Int. J. Inf. Secur. (2015) 14:513-529
DOI 10.1007/s10207-015-0277-x

@ CrossMark

REGULAR CONTRIBUTION

Security and searchability in secret sharing-based data

outsourcing

Mohammad Ali Hadavi - Rasool Jalili -
Ernesto Damiani - Stelvio Cimato

Published online: 21 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract A major challenge organizations face when host-
ing or moving their data to the Cloud is how to support com-
plex queries over outsourced data while preserving their con-
fidentiality. In principle, encryption-based systems can sup-
port querying encrypted data, but their high complexity has
severely limited their practical use. In this paper, we propose
an efficient yet secure secret sharing-based approach for out-
sourcing relational data to honest-but-curious data servers.
The problem with using secret sharing in a data outsourc-
ing scenario is how to efficiently search within randomly
generated shares. We present multiple partitioning methods
that enable clients to efficiently search among shared secrets
while preventing inference attacks on the part of data servers,
even if they can observe shares and queries. Also, we prove
that with some of our partitioning methods the probability of
finding a correspondence between a set of shares and their
original values is almost equal to that of a random guess.
We discuss query processing for different types of queries
including equality, range, aggregation, projection, join, and

M. A. Hadavi - R. Jalili ()

Department of Computer Engineering, Sharif University
of Technology, Tehran, Iran

e-mail: jalili@sharif.edu

M. A. Hadavi
e-mail: mhadavi@ce.sharif.edu

E. Damiani - S. Cimato

Department of Computer Science, Universita degli Studi di Milano,
Crema, Italy

e-mail: ernesto.damiani @unimi.it

S. Cimato
e-mail: stelvio.cimato @unimi.it

E. Damiani
Information Security Group, Khalifa University, Abu Dhabi,
United Arab Emirates (UAE)

update queries. Our extensive experimentation confirms the
practicality and efficiency of our approach in terms of query
execution time, storage, and communication overheads.

Keywords Database outsourcing - Data confidentiality -
Searchable secret sharing - Partitioning - Query processing

1 Introduction

Cloud computing allows organizations to radically outsource
their ICT operations, deploying all applications and data on
a virtualized infrastructure managed by an external supplier.
However, concerns over potential disclosure of business data
to other cloud tenants or to the cloud platform itself are still a
major barrier to data outsourcing. At first sight, there seems to
be a straightforward way to handle data privacy: storing and
processing all data in encrypted form. In principle, this can
be achieved via an encryption scheme that allows evaluating
conditions on encrypted data, i.e., a homomorphic encryption
scheme. Unfortunately, however, the practical applicability
of homomorphic schemes to the cloud has been limited by
their complexity.

Homomorphic encryption arithmetics are highly complex,
and practically feasible queries are limited to equalities, or
simple statistical functions such as mean and standard devi-
ation [24]. Some researchers have tried to improve homo-
morphic encryption performance, e.g., by exploiting special
hardware features such as Intel SIMD (single instruction,
multiple data) extensions or vector processing capabilities of
graphic processing units (GPUs) [33]; but even if they will
become available, such techniques cannot be deployed on
low-cost commodity hardware.

We would come to terms with the complexity issues of
using homomorphic encryption if it totally resolved confi-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0277-x&domain=pdf

514

M. A. Hadavi et al.

dentiality concerns of outsourced data. However, recent liter-
ature has shown that data outsourcing based on homomorphic
encryption can be vulnerable to reaction attacks [35]. Indeed,
homomorphic encryption is secure against attackers who
may read outsourced data but have no access to query distrib-
ution and context. The cloud platform, however, is in the best
conceivable position to monitor queries and the users’ reac-
tion toward their results. While “noise queries” can in princi-
ple be used to reduce observability, successful attacks against
full homomorphic schemes based on observing query results
and users’ behavior have been described in the literature [35].

Considering these limitations of homomorphic encryp-
tion, almost a decade of research has been done to sup-
port data confidentiality in data outsourcing. Architecturally,
this includes a wide range of solutions, from single server
approaches [5,17,25] to more recent approaches relying on
multiple cloud servers [3,15,18] that collaboratively store
and manage data. Another line of research relies on secure
multiparty computation (SMC) to perform data processing
on the cloud without actually sharing the data [22]. How-
ever, SMC protocols scale linearly with data size and require
minutes to join even small-sized databases [23]. Such perfor-
mance may eventually allow privacy-preserving data mining
but makes privacy-preserving data processing unfeasible in
practice.

Extending our initial idea published in [18], in this paper,
we adopt the concept of secret sharing to develop a secure
solution for data outsourcing. Our approach, in addition to
preserving confidentiality of outsourced data, is totally com-
patible with existing database technologies and efficiently
supports server side execution of a wide range of queries.

In Shamir’s classic secret sharing scheme, a secret is
mapped onto a set of random shares using a randomized dis-
tribution polynomial. The main problem of splitting attribute
values into shares is how to efficiently search within the pool
of randomly generated shares. To support querying on shared
data, authorized clients must be able to reconstruct the dis-
tribution polynomial associated with the searched values in
the query. While Agrawal et al. [3], Wang et al. [31], and
Emekci et al. [15] used hash functions to generate random
coefficients, their approach is vulnerable to inference attacks
when the honest-but-curious server has a priori knowledge
about outsourced data distribution [13]. Moreover, Emekci
et al. [15] assume that the servers, which host data shares,
are non-communicating.

Considering above limitations, in this paper, we introduce
searchable sharing schemes appropriate for data outsourcing
that are robust against statistical analysis in spite of servers’
collusion to pool their shares. As aresult, it is possible in our
approach to store all shares of a secret on a single database
server. The main idea is to use client-aware partitioning of the
domain of shares for searchable attributes. We propose three
different schemes with different levels of security and search

@ Springer

efficiency. We also discuss how our approach supports query
processing for different kinds of queries. Utilizing a real data
set, we implement our approach and evaluate the imposed
communication, computation, and storage overheads at both
client and server sides, finding them to be suitable for prac-
tical applications.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 covers background informa-
tion on using secret sharing for data outsourcing scenario.
Section 4 introduces our searchable sharing schemes and
elaborates on their security. Section 5 explains the details of
query execution scenarios. Section 6 summarizes the results
of our empirical studies. Finally, Sect. 7 concludes the paper
and outlines our future work.

2 Related work

Outsourced data confidentiality can be categorized into con-
tent, access, and pattern confidentiality [14]. Content confi-
dentiality refers to the confidentiality of the outsourced data
values. Access confidentiality is aimed at concealing the rela-
tion between a single query and data being returned. Pattern
confidentiality is to hide that different accesses target the
same data. When instead of a tuple, as the actual result of a
query, a set of tuples including the result tuple, is returned
back to the user, we have some degrees of access confiden-
tiality for the server as the actual requested tuple is concealed
among the returned ones. When a user poses the same query
once more and receives the same set of result, the server
can recognize that the two queries are identical while the
actual accessed tuple remains confidential. Most research
efforts on data outsourcing deal with content confidential-
ity, handling scenarios where data are outsourced to honest-
but-curious servers. Few research works (see, for instance,
[14]) deal with all aspects of confidentiality in their solution.
In this section, we review techniques for preserving content
confidentiality.

2.1 Encryption for single server solutions

The main problem with storing data in encrypted form is
server-side query execution. Since external storage providers
are not trusted, they cannot hold the decryption keys and are
not allowed to decrypt data for processing queries.

Different techniques are available for querying encrypted
data [4,5,17,21,25,28]. A popular solution is to use an auxil-
iary metadata structure, called index, to facilitate search over
encrypted data. Bucket-based [17], hash-based, and BT -tree
indexing [11] are among some popular index-based methods.
Index-based methods are usually susceptible to partial infor-
mation exposure due to statistical analysis on the outsourced
data and its indices [7].

Security and searchability in secret sharing-based data outsourcing

515

Other proposals suggest homomorphic [17,32] and order-
preserving [4] encryption schemes to support special queries,
namely aggregation and range queries, respectively. General-
izing this idea, Popa et al. [25] jointly used different encryp-
tion schemes and proposed multilayer encryptions to support
a subset of the SQL query language.

2.2 Fragmentation for multi-server solutions

With the aim of moving away from encryption and its
complexities, some researchers have proposed to substitute
encryption with data fragmentation. This line of research
gave rise to the idea of providing confidentiality by hid-
ing associations among values. Usually, the associations are
defined by a set of confidentiality constraints over attributes
or tuples of a relation. The constraints over attributes of a
relation can be translated into vertical fragmentation [10],
while horizontal fragmentation is used when the constraints
are defined over tuples of the relation [29]. Data fragments
are then distributed among multiple servers, which collabo-
ratively process queries [8,10,29].

In general, fragmentation-based approaches are more effi-
cient than encryption-based solutions. However, they are vul-
nerable to statistical attacks when servers collude, as well as
to untrusted servers’ inferences on data updates. In some sit-
uations, such as the one of a single sensitive attribute, neither
horizontal nor vertical fragmentation can preserve the con-
fidentiality of outsourced data. Ciriani et al. [9] proposed a
hybrid technique using both encryption and fragmentation to
provide content confidentiality for data outsourcing.

Secret sharing-based solutions Using secret sharing on
data values has been introduced as a technique for preserving
the confidentiality of outsourced data [2,3,6,15,18,19,30].
For outsourcing XML data, Brinkman et al. [6] suggest trans-
lating XML elements into polynomials. Each polynomial is
then split into two parts, a random polynomial for the client
and the difference between the original polynomial and the
client polynomial for the server. However, their approach
relies on the tree-based XML data model and is therefore
targeted to search over outsourced XML data.

Hadavi and Jalili [19] and Tian et al. [30] use secret shar-
ing to outsource relational data. For efficient search over out-
sourced data shares, they construct an order-preserving B™
tree index structure with different techniques. While secret
sharing is suggested to depart from encryption, nevertheless
both schemes still use encryption to construct their index
structures. More importantly, Tian et al.’s scheme reveals the
order as well as the frequency of values for the untrusted
server. Therefore, it is vulnerable to statistical analysis if the
servers have a priori knowledge about original data distrib-
ution.

Agrawal et al. [2,3] as well as Emekci et al. [15] use hash
functions to generate distribution polynomials of secret shar-

ing. While their approach support different query types, it
reflects the distribution of original dataset on its correspond-
ing data shares and is consequently vulnerable to statistical
analysis. Moreover, it cannot tolerate colluding servers and
the security proofs in [15] rely upon the fact that the data
servers cannot communicate to collude and pool their shares.
Indeed, it is not farfetched that the servers collude and pool
their shares to gain valuable information. It is also plausi-
ble that an adversary knows domains of attributes such as
Age and Salary and uses them for statistical analysis over
outsourced data shares.

Dautrich and Ravishankar [13] have identified some secu-
rity limitations of using a (k, n) threshold secret sharing
scheme for outsourcing scenario. Their analysis has shown
that data confidentiality can be violated provided that honest-
but-curious data servers find k + 2 secrets and their cor-
responding sets of shares even if the distribution vector
of Shamir’s scheme is kept hidden from the servers. The
idea behind Dautrich and Ravishankar’s attack is to align
shares based on their ordering and then to map the aligned
shares onto actual secret values relying upon servers’ prior
knowledge of original data distribution. They showed that in
schemes such as [2] and [30], in which the order of shares
is revealed to the servers, content confidentiality can be vio-
lated.

Departing from encryption, the sharing scheme described
in this paper addresses the Dautrich and Ravishankar attack,
even in spite of servers collusion, by perturbating the data
distribution. Despite these security improvements over exist-
ing secret sharing-based methods, our approach preserves
the searchability of shares and well-known efficiency of
secret sharing solutions. In Sect.6, we have experimen-
tally examined the efficiency of query execution in our
approach and compared it with another secret sharing-based
solution.

3 Secret sharing for outsourcing scenario

Let us now recall some basic notions on secret sharing.
A secret sharing scheme is a method of sharing a secret s
among a set of participants U = {uy, us, ..., u,} such that
only authorized subsets of U, called access structure, can
reconstruct s. Shamir [27] proposed a threshold (k, n) secret
sharing scheme (n > k) in which the access structure is a
subset A of 2V where VB € A, |B| > k. That is, every k
(k > 1) or more participants can reconstruct s, while less
than k participants cannot.

In order to apply a secret sharing scheme to data outsourc-
ing, attribute values, data owner, and (honest-but-curious)
data servers of the outsourcing scenario are identified, respec-
tively, with the secrets, distributor, and participants to the
secret sharing scheme. Using a (k, n) threshold secret sharing

@ Springer

516

M. A. Hadavi et al.

Sharei(Age)

Stored on &1 sharei(45)

sharei(28)

sharei1(28)

Employee relation share:(46)

ID | Name |Age|Salary|Dep :EZ::&S:
1 |David| 45 | 100 | IT Age Dlstnbuh.on sharei(45) areiAze)
2 | John | 28 | 200 |RD = Polynomial sharei(37) S}i:l‘ea (4;:
3 |Jessica| 28 | 150 |HR 28 zlz‘:ég + sﬁarmiizz :h:;:(ZS)

L ~ sharei
4 | Bill |46 350 |RD 28 | axi+28 | /& [ghare49) | | shares(28)
5 | Sam |45 | 200 |RD ig mx'*ig sharei(29) sl}'\lare (46)
- QasXi + 4F shares(45)
g :hce zg i;g f{i ig Qexi + 40 | QX3+ 0 shares(40)
ara azxi+45 ISharez(Age)| | shares(45)
8 | Jack |37 200 | IT g; ‘W-iz; . harez(45) | | shares(37)
X9Xi + ! A
9 [James | 57 [300 [HR| |y "]\ [oharea(28)) sharelaz)
10| Bob | 46| 130 |RD 49 | puixi +49 1]:;:2;4212: o)
11 | Peter | 49 | 300 |RD 2 | awxi+29 sharex(45) | shares(29)
12 |Susan | 29 | 220 |CR Distribution vector: harea(40) Stored on
X (1, 1, x3) harez(45) S

o hare2(37)

hare>(57)

sharex(46)

share(49)

Stored on S: hares(29)

Fig. 1 Sharing Age values among three servers

scheme, each attribute value v is split into n shares, share;(v)
(1 <i < n)and stored on the correspondent server S; among
n servers, Si, S2, ..., Sy,.

While in conventional secret sharing schemes the partic-
ipants are trusted to pool their shares and collaboratively
reconstruct secret values, in data outsourcing scenarios the
servers hosting data shares are not trusted to obtain the
secrets. Therefore, we define a private vector as the distrib-
ution/reconstruction key, which can be accessed just by the
owner and authorized users. The data owner as well as autho-
rized users collect shares from the servers and perform the
reconstruction process using the reconstruction key.

Secret distribution To compute the shares of an attribute
value v, the data owner chooses a prime P and produces a
k — 1 degree polynomial p(x) = ap_1xF g _ox* 2 4
---+ayx + ap, where ap = v and other coefficients are cho-
sen randomly from GF(P). Having a secret vector X = (x1,
X2, ..., Xn), X; corresponds to S; (1 < i < n), the owner com-
putes share; (v) = p(x;) and stores it on S;. Figure 1 depicts
sharing Age values of a simple Employee relation through
a (2, 3) secret sharing scheme and the distribution vector X
= (x1, x2, x3). In the figure, for each value v, a first degree
polynomial is constructed with a random coefficient «; and
the shares are calculated and stored on the corresponding
servers.

Secret reconstruction For each attribute value, there are
n points (x; , p(x;)) through which the polynomial p(x)
passes. Therefore, k distinct points are enough to uniquely
reconstruct a polynomial of order k — 1. When a trusted
party, who knows the distribution vector X, receives at least
k shares of secret v, the secret can be reconstructed. That
is, the distribution vector X is the only storage overhead,
imposed on the clients for reconstructing secrets.

@ Springer

3.1 Security definition

When the naive method of Shamir’s secret sharing scheme
is used to share attribute values, the generated set of shares
for each data server does not reveal any information about
the distribution or the frequency of original values. How-
ever, a major problem is searching within attribute values
before reconstruction of shares. Since neither the owner nor
authorized users store the random coefficients, data retrieval
according to user query becomes a problem. Obviously, it is
not efficient to send back all shares in response to a query and
execute the query over the reconstructed values. For this pur-
pose, a method is required to identify the shares that satisfy
the query condition before reconstruction.

Dautrich and Ravishankar [13] highlighted some security
limitations of using (k, n) secret sharing for the data outsourc-
ing scenario. They assume that if data servers have access to
at least k 4 2 attribute values and their corresponding sets of
shares, the schemes in [2,19,30] cannot provide data confi-
dentiality. While they use shares ordering to find some valid
associations between shares and secret values, a mitigation
of their attack is to prevent revealing such associations. To
this end, we shall define our notion of security on the basis
of their attack and propose secret sharing schemes in which
associations among original values and their corresponding
shares are not revealed to honest-but-curious servers. Indeed,
such schemes are weaker with respect to the basic Shamir’s
scheme in terms of data protection, trading off perfect secu-
rity for the capability of efficiently searching on the shares.

Definition 1 A secret sharing scheme for data outsourcing
is secure if the probability of a passive attacker holding a
share to find the corresponding original value is almost equal
to that of a random guess.

According to above definition, deterministic sharing
schemes for secure data outsourcing like the ones described
in [2,3,15] are not secure. It is because equal values are split
into a set of equal shares. An adversary who has prior infor-
mation about original data distribution can then make infer-
ences on share-value associations. In our sharing schemes
(see Sect. 4), we perturbate original data distribution in their
shares and distribute shares across their domain using a
managed-random generation of coefficients for distribution
polynomials. This way, the resulting distribution of shares
can get arbitrarily closer to a uniform distribution as the
domain of shares gets larger. Therefore, given a data distri-
bution and any ¢ > 0, it is possible to determine the size of
shares domain so that the difference between the probability
of finding a mapping and that of a random guess is less than
¢. In the next section, we introduce our searchable sharing
schemes and discuss in detail their efficiency and security
with respect to Definition 1.

Security and searchability in secret sharing-based data outsourcing

517

4 Searchable sharing schemes

To solve the problem of efficient query processing over data
shares, we propose secret sharing schemes where searching
a subset of shares is possible, while the security is improved
scheme by scheme to satisfy Definition 1.

4.1 Assumptions and threat model

We follow a database outsourcing model in which a data
owner outsources her relational data R (attry, attry, ..., attry,)
to honest-but-curious server(s). Then, the owner and autho-
rized clients submit queries to the servers continuously.
The queries are issued over any searchable attribute attr;
of domain D,. The notion of searchable attribute simply
means that the users can pose queries regarding that attribute.
That is, the attribute can appear in WHERE predicate of
queries. Our focus is on searching numeric values, though the
approach is immediately extendable to character data upon
which exact match queries can be executed.

With the aim of providing content confidentiality of the
outsourced data, we use a (2, 2) secret sharing scheme. Thus,
p(xi) =ax; +v (i = 1, 2) is the general form of the distri-
bution polynomial, where v is the value to be distributed, a
is the random coefficient from a specified domain, x; is the
ith member of the hidden distribution vector X = {xi, x2},
and p(x;) is the S;’s corresponding share of v, i.e., share; (v)
(Fig. 1). We are well aware that the choice of k (k > 1) and n
(n > k) parameters for a threshold (k, n) scheme affects the
availability and fault tolerance aspects of the system, which
were not the aim of this work. From the confidentiality view-
point, choosing a large k does not offer more security while
it increases the communication cost as well as the client-side
computation cost for interpolating original values.

We assume a real domain of values for shares and coeffi-
cients rather than arithmetic calculations over GF(P).

Let D, and D; be domains of the searchable attribute
and its shares, respectively. We assume | D, | < | Ds|, that is,
the domain of shares is big enough to prevent mapping two
different values onto equal shares. So, we have the following
assumption in our sharing schemes:

Y, v € Dy : v # v = share;(v) # share;(v'); i = 1,2

We consider the following threat model:

— Data servers are honest-but-curious. They execute sub-
mitted queries honestly on outsourced data and send com-
plete and authenticated result sets. However, they are curi-
ous to increase their knowledge about confidential data.

— Data servers have a priori knowledge of outsourced data
distribution. They might know the domain of values, the
minimum or maximum values, and some information

about the frequency of values. However, they do not have
a priori knowledge about the system query workload.

— Data servers can communicate and collude with each
other to extract knowledge about outsourced data. With
this assumption, it is possible to store shares of secrets
either on different servers, which can communicate and
collude, or on a single server.

Also, we assume that clients, i.e., the users’ machines that
mediate user requests to service providers, are trusted and do
not disclose confidential information such as the distribution
vector X. Moreover, they have the same authorities to access
the outsourced data by submitting queries through clients.
When users have selective access to the outsourced data, our
solution can be extended using proposals such as [34] to
adopt multi-user environments with selective accesses.

4.2 Solution overview

The general idea behind searchable sharing schemes is to
share values using a distribution polynomial, which can be
generated later on by clients in order to translate user queries
into the queries over shares. Agrawal et al. [3,15] use hash
functions for generating polynomials so that their coefficients
are outputs of defined hash functions on secret values. Instead
of adopting such a deterministic sharing scheme in which the
distribution of shares can reveal information about original
values, we use the idea of partitioning the domain of shares
through partitioning the domain of random coefficients in the
distribution polynomial of the sharing scheme. To distribute
each value v, the coefficient a of the distribution polynomial
ax + v is assigned a random value from a particular parti-
tion of a’s domain. Thus, equal secret values are more likely
to be mapped onto different shares. Our sharing techniques
perturbate the original values’ distribution provided that the
domain of shares is large enough compared with the domain
of the searchable attribute. This perturbation improves the
robustness against statistical analysis. There are two basic
steps for our partitioning-based secret sharing:

1. Partitioning the domain of coefficients (choosing a parti-
tioning method) and

2. Mapping partitions onto secret values (choosing a map-
ping function).

At first, partitioning is performed with respect to the follow-
ing definition.

Definition 2 Partitioning a domain D of values is defined as
dividing D into ¢ parts d; (1 <i < t) where

1. di € D (1 <i <t)isarange of values in D
2. Uiy di=D
3. Vdi,dj eD(#j):d,'ﬂdj =0

@ Springer

518

M. A. Hadavi et al.

The next step is to define a function to map values of
attribute domain onto the partitions with respect to the fol-
lowing definitions.

Definition 3 The mapping function ' : V — D is a func-
tion that maps value v € V onto partition(s) d € D (denoted
by v — d)

Definition 4 A mapping function is an order-preserving
mapping function if it preserves the ordering relation of orig-
inal values of a domain D, in their shares of a domain Dj:

Yu,v e Dy,vi—>d, v —d :

v < v = share;(v) < share;(v') ; i=1,2

Given a domain of coefficient for the threshold (2, 2) shar-
ing scheme, the distribution algorithm of the secret sharing
scheme calculates share; (v) of a secret v for each server S;
such that if v +— d then Min(d).x; + v < share;(v) <
Max(d).x; + v. Obviously, our mapping function must be
kept secret from the servers.

Based on the above definitions, different methods of par-
titioning are possible with differences in terms of query
processing efficiency, client-side storage overhead, and secu-
rity. In the subsequent sections, we introduce three partition-
ing methods along with mapping functions to have searchable
sharing schemes.

4.3 Simple partitioning

A straightforward way of partitioning a domain is to divide
it into equal partitions.

Fartitioning method Let D. = [afiyg .. ajag] and D, be
domains of the coefficient and attribute, respectively. We
divide D, into |D,| equal consecutive partitions d1, da, ...,
and d|p,|, where di = [afpsr .. afirst + :g—;l‘], dy = lafirs +
:g:l‘ o Qfipsy + 2%], d3 = [afips + 2% .. Qfipst + 3%], s
and dip,| = [@jirst + (D] = D{pE - st

Now we map the attribute values in D, onto the above
partitions in D..

Mapping function The mapping function F : V — D
maps a value v € D, onto a partition d C D, (denoted by
v — d) where:

I.Vo,veDy,v>d,vVi=>d : v#v &dnNd =0
2.V, eDy,v—>dvVi—>d : v=vV&ed=d

The first property says that each value is assigned to a
separate partition. The second one states that equal values
are assigned the same partition.

Suppose that the searchable attribute Dep of the Employee
relation in Fig. 1 is to be shared by our searchable shar-
ing schemes. The domain of its values includes HR (human

@ Springer

Frequencies
N

Values
Fig. 2 Histogram of original values
Dep values and their frequencies: (CR, 1), (HR, 3), (IT, 2), (RD, 6)
Order-preserving mapping:

Simple partitioning:

Fig. 3 Schematic view of simple partitioning

4
3
2
-
Ol
1 2 3 4 5 6 7 8 9 10 11 12

Y g g

CR HR IT RD
Share values

Frequencies

Fig. 4 Histogram of shares, distributed with simple partitioning

resource), CR (customer relationship), IT (information tech-
nology), and RD (research and development). Figure 2 shows
the histogram of Dep values in the Employee relation in
Fig. 1. An outline of simple partitioning with an order-
preserving mapping function is also shown in Fig. 3. If the
mapping function is order preserving, the owner and query
clients do not need to store the information related to the
association of partitions to original values, except the parti-
tion width. Instead, for an order-obfuscating mapping, clients
must store the associations of values and their partitions.

If the domain of shares is larger than the domain of
attribute values, equal values can potentially be mapped onto
different shares. This leads to the perturbation of original data
distribution. Figure 4 shows a typical histogram of shares
after sharing Dep values according to Fig. 3.

4.3.1 Security analysis

As shown in Fig. 4, the distribution of shares is perturbated
compared with the distribution of original values. However,
assigning partitions with the same width to values having
different frequencies can be a source of inference. An adver-
sary can infer that a group of shares with high frequency
(more than one) are more probably mapped onto values with
higher frequencies. Then, she will be able to partially find out
some correspondences between shares and original values.

Security and searchability in secret sharing-based data outsourcing

519

In Fig. 4, it is shown that the group of shares belonging to
RD have higher frequency. Then, an adversary can infer that
they are more probably mapped onto the original value RD.
This intuitive notion can be formalized as follows:

Theorem 1 Simple partitioning is not secure with respect to
Definition 1.

Proof sketch If the mapping function preserves the order,
an adversary can map the minimum (maximum) share value
onto the minimum (maximum) value of the database. So, the
security is violated since it is possible to find some correspon-
dence between values and their shares. Even if the mapping
function is not order preserving, the distribution of shares still
reveals some information about original values. Consider a
situation where there are high-frequency values in database.
Then, an adversary can find some groups of shares whose
frequencies are larger than (or equal to) one. In such a case,
the probability of finding a correspondence between a group
of highly frequent shares and a highly frequent value is more
than that of a random guess for adversaries who have a pri-
ori knowledge of data distribution. The inference can also be
made on low-frequency values. O

Simple partitioning is only suitable when there are no
remarkable differences in the frequency of values. Other-
wise, it does not satisfy our security definition even if we use
an order-obfuscating mapping function.

4.4 Weighted Partitioning

The problem of simple partitioning is that all partitions have
the same width regardless of values’ frequency. However,
intuition suggests that we can partition the domain of coef-
ficient so that a wider partition is assigned to a value with
higher frequency. This way, assuming the size of coefficient
domain is large enough (|D.| > N = database tuples),
each attribute value can potentially be mapped onto a non-
repetitive share.

Partitioning method Let D, and D, be domains of the
coefficient and attribute, respectively. We divide D, into
|Dy| partitions dy, da, . .., and d|p,|, where |d;| as the width
of the v;’s corresponding partition is computed by |d;| =

D.|freq(v;
IDlPreat®) (< i < D), € Dy
Mapping function The mapping function F : V — D

maps a value v € D, onto a partition d € D, (denoted by
v — d) where:

D
l.YveDy,d< D;yv—>d 1Dc|freq(w)

2.Vuv,vVeDy,vi>d,vied
3.V veD,v—dvVi—d

ld] =

vEV &dnNd =0
v=v &d=d

As before, each value is assigned to a separate partition
and equal values are assigned the same partition. To pre-

Dep values and frequencies: (CR, 1), (HR, 3), (IT, 2), (RD, 6)
Order-obfuscating mapping:

Weighted partitioning:

Fig. 5 Schematic view of weighted partitioning

4

w

Frequencies
N

U 2, 3 4 5v6 7 8,9 10 1 \12/
T RD HR CR

Share values

Fig. 6 Histogram of shares, distributed using weighted partitioning

vent inference on the ordering, we use an order-obfuscating
mapping function. To make sure that the order of shares is
totally obfuscated, the owner can relocate partitions across
the domain of the coefficient by choosing a random permuta-
tion among | D, |! possible ones. Then, the data owner stores
the specified mapping of values and their corresponding par-
titions (i.e., the widths and starting points of partitions) and
announces this information to clients, who are in charge of
query translation.

Figure 5 shows a schematic view of weighted partitioning
with an order-obfuscating mapping function for the domain
of values whose frequencies are shown in Fig. 2. To distrib-
ute each value, the owner locates the corresponding partition
and chooses randomly a point from the specified range of the
coefficient domain in the distribution polynomial. Figure 6
shows the histogram of shares for the given distribution of
values using the mapping shown in Fig. 5. As shown in Fig. 6,
shares are distributed more uniformly than in simple parti-
tioning (Fig. 4), since the width of a partition is determined
by the frequency of its corresponding value.

4.4.1 Security analysis

In this section, we show that an adversary, who observes
the shares, cannot infer any valuable information about asso-
ciations between values and shares. We also prove that by
observing stored data shares, servers can guess a mapping
between shares and values with a probability that is not bet-
ter than the one of a wild guess. Finally, we show that this
method of partitioning is vulnerable to adversaries who can
observe queries.

In weighted partitioning method, the width of a partition
corresponding to an attribute value is proportional to the fre-
quency of the value. Therefore, high-frequency values are
smoothly mapped onto low-frequency shares that prevent
inference based on the frequency of shares. An attribute value

@ Springer

520

M. A. Hadavi et al.

v with the frequency f is independently distributed f times
on the server S; (i = 1, 2). Equation (1) shows the probabil-
ity of the existence of a v’s share on §; with the frequency

f' where f’ > g

f o
f(f (f=Di~f

fr
Equation (1) says that for a high-frequency value the fre-

quency of its shares on a server is considerably different than
the frequency of the value.

Pr(freq(share;(v)) =) =

ey

Lemma 1 The probability of mapping freq(v) equal values
v onto the same shares from v;’s corresponding partition is

freq(v)

Pr(freq(share; (v) = freq(v)) = W

Proof We obtain the probability of the frequency of a share
being equal to the frequency of its corresponding value by
replacing both f and f’ with freq(v) in (1). O

Lemma 1 states that the probability of the frequency of a
share being equal to the frequency of its corresponding data
value approaches to zero for highly frequent values.

Lemma 2 The probability of having the same distribution
for values and their corresponding shares is

Hl-Dvl freq(vi) . . veD,
=1 Jreq(v; yred)

Proof The probability of having the same distribution of
original values and shares for a server is equal to the one of
the situations where all values and their corresponding shares
have the same frequency. Each value is distributed randomly
and independently from other values. So, the probability is
calculated by the multiplication of probabilities for all values
in attribute domain. O

Let us consider our sample domain of Dep values in the
Employee relation (Fig. 1). According to Lemma 2, the prob-
ability of having the same distribution for values and their
corresponding shares is calculated as:

1—[Jreq(v)
ve{CR,HR,IT,RD} freq(v)freq(v)
1 3 2 6 6

:TX3_3X2_2X@=7.14X10_

This is a very low probability for a small domain of values.
This probability gets even closer to zero for larger domains
and for database relations containing highly frequent values.
Concluding from Lemmas 1 and 2, high-frequency shares as
a potential source of inference hardly appear as share values
on the server. On the other hand, low-frequency shares, e.g.,

@ Springer

between 0 and 4, can be mapped onto almost all values in
the relation because a share value with frequency f can be
associated with an attribute value v with freqg(v) > f. Thus,
after the distribution phase of secret sharing scheme, servers
cannot estimate associations between values and shares any
better than a wild guess.

Theorem 2 The weighted partitioning method is secure for
an adversary who observes the distributed shares on a server.

Proof Assume that the adversary chooses a share x stored
on a server S;(i = 1, 2) and wants to find its corresponding
original value y. We prove that, from the adversary viewpoint,

Pr(x = share(y)) is almost equal to m, where D, is the
domain of the searchable attribute. '

Let us model the frequency of values in the original dataset
as f1, f2, ..., and f;, where f; (1 <i <) is the number of
values in the original dataset with the frequency i, and [is
the maximum frequency of values. So, N = Zf: G x fi)
is the total number of database tuples and |D,| =Z§:1 fi
is the cardinality of the domain of values. Now, we extract
Pr(x = share(y)) as below:

Pr(x = share(y)) = Zi:o Pr(x = share(y)|freq(x) = 1)
X Pr(freq(x) = 1)

A share value x with freq(x) = f can be associated with an
attribute value v with freq(v) > f. Therefore,

1
Pr(x = share(y)|freq(x) = f) = ——— 2)
i fi

On the other hand, to compute Pr(freq(x) = f), we have:

Pr(freq(x) = f)
[Dy|
= ZPr(freq(x) = flx = share(v;)) x Pr(x = share(v;))

i=1
:% (freq(vi))(f 1)f(l— 1)freq(”")f
= f req(v;) JSreq(v;)
y (freq(vi))
N
[. - (i 1 f 1 i—f
=506 (-9) ®

From (2) and (3), Pr(x = share(y)) is calculated by (4):

Pr(x = share(y))

Security and searchability in secret sharing-based data outsourcing

521

Expanding (4), we get:
Pr(x = share(y))

)
N T\ A

3 1
2 4 d .
+fz(fl+~-~+fz+fz+~~+ﬁ)+

EOMRIOIEN

Bl [y sy Ry

+

“N| At et

s .
) Uwﬂh(z+z(ﬁ;ffﬁij)+m

()0
O () e on

+ +...
ottt i

N
(7) (fi+fot--+ 1D
fi

l

According to Lemma 1, the coefficients of i x f; in the
above formula approach one. Therefore,

Pr(x = share(y))

(1f1+2f2+-~-+lfz))

1 1
Nﬁ(f1+f2+~--+fl

1(N) |
T N\Aitht+A) T A+ A+ S
1

| Dyl

For the very small domain Dep = {CR, HR, IT, RD}
and its values in the Employee relation with just 12 tuples
(Fig. 1), the probability of finding a correct association
between a share and its corresponding value is equal to 0.274,

which is almost equal to T This probability would be closer

1
to ﬁ for larger domains and also for greater number of
v
relation tuples. For instance, consider another typical domain
of five values v; to vs where the frequencies of values in a
relation, consisting of 20 tuples, are 4, 1, 5, 8, and 2. For such
a relation, (5) computes the probability of finding a correct
association between a share and a value. As we can see in (5),
. . 1. .
the result is sensibly closer to D i.e., 0.2, compared with

|Dy
the case of Dep domain and the Employee relation with 12

tuples.
Pr(x = share(y))

Y AWA RN 1~/
iy <) () (-49)
20 =0 Zﬁlf fi
=0.2019 (5)

While it is clear that untrusted servers cannot find the cor-
respondence between shares and values merely by observing
stored shares, it may be possible for them to infer some infor-
mation by monitoring query processing. The cloud supplier,
or any adversary who has access to communication chan-
nels, can observe query answers as a sets of shares for which
a query condition is satisfied. A set of shares is potentially a
partition with specified width, which can be mapped onto an
attribute value. This range of satisfying shares can be a parti-
tion whose width reveals the frequency of the corresponding
actual value.

Assume that the query SELECT * FROM R WHERE Dep =
“RD” is submitted frequently. Even without a priori knowl-
edge on queries, servers can find out that a fixed group of
shares, i.e., the range of shares [4..8] in Fig. 6, are always
returned for some queries. Thus, they can infer that these
shares belong to the same partition, whose length reveals, in
turn, the frequency of original value. Therefore, the weighted
partitioning method is secure while an adversary can observe
distributed shares (in any snapshot of the system in oper-
ation), but it is not secure if the adversary can observe
query answers. Consequently, for the cloud outsourcing sce-
nario where the cloud platform can observe all queries, the
weighted partitioning method is not secure with respect to
Definition 1.

4.5 Secure partitioning

Secure partitioning is aimed at concealing the width of parti-
tions assigned to each value using multiple partitions assign-

@ Springer

522

M. A. Hadavi et al.

Dep values and frequencies:

(CR, 1), (HR, 3), (IT, 2), (RD, 6)

Order-obfuscating mapping:

Multiple partition assignment:

Fig. 7 Schematic view of secure partitioning method

ment, substantially alleviating the possibility of frequency
analysis on the part of attackers. Obviously, the partitions
assigned to a value need not be consecutive in the coefficient
domain of the distribution polynomial.

Fartitioning method Let D, and D, be domains of the coef-
ficient and attribute, respectively. With ¢ as the width of par-

D
titions chosen by the owner, D, is divided into M equal
partitions d1, do, ..
t
Mapping function The mapping function F : V — D maps

a value v € D, to a set of partitions of the width ¢ (denoted
by v — P) where:

1. |P| = [w—‘

2. Vv, eDy,vi—> PV P v£EV & PNP =0
3.Vu,veDy,vi— PV P :v=0V&P=P

., and d|p.| of the same width.

The first property indicates the required number of partitions
for a value. The second one says that each value is assigned
a disjoint set of partitions, and the third one says that equal
values are assigned the same set of partitions.

Again, we prefer using an order-obfuscating mapping. To
have a totally order-obfuscating mapping function, a random

. . D .
permutation of partitions, among {M]! possible permu-

tations, is chosen by the owner to determine the location of
partitions across the domain of shares. The data owner then
stores the mapping function and sends it to authorized clients.
Figure 7 shows a schematic view of the secure partitioning
method with an order-obfuscating mapping for our exam-
ple domain. In this case, the distribution of shares across the
domain is almost similar to the weighted partitioning method.
The only difference is that we “slice” a wide partition to
obtain a set of separate smaller ones.

A major issue of our partitioning method is how to deter-
mine the partition width 7. Consider three scenarios of deter-
mining ¢:

— Fort = 1,v; — P, |P| = freq(v;). The owner as well as
clients should store freq(v) partition information, which
is more than storing the actual values.

— For |t| > Max(freq(v;)), v;i — P, |P| = 1. Each value is
assigned a partition similarly to the weighted partitioning
method. So, there is the possibility of inference as there
is in the weighted partitioning method.

@ Springer

— For t = freq(v), v; +— P, |P| = %—(g}";. This gives
us a trade-off between security and client-side storage

overhead.

In our secure partitioning method, given an original dataset,
the average of frequencies is computed by the owner and
determined as the partition width . Anyhow, for any par-
tition width r # 1, there is a limited overhead due to the
indivisibility of values’ frequencies to the chosen partition
width.

4.5.1 Security analysis

Our secure partitioning method is similar to the weighted par-
titioning in terms of assigned partition width. The assigned
partition is either a contiguous one (weighted partitioning) or
divided into separate fragments (secure partitioning). There-
fore, we obtain same probabilities discussed in Sect. 4.4.1 for
secure partitioning method, assuming that values frequencies
are a multiply of the partition width 7. If the frequencies are
not a multiply of ¢, then required points in the domain of
shares increase for a value of frequency f since we need

{%1 partitions. This decreases the probability of finding a

correct mapping between values and their shares compared
with the weighted partitioning method.

The rationale behind the security of this partitioning
method against observing query processing is the indistin-
guishability of equality and range queries.

Theorem 3 Our secure partitioning method is secure against
adversaries who can observe query answers.

Proof sketch According to our threat model, adversary is
not aware of the pattern of queries submitted to the system
(Sect. 4.1). This assumption is not strict as it may look at first
sight, because query distribution can be perturbated at will,
although at the expense of additional messages, by introduc-
ing fake clients/queries [1]. Moreover, it is more difficult to
draw inferences from queries and answers when the schema
of the outsourced relation is encoded at server side, as pro-
posed in [16]. On the other hand, equality queries in secure
partitioning method can be translated into range queries with
possibly separate ranges in WHERE predicate as well as a
range query. So, equality and range queries are indistinguish-
able for adversaries who do not have a priori knowledge
of system query workload. When honest-but-curious servers
observe a group of returned shares, belonging to more than
one partition, it is unclear for them that the shares are results
of an equality query (can be mapped onto one actual value)
or results of a range query (can be mapped onto a set of
values). O

Security and searchability in secret sharing-based data outsourcing

523

5 Query processing

In this section, we discuss processing of equality, range, pro-
jection, join, aggregation, and update queries. We apply the
same basic idea: a client who knows the mapping function
translates a query over a searchable attribute into an equiv-
alent query on a range of shares. A great advantage of our
approach is its compatibility with server-side indexing. Inef-
ficient indexes are known to impair the performance and scal-
ability of query processing in large encrypted databases with
many concurrent users. Our methods allow servers to build
efficient local indexes on outsourced share values.
Depending on the partitioning method, client-side query
translation can be less or more convenient. As suggested by
intuition, translation is simpler for simple partitioning with
order-preserving mapping than it is for secure partitioning
with an order-obfuscating mapping.
Equality queries For simple and weighted partitioning meth-
ods, the condition attr = v in a query, (attr is a searchable
attribute and v is a value) is translated into Min(share; (v)) <
share;(v) < Max(share;(v)) and sent to S; (i = 1, 2). For
a (2, 2) threshold scheme with the distribution polynomial
share; (v) = a.x; + v, the minimum (maximum) possible ith
share of v is obtained by putting the minimum (maximum)
possible value of a from the v’s corresponding partition in
the distribution polynomial:

Min (share; (v)) = (Min (a)).x; + v,
Max (share;(v)) = (Max (a)).x; + v

For secure partitioning method in which the mapping func-
tion assigns a set of partitions P to a value v, the condition
attr = v is translated into a disjunctive set of range condi-
tions, each range is associated with a partition p € P.

Consider a simple equality query SELECT * FROM
Employee WHERE Age = 20 on a typical relation where the
values of attribute “Age” have been shared using our shar-
ing schemes. For simple and weighted partitioning methods,
the client translates the query into a range query of the form
SELECT * FROM Employee WHERE Min(share; (20)) < Age <
Max(share; (20)) and submits it to S; (i = 1,2). Similarly,
for the secure partitioning method, it is translated into:

SELECT * FROM Employee

WHERE Min(p1) < Age < Max(p1) OR

Min(p2) < Age < Max(p>) OR...OR

Min(Pr.Mw) < Age < Max(p(jw]),
f 7

pi is a partition assigned to value 20, freq(20) is the fre-
quency of the value 20 in the relation, and f is the average
of frequencies as the partition width. Receiving shares of
satisfying tuples from two servers, the client can obtain the
original values by a Lagrange interpolation.

Of course, it is possible to combine conditions on search-

able attributes, conjoining or disjoining them. In such a case,
the servers return a set of shares so that the entire composite
condition is satisfied.
Range queries Our approach supports translating range
queries into sequences of equality queries, without the need
for ad hoc indices [12]. For our sharing schemes with an
order-preserving mapping, a range query is translated into a
range query with a change in range boundaries. The condi-
tion v < attr < v/, where v — d and v’ — d’, is trans-
lated into Min(d).x + v < share(attr) < Max(d).x + v'.
Consider a simple range query SELECT * FROM Employee
WHERE 50 < Age < 80. The query submittedto S; (i =1, 2)
is: SELECT * FROM Employee WHERE Min(share; (50)) < Age
< MAX(share; (80)).

For simple and weighted partitioning schemes with order-
obfuscating mapping, the translation results in having multi-
pleranges in the translated query for each range in the original
query. That is, a range of attribute values is usually mapped
onto several ranges of shares. Consider the sample query
SELECT Salary FROM Employee WHERE 50 < Age < 55.
This is translated into the following query and sent to S;:

SELECT Salary FROM Employee WHERE
Min(share;(51)) < Age < Max(share;(51)) OR
Min(share; (52)) < Age < Max(share; (52)) OR
Min(share; (53)) < Age < Max(share;(53)) OR
Min(share; (54)) < Age < Max(share;(54)).

For secure partitioning method, the client-side query
translation is a bit more complex. Each value in the queried
range is mapped onto several ranges of shares. For example,
SELECT Salary FROM Employee WHERE 52 < Age < 55 is
translated into the following query and sent to S;:

SELECT Salary FROM Employee WHERE
Min(p;(53)) < Age < Max(p;(53)) OR
Min(p2(53)) < Age < Max(p2(53)) OR ... OR
Min(prfreq&_‘) < Age < Max(pFJM]) OR

) S

Min(p1(54)) < Age < Max(p(54)) OR
Min(p2(54)) < Age < Max(p2(54)) OR ... OR
Min(p fregs () < Age < Max(pfregs)-

f f

Range queries generate a complete set of results as well
as equality queries.
Projection queries Projection is supported by all our sharing
schemes independent of partitioning method and mapping
function. This is because a relation is shared among servers
in the granularity of attribute values. We remark that, while
all searchable attributes in the relation should be shared using
our sharing schemes, for non-searchable attributes Shamir’s
naive scheme can be used. For a query such as SELECT

@ Springer

524

M. A. Hadavi et al.

Salary FROM Employee WHERE 20 < Age < 25, each S;
(i = 1, 2) finds satisfying share values of Age, as discussed
forrange queries, and finally returns the corresponding shares
of Salary to the client. The client can interpolate origi-
nal Salary values after receiving the corresponding pairs of
shares.
Aggregate queries Thanks to the additive homomorphism
property of Shamir’s scheme, queries with SUM aggrega-
tion function are supported in all of our partitioning meth-
ods for both order-obfuscating and order-preserving mapping
functions. Using the weighted partitioning method, a sample
query SELECT SUM(Salary) FROM Employee WHERE 20 <
Age < 25 is translated into SELECT Salary FROM Employee
WHERE Min(share; (20)) < share(Age) < Max(share;(25))
and sent to S;. S; locally calculates the summation of satisfy-
ing Salary shares and sends the result. The client computes
the total summation value when it receives two sum values
from the servers.

Queries containing the COUNT function such as SELECT
COUNT(Salary) FROM Employee WHERE Age = 20 are exe-
cuted simply by reforming as SELECT COUNT(Salary) FROM

Employee WHERE Min(share; (20)) < Age < Max (share; (20)).

Considering the servers are honest in executing queries,
COUNT queries can be sent to only one server instead of
sending to all, incurring less communication overhead. The
process of SUM and COUNT queries is similar for secure
partitioning method except that the query translation is dif-
ferent.

Executing MIN/MAX queries is not as straightforward
as COUNT and SUM queries and may need several rounds
of client mediation to have the final result. Consider a
sample MIN/MAX query such as SELECT Salary FROM
Employee WHERE Age = MIN(Age). For the weighted par-
titioning method, it should be translated into SELECT
share(Salary) FROM Employee WHERE Min(share; (v1)) <
share(Age) < Max(share;(v1)), where vy is the minimum
value of Age domain. If the query returns no shares,
the client continues with the next possible minimum, e.g.,
vy, to reach the result finally. The process is somehow
straightforward if we use an order-preserving mapping
function. If so, the minimum (maximum) share value is
certainly mapped onto the minimum (maximum) original
value.

Some mechanisms such as client-side storage of minimum
and maximum values of searchable attributes or using an
auxiliary table to maintain the ordering of values [20] can
also be used to tackle the problem of MIN/MAX queries in
our sharing schemes.

For more complex queries with aggregation functions in
their selection predicates such as SELECT Max(Salary) FROM
Employee WHERE Age = Min(Age), the final result is computed
at client side after receiving the satisfying values from at least
two servers.

@ Springer

Join queries Join queries are executed over two relations
with an attribute in common. Consider two simple rela-
tions T1(ID, Dep, Salary) and T2(ID, Name, Age) and
a sample join query SELECT Salary FROM T1,T2 WHERE
T1.D = T2.ID. Using the weighted partitioning method,
the query is rewritten as a parameterized query SELECT
Salary FROM T1,T2 WHERE Min(share(v;)) < T1.ID < Max
(share(v;)) AND Min(share(v;)) < T2.ID < Max(share(v;))
fori = 1,2,...,m, where m is the maximum value of the
domain of ID. To have a complete result, the client submits
m queries to the servers and performs a union on the received
results. The process is similar for secure partitioning method
except the change in query translation, which does not affect
the execution of query.

Updates Updating is an important issue for data outsourc-
ing in cloud-based environments. Our sharing schemes effi-
ciently support updates. The execution of updates including
INSERT, DELETE, and UPDATE is straightforward regard-
less of the partitioning method and the mapping function
being used. For a DELETE, the satisfying tuples are chosen
by each server same as a SELECT query and removed from
the relation. To insert a new tuple, shares of attribute values
in the tuple are computed and inserted into S; (i = 1, 2).
Searchable attributes in a tuple should be shared using our
searchable schemes and other attributes can be shared using
Shamir’s naive scheme. For an update query, the satisfying
tuples are selected based on its condition predicate and sent to
the owner. The owner generates polynomials and computes
new shares to substitute them with the old ones.

The only problem with updates is that they change the
frequency of values, which in turn affects our weighted and
secure partitioning methods. Obviously, in the case of recur-
rent updates, it is not practical to repartition and redistribute
data based on new frequencies. The empirical solution we
adopted is to use standard distributions of attribute values
and use probability of each value in the relation instead of its
frequency. Using such standard distributions', data updates
do not deteriorate the distribution of values and we get almost
the same distribution in different snapshots of the system.

6 Experimental results

In this section, the feasibility of our proposal is demon-
strated through a prototype implementation of our searchable
sharing schemes for database outsourcing to the cloud. We
implemented all our sharing schemes and examined com-
putation, communication, and storage overheads. In the fig-
ures of this section, “Searchable scheme 1,” “Searchable
scheme 2,” and “Searchable scheme 3” refer to simple,

! For instance, one can refer to the distribution of Age values stored in
an organizational database.

Security and searchability in secret sharing-based data outsourcing

525

weighted, and secure partitioning methods, respectively. The
mapping function used for weighted and secure partition-
ing is order obfuscating. We also implemented the buck-
eting index-based method [17], as a highly cited method
of querying encrypted data. This method is denoted by
“Encryption- and bucket-based index” in the figures of
this section. Moreover, Emekci et al.’s work [15], a secret
sharing-based method which uses hash functions to solve
the searchability problem, has been implemented. This work
is denoted by “Hash-based scheme” in the figures of this
section.

For our system prototype, we needed client-side software
to be responsible for query transformation and result inter-
polation of received shares. We implemented such an appli-
cation in Java with about 300 lines of code supporting all our
sharing schemes introduced in Sect. 4. Clients then connect
through a LAN to the DBMS servers that host data shares.
Our solution is compatible with existing database services
since it does not require any changes in database management
system internals. We implemented our data share servers
using MS SQL Server 2008 on Windows 7 system with a
Core 15 2.5GHz processor and 6 GB of memory. The per-
formance tests were executed on a real dataset of about one
million database tuples from IPUMS 2010 ACS data [26] for
a relation of different attributes including ID, Age, Income,
and Birthplace. We used Age as a searchable attribute in the
relation having values between 0 and 90. We implemented
the bucketing index-based method to search over Age values
with the bucket width 5 and AES encryption algorithm with
128 bits key length. We also implemented the process of ini-
tial distribution of shares according to our sharing schemes.
This is a lean Java program executed on behalf of the data
owner over the original relation.

6.1 Computation overhead

The first series of experiments evaluate computational cost
of query processing scenario. We issued equality, range,
and aggregation queries to the system and obtained query
processing times. Table 1 summarizes the design of our
experiments, showing the three query categories used in the
experimentation and result sizes for each category. We inves-
tigate both client and server times of query processing for the

Table 1 Experimental design

Queries Minimum result Maximum result
size (tuples) size (tuples)

Equality 1000 5000

Range 1000 10000

Aggregation 1000 5000

- Encryption and bucket based index
o Searchabel scheme 2

= Hash based scheme
<& Searchable scheme 1

m

£ X Searchable scheme 3

~ 1400 -
e |
§ 1200 - B o
Ewo k

oy -

7 P

ﬁ 800 - .

(%)

g 600

S

Q. 400 -

o

T 200 -

w

v 0 ") . ‘ .
2 0 1,000 2,000 3,000 4,000 5,000
[}

Size of result (tuples)

Fig. 8 Client-side processing time for equality queries

8

Hash based scheme i Searchable scheme 1

= Searchable scheme 2

% Searchable scheme 3

=
o

0o

frm

W/) Iwu/ﬁw

/

7).

N
2000

/|

/

=N
4000

Client side processing time (ms)

3000
Size of result (tuples)

Fig. 9 Detailed view of client-side query processing time for equality
queries

three types of queries, though the client time is more critical
in data outsourcing models because the clients are supposed
to have a limited computation and storage capacity. In secret
sharing-based method, the client time includes query trans-
formation over shares plus secret reconstruction. In bucket-
ing index-based method, it includes query transformation as
well, plus decryption and result pruning.

Figure 8 compares the client-side processing time of all
our searchable schemes, Emekci et al.’s method [15], and
the encryption-based approach [17] which uses bucketing
to construct an index for search over encrypted values. The
figure shows client-side query processing times per differ-
ent result sizes, expressed as the number of tuples, when
an equality query SELECT * FROM Employee WHERE Age
= v is executed. As shown in the figure, all secret sharing-
based methods completely outperform the bucketing method
in terms of client computation overhead. This is due to the
considerable number of false hits in the bucketing methods,
which needs client-side pruning. Figure 9 is excluded the
bucketing method to show a more detailed comparison of
Emekci et al.’s method with our three searchable schemes.
The figure suggests that there is little difference of client-
side computation cost between our sharing schemes and the
scheme in [15]. The difference is due to the query transfor-
mation phase of execution. Figure 10 shows the client-side

@ Springer

W
[
[o)}

M. A. Hadavi et al.

Hash based scheme Searchable scheme 1

N Searchable scheme 3

= Searchable scheme 2

4000

Client side processing time (ms)

6000

Size of result (tuples) 10000

Fig. 10 Detailed view of client-side query processing time for range
queries

--B--Searchable Scheme 2
-~ Encryption and bucket based index

--%-- Searchable scheme 1
--»--Searchable scheme 3
—#--Hash based scheme

— 97

w

é 8 1 Remmmmmmmmee oo L BT B R X

o 7]

£

- 64

-]

£ 54

a

o 44

(%)

2 3

[N

3 2 . 3 . °
0 : - - -)

0 1,000 2,000 3,000 4,000 5,000

Size of result (tuples)

Fig. 11 Server-side query processing time for equality queries

--&--- Searchable scheme 2
--®- Hash based scheme

--&--- Searchable scheme 1
--%--- Searchable scheme 3
--e--Encryption and bucket based index

O B N W A~ O O N

Server processing time (ms)

1000 2000 3000 4000 5000 6000 8000 10000
Size of result (tuples)

Fig. 12 Server-side query processing time for range queries

execution time of our searchable schemes and Emekci et al.’s
method for a range query SELECT * FROM Employee WHERE
v] < Age < vy. It can be observed in the figure that the query
processing times of the methods get closer with large result
sets as the secrets interpolation time overwhelms the query
transportation time of query processing.

Figures 11 and 12 compare server-side processing time
of the methods for the equality and the range query, respec-
tively. The figures suggest no obvious differences in server-

@ Springer

--¢---Searchable scheme 1 -~ Searchable scheme 2

—-%-- Searchable scheme 3 --®--Hash based scheme

Server processing time (ms)
0
o

1000 2000 3000 4000 5000
Number of satisfying tuples

Fig. 13 Server-side query processing time for aggregation queries

~-e-- Hash based scheme --&-- Searchable scheme 1

--#--Searchable scheme 2 —%--Searchable scheme 3

@ 300

2 —x
@ 250 e

£ oo R
=

o 200

£

@ 150 |

8

8 100

s . .
= 50

c

2

= 0

O 0 1,000 2,000 3,000 4,000 5,000

Number of satisfying tuples

Fig. 14 Client-side query processing time for aggregation queries

side query processing time when the size of result goes up.
According to the figures, our weighted and secure parti-
tioning methods due to their order-obfuscating mapping and
searching for multiple ranges per a single value (for secure
partitioning method) impose more computation costs on the
server. However, the extra cost is limited to few millisec-
onds while our searchable schemes substantially enhance
the security against statistical analysis. Moreover, in a real
cloud-based data outsourcing scenario, this time is negligible
compared with the client-server communication latencies.
There is the same deduction from Fig. 13, which compares
the server-side query processing times of the secret sharing-
based methods for a typical aggregation query SELECT
SUM(Income) FROM Employee WHERE v| < Age < v3. Also,
as shown in Fig. 14, there is less than a millisecond (about
0.2 ms in the figure) difference in client-side processing times
of executing the aggregation query between our searchable
schemes and Emekci et al.’s method. The little difference is
resulted from the process of query transformation. The buck-
eting index-based method [17] has excluded from Figs. 13
and 14 because the method does not support server-side exe-
cution of aggregation queries.

Overall, while for our weighted and secure partitioning
methods, clients spend just a couple of milliseconds more
than that for the hash-based scheme [15], a significant secu-
rity improvement is achieved. Our schemes slightly increase

Security and searchability in secret sharing-based data outsourcing 527
A Searchable scheme 2 —o--Hash based scheme k] --=--Searchable scheme 2 --%--Searchable scheme 3
[
e Encryption and Bucketing index based X Searchable scheme 3 < 4
@ 18- g 35 .
= 5 3
= 1.6 . . -
L . o . ° ° o 25 %
T 1.4 . o ° s .
© - 2 X
B 1.2 1 2 15 B T
®] S 1 Tee TR
g 3! N
S 038 5 N T
E 0.6 1 -% 0 200 400 600 800 1,000 1,200 1,400
9 044 « Number of database tulpes (x 1000 tuples)
s 02y X
& O — — oS X ‘ ‘ Fig. 16 Client-side storage cost compared to the database size
v 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of result (tuples)

Fig. 15 Communication cost

server-side query execution time whose amount is negligible
compared with network latencies in real cloud-based data
outsourcing scenarios.

6.2 Communication overhead

Communication cost in our sharing schemes for query
processing consists of sending the transformed query to
servers and receiving the results from them. The comparison
of communication cost is given in Fig. 15. The figure shows
that our sharing schemes have the same performance in terms
of communication cost with Emekci et al.’s approach [15],
as none of them generate false hits in servers’ responses. It
is worth to mention that this experimentation is performed
on a relation with a small tuple size. It is important in com-
munication cost for the bucketing index-based method [17]
in which greater tuple size leads to more communication
cost.

6.3 Storage overhead

Client-side storage in our schemes requires storing the dis-
tribution vector X in addition to the mapping function. Both
the distribution vector and the mapping function need to be
stored securely, out of the access of unauthorized users. For
weighted and secure partitioning methods in which either the
number of partitions (in secure partitioning) or their width
(in weighted partitioning) varies, the client-side storage cost
is of order O(| Dy|), where D, is the domain of the search-
able attribute. This is reasonable for a database size of order
O(|N]), where N is the number of tuples. The cost is accept-
able compared with the database size especially when the
database size goes up with millions of records. Considering
Age as the searchable attribute, in our current implementa-
tion, about 4KB and 9KB are enough to store partitioning
information for weighted and secure partitioning methods,
respectively. Figure 16 shows the ratio between client-side
storage size and the one of the original relations. The storage

cost in secure partitioning method is more than weighted par-
titioning because each value is assigned multiple partitions
that need to be stored at client side.

Client-side storage cost is manageable by using a suitable
mapping function with respect to the domain size of attribute
and the distribution of attribute values in the relation. For
example, to reduce the storage cost associated with the large
domain of attributes such as Income in a typical Employee
relation, we can assign a partition of shares to a range of
values instead of to a single value. This method substantially
decreases the client-side storage cost, though it causes a lim-
ited number of false hits in server-side query processing. For
ID values, such as employees’ identifiers in a relation, the
simple partitioning method can be used since the frequency
of values in the relation is nearly equal.

Server-side storage cost is of less importance in the out-
sourcing scenarios as cloud service providers are supposed to
hold considerable storage and computation resources. In our
schemes, the imposed server-side storage overhead is due to
having share size bigger than the secret size for searchable
attribute values. In practice, having 4-byte shares provides
the possibility of more than four billion distinct values for
shares, which is enough for many applications. Nevertheless,
if the server-side storage is an important concern, choosing an
appropriate domain size for data shares is a trade-off between
security and storage cost of the scheme.

7 Summary and future work

Confidentiality of outsourced data is still a major obstacle
toward the adoption of the “Database as a Service” model
in cloud computing environments. In this paper, we pro-
pose to use secret sharing in order to preserve confidentiality
of outsourced data. Our client-aware partitioning approach
subdivides the domain of shares so that clients can effi-
ciently search within distributed shares. Also, it prevents
untrusted data servers from inferring the original attribute
values from distributed shares. We introduced three sharing
schemes (each corresponding to a partitioning method) with
different levels of security, client-side storage overhead, and
query execution efficiency. Among our partitioning methods,

@ Springer

528

M. A. Hadavi et al.

secure partitioning provides data confidentiality for honest-
but-curious servers, powered by a priori knowledge of origi-
nal data distribution. We proved that in our secure partition-
ing method, the probability of finding the correct association
between a share and its corresponding data value is almost
equal to that of a random guess. There are three reasons for
such an achievement:

1. The distribution of an original dataset is perturbated in
the corresponding sets of shares. With large domains of
shares, the resulting distribution can be closed to a uni-
form distribution, which minimizes the servers’ inference
when observing shares.

2. The ordering relation of values is obfuscated among their
corresponding sets of shares.

3. Equality and range queries are indistinguishable from
servers’ viewpoint. This indistinguishability prevents
servers from aligning shares ordering.?

Our approach, supporting server-side indexing, allows
server-side execution of different queries with acceptable
overheads. It does not require any modification of existing
database internals and is immediately applicable to existing
cloud database service offerings.

Our proposal can be readily extended to improve storage
cost at both server and client sides by defining new parti-
tioning methods and mapping functions. As future work, we
plan to investigate on the size of shares domain to decrease
server-side storage cost in addition to achieving desired level
of security. Another extension point to our work is to address
the availability and fault tolerance aspects and determine the
appropriate values of k and 7 in a (k, n) sharing scheme with
respect to a desired level of availability and fault tolerance.

References

1. Adam, N.R., Worthmann, J.C.: Security control methods for sta-
tistical databases: a comparative study. ACM Comput. Surv. 21(4),
515-556 (1989)

2. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A., Wang, S.:
Secure data management service on cloud computing infrastruc-
tures. In: Agrawal, D., Candan, K.S., Li, W. (eds.) New Frontiers
in Information and Software as Services. Lecture Notes in Busi-
ness Information Processing, vol. 74, pp. 57-80. Springer, Berlin
(2011)

3. Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A.: Data-
base management as a service: challenges and opportunities. In:
IEEE 25th International Conference on Data Engineering, 2009.
ICDE’09, pp. 1709-1716 (2009)

4. Agrawal, R., Kiernan, J., Srikant Ramakrishnan, Xu, Y.: Order
preserving encryption for numeric data. In: Proceedings of the 2004

2 Shares ordering has been discussed in [13] as part of the attack sce-
nario on using secret sharing for outsourcing scenario.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ACM SIGMOD International Conference on Management of Data,
pp- 563-574. ACM (2004)

. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on

encrypted data. In: Proceedings of the 4th Conference on Theory
of Cryptography, pp. 535-554. Springer, Berlin (2007)

. Brinkman, R., Doumen, J., Jonker, W.: Using Secret Sharing for

Searching in Encrypted Data. Secure Data Management. Lecture
Notes in Computer Science, vol. 3178, pp. 18-27. Springer, Berlin
Heidelberg (2004)

. Ceselli, A., Damiani, E., di Vimercati, S., Jajodia, S., Paraboschi,

S., Samarati, P.: Modeling and assessing inference exposure in
encrypted databases. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1),
119-152 (2005)

. Chow, S.S.M., Lee, J.-H., Subramanian, L.: Two-party computation

model for privacy-preserving queries over distributed databases.
In: Proceedings of the Network and Distributed System Security
Symposium, (NDSS), The Internet Society (2009)

. Ciriani, V., Capitani, De: Combining fragmentation and encryption

to protect privacy in data storage. ACM Trans. Inf. Syst. Secur.
(TISSEC) 13(3), 1-33 (2010)

Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Paraboschi, S., Samarati, P.: Fragmentation design for efficient
query execution over sensitive distributed databases. In: Proceed-
ings of the 29th IEEE International Conference on Distributed
Computing Systems, ICDCS 09, pp. 32-39. IEEE Computer Soci-
ety (2009)

Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Para-
boschi, S., Samarati, P.: Balancing confidentiality and efficiency
in untrusted relational DBMSs. In: Proceedings of the 10th ACM
Conference on Computer and Communications Security, pp. 93—
102 (2003)

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati,
P.: Computing range queries on obfuscated data. In: Proceedings
of the Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pp. 1333—-1340. IEEE Computer Soci-
ety (2004)

Dautrich, J.L., Ravishanka, C.V.: Security limitations of using
secret sharing for data outsourcing. In: Proceedings of DBSec 2012,
Lecture Notes in Computer Science, pp. 145-160. Springer, Berlin
(2012)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G.,
Samarati, P.: Efficient and private access to outsourced data. In:
Proceedings of IEEE ICDCS 2011, pp. 710-719. IEEE Computer
Society (2011)

Emekci, F., Methwally, A., Agrawal, D., Abbadi, A.E.: Dividing
secrets to secure data outsourcing. Inf. Sci. 263, 198-210 (2014)
Ferretti, L., Colajanni, M., Marchetti, M.: Distributed, concurrent,
and independent access to encrypted cloud databases. IEEE Trans.
Parallel Distrib. Syst. 25(2), 437-446 (2014)

Hacigiimiis, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over
encrypted data in the database service provider model. In: Pro-
ceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pp. 216-227. ACM (2002)

Hadavi, M.A., Damiani, E., Jalili, R., Cimato, S., Ganjei, Z.:
AS5: A Secure Searchable Secret Sharing Scheme for Privacy
Preserving Database Outsourcing. Data Privacy Management and
Autonomous Spontaneous Security. Lecture Notes in Computer
Science, vol. 7731, pp. 201-216. Springer, Berlin Heidelberg
(2013)

Hadavi, M. A., Jalili, R.: Secure data outsourcing based on threshold
secret sharing: Towards a more practical solution. In: Proceedings
of VLDB PhD Workshop, pp. 54-59. VLDB Endowment (2010)
Hadavi, M.A., Noferesti, M., Jalili, R., Damiani, E.: Database as
a service: towards a unified solution for security requirements. In:
Proceedings of 36th IEEE COMPSACW, pp. 415-420. IEEE Com-
puter Society (2012)

Security and searchability in secret sharing-based data outsourcing

529

21.

22.

23.

24.

25.

26.

27.

28.

Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index
for range queries. In: Proceedings of 30th International Confer-
nece on Very Large Database, pp. 720-731. VLDB Endowment
(2004)

Kerschbaum, F., Schropfer, A., Zilli, A., Pibernik, R., Catrina, O.,
Hoogh, Sd, Schoenmakers, B., Cimato, S., Damiani, E.: Secure
collaborative supply-chain management. Computer 44(9), 38—43
(2011)

Laur, S., Talviste, R., Willemson, J.: From oblivious AES to effi-
cient and secure database join in the multiparty setting. Applied
Cryptography and Network Security. Lecture Notes in Com-
puter Science, vol. 7954, pp. 84-101. Springer, Berlin Heidelberg
(2013)

Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic
encryption be practical? In: Proceedings of Computer and Com-
munication Security Workshops 2011, pp. 113-124. ACM (2011)
Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb:
processing queries on an encrypted database. Commun. ACM
55(9), 103-111 (2012)

Ruggles, S., Alexander, J.T., Genadek, K., Goeken, R., Schroeder,
M.B., Sobek, M.: Integrated Public Use Microdata Series: Version
5.0 [Machine-readable database]. Tech. rep., University of Min-
nesota, Minneapolis: University of Minnesota (2010)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612—
613 (1979)

Steele, A., Frikken, K.B.: An index structure for private data out-
sourcing. In: Proceedings of DBSec 2011, pp. 247-254. Springer,
Berlin (2011)

29.

30.

31.

32.

33.

34.

35.

Taheri Soodejani, A., Hadavi, M.A., Jalili, R.: K-Anonymity-based
horizontal fragmentation to preserve privacy in data outsourcing.
In: Proceedings of the 26th Annual IFIP WG 11.3 Conference on
Data and Applications Security and Privacy, DBSec’12, pp. 263—
273. Springer, Berlin (2012)

Tian, X., Sha, C., Wang, X., Zhou, A.: Privacy preserving query
processing on secret share based data storage. Database Systems
for Advanced Applications. Lecture Notes in Computer Science,
vol. 6587, pp. 108—122. Springer, Berlin Heidelberg (2011)
Wang, S., Agrawal, D., Abbadi, A.: A comprehensive framework
for secure query processing on relational data in the cloud. Secure
Data Management. Lecture Notes in Computer Science, vol. 6933,
pp- 52-69. Springer, Berlin Heidelberg (2011)

Wang, S., Agrawal, D., Abbadi, A.E.: Towards practical private
processing of database queries over public data with homomorphic
encryption. Tech. rep., 2011-06, Department of Computer Science,
University of California at Santa Barbara (2011). https://p2p.cs.
ucsb.edu/research/tech_reports/reports/2011-06

Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating
fully homomorphic encryption using GPU. In: 2012 IEEE Confer-
ence on High Performance Extreme Computing (HPEC), pp. 1-5
(2012)

Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and
fine-grained data access control in cloud computing. Proc. IEEE
INFOCOM 2010, 1-9 (2010)

Zhang, Z., Plantard, T., Susilo, W.: Reaction attack on outsourced
computing with fully homomorphic encryption schemes. In: Pro-
ceedings of ICISC 2011, pp. 419-436. Springer, Berlin (2011)

@ Springer

https://p2p.cs.ucsb.edu/research/tech_reports/reports/2011-06
https://p2p.cs.ucsb.edu/research/tech_reports/reports/2011-06

	Security and searchability in secret sharing-based data outsourcing
	Abstract
	1 Introduction
	2 Related work
	2.1 Encryption for single server solutions
	2.2 Fragmentation for multi-server solutions

	3 Secret sharing for outsourcing scenario
	3.1 Security definition

	4 Searchable sharing schemes
	4.1 Assumptions and threat model
	4.2 Solution overview
	4.3 Simple partitioning
	4.3.1 Security analysis

	4.4 Weighted Partitioning
	4.4.1 Security analysis

	4.5 Secure partitioning
	4.5.1 Security analysis

	5 Query processing
	6 Experimental results
	6.1 Computation overhead
	6.2 Communication overhead
	6.3 Storage overhead

	7 Summary and future work
	References

