
Int. J. Inf. Secur. (2016) 15:131–143
DOI 10.1007/s10207-015-0281-1

REGULAR CONTRIBUTION

Behavior-based approach to detect spam over IP telephony attacks

Randa Jabeur Ben Chikha1 · Tarek Abbes1 · Wassim Ben Chikha2 ·
Adel Bouhoula1

Published online: 24 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Spam over IP telephony (SPIT) is expected to
become a serious problem as the use of voice over IP grows.
This kind of spam is appreciated by spammers due to its effec-
tiveness and low cost. Many anti-SPIT solutions are applied
to resolve this problem but there are still limited in some
cases. Thus, in this paper, we propose a system to detect
SPIT attacks through behavior-based approach. Our frame-
work operates in three steps: (1) collecting significant calls
attributes by exploring and analyzing network traces using
OPNET environment; (2) applying sliding windows strategy
to properly maintain the callers profiles; and (3) classify-
ing caller (i.e., legitimate or SPITter) using ten supervised
learningmethods:NaïveBayes,BayesNet, SMORBFKernel,
SMO PolyKernel, MultiLayerPerceptron with two and three
layers, NBTree, J48, Bagging and AdaBoostM1. The results
of our experiments demonstrate the great performance of
these methods. Our study, based on receiver operating char-
acteristics curves, shows that the AdaBoostM1 classifier is
more efficient than the other methods and achieve an almost
perfect detection rate with acceptable training time.
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1 Introduction

VoIP is a family of technologies that can offer both voice
communications and multimedia sessions over internet pro-
tocol (IP) networks. This technology is rapidly adopted by
consumers and enterprises since it offersmore functionalities
and higher flexibility than traditional telephony. Two kinds
of protocols are used in most VoIP calls, which are signaling
protocol and media transmission protocol. Session initia-
tion protocol (SIP) is the most adopted in signaling protocol
and real-time transport protocol (RTP) is the most adopted
in media transmission.

With the increase inVoIP applications,VoIP threats appear
and becomemore andmore a problem. SPIT, known as unso-
licited and unwanted calls sent via VoIP networks, is one of
these threats. Attacker prefers to make SPIT calls because it
can be done quickly and with a low cost. In fact, each VoIP
account has an associated IP address. Thus, SPITters can eas-
ily send their calls to thousands of IP addresses. As a result,
SPIT can annoy VoIP users. In addition, VoIP network can
be overloaded by intensive messages.

In light of this, countermeasures are proposed in order to
identify and filter SPIT. These countermeasures are mostly
derived from the experience of SPAM defense. They include
the reputation-based [1], call frequency-based [2], dynamic
blacklisting, fingerprinting [3], challenging suspicious calls
by captchas [4] and the use of more sophisticated machine
learning. Under this latter method, Nassar et al. [5,6] per-
form a supervised learning in order to detect attacks on SIP
protocol. They apply the support vectormachine (SVM) clas-
sifier on the calls history logfile. Moreover, Wu et al. [7]
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propose a semi-supervised learning approach using the met-
ric pairwise constrained k-means method (MPCK-Means) to
discover SPIT calls.

In this paper, we propose a SPIT detection system through
behavior-based approach. The main contributions of this
paper are as follows: (1) the design of SPIT detection sys-
tem including a large number of identification criteria, (2)
the application of “sliding windows” strategy to properly
maintain the callers profiles and (3) the investigation of
ten supervised classification methods to recognize SPITters.
Depending on the scope and criteria used in classification,
each method has shown its effectiveness on many real-life
data and has been applied to a wide range of applications.
Moreover, it is too difficult to prior know the most efficient
classifier in such scenario. Thus, the purpose of this com-
parison is to determine the characteristic of each classifier in
terms of both SPIT detection and convergence speed. Here,
through a comparative study, we prove that the AdaBoostM1
outperforms the other classification methods.

The rest of the paper is organized as follows. In Sect. 2,
wemention some relatedworks about anti-SPITmechanisms
and the motivations of using machine learning algorithms.
The proposed system for detecting SPIT attacks is developed
in Sect. 3.We describe our simulation scenario in Sect. 4, and
then, we present our experiment results in Sect. 5. Finally,
Sect. 6 summarizes this work and enumerates our future
works.

2 Related works

2.1 Anti-SPIT mechanisms

SPIT becomes a severe threat for VoIP users because of the
reduction in voice call costs, comparing to current infrastruc-
tures, and the lack of a global legal and regulatory framework.
It affects the private life of the customer and his correspon-
dences and becomes a source of noise for them. It is classified
as social threats by Keromytis [8]. To resolve this problem,
many anti-SPIT mechanisms and techniques have been pro-
posed. Bai et al. [9] have classified these mechanisms into
four categories: list-based filtering, reputation-based filter-
ing, Turing test and pattern-based filtering.

2.1.1 List-based filtering

It identifies SPIT according to three types of filtering lists:
blacklist, whitelist and graylist. The principle is to block
spam calls from blacklist, accept user calls from whitelist
and temporarily reject unclassified calls from graylist [10–
13];Mathieu [14] proposed a framework including blacklists
and whitelists in order to apply statistical traffic analysis
method using the number and duration of calls. Neverthe-

less, list-based filtering approach has some limits. Indeed, the
spammers can easily change their addresses to elude detec-
tion. Therefore, the list-based filtering is vulnerable to Sybil
attack [15], a threat against identity in which an individual
entity masquerades as multiple simultaneous identities.

2.1.2 Reputation-based filtering

Themain principle is to compute a reputation score in order to
detect SPIT attacks [16]. The score is generated using buddy
list and user ratings for buddies. In fact, the user can only trust
people who have a high reputation score. In a similar work,
Patankar et al. [17] propose using buddy lists inside the VoIP
network in order to establish a trust chain between the caller
and the callee. Besides, Balasubramaniyan et al. [18] employ
the call durations to build social network relationships and
global reputations for users [19]. This approach suffers from
the information poisoning attack if it is set up to allow
unknown but highly ranked persons to contact the user [20].

2.1.3 Turing test

Basically, the Turing test is a test of a machine’s ability
to exhibit intelligent behavior. Used to detect SPIT, this
approach employs someparameters, such as call duration and
silence period to detect and block spam calls. Related to this
mechanism, Quittek [21] creates a modular SPIT detection
platform in NECVoIP SEAL. It is a Turing test that monitors
the call communication patterns. However, Turing test has a
limit because it is not applicable for human-initiated SPIT.

2.1.4 Behavior-based filtering

It monitors the call patterns and compares the current call
pattern with the previous caller call pattern. If there is a sig-
nificant difference, it blocks the call. Kusumoto et al. [22]
proposed in a scoring system using call patterns and Naive
Bayes approach to detect spammer. In this work, computed
call patterns include different parameters such as user rela-
tionships, the rate of unsuccessful calls and the average call
duration. The advantage of this system is that changing the
values of these parameters is difficult for spammers.

In Table 1, a qualitative comparison of the techniques
and the identification criteria supported by different previous
approaches is presented. It is clearly shown that our proposed
SPIT detection approach includes many techniques and large
number of identification criteria. These latter will give our
proposed approach and their benefits and hence can result a
higher performance of SPIT detection.

As seen in Table 1, we have used only some identifi-
cation criteria in our previous work [23]. Other important
criteria such as variance of inter-call duration (VICD), vari-
ance of talk duration (VTD) and percentage of calls with
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Table 1 Qualitative comparison
of the techniques and the
identification criteria used by
existing SPIT detection
approaches

P1 P2 P3 P4 P5 P6 P7 P8

Techniques

List-based filtering � � � � �
Reputation-based filtering �
Turing test �
Behavior-based filtering � � � �
Sliding window �
Boosting and bagging classifiers �
Identification criteria

Percentage of answered calls � �
Percentage of rejected calls � � � �
Percentage of calls with invalid callees �
Number of calls attempts � � � �
Call duration � � � � � �
Inter-call duration �
Number of destination users � �
Silence length � �
Talk duration � �
P1 Nassar et al. [5], P2 Wu et al. [7], P3Mathieu et al. [14], P4 Balasubramaniyan et al. [18], P5 Quittek et
al. [21], P6 Kusumoto et al. [22], P7 Jabeur Ben Chikha et al. [23], P8 the proposed SPIT detection

invalid callees (%IC) are not considered. Indeed, SPITters
cannot give any importance to these criteria and initiate calls
with constant inter-call duration and/or constant talk duration
and/or great percentage of calls with invalid callees. In addi-
tion, for each call, we performed six tests which is costly in
terms of processing time. Therefore, this algorithm has con-
siderable complexity which is not desirable for a real-time
system.

In this work, our main contribution is to propose a
behavior-based approach to detect spam over IP telephony
attacks. To this end, we have included VICD, VTD and
%IC to the set of criteria. Thus, for each call, the proposed
algorithm select nine identification criteria from the network
traces of signaling and voice activities that allow for bet-
ter distinguishability between legitimate and SPITter UAs.
Since SPIT communication can be real-time and can cause
significant network overload and considerable user annoy-
ance, we have employed the strategy of “sliding window”.
The purpose of this strategy is to collect continuously the
relative network traces window-by-window.Moreover, it can
ensure the good storage of communication data flow in real
time [24,25]. Contrary to [23], the classification process is
done at each window using supervised classification (and
not at each call). Consequently, the complexity of the pro-
posed system is reduced compared to [23]. To determine the
adequate classifier for the proposed system, we have car-
ried out a comparative study in terms of SPIT detection
and convergence speed between ten supervised classification
methods (Naive Bayes, BayesNet, SMO RBFKernel, SMO

PolyKernel, MultiLayerPerceptron with two and three lay-
ers, NBTree, J48, bagging and AdaboostM1).

2.2 Machine learning algorithms

Machine learning, a branch of artificial intelligence, allows
a machine to evolve through a learning process and so per-
forms tasks that are difficult or impossible to complete by
traditional algorithms. Machine learning algorithms gener-
ally fall into two categories: supervised or unsupervised. We
call unsupervised learning or clustering when the system or
the operator has only examples, but not labels, and the num-
ber of classes and their nature were not predetermined. If
classes are predetermined and examples are known, the sys-
tem learns to classify according to a classificationmodel, and
it is called supervised learning.

Our work focuses on the supervised learning machine. In
this context, we describe classification algorithms that we
use to evaluate our framework.

2.2.1 Bayesian methods

Bayesian methods are used as classification solutions in dif-
ferent domains such as data mining. In our work, we use
two Bayesian methods called Naive Bayes and Bayesian net-
works.

Bayesian networks method (BayesNet) BayesNet is struc-
tured as a combination of a directed acyclic graph of nodes
and links, and a set of conditional probability tables [26].
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Thus, nodes correspond to classes or criteria, and links rep-
resent the relationship between nodes. The strength of these
links is determined by the use of conditional probability
tables. For each node, there is one probability table that rep-
resents the probability distribution of the node’s parent. If a
node is not connected (has no parents), the probability distri-
bution is unconditional. If a node is connected to one or more
parents, the probability distribution is a conditional distrib-
ution where the probability value of each node depends on
the values of the parents.

Naive Bayes method Naive Bayes method is based on the
Bayesian theorem [27]. A Naive Bayes network has a sim-
ple and unique structure with only two levels. The first level
contains a single parent node, and the second contains sev-
eral children with strong naive assumption of independence
among child nodes. In simple terms, a Naive Bayes classifier
assumes that the existence of a characteristic for a class is
independent of the existence of other characteristics. Thus,
a Naive Bayes network is a simple classifier, easy to pro-
gram, and often effective. However, it is very sensitive to the
presence of correlated attributes.

2.2.2 Multilayer Perceptron (MLP)

MLP network is the most widely used neural network classi-
fier.Here, neurons are arranged in several layers. Eachneuron
of a layer is connected to all the neurons of the next layer.
MLP is composed of an input layer, one ormore hidden layers
and an output layer. The addition of this hidden layer allows
the network to model the functions of complex nonlinear
decision between any input and output space. In a classifica-
tion problem, each output neuron is dedicated to a given class.
MLPs can resolve the problems when one has little informa-
tion about the relationship between input vectors and their
correspondingoutputs. Themost popular learning algorithms
used for MLP is the backpropagation [28].

2.2.3 Decision tree

A decision tree is a decision support tool that uses a tree
graph of decisions and their possible consequences. It is an
excellent tool for helping to decide between several courses
of action. In our work, we use two decision tree methods:
C4.5 decision tree and Naive Bayes tree.

C4.5 decision tree (C4.5) C4.5 creates a model based on a
tree structure [29]. In the tree, nodes and branches correspond
to criteria and possible values connect criteria, respectively.
A leaf that symbolizes the class terminates a set of nodes and
branches. Thus, tracing the path of nodes and branches to the
terminating leaf leads to determine the class of an instance.
J48 algorithm is an implementation of the C4.5.

Naive Bayes tree (NBTree)NBTree adopts a hybrid model
of a decision tree classifier with a Naive Bayes classifier [30].

Therefore, the NBTree model is a decision tree of nodes and
branches where each leaf contains a Naive Bayes classifier.

2.2.4 Support vector machines (SVM)

SVMwasfirst suggested byVapnik [31] in 1960 for data clas-
sification. It is a supervised machine learning method based
on the statistical learning theory. Amore detailed description
can be found in various literatures [32–34]. SVM classifies
data in large data sets by identifying a linear or nonlinear
separating surface in the input space of a data set. The sep-
arating surface depends only on a subset of the original data
known as a set of support vectors. A support vector machine
constructs a hyper plane or set of hyper planes in a high
dimensional space, which can be used for classification. A
good separation is achieved by the hyper plane that has the
largest distance to the nearest training data points of any class,
called functional margin. If this functional margin is large,
then the generalization error of the classifier will be small.
SVM models are built around a kernel function [31] that
transforms the input data into ann-dimensional spacewhere a
hyper plane can be constructed to partition the data. The stan-
dard SVM algorithm implemented in Weka, a data mining
tool that we use in our experiments, is called the sequential
minimal optimization (SMO) [35]. Here, we employ SMO
PolyKernel using the polynomial kernel function [36]. We
also use the SMO radial basis function (RBF) kernel method
[37].

2.2.5 Bagging algorithm

Bagging, which means bootstrap aggregating, is a “boot-
strap” ensemble method that makes decisions from multiple
classifiers [38]. In bagging, each bootstrap sample is obtained
by randomly sampling training instances, with replacement,
from the original training set. Hence, some examples may
be selected repeatedly, while others may left out. The boot-
strap sample and the training set have the same number
of instances. The final decision in bagging is obtained by
combining the decisions of the component classifiers using
unweighted voting. Note that bagging enhances the classifi-
cation performance mainly by minimization of the variance
error [39]. Usually, this algorithm is applied to the deci-
sion tree algorithms. Thus, we employ the bagging algorithm
combined with J48 classifier.

2.2.6 Boosting algorithm

Adaptive Boosting (AdaBoost) is a method for combining
multiple classifiers by using a set of many weak or base clas-
sifiers in order to ameliorate the overall performance [40].
AdaBoost calls a given weak classifier repeatedly in a series
of rounds. At each call, a distribution of weights is updated
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indicating the importance of examples in the data set for the
classification. On each round, the weights of each correctly
classified example are decreased (or alternatively, theweights
of each incorrectly classified example are increased), so that
the new classier is forced to focus on those examples. At the
end, the predictions of all weak classifiers are combined into
a single prediction with weighted voting. AdaBoost is adap-
tive in the sense that subsequent classifiers built are tweaked
in favor of those instances misclassified by previous classi-
fiers. It is more effective than bagging at reducing both bias
and variance of the basic classifiers and has good generaliza-
tion properties. Also, this algorithm is less susceptible to the
overfitting problem than many other learning algorithms. In
thiswork, we use theAdaBoost.M1 algorithm [40] combined
with J48 classifier.

3 SPIT attack detection system

3.1 SPIT identification criteria

In this subsection, we summarize the criteria used to identify
SPITters.

SIP address A user agent (UA) caller has a SIP uniform
resource identifier (URI). If this address appears in a blacklist
database, the UA caller is considered as a SPITter and will
be filtered.

Calls messages rateWe analyze the number of calls made
within a specific time period by each user. If this number
exceeds a predefined threshold, then the UA can be consid-
ered as a potential SPITter.

Constant calls duration We analyze the duration of calls
initiated by a single user. If it has a static duration, then the
UA is a potential SPITter. Indeed, this caller may use an
automated script in order to initiate VoIP calls.

Constant silence length We analyze the silence length of
calls initiated by a single user. If it has a constant value, then
the UA is a potential SPITter.

Receivers’ address pattern If the receivers’ addresses fol-
low a specific pattern (e.g., alphabetical SIP URI addresses),
then the call (message) is flagged as a potential SPIT. For
example, the sender tries to find a valid address by sending
many requests having similar URI with a unique difference
in the first letter.

Answered calls percentage We compare the number of
successful calls initiated by a caller with the number of failed
ones within a predefined time period. If the percentage of
successful calls is very small, then the caller is a potential
SPITter.

Errors number If a user sends a large number of INVITE
messages which are replied by the SIP proxy with a large
number of error messages (e.g., 404 Not Found), then it is a
sign of a potential SPIT attack.

Size of SIPmessagesByautomating the process of sending
messages, SPITters can employ a “bot” to solicit the same
message (i.e., constant size of SIP message) to many UA
subscribers. Thus, the size of SIP messages can be a good
criterion to distinguish between human and “bot” UA and
consequently help to detect SPIT. According to this para-
meter, we choose the call duration, speech duration and the
silence length as criteria of SPIT identification.

In addition, SPITters can randomly generate many UA
identifiers and try to communicatewith them.Therefore, ana-
lyzing the number of destination users can be used to predict
the behavior of each UA.

3.2 SPIT detection Process

According to the anti-SPIT mechanisms mentioned in the
Sect. 2, we propose a SPIT detection model using behavior-
based approach. Our system is consisted of two parts: the
collection ofUA’s identification criteria and the classification
of each UA as SPITter or legitimate.

Based on the identification criteria cited in Sect. 3.1, we
select nine criteria for SPIT detection that are depicted in
Table 2. SPITters can randomly generate many UA identi-
fiers and try to communicate with them. Therefore, analyzing
the number of destination users can be used to predict the
behavior of each UA. These criteria have the ability to pre-
dict the legitimacy of calls. In fact, SPITter can try to change
the message content in order to hide their menacing activities
but without giving importance to these criteria.

Our proposed system collects the network traces of signal-
ing and voice activities for identification criteria according
to the diagram illustrated in Fig. 1.

For each initiated call, the SIP address of the caller and the
addresses of the callees are collected. In fact, when the caller
and callee addresses are valid, the proposed system checks
if the address of the caller belongs to the blacklist of proxy
server. If it is true and the caller address is not in the callee

Table 2 Identification criteria of SPITter

Criteria Abbreviation

Percentage of answered calls %AC

Percentage of rejected calls %RC

Percentage of calls with invalid callees %IC

(NOT FOUND response)

%AC + %RC + %IC = 100%

Number of calls attempts NCA

Variance of call duration VCD

Variance of inter-call duration VICD

Number of destination users NDU

Variance of silence length VSL

Variance of talk duration VTD
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Fig. 1 Collection of the network traces (signaling and voice activities)

Table 3 Parameters of the network traces (signaling and voice activi-
ties)

Parameter Abbreviation

ID call Id_Call

Callee address @Callee

Caller address @Caller

Success call SCε {0, 1}
Rejected call RCε {0, 1}
Invalid callee ICε {0, 1}
Call initiated CI

Call end time CET

Call duration CD = CET − CI

Silence length SL

Talk duration TD

trustlist, the call is rejected. Otherwise (i.e., SIP address is
not in blacklist or SIP address in the callee trustlist), an RTP
conversation is done. Thus, after the end of the conversation,
the collection of the network traces of signaling and voice
activities triggers. These traces are then processed for the
SPIT detection. Table 3 shows the parameters of network
traces that we must retrieve.

As communication data flow is potentially infinite, it will
be impossible to store it completely. Besides, extracting
properties for data set are more valuable when data is time
correlated. Therefore, we apply the concept of the “sliding

Fig. 2 Sliding window

Fig. 3 Extraction of criteria to identify SPITter

window.” The role of this window is to maintain a flow of
data as a finite set. The operating principle of this window is
illustrated in Fig. 2.

The window is divided into p units (p = 4 in the Fig. 2).
The first window T1 is formed by four p units. Subsequently,
each window Tk (k > 1) is formed by inserting a new unit to
its previous window and deleting the oldest one [41].

We explain our SPIT detection system by Algorithm 1.
At the beginning, we create T div p files [i.e., file(i) where
i = 1 . . . T div p] to save the network traces of signaling
and voice activities for each unit(i). According to the prin-
cipal of “sliding window,” our proposed system collects the
relative network traces for each unit and concatenates all
files in a global file. Thereafter, the system extracts the SPIT
identification criteria from this file. The extraction process is
illustrated in Fig. 3.

Finally, the classification phase is triggered, and the black-
list is updated. It is important to deduct a thread to continue
both the collection of network traces for the next window and
the operations of classification.

After the extraction of criteria, our proposed system
employs a supervised classification given that our classes
are previously known (labeled training data). We illustrate
the mechanism of this classification in Fig. 4.

Indeed, this mechanism typically employs two phases of
processing: The first one concerns learning. It involves build-
ing a classifier from a training database. The second phase is
to predict the class of each UA based on the classifier already
built.

In the following, we describe the simulation platform.
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Algorithm 1 SPIT detection system

4 Simulation platform

In order to evaluate the proposed system, we use OPNET
simulator (Modeler environment 14.5) [42] to extract net-
work traces (signaling and voice activities) andWeka [43] as
a data mining software for classification.

4.1 Collection of SPIT identification criteria under
OPNET

OPNET uses a hierarchical model describing, in a precise
way, topologies and exchanged flows in a communication
system.

We adapt the existing SIP model to extract SPIT identifi-
cation criteria. As shown in Fig. 5, a hierarchical model has
three description levels:

Fig. 4 Supervised classification

Fig. 5 Hierarchical model of a VoIP network

– Network model: It represents the physical topology
including a set of nodes and interconnectors.

– Node model: It defines the behavior of the node and con-
trols the flow of data among various functional elements
within the node.
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Fig. 6 VoIP network topology

– Process model: It is represented by finite state machines
(FSMs). It is created with icons and lines that represent
states and transitions between states, respectively. Here,
we can perform operations in each state or transition by
means of embedded C or C++ code blocks.

At the OPNET network model, we establish a VoIP net-
work topology illustrated in Fig. 6.

It is composed of stations (96 callers and 32 callees),
switches, routers and proxy server. Here, there are 52 legit-
imate and 44 SPITter callers. Stations are geographically
distributed on four regions.Communication between theUAs
is ensured via a proxy server that handles the routing of any
SIP session. The configuration of these stations is described
in the following paragraph.

At the process model, our interventions occur in the
exploitation of existing processes such as SIP_UAC process
model and gna_voice_called_mgr to generate network traces
including signaling and voice activities.

Note that each station has the parameters presented in
Table 4.

In order to discriminate between the legitimate and SPIT-
ter UAs, we set the values of NCR, CD, ICD, SL and TD.
These values should be exponentially or constantly distrib-
uted. Thereafter, we collect the parameters of network traces
for all calls presented in Table 3 and hence extract the criteria
of SPIT identification mentioned in Table 2.

Table 4 Configuration of station parameters

Parameter Value

Client address: CA Unique

Destination preferences: DP List

Proxy server address: PSA @proxy

Number of call repetition: NCR NCR ∈ {cstNCR, exp (αNCR)}
Call duration (s): CD CD ∈ {cstCD, exp (αCD)}
Inter-repetition call duration (s): ICD ICD ∈ {cstICD, exp (αICD)}
Silence length (s): SL SL ∈ {cstSL , exp (αSL )}
Talk duration (s): TD TD∈ {cstT D, exp (αT D)}

4.2 Classification

The building of the training database is done by setting the
thresholds. In order to discriminate each UA (i.e., legitimate
or SPITter), we associate the thresholds thr j to the crite-
ria cr j ( j = 1 . . . 9), respectively. These criteria (cr j , j =
1 . . . 9) correspond to%AC, VCD, VICD, VSL, VTD,%RC,
%IC, NDU and NCA, respectively. We suppose that

∀ j ∈ {1, . . . , 5} , f
(
cr j

) =
{
0 if cr j < thr j ,
1 if cr j ≥ thr j ; (1)

and

∀ j ∈ {6, . . . , 9} , g
(
cr j

) =
{
0 if cr j > thr j ,
1 if cr j ≤ thr j .

(2)

Each UA is characterized by a set of functions (S) given
by

S = ( f (cr1), f (cr2), f (cr3), f (cr4), f (cr5),

g (cr6), g (cr7), g (cr8), g (cr9)). (3)

We distinguish two classes of UA: the first is a legitimate
(LC) given by

LC = {S/ f (cr1) = f (cr2) = f (cr3) = f (cr4)

= f (cr5) = g (cr6) = g (cr7) = g (cr8)

= g (cr9) = 1} (4)

and the second is a SPITter (SC) given by

SC = LC (5)

4.3 Metrics for performance evaluation of UA classifier

The efficiency indicators used in the evaluation of classi-
fication applications are numerous. However, most of these
indicators are built from the contingencyTable 5.Cells abbre-
viations are as follows:
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– TN (True Negative): legitimate UA classified correctly,
– FN (False Negative): SPITter UA classified as legitimate,
– TP (True Positive): SPITter UA classified correctly,
– FP (False Positive): legitimate UA classified as SPITter.

From Table 5, we can extract several relations that define
efficiency criteria. We summarize some of these criteria in
Table 6.

Indicators derived from a contingency table (Table 6) have
the disadvantage of being specific to a threshold value and
does not inform us about the effectiveness of the classifier to
other threshold values. An effective way for the evaluation
of detection performance is to plot the ROC curve [44]. The
interpretation of the ROC curve is shown in Fig. 7.

By computing the ROC curve area, denoted area under
the curve (AUC) [45], we can compare multiple classifier.
Indeed, if the AUC of a classifier is greater than another

Table 5 Contingency table

Classifier Reality

Legitimate SPITter

Legitimate TN FN

SPITter FP TP

Table 6 Indicators defined from the contingency table

Indicator Definition

Rate of false positive (RFP) FP
T N+FP

Rate of false negative (RFN) FN
T P+FN

Sensitivity, power (1 − T FN ) = T P
T P+FN

Specificity (1 − T FP) = T N
T N+FP

Accuracy T P+T N
T P + FP+T N+FN

Rate of global error FP+FN
T P+FP+T N+FN

Fig. 7 ROC curve

classifier, then we can say that the first one is generally more
efficient than the other.

The ROC curve is also used for fixing optimum thresh-
old value. In fact, Wright [46] justifies the use of ROC in
finding a filter’s optimal threshold in signal detection theory
(SDT). This author presents a discussion of ROC curve on
how the optimumdecision criterion can be achieved.Accord-
ing to Saber et al. [40], based on the respective ROC curve,
an optimum threshold was computed for each class, which
simultaneously maximizes the count of TP and minimizes
the count of FP. Graphically, optimum threshold is known
as point on curve closest to (0, 1). Indeed, if we denote Sn
et Sp sensitivity and specificity, respectively, the distance
between the point (0, 1) and any point in the ROC curve is
d2 = (1 − Sn)2 + (1 − Sp)2 [38]. So, to obtain the opti-
mal cutoff point ( relative to optimum threshold), we must
calculate the distance d for each observed cutoff point and
locate the point where the distance is minimum (see Fig. 7).
Here, we pay considerable attention to the optimal threshold
in order to show further that when dmin converge to 0 (i.e.,
AUC converge to 1) the classifier is considered as ideal.

We notice that there are difference between the threshold
of this curve and the threshold used to distinguish between
legitimate and SPITter UA.

5 Simulation results

We execute our simulation during 52min in order to evaluate
the different aforementioned classification techniques. We
set T = 30min (duration of the sliding window) and p =
2min (sliding unit). Under this configuration, we have fixed
the thresholds as given by Table 7.

The thresholds of VCD, VICD, VSL and VTD are fixed
through intensive simulation. In fact, when we select con-
stantly distributed, the variances of these criteria do not
exceed an upper bound. Note that the difference between
the variance of exponential and constant distributions is

Table 7 Fixed thresholds

Criteria Threshold Threshold value

cr1 th1 75%

cr2 th2 500

cr3 th3 500

cr4 th4 500

cr5 th5 500

cr6 th6 75%

cr7 th7 75%

cr8 th8 8

cr9 th9 10
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Table 8 Appearance of the 44 SPITter callers over 12 windows

Window Number of SPITters Desired detection (%)

T1 31 70.45

T2 1 72.72

T3 0 72.72

T4 1 75.00

T5 1 77.27

T6 0 77.27

T7 1 79.54

T8 2 84.09

T9 2 88.63

T10 2 93.18

T11 1 95.45

T12 2 100

Total 44

remarkable. Thus, we choose the largest value of this latter
as a threshold. For other criteria, we choose the thresholds
appropriate to the sliding window period. For instance, it is
reasonable that the behavior of UA becomes abnormal when
the NCA exceeds 10 new UAs within 30min. It is worth
noting that the classification phase is triggered at each win-
dow and the blacklist is updated immediately. Hence, theUA,
which identify as a SPITter, will be stopped immediately, and
he can only communicate with UA that appear in the callee
trustlist. Here,we can say that our proposed system canmain-
tain good performance even when we change the values of
thresholds. In fact, the choice of thresholds will not influence
the detection of SPITters by machine learning algorithms.
Thus, a security administrator can vary the appropriate choice
of thresholds according to a pre-knowledge of VoIP network
without losing detection performance. It is worth noting that
our learning database contains 512 patterns (179 legitimate
and 333 SPITter UAs). All simulations are generated based
on this database. For the test phase, we generate 96 UAs
where 44 become SPITters as seen in Fig. 6. The appearance
of these 44 SPITter callers over the 12 windows is illustrated
in Table 8. In Weka knowledge flow, we use the “TestSet-
Maker” as a test option since it allows for classifying all
UAs. Note that the classifier with an ideal detection is one
where its curve of true detection is the same as the curve of
desired detection.

In our experimental results, we plot the ROC curves to
evaluate the performance of the machine learning techniques
relative to our framework.

Figure 8 shows the ROC curves from the Naive Bayes and
the BayesNet methods.

By comparing the ROC curves of these two methods, we
can conclude that the SPIT detection performance using the
BayesNet method is much better than that of Naive Bayes.
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Fig. 8 ROC curves of Naive Bayes and BayesNet methods
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Fig. 9 Curves of true detection and false alarms for BayesNet and
Naive Bayes methods
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Fig. 10 ROC curve analysis of SMO PolyKernel and RBFKernel
methods

Indeed, the ROC curve of BayesNet method is above that of
the Naive Bayes, and therefore, its AUC is larger.

To confirm these results, we schematize in Fig. 9 the rates
of true detection and false alarms for the two classification
methods: Naive Bayes and the BayesNet. We notice that
Naive Bayes method produces a lot of false alarms. Regard-
ing theBayesNetmethod, the percentage of desired detection
(i.e., ideal detection) is not achieved although the percentage
of false alarms is quite close to the desired case (i.e., ideal
case).

Figure 10 depicts the ROC curves issued from the SMO
PolyKernel and RBFKernel methods. We can conclude that
SMO RBFKernel method outperforms SMO PolyKernel
since it has a larger AUC.

Figure 11 shows the curves of true detection percentage
and false alarms percentage of SMO PolyKernel and RBFK-
ernel methods. These curves confirm that SMO RBFKernel
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Fig. 11 Curves of true detection and false alarms for SMORBFKernel
and SMO PolyKernel methods
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Fig. 12 ROC curve analysis of MultiLayerPerceptron methods with
two and three layers

classifier exceeds SMO PolyKernel since it has a lower false
alarms rate and a higher true detection rate.

We also compare the method of three-layer perceptron
(seven nodes at the first hidden layer [(N1 = 7) and twonodes
at the second hidden layer (N2 = 2)] with the two-layer
perceptron [(two nodes at the unique hidden layer (N1 =
2)]. Through Fig. 12, it is clear that the AUC of the three-
layer perceptron is larger than that of two-layer perceptron.
Therefore, the first classifier is the most efficient.

Figure 13 presents the rates of true detection and false
alarms for the two classification methods: three-layer per-
ceptron and two-layer perceptron. These curves confirm the
superiority of three-layer perceptron, mainly because of a
less generation of false alarms. This characteristic is also
maintained when comparing three-layer perceptron with the
Bayesian and SVM methods.

Figure 14 shows the good performances of the J48 and
NBTree methods. Indeed, these classifiers have the greatest
AUC compared to the above classification methods.

Figure 15 shows the curves of true detection percentage
and false alarms percentage of J48 and NBTree methods.
These curves confirm that these two methods are efficient in
our testing environment. Indeed, they provide an ideal true
detection rate without any false alarm.

Comparing theROCcurves ofAdaBoostM1,Bagging and
J48 methods will reveal that the AdaBoostM1 classifier is
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Fig. 13 Curves of true detection and false alarms for MultiLayerPer-
ceptron methods with two and three layers
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Fig. 14 ROC curve analysis of J48 and NBTree methods
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Fig. 15 Curves of true detection and false alarms for J48 and NBTree
methods

more efficient as it offers better AUC (AUC = 1) as shown
in Fig. 16.

It is clear in Fig. 17 that the AdaBoostM1 and bagging
methods can perfectly distinguish between legitimate and
SPITter UAs since they successfully detected SPITters and
did not produce any false alarms.

Through Table 9, we illustrate the duration of the training
phase for the various classification methods. This period cor-
responds to time needed to build the classificationmodel.We
can notice that the time duration taken by the AdaBoostM1
method is acceptable, but it is too long for theMultilayerPer-
ceptron method.

Table 10 summarizes the AUC of each classification
method.

The first interesting insight is that AdaBoostM1 method
gives the best detection rate since it has the largest AUC = 1.
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Fig. 16 ROC curve analysis of AdaBoostM1, Bagging and J48 meth-
ods
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Fig. 17 Curves of true detection and false alarms for AdaBoostM1 and
bagging methods

Table 9 Time model building

Classifier Time taken to
build model (s)

Naive Bayes 0.007

BayesNet 0.016

J48 0.021

Bagging 0.090

AdaBoostM1 0.130

SMO (RBFKernel) 0.277

NBTree 0.858

MultilayerPerceptron L = 2 2.248

Table 10 AUC of each classification method

Classifier AUC

AdaBoostM1 1

Bagging 0.9999

J48 0.9992

NBTree 0.9982

BayesNet 0.9920

MultiLayerPerceptron L = 2 0.9915

MultiLayerPerceptron L = 1 0.9827

SMO RBFKernel 0.9637

Naive Bayes 0.9346

SMO PolyKernel 0.8675

It is closely followed by Bagging = 0.9999. On the con-
trary, Naive Bayes and SMO PolyKernel methods provide
relatively low detection rates with AUC = 0.9346 and
AUC = 0.8675, respectively.

In conclusion, we can say that the AdaBoostM1 method
provides a compromise between detection performance and
convergence speed in our detection system.

6 Conclusion

This work aims to develop an anti-SPIT mechanism using
a behavior-based approach. To achieve this purpose, we
deployed a VoIP network topology using OPNET environ-
ment. Through the simulation, we collected network traces
of signaling and voice activities. These traces were useful to
extract nine identification criteria of SPIT attacks on the one
hand and to implement a sliding window mechanism on the
other hand. Under our experimental assumptions and using
the data mining tool Weka, we carried out a comparative
study of ten supervised classification methods (Naive Bayes,
BayesNet, SMORBFKernel, SMO PolyKernel, MultiLayer-
Perceptron with two and three layers, NBTree, J48, Bagging
and AdaBoostM1). We used the ROC curves and the learn-
ing period time to compare between the various classifiers.
Our study showed the superiority of the AdaBoostM1 clas-
sifier. Another finding from our study was the presence of
false alarms and false negatives (non detected attacks) with
the different classifiers. In a future work, we plan to conduct
a stateful multi-protocol analysis to have more identification
criteria.
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