑

j=0

P
[
eA(Qq) j ∩ ¬eB(Qq) j

]

+
�∑

j=1

P
[
eB(Qq) j ∩ ¬e(Qq) j−1

]
, (2)

noting that eB(Qq)0 is false by construction. We consider
both probabilities separately.

We recall that A makes all queries to f j−1,b before all
queries to f j,b′ . This particularly means that, at the point of
making queries to f j,b, the setsZ j,b are fixed (by all previous
queries) and remain unchanged. In more detail, we regularly
use the following observation for any query (x, y,Z) j,b to
f j,b: ¬eB(Qq) j ⇒ |Z j,b| ≤ τ j .

eA(Qq) j Assume¬eB(Qq) j holds. Consider any b and any
two distinct queries (x, y,Z) j,b and (x ′, y′,Z ′) j,b to f j,b (at
most

(q
2

)
choices). These queries render a solution if y j,b ⊕

y′
j,b ∈ Z j,b ⊕ Z ′

j,b. By¬eB(Qq) j , we have |Z j,b|, |Z ′
j,b| ≤

τ j . Consequently, the two queries complete the collisionwith
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probability atmost τ 2 j

N . Summing over all queries to f j,b, and
both choices of b, we obtain:

P
[
eA(Qq) j ∩ ¬eB(Qq) j

] ≤ 2
(τ j q)2

2N
= (τ j q)2

N
.

eB(Qq) j Assume ¬e(Qq) j−1 holds. Consider any z ∈
{0, 1}n . By virtue of ¬eB(Qq) j−1, any query (x, y,Z) j−1,0

has |Z j−1,0| ≤ τ j−1. Similar for any query (x, y,Z) j−1,1.
Without loss of generality (by symmetry) consider a new

query (x, y,Z) j−1,0. This adds a solution to eB(Qq) j with
probability at most τ 2( j−1)q/N , and any hit adds at most
τ j−1 values (by ¬eA(Qq) j−1). More than τ j solutions are
added with probability at most

(
q
τ j

τ j−1

)(
τ 2( j−1)q

N

) τ j

τ j−1

≤
(
eτ 2 j−3q2

N

)τ

≤
(
e(τ j q)2

N

)τ

.

Summing over all N values z, we obtain:

P
[
eB(Qq) j ∩ ¬e(Qq) j−1

] ≤ N

(
e(τ j q)2

N

)τ

.

Conclusion of proof From (2), we obtain:

P
[
e(Qq)

] ≤
�∑

j=0

(τ j q)2

N
+

�∑
j=1

N

(
e(τ j q)2

N

)τ

= q2

N

�∑
j=0

τ 2 j + N

(
eq2

N

)τ �∑
j=1

τ 2τ j

≤ 2(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

.

Here, we use that
∑�

j=0 x
j = x�+1−1

x−1 ≤ x
x−1 x

� ≤ 2x� for
x ≥ 2. ��

4.3 Proof of Theorem 2

The proof of security against adaptive adversaries follows the
proof of Theorem 1 in Sect. 4, but differs in various aspects.
First of all, we add the following event eC(Q):

eC(Q) j,b: ∃ (x, y,Z)kj−1,0, (x, y,Z)k
′
j−1,1, (x, y)

k′′
j,b

∈ Qq such that

max{k, k′} > k′′ ∧ y j−1,0 ⊕ y j−1,1 ⊕ x j,b

∈ Z j−1,0 ⊕ Z j−1,1.

We define eC(Q) j and eC(Q) similar as before and write
e(Q) = eA(Q)∪eB(Q)∪eC(Q). eC(Q) essentially covers
the case that somewhere in the evaluation of Sr a fork (y ⊕
z) j−1,0 ⊕ (y ⊕ z) j−1,1 = x j,b is completedby anupper-level
query. It could essentially also be the case that k′′ > k, k′ but
a new query results in a fresh element in Z j−1,0, therewith
rendering a hit, but in this case the query would invalidate
eC(Q) in the first place (for an earlier value of j). Intuitively,
assuming ¬eC(Qq), we can indeed consider the adversary
to make its queries layer-wise.

Lemma 2 still holds, and

P
[
colSr (Qq)

] ≤ P
[
eA(Qq)

] ≤ P
[
e(Qq)

]
.

A bound on this probability is derived in Lemma 4. It is
similar to Lemma 3.

Lemma 4 P
[
e(Qq)

] ≤ 2(τ �q)2

N + 2N
(
e(τ �q)2

N

)τ + 2τ 2�q3

N .

Proof Recall the notation e(Qq) = eA(Qq) ∪ eB(Qq) ∪
eC(Qq). Write eBC(Qq) = eB(Qq) ∪ eC(Qq). By basic
probability theory:

P
[
e(Qq )

] ≤
�∑

j=0

P

[
eA(Qq ) j ∩ ¬eBC(Qq ) j ∩ ∩ j−1

j ′=1¬e(Qq ) j ′
]

+
�∑

j=1

P

[
eB(Qq ) j ∩ ∩ j−1

j ′=1¬e(Qq ) j ′
]

+P

[
eC(Qq ) j ∩ ∩ j−1

j ′=1¬e(Qq ) j ′
]
. (3)

Indeed, e(Qq) should be triggered for some j . Therefore,
we consider any j , assume e(Qq) j ′ has not been triggered
for any j ′ < j , and consider the probability that a query for
this specific value of j triggers e(Q) j . This event can then
be further divided into a success for eA(Qq) j , eB(Qq) j , or
eC(Qq) j .

eA(Qq) j . Assume ¬eBC(Qq) j ∩ ∩ j−1
j ′=1¬e(Qq) j ′ holds.

Consider any b. The equation of eA(Qq) j could get sat-
isfied in two ways: (i) via a query to f j,b, or (ii) via a query
(x, y) j ′,b′ for j ′ < j that results in a new value in Z j,b for
any older query (x, y) j,b. However, in case (ii) the query to
f j ′,b′ triggered eC(Q) j ′+1, which is impossible by assump-
tion. The remaining analysis is the same as in Lemma 3, and
we obtain:

P

[
eA(Qq) j ∩ ¬eBC(Qq) j ∩ ∩ j−1

j ′=1¬e(Qq) j ′
]

≤ (τ j q)2

N
.

eB(Qq) j . Assume ∩ j−1
j ′=1¬e(Qq) j ′ holds. Consider any z ∈

{0, 1}n . The equation of eB(Qq) j could get satisfied in two
ways: (i) via a query (x, y,Z) j−1,0 or (x, y,Z) j−1,1, or (ii)
via a query (x, y,Z) j ′,b′ for j ′ < j − 1 that results in a
new value in eitherZ j−1,0 for any older query (x, y) j−1,0 or
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Z j−1,1 for any older query (x, y) j−1,1. However, in case (ii)
the query to f j ′,b′ triggered eC(Q) j ′+1, which is impossible
by assumption. Therefore, it suffices to consider the case a
fresh query to f j−1,0 or f j−1,1 makes the equation satisfied.
The remaining analysis is the same as in Lemma 3, and we
obtain:

P

[
eB(Qq) j ∩ ∩ j−1

j ′=1¬e(Qq) j ′
]

≤ N

(
e(τ j q)2

N

)τ

.

eC(Qq) j . Assume ∩ j−1
j ′=1¬e(Qq) j ′ holds. Similar to

eB(Qq) j , by assumption the equation of eC(Qq) j could
onlybe triggeredvia a query (x, y,Z) j−1,0 or (x, y,Z) j−1,1.
Any query (x, y,Z) j−1,0 has |Z j−1,0| ≤ τ j−1, due to
¬eB(Qq) j−1, and similar for any (x, y,Z) j−1,1.

Consider the max{k, k′}th query. There are at most q2

choices for the other two queries, and it adds a solution to
eC(Qq) j,b with probability at most τ 2( j−1)q2/N . Summing
over all queries, we eventually find:

P

[
eC(Qq) j ∩ ∩ j−1

j ′=1¬e(Qq) j ′
]

≤ τ 2 j q3

N
.

Conclusion of proof The proof is now completed via (3), as
in Lemma 3. ��

4.4 Sr for arbitrary r

The previous analysis carries over to the generalized Sr

(Fig. 4) almost verbatim, with the difference that we take
� = �log2 r�. The only technical change lies in the sets
Z j,b associated with the queries: A query to f j,b may
occur in an evaluation of Sr at position ( j, b + 2λ) for
λ ∈ {0, . . . , 2�− j−1 − 1}, and due to the asymmetric char-
acter of Sr it may have two different feed-forward sets. For
the proof of Lemma 3, this concretely means that we need to
consider two feed-forward sets associated with every query.
This affects the bound as follows: Regarding eA(Qq) j , we

end up with bound (2τ j q)2

N . For eB(Q) j , a collision is found
with probability at most (2τ j−1)2q/N and any hit adds at
most 2τ j−1 values. Using τ ≥ 2, this results in the same
bound for eB(Q) j :

P
[
eB(Qq) j ∩ ¬e(Qq) j−1

] ≤ N

(
e(23τ 2 j−3q)2

N

)τ

≤ N

(
e(τ j q)2

N

)τ

.

Hence, as a direct corollary of Theorems 1 and 2 (to which
the same reasoning applies), we find:

Corollary 1 Let r ≥ 1 with � = �log2 r�. Let Alw(q) be
as in Theorem 1, and A(q) as in Theorem 2. Then, for any
positive integer value τ ≥ 2,

AdvcolSr [Alw(q)] ≤ 8(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

,

AdvcolSr [A(q)] ≤ 8(τ �q)2

N
+ 2N

(
e(τ �q)2

N

)τ

+ 8τ 2�q3

N
.

The asymptotic behavior of the bounds remains the same.

5 Preimage security of Sr

Theorem 1 trivially implies preimage security up to the birth-
day bound. For r = 1, 2, we derive the following result in
the fully adaptive model. This result particularly solves an
open problem of Shrimpton and Stam [45], namely to prove
2n/3-bit preimage security of their design (optimal w.r.t. the
bounds of Rogaway and Steinberger [41]).

Theorem 3 Let r ∈ {1, 2}. Let A(q) be as in Theorem 2.
Then, for any positive integer value τ ≥ 2,

Advepre
S1

[A(q)] ≤ q

N
,

Advepre
S2

[A(q)] ≤ τq

N
+ q3

N 2 + (N + 2)

(
2eq2

τN

)τ/2

.

The proof is given in Sect. 5.1. Similar to Theorem 1,
we can put τ = N 1/3 and find that for any ε >

0, Advepre
S2

[A(N 2/3/nε)] approaches 0 for n → ∞. Unfor-
tunately, the proof cannot be easily generalized to larger r :
The threshold value τ � starts exploding for � ≥ 2.

We remark that Sr (or MD-Sr ) for r ≥ 2 can be made
preimage resistant up to N queries by adding one single prim-
itive call at the end of its evaluation (nowonly for Sr , a similar
claim for MD-Sr was already made in Sect. 1):

Theorem 4 Let r ≥ 1 with � = �log2 r�. Suppose P ={
f j,b | ( j, b) ∈ ({0, . . . , �−1}×{0, 1})∪{(�, 0)}}∪{ f } $←−

Func(n)2�+2. Let A(q) be as in Theorem 2. Then,

Advepref ◦Sr [A(q)] ≤ q

N
.

Proof The proof directly follows from Lemma 1 and Theo-
rem 3, noting S1 = f . ��

5.1 Proof of Theorem 3

S1 is equal to f0,0, and the result is trivial. We proceed with
S2. We employ the same conventions and notations as in the
proof of Sect. 4. As before, we consider any adversary A that
has query access to its oraclesP and makes q queries. Recall
that Z0,b = {0} for b = 0, 1. In fact, we only need Z1,0

and therefore we will discard the notion entirely (and write
everything explicitly).
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Let v ∈ {0, 1}n be the challenged range value. Denote
by preS2(Qq) the event that A finds an evaluation of S2

satisfying S2(u0, u1) = v. By definition:

Advepre
S2

[A] = P

[
preS2(Qq)

]
. (4)

For the analysis of P
[
preS2(Qq)

]
we introduce four helping

events. Here, let τ ≥ 2 be any integer value.

eA(Q) j,b: ∃ distinct (x, y) j,b, (x
′, y′) j,b, (x ′′, y′′) j,b

∈ Qq such that

y j,b = y′
j,b = y′′

j,b or (x ⊕ y) j,b = (x ′ ⊕ y′) j,b
= (x ′′ ⊕ y′′) j,b;

eB(Q): max
z∈{0,1}n

∣∣{(x, y)0,0, (x, y)0,1 ∈ Qq
∣∣ y0,0 ⊕ y0,1

= z
}∣∣ > τ ;

eC(Q): ∣∣{(x, y)0,1, (x, y)1,0 ∈ Qq
∣∣ y0,1 ⊕ (x ⊕ y)1,0

= v
}∣∣ > τ ;

eD(Q): ∣∣{(x, y)0,0, (x, y)1,0
∈ Qq

∣∣ y0,0 ⊕ y1,0 = v
}∣∣ > τ.

We write eA(Q) = eA(Q)0,0 ∪ eA(Q)0,1 ∪ eA(Q)1,0,
eBCD(Q) = eB(Q) ∪ eC(Q) ∪ eD(Q), and e(Q) =
eA(Q) ∪ eBCD(Q). In Lemma 5, we demonstrate that
finding a preimage assuming ¬eBCD(Qq) happens with
probability at most τq

N .

Lemma 5 P

[
preS2(Qq) ∩ ¬eBCD(Qq)

]
≤ τq

N
.

Proof Assume ¬eBCD(Qq). We make a distinction among
queries made to f0,0, f0,1, and f1,0.

Starting with a query (x, y)1,0 to f1,0, it renders a
preimage for S2 if y1,0 ⊕ y0,0 = v for some older
queries (x, y)0,0, (x, y)0,1 satisfying y0,0 ⊕ y0,1 = x1,0. By
¬eB(Qq), there are at most τ such solutions. Consequently,
the query results in a preimage with probability at most τ

N .
Next, for a query (x, y)0,0 to f0,0, it results in a preimage

if y1,0 ⊕ y0,0 = v and y0,0 ⊕ y0,1 = x1,0 for some older
queries (x, y)0,1, (x, y)1,0. By ¬eC(Qq), there are at most
τ solutions to y1,0 ⊕ v = y0,1 ⊕ x1,0. Consequently, the
query results in a preimage with probability at most τ

N .
Finally, for a query (x, y)0,1 to f0,1, it gives a preimage if

y0,0 ⊕ y0,1 = x1,0 for some older queries (x, y)0,0, (x, y)1,0
satisfying y1,0 ⊕ y0,0 = v. By¬eD(Qq), there are at most τ
such solutions. Consequently, the query results in a preimage
with probability at most τ

N .
Summing over all queries, we obtain our bound. ��
Therefore, we obtain for (4):

P

[
preS2(Qq )

]
≤ τq

N
+ P

[
eBCD(Qq )

] ≤ τq

N
+ P

[
e(Qq )

]
.

A bound on P
[
e(Qq)

]
is derived in Lemma 6.

Lemma 6 P
[
e(Qq)

] ≤ q3

N2 + (N + 2)
(
2eq2

τN

)τ/2
.

Proof By basic probability theory:

P
[
e(Qq)

] ≤ P
[
eA(Qq)

]
P

[
eB(Qq) ∩ ¬eA(Qq)

]

+ P
[
eC(Qq) ∩ ¬eA(Qq)

] + P
[
eD(Qq) ∩ ¬eA(Qq)

]
.

(5)

We consider the four probabilities separately.

eA(Qq). Consider any j, b and any three distinct queries
(x, y) j,b, (x ′, y′) j,b, and (x ′′, y′′) j,b to f j,b (at most

(q
3

)
choices). These queries render a solution if y j,b = y′

j,b =
y′′
j,b or (x ⊕ y) j,b = (x ′ ⊕ y′) j,b = (x ′′ ⊕ y′′) j,b, which hap-

pens with probability at most 2
N2 . Summing over all queries

to f j,b, and all choices of j, b (three in total), we obtain:

P
[
eA(Qq)

] ≤ q3

N 2 .

eB(Qq). Assume¬eA(Qq) holds. Consider any z ∈ {0, 1}n .
Without loss of generality (by symmetry) consider a new
query (x, y)0,1. This adds a solution to eB(Qq) with proba-
bility at most q/N , and any hit adds at most 2 solutions [by
¬eA(Qq)]. More than τ solutions are added with probabil-

ity at most
( q
τ/2

) ( q
N

)τ/2 ≤
(
2eq2

τN

)τ/2
. Summing over all N

values z, we obtain:

P
[
eB(Qq) ∩ ¬eA(Qq)

] ≤ N

(
2eq2

τN

)τ/2

.

eC(Qq) and eD(Qq). The analysis is similar to eB(Qq)

except that there is no need to sum over all values z.

Conclusion of proof The proof is now completed via (5). ��

6 Instantiation using permutations

In this section, we discuss the effect of instantiating Sr

with random permutations π j,b instead of random func-
tions f j,b. The most basic and well-established way is to set
f j,b(x) = π j,b(x) ⊕ x , and we consider Sr with its underly-
ing primitives transformed this way. For ease of presentation,
we focus on Sr for r = 2� with � ≥ 0, but the findings carry
over to the general setting.

For the top layer of Sr , the feed-forward of x in f0,b is
necessary: In absence of it, it suffices for an adversary tofind a
collisionwith these calls eliminated and to justmake r inverse
calls afterwards. However, for the remaining evaluations of
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Fig. 6 Alternative
permutation-based description
of Sr of Fig. 3 and an
illustration of S4

u0 u1 u2 u3

v

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1

x2,0

y0,0 y0,1 y0,2 y0,3

y1,0 y1,1

y2,0

z1,0 z1,1

z2,0

π0,0 π0,1 π0,0 π0,1

π1,0 π1,1

π2,0

f j,b (with j ≥ 1), the feed-forward x is pointless: It simply
corresponds to reflecting Sr along its vertical axis.4 Thus, we
focus on Sr with f0,b(x) = π0,b(x) ⊕ x (for b ∈ {0, 1}) and
f j,b(x) = π j,b(x) (for ( j, b) ∈ ({1, . . . , � − 1} × {0, 1}) ∪
{(�, 0)}), where {

π j,b | ( j, b) ∈ ({0, . . . , �− 1}× {0, 1})∪
{(�, 0)}} $←− Perm(n)2�+1. A formal description is given in
Fig. 6.

Startingwith collision resistance,we transformTheorem1
to the permutation-based setting.

Theorem 5 Let r = 2� with � ≥ 0. Suppose P ={
π j,b | ( j, b) ∈ ({0, . . . , � − 1} × {0, 1}) ∪ {(�, 0)}} $←−
Perm(n)2�+1. LetAlw(q) be as in Theorem 1. Then, for any
positive integer value τ ≥ 3,

AdvcolSr [Alw(q)] ≤ 4(τ �q)2

N − q
+ 8N

(
e(τ �q)2

N − q

)τ 1/2−1

.

The proof is in the same spirit as the one of Theorem 1 but is
technicallymore demanding and is included in “Appendix 2”.
Theorem 2 (for fully adaptive adversaries) and Corollary 1
(for arbitrary r ≥ 1) generalize in a similar way.

Unfortunately, the preimage result of Theorem 3 does not
carry over to the permutation-based case: A preimage for
S2 can be found in approximately 2n/2 queries [31,45]. In
Theorem 6, we generalize the attack to the case r = 2� with
� ≥ 1; it generalizes to arbitrary r ≥ 2 the obvious way.

Theorem 6 Let r = 2� with � ≥ 1. Suppose P ={
π j,b | ( j, b) ∈ ({0, . . . , � − 1} × {0, 1}) ∪ {(�, 0)}} $←−
Perm(n)2�+1. Let A((2r − 1)q) denote the set of all adver-
saries that make at most (2r − 1)q queries. Then,

AdvepreSr [A((2r − 1)q)] ≥ q2

N
.

4 In more detail, in Sr of Fig. 3, the feed-forward (y ⊕ z) j−1,2i in
round ( j, i) would be replaced by (y ⊕ z) j−1,2i+1.

Proof Let v be any given range value. We consider the
following adversary. First, for k = 1, . . . , q, it randomly
selects a tuple (u0, . . . , ur/2−1)

k , computes the left half of
Sr up to (y ⊕ z)k�−1,0, and queries xk�,0 ← π−1

�,0 (v ⊕ (y ⊕
z)k�−1,0). Next, for k

′ = 1, . . . , q, it randomly selects a tuple

(ur/2+1, . . . , ur )k
′
and computes the right half of Sr up to

(y ⊕ z)k
′

�−1,1. A preimage for Sr is found if there exist
k, k′ ∈ {1, . . . , q} such that

(y ⊕ z)k�−1,0 ⊕ xk�,0 = (y ⊕ z)k
′

�−1,1.

This happens with probability at least q2

N . ��
Nevertheless, the trick of applying a postprocessingπ(x) ⊕ x
to Sr to get 2n preimage security (cf. Theorem 4) still applies.

7 Conclusion

Our generalized Sr compression function design achieves
high efficiency, approaching rate 1/2 using primitives of state
size. The function can be used in aMerkle–Damgårdmode of
operation or in a Merkle tree. Compared with recent designs
such as sponge functions, Grøstl, and MD6, Sr achieves
asymptotically the same collision security and offers com-
parable rates, but using primitives that are at least twice as
small, saving a significant amount of computational over-
head. However, we acknowledge that Sr uses more distinct
primitives. Depending on the application, Sr may be more
suitable than the other schemes, and it complements well to
these designs.

Sr can be securely instantiated using non-compressing
one-way functions or permutations, but our targeted gen-
erality comes at a technical price: The asymptotic n/2-bit
collision security is only proven in a setting where the adver-
sary is limited to making its queries layer-wise. Although
we present a proof in the fully adaptive model up to 2n/3
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queries, we expect this bound to be non-optimal and conjec-
ture (almost) optimal collision security of Sr in the adaptive
model.

The proof of Sr requires 2�log2 r�+1 distinct primitives:
one primitive for the last layer, and two for every but last
layer. While this requirement has a partly technical cause, it
is far from trivial to analyze Sr with less distinct primitives.
For instance, in the permutation-based setting (see Fig. 6),
S2 and S3 are insecure if π�,0 = π�−1,1: putting x�−1,1 =
π−1

�−1,1((y ⊕ z)�−1,0) yields hash value 0, for arbitrary (y ⊕
z)�−1,0. It is unclear how these observations generalize to
larger Sr (based on one-way functions or permutations), and
this remains an interesting open research problem.
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Appendix 1: Comparison of Sr with known
permutation-based hash functions

We present technical support for Table 1 of Sect. 1. In more
detail, we compute the rates and primitive sizes of sponge
functions, Grøstl, and MD6, and of Sr when in a Merkle–
Damgård mode of operation or in a Merkle tree. As these
functions are all defined for different modes of operation and
different parameters, separate treatments are required. In our
comparison, we target hash functions H: {0, 1}∗ → {0, 1}n
withn/2-bit security;we adopt the parameters for the specific
designs alike and derive the rates and the primitive sizes.

Note that for H, we can define the rate similarly as in
Sect. 1, namely as M

ds , where M denotes the total length of
the message in bits, and d denotes the number of calls to
the underlying s-bit non-compressing primitive f . We sim-
plify the analysis by assuming that the message is always
of full length (ignoring additional primitive calls due to
padding, length strengthening, and final transformations). In
the remainder of this section,wederive the rates andprimitive
sizes for the above-mentioned functions. A further compari-
son is given in Sect. 1.

Sponge functions Sponge functions [9] have a state of c+m
bits, where c is the capacity and m the message block size
(see footnote 1). Sponge functions are collision resistant up to
2c/2 queries [6]. Hence, n/2-bit security means that we take
c = n. Its compression function F : {0, 1}n+2m → {0, 1}n+m

makes one primitive call to a (n + m)-bit permutation. On
input of a message of M blocks of m bits, it makes M prim-
itive calls and thus has rate m

n+m using primitives on n + m
bits. The same reasoning applies to Keccak (as it is a sponge
function) [8], Grindahl [27], JH [50], and parazoa functions
[4].

Grøstl Grøstl [21] is a Merkle–Damgård function. It has a
state size of l bits, and collision security is proven up to
2l/4 queries [3] (hence, we consider l = 2n). It employs
a compression function F : {0, 1}2l → {0, 1}l making two
primitive calls to two distinct l-bit permutations. On input of
a message of M blocks of l bits, it makes 2M primitive calls
and thus has a rate of 1/2 using primitives on 2n bits.

MD6 MD6[39] is a tree-basedhash functionwith output size
16 words of w = 64 bits (we write the output size as n =
16w). Collision security is proven up to 2n/2 queries [18].
It employs a compression function F : {0, 1}4n → {0, 1}n
making one primitive call to a 4n-bit permutation. (In fact,
F and its underlying permutation get 25 additional words
of input, but these are ignored for the sake of simplicity.
Taking these into account leads to a worse rate.) On input
of a message of M blocks of n bits (w.l.o.g. M = 4α for
some α), it makes M−1

3 primitive calls and thus has a rate of
3/4 M

M−1 using primitives on 4n bits.
Sr in MD or MT For the comparison with sponge functions
and Grøstl, we consider Sr in a Merkle–Damgård mode of
operation (MD-Sr ) [16,33], and for the comparison with
MD6 we consider it in a Merkle tree (MT-Sr ) [32]. Both
MD-Sr andMT-Sr preserve collision resistance [7,16,18,33]
when correctly padded and have about 2n/2 collision resis-
tance. First consider MD-Sr . On input of a message of M
blocks of n bits [w.l.o.g. M = (r −1)α for some α], it makes
(2r−1)M

r−1 primitive calls and thus has a rate of r−1
2r−1 using

primitives on n bits. Next consider MT-Sr . On input of a
message of M blocks of n bits (w.l.o.g. M = rα for some α),
it makes M−1

r−1 primitive calls and thus has a rate of r−1
2r−1

M
M−1

using primitives on n bits.

Appendix 2: Proof of Theorem 5

We consider the security of Sr : {0, 1}rn → {0, 1}n , for r =
2� with � ≥ 0, based on 2� + 1 functions

{
π j,b | ( j, b) ∈

({0, . . . , � − 1} × {0, 1}) ∪ {(�, 0)}} randomly drawn from
Perm(n). See Fig. 6. In the proof, we consider adversaries
that make all queries to π j−1,b before all queries to π j,b′ .

The proof shows similarities with the proof of Theorem 1
but ismore technical.As before,we associatewith each query
(x j,b, y j,b) amultisetZ j,b of all possible feed-forward values
z j,b occurring for this query. The only difference is that now
for queries (x0,b, y0,b), we have Z0,b = {x0,b}. We recall
that (x j,b, y j,b,Z j,b) = (x, y,Z) j,b and again write (y ⊕
z) j,b = y j,b ⊕ z j,b and similarly (x ⊕ y) j,b = x j,b ⊕ y j,b.

In the proof, we employ four helping events. Here, let
τ ≥ 3 be any integer value.

eA(Q) j,b: ∃ (x, y,Z) j,b, (x
′, y′,Z ′) j,b ∈ Qq such that

x j,b �= x ′
j,b ∧ y j,b ⊕ y′

j,b ∈ Z j,b ⊕ Z ′
j,b;
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eB(Q) j,b: max
z∈{0,1}n

×
∣∣∣∣
{

(x, y,Z) j−1,0, (x, y,Z) j,b ∈ Qq
∣∣

y j,b �= z ∧ y j,b ⊕ y j−1,0 ⊕ z ∈ Z j,b ⊕ Z j−1,0

}∣∣∣∣
> τ j+1/2;

eC(Q) j : max
z∈{0,1}n\{0}

×
∣∣∣∣
{

(x, y,Z) j−1,0, (x ′, y′,Z ′) j−1,0 ∈ Qq
∣∣

y j−1,0 ⊕ y′
j−1,0 ⊕ z ∈ Z j−1,0 ⊕ Z ′

j−1,0

}∣∣∣∣
> τ j ;

eD(Q) j : max
z∈{0,1}n

×
∣∣∣∣
{

(x, y,Z) j−1,0, (x, y,Z) j−1,1 ∈ Qq
∣∣

y j−1,0 ⊕ y j−1,1 ⊕ z ∈ Z j−1,0 ⊕ Z j−1,1

}∣∣∣∣>τ j .

For X,Y ∈ {A, . . . ,D}, we simply write eX(Q) j =
eX(Q) j,0 ∪ eX(Q) j,1, eX(Q) = ⋃

j eX(Q) j , and eXY(Q)

= eX(Q) ∪ eY(Q). We furthermore write e(Q) =
eA · · ·D(Q). Note that eA(Q) j,b is as in Theorem 1, and
eD(Q) j replaces eB(Q) j .

The threshold values for eB(Q) j,b on one hand and
eCD(Q) j on the other hand differ. This has a technical ori-
gin, and we present a brief and informal explanation. Write
the two bounds as τB j and τCD j . As will become clear in
the proof of Lemma 7, any adversarial query adds at most
τB j−1 solutions to eC(Q) j and eD(Q) j and at most τCD j

solutions to eB(Q) j,b. Hence, in order for our proof to make
sense, we require τB j > τCD j > τB j−1, which justifies
the choice of τB j = τ j+1/2 and τCD j = τ j .

The definition colSr (Qq) of the proof of Theorem 1
carries over to the permutation-based setting, as well as
Lemma 2. We obtain:

AdvcolSr [A] = P
[
colSr (Qq)

] ≤ P
[
eA(Qq)

] ≤ P
[
e(Qq)

]
.

A bound on this probability is derived in Lemma 7.

Lemma 7 P
[
e(Qq)

] ≤ 4(τ �q)2

N − q
+ 8N

(
e(τ �q)2

N − q

)τ 1/2−1

.

Proof By basic probability theory:

P
[
e(Qq)

] ≤
�∑

j=0

P
[
e(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]
, (6)

where ¬e(Qq) j−2∩ j−1 = ¬e(Qq) j−2 ∩ ¬e(Qq) j−1, and
eBCD(Qq)0 is false by construction. We further split up this
probability as follows:

P
[
e(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

≤ P
[
eA(Qq) j ∩ ¬eBCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

+ P
[
eBCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

≤ P
[
eA(Qq) j ∩ ¬eBCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

+ P
[
eB(Qq) j ∩ ¬eCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

+ P
[
eCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

≤ P
[
eA(Qq) j ∩ ¬eBD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

+ P
[
eB(Qq) j ∩ ¬eCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

+ P
[
eC(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

× P
[
eD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]
, (7)

We consider these probabilities separately. Recall that A
makes all queries to π j−1,b before all queries to π j,b′ (for
j = 1, . . . , � and b, b′ arbitrary). Throughout the proof, by
“for any (x, y, z) j,b”, we mean “for any (x, y,Z) j,b and any
z j,b ∈ Z j,b.” Hence, any tuple (x, y,Z) j,b corresponds to
|Z j,b| tuples (x, y, z) j,b.

eA(Qq) j . Assume ¬eBD(Qq) j ∩ ¬e(Qq) j−2∩ j−1 holds.
Consider any b. The analysis depends on whether the query
is forward or inverse. First, consider a forward query y j,b ←
π j,b(x j,b). We say that it renders a solution if it makes
y j,b ⊕ y′

j,b ∈ Z j,b ⊕ Z ′
j,b satisfied for any existing query

(x ′, y′,Z ′) j,b. By ¬eD(Qq) j , we have |Z j,b|, |Z ′
j,b| ≤ τ j

(these sets are fixed once x j,b is fixed). Consequently, the

query completes a collision with probability at most τ 2 j q
N−q .

Next, consider an inverse query x j,b ← π−1
j,b (y j,b). It ren-

ders a solution if for some (x, y, z) j−1,0, (x, y, z) j−1,1, and
(x ′, y′, z′) j,b:

x j,b = (y ⊕ z) j−1,0 ⊕ (y ⊕ z) j−1,1,

y j,b = (y ⊕ z) j−1,0 ⊕ (y ⊕ z)′j,b.

(Indeed, in this case z j,b = (y ⊕ z) j−1,0.) By ¬eB(Qq) j
for z := y j,b (by condition, we have y′

j,b �= y j,b), there are

at most τ j+1/2 solutions (x, y, z) j−1,0 and (x ′, y′, z′) j,b to
the second equation (using¬eA(Qq) j−1). By¬eD(Qq) j−1,
there are also at most τ j−1q solutions for (x, y, z) j−1,1, and

a collision is thus triggered with probability at most τ 2 j−1/2q
N−q .

Summing over all forward and inverse queries to π j,b, and
both choices of b, we obtain:

P
[
eA(Qq) j ∩ ¬eBD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

] ≤ 2(τ j q)2

N − q
.

eB(Qq) j . Assume ¬eCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1 holds.
Consider any z ∈ {0, 1}n and any b. By the layer-wise char-
acter of A, eB(Qq) j,b can only be satisfied by queries to
π j,b. The analysis depends on whether the query is for-
ward or inverse. First, consider a forward query y j,b ←
π j,b(x j,b). There exists at most q queries (x, y,Z) j−1,0.
By ¬eD(Qq) j−1, we have |Z j−1,0| ≤ τ j−1. Addition-
ally, by ¬eD(Qq) j , we have |Z j,b| ≤ τ j (this set is fixed
once x j,b is fixed). Therefore, the query adds a solution to
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eB(Qq) j,bwith probability atmost τ 2 j−1q
N−q , and anyhit adds at

most τ j values (by ¬eA(Qq) j−1). Next, consider an inverse
query x j,b ← π−1

j,b (y j,b) (and assume y j,b �= z). It ren-
ders a solution if for some (x, y, z) j−1,0, (x, y, z) j−1,1, and
(x ′, y′, z′) j−1,0:

x j,b = (y ⊕ z) j−1,0 ⊕ (y ⊕ z) j−1,1,

y j,b = (y ⊕ z) j−1,0 ⊕ (y′ ⊕ z′) j−1,0 ⊕ z.

(Indeed, in this case z j,b = (y ⊕ z) j−1,0.) By ¬eC(Qq) j
for z := y j,b ⊕ z �= 0, there are at most τ j solutions
(x, y, z) j−1,0 and (x ′, y′, z′) j−1,0 to the second equation
(using ¬eA(Qq) j−2). By ¬eD(Qq) j−1, there are also at
most τ j−1q solutions for (x, y, z) j−1,1, and a solution is

thus obtained with probability at most τ 2 j−1q
N−q . Any hit adds

at most τ j values (by ¬eA(Qq) j−1).
More than τ j+1/2 solutions are added with probability at

most

(
q

τ j+1/2/τ j

) (
τ 2 j−1q

N − q

)τ j+1/2/τ j

≤
(
e(τ j q)2

N − q

)τ 1/2

.

Summing over all N choices of z, and both choices of b, we
obtain:

P
[
eB(Qq) j ∩ ¬eCD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

]

≤ 2N

(
e(τ j q)2

N − q

)τ 1/2

.

eC(Qq) j . Assume ¬e(Qq) j−2∩ j−1 holds. Consider any
z ∈ {0, 1}n\{0}. Note that, by eC(Qq) j−1, there exist at
most τ j−1 solutions in case of y j−1,0 = y′

j−1,0. Hence, in

order to find more than τ j solutions, the adversary needs to
find more than τ j − τ j−1 solutions with y j−1,0 �= y′

j−1,0,
and we focus on this problem. The analysis depends on
whether the query is forward or inverse. First, consider a for-
ward query y j−1,0 ← π j−1,0(x j−1,0). There exist at most q
other tuples (x ′, y′,Z ′) j−1,0, and by ¬eD(Qq) j−1 we have
|Z j−1,0|, |Z ′

j−1,0| ≤ τ j−1 (these sets are fixed once x j−1,0 is
fixed). Therefore, the query adds a solution to eC(Qq) j with

probability at most τ 2( j−1)q
N−q , and any hit adds at most τ j−1

values (by ¬eA(Qq) j−1). Next, consider an inverse query
x j−1,0 ← π−1

j−1,0(y j−1,0). It renders a solution if for some
(x, y, z) j−2,0, (x, y, z) j−2,1, and (x ′, y′, z′) j−1,0:

x j−1,0 = (y ⊕ z) j−2,0 ⊕ (y ⊕ z) j−2,1,

y j−1,0 = (y ⊕ z) j−2,0 ⊕ (y′ ⊕ z′) j−1,0 ⊕ z.

(Indeed, in this case z j−1,0 = (y ⊕ z) j−2,0.) We make a
distinction between the cases y j−1,0 ⊕ z = y′

j−1,0 and
y j−1,0 ⊕ z �= y′

j−1,0; an adversary may succeed in both

cases. In the former case, the values y j−1,0 and z fix y′
j−1,0

(recall y j−1,0 �= y′
j−1,0), and by ¬eD(Qq) j−1, we have

|Z ′
j−1,0| ≤ τ j−1. By ¬eA(Qq) j−2, there is one solution

(x, y, z) j−2,0 to the second equation. By¬eD(Qq) j−2, there
are also at most τ j−2q solutions for (x, y, z) j−2,1, and a

solution is thus obtained with probability at most τ 2 j−3q
N−q .

Any hit adds at most τ j−1 values (by ¬eA(Qq) j−2). Next,
we consider the general case of y j−1,0 ⊕ z �= y′

j−1,0. By¬eB(Qq) j−1 for z := y j−1,0 ⊕ z (for which we thus
have y′

j−1,0 �= y j−1,0 ⊕ z), there are at most τ j−1/2

solutions (x, y, z) j−2,0 and (x ′, y′, z′) j−1,0 to the second
equation (using ¬eA(Qq) j−2∩ j−1). By ¬eD(Qq) j−2, there
are also at most τ j−2q solutions for (x, y, z) j−2,1, and a

solution is thus obtained with probability at most τ 2 j−5/2q
N−q .

Any hit adds at most τ j−1/2 values (by ¬eA(Qq) j−2). Con-
cluding the inverse case, a hit is found with probability at

most τ 2 j−3q
N−q + τ 2 j−5/2q

N−q ≤ τ 2( j−1)q
N−q (where inequality holds

as 1 + τ 1/2 ≤ τ for τ ≥ 3) and any hit adds at most
τ j−1 + τ j−1/2 values.

More than τ j − τ j−1 solutions are added with probability
at most

(
q

(τ j − τ j−1)/(τ j−1 + τ j−1/2)

)(
τ 2( j−1)q

N − q

)(τ j−τ j−1)/(τ j−1+τ j−1/2)

≤
(
e(τ j q)2

N − q

)τ 1/2−1

.

Here, we again use that 1 + τ 1/2 ≤ τ and that τ j − τ j−1 ≥
τ j−1. Summing over all N − 1 ≤ N choices of z, we obtain:

P
[
eC(Qq) j ∩ ¬e(Qq) j−2∩ j−1

] ≤ N

(
e(τ j q)2

N − q

)τ 1/2−1

.

eD(Qq) j . Assume ¬e(Qq) j−2∩ j−1 holds. Consider any
z ∈ {0, 1}n . Without loss of generality (by symmetry) con-
sider a new query (x, y,Z) j−1,0. The analysis depends on
whether the query is forward or inverse. First, consider a for-
ward query y j−1,0 ← π j−1,0(x j−1,0). There exist at most
q other tuples (x, y,Z) j−1,1, and by ¬eD(Qq) j−1 we have
|Z j−1,0|, |Z j−1,1| ≤ τ j−1 (these sets are fixed once x j−1,0 is
fixed). Therefore, the query adds a solution to eD(Qq) j with

probability at most τ 2( j−1)q
N−q , and any hit adds at most τ j−1

values (by ¬eA(Qq) j−1). Next, consider an inverse query
x j−1,0 ← π−1

j−1,0(y j−1,0). It renders a solution if for some
(x, y, z) j−2,0, (x, y, z) j−2,1, and (x, y, z) j−1,1:

x j−1,0 = (y ⊕ z) j−2,0 ⊕ (y ⊕ z) j−2,1,

y j−1,0 = (y ⊕ z) j−2,0 ⊕ (y ⊕ z) j−1,1 ⊕ z.

(Indeed, in this case z j−1,0 = (y ⊕ z) j−2,0.) We make
a distinction between the cases y j−1,0 ⊕ z = y j−1,1
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and y j−1,0 ⊕ z �= y j−1,1; an adversary may succeed
in both cases. In the former case, the values y j−1,0 and
z fix y j−1,1, and by ¬eD(Qq) j−1, we have |Z j−1,1| ≤
τ j−1. By ¬eA(Qq) j−2, there is one solution (x, y, z) j−2,0

to the second equation. By ¬eD(Qq) j−2, there are also
at most τ j−2q solutions for (x, y, z) j−2,1, and a solution

is thus obtained with probability at most τ 2 j−3q
N−q . Any hit

adds at most τ j−1 values (by ¬eA(Qq) j−2). Next, we
consider the general case of y j−1,0 ⊕ z �= y j−1,1. By
¬eB(Qq) j−1 for z := y j−1,0 ⊕ z (for which we thus
have y j−1,1 �= y j−1,0 ⊕ z), there are at most τ j−1/2 solu-
tions (x, y, z) j−2,0 and (x, y, z) j−1,1 to the second equation
(using ¬eA(Qq) j−2∩ j−1). By ¬eD(Qq) j−2, there are also
at most τ j−2q solutions for (x, y, z) j−2,1, and a solution

is thus obtained with probability at most τ 2 j−5/2q
N−q . Any hit

adds at most τ j−1/2 values (by ¬eA(Qq) j−2). Conclud-
ing the inverse case, a hit is found with probability at most
τ 2 j−3q
N−q + τ 2 j−5/2q

N−q ≤ τ 2( j−1)q
N−q and any hit adds at most

τ j−1 + τ j−1/2 values.
More than τ j solutions are added with probability at most

(
q

τ j/(τ j−1 + τ j−1/2)

) (
τ 2( j−1)q

N − q

)τ j /(τ j−1+τ j−1/2)

≤
(
e(τ j q)2

N − q

)τ 1/2−1

.

Summing over all N choices of z, we obtain:

P
[
eD(Qq) j ∩ ¬e(Qq) j−2∩ j−1

] ≤ N

(
e(τ j q)2

N − q

)τ 1/2−1

.

Conclusion of proof From (6) and (7), and simplifying the
above bounds, we obtain:

P
[
e(Qq)

] ≤
�∑

j=0

2(τ j q)2

N − q
+

�∑
j=1

4N

(
e(τ j q)2

N − q

)τ 1/2−1

= 2q2

N − q

�∑
j=0

τ 2 j

+ 4N

(
eq2

N − q

)τ 1/2−1 �∑
j=1

τ 2(τ
1/2−1) j

≤ 4(τ �q)2

N − q
+ 8N

(
e(τ �q)2

N − q

)τ 1/2−1

.

Here, we use that
∑�

j=0 x
j = x�+1−1

x−1 ≤ x
x−1 x

� ≤ 2x� for
x ≥ 2. ��
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