
Int. J. Inf. Secur. (2015) 14:263–287
DOI 10.1007/s10207-014-0257-6

REGULAR CONTRIBUTION

A new algorithm for low-deterministic security

Dennis Giffhorn · Gregor Snelting

Published online: 15 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present a new algorithm for checking prob-
abilistic noninterference in concurrent programs. The algo-
rithm, named RLSOD, is based on the Low-Security
Observational Determinism criterion. It utilizes program
dependence graphs for concurrent programs and is flow-
sensitive, context-sensitive, object-sensitive, and optionally
time-sensitive. Due to a new definition of low-equivalency
for infinite traces, the algorithm avoids restrictions or sound-
ness leaks of previous approaches. A soundness proof is pro-
vided. Flow sensitivity turns out to be the key to precision and
avoids prohibition of useful nondeterminism. The algorithm
has been implemented for full Java byte code with unlimited
threads. Precision and scalability have been experimentally
validated.

Keywords Software security · Noninterference ·
Program dependence graph · Information flow control

1 Introduction

Information flow control discovers software security leaks by
analysing the source or machine code of a program. Infor-
mation flow control guarantees confidentiality if secret data
which are processed in the program cannot influence publicly

This work was partially supported by DFG grants Sn11/9-2 and
Sn11/12-1 in the scope of the priority program “Reliably Secure
Software Systems”. It is based on [8] with additional contributions by
the second author. A preliminary version was published as an
unreviewed technical report [10].

D. Giffhorn · G. Snelting (B)
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: gregor.snelting@kit.edu

D. Giffhorn
e-mail: giffhorn@ipd.info.uni-karlsruhe.de

visible behaviour of that program; it guarantees integrity if
critical computations performed by the program cannot be
manipulated from public ports. Four types of confidentiality
leaks have been identified [40]:

– explicit leaks arise if secret data are (indirectly) copied
to public output;

– implicit leaks arise if secret data influence control flow
(which may lead to publicly visible effects);

– possibilistic leaks in concurrent programs arise if the set
of possible public outputs (under any possible interleav-
ing) depends on secret data;

– probabilistic leaks in concurrent programs arise if, for
some scheduling strategy, the probability of some pub-
licly visible behaviour depends on secret data.

Figure 1 presents an example. The bottom left program
has a possibilistic leak: interleaving order 2, 6, 7, 3 causes
the secret PIN to be printed on public output; hence, the
set of possible outputs depends on secret data. The program
to the right has no possibilistic leak (see Sect. 3). But the
PIN’s value may alter the probabilities of the outputs “0”
resp. “1”, because the running time of the loop may influence
the interleaving order of the two assignments to x . Thus, a
secret value changes the probability of a public output—a
probabilistic leak.

Information flow control (IFC) aims at discovering all
such security leaks. Information flow control for multi-
threaded programs is challenging, as it must prevent
possibilistic or probabilistic information leaks. Most IFC
approaches check some form of noninterference [40], and
to this end classify program variables, input and output as
“high” (secret) or “low” (public). Probabilistic Noninter-
ference [29,41–44] is the established security criterion for
concurrent programs. It is difficult to guarantee probabilistic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-014-0257-6&domain=pdf

264 D. Giffhorn, G. Snelting

1 void main() :
2 x = inputPIN() ;
3 i f (x < 1234)
4 print (0);
5 y = x;
6 print (y) ;

1 void thread_1 () :
2 x = input () ;
3 print (x) ;
4

5 void thread_2 () :
6 y = inputPIN() ;
7 x = y;

1 void thread_1 () :
2 x = 0;
3 print (x) ;
4

5

6 void thread_2 () :
7 y = inputPIN() ;
8 while (y != 0)
9 y ;

10 x = 1;

Fig. 1 Examples for explicit and implicit leaks (top left), for a possi-
bilistic leak (bottom left), and for a probabilistic leak (right)

noninterference, as an IFC must in principle check all possi-
ble interleavings and their impact on execution probabilities.
Due to this difficulty, some analysis algorithms for proba-
bilistic noninterference put severe restrictions on program or
scheduler behaviour.

One specific form of probabilistic noninterference (PN),
however, is scheduler independent: Low-Security Observa-
tional Determinism demands that for a program which runs
on two low-equivalent inputs, all possible traces are low
equivalent [20,39,53]. Traces log all operations (events)
and memory states for a given run and interleaving; low-
equivalent inputs coincide on low input values, and low-
equivalent traces coincide on operations using low variables.
Thus, low-security observational determinism (LSOD) in
fact demands that execution order conflicts between low
events are disallowed, if they may be influenced by high
events. The following criterion is sufficient to guarantee
LSOD [53]: (1) program parts contributing to low-observable
behaviour are conflict free, that is, the program is low-
observable deterministic; (2) implicit or explicit flows do not
leak high data to low-observable behaviour. Earlier research
[20,53] has shown that the LSOD criterion guarantees PN.
But several attempts to devise program analysis algorithms
for LSOD turned out to be unsound, unprecise, or very restric-
tive. In particular, simplistic LSOD will absolutely prohibit
any (even secure) low nondeterminism. Hence, LSOD never
gained popularity, and there have been very few realistic
implementations.

This article aims to overcome all these previous LSOD
obstacles. It demonstrates that LSOD can be checked natu-
rally using Program Dependence Graphs (PDGs) for con-
current programs. PDGs have already been developed as
an IFC analysis tool for full sequential Java [15,16,46,51]
and demonstrated high precision and scalability. The current
work shows how to use PDGs for a precise LSOD checker.
It uses a new definition of low-equivalent traces, which—
in case of nonterminating traces—avoids certain problems
of earlier definitions. Exploiting the structure of PDGs, the
algorithm is flow-sensitive, object-sensitive, and context-
sensitive. It is sound and does not impose restrictions on

the thread or program structure. It also relaxes the classi-
cal LSOD definition by allowing secure nondeterminism,
while preserving soundness. It turns out that flow sensitiv-
ity is the key to eliminating soundness gaps and unrealistic
restrictions. The algorithm also exploits advances in the may-
happen-in-parallel (MHP) analysis of concurrent programs,
which allow even time-sensitive MHP and IFC.

Note that PDG-based IFC for sequential programs has
been described in detail in [16]; we assume some familiar-
ity with this earlier work. The current article concentrates
on PDG-based IFC for concurrent programs. We present
an informal overview (Sect. 2), formally develop the new
RLSOD criterion and its soundness proof (Sect. 3), summa-
rize PDGs for concurrent programs (Sect. 4), show how the
criterion can be precisely and soundly approximated by a
PDG-based static RLSOD check (Sect. 5), explain the algo-
rithm details (Sect. 6), and present data about performance
and precision (Sect. 7). Related work is discussed in Sect. 8.

1.1 The JOANA tool

PDG-based IFC, including the new algorithm described in
this article, has been fully implemented. The system, called
JOANA, is available for public download, or can be used
by everybody through a Java webstart GUI.1 The engineer
must provide Java sources to be analysed, where all input
and output statements are annotated “high” or “low” (other
statements do not need annotations). JOANA can handle full
Java byte code with arbitrary threads, scales to ca. 50kLOC
and empirically demonstrates high precision [14–16,46].
JOANA is based on a stack of sophisticated program analysis
algorithms (pointer analysis, exception analysis, PDG con-
struction; some details are described in Sect. 4). JOANA
minimizes false alarms through flow-, context-, object-, and
field-sensitive analysis techniques. JOANA allows declassifi-
cation along sequential information flows. In concurrent pro-
grams, all possibilistic and probabilistic leaks are discovered.
JOANA and the underlying program analysis was developed
over the last 15 years and was used in realistic case studies
such as [24]. The practical application is described in detail
in [12].

2 Overview of approach

2.1 Security policy

IFC analysis must discover all possible violations of con-
fidentiality and integrity—including probabilistic ones—for
realistic programs. Our IFC analysis thus aims to provide

1 joana.ipd.kit.edu provides download, webstart application,
and other information.

123

A new algorithm for low-deterministic security 265

1 i f (h==1)
2 l = 42
3 else
4 l = 17;
5 . . . / / the following assignment can be
6 . . . / / far away from the IF; as long as i t
7 . . . / / postdominates the IF and there is no
8 . . . / / intermediate output of h or l ,
9 . . . / / the program is secure

10 l = 0;
11 print (l) ;

1 h = 1;
2 l = 2;
3 x = f (h) ;
4 y = f (l) ;
5 print (y) ;
6

7 int f (int x)
8 {return x+42;}

1 void main() :
2 fork thread_1 () ;
3 fork thread_2 () ;
4 void thread_1 () :
5 l = 42;
6 h = inputPIN() ;
7 void thread_2 () :
8 print (l) ;
9 l = h;

Fig. 2 Three secure program fragments. Flow- or context-insensitive
analysis will generate false alarms

a sound, precise, scalable, and nonrestrictive noninterfer-
ence criterion for programs in full Java containing arbi-
trary threads, needing few annotations and admitting possible
declassifications.

2.2 Why LSOD?

We chose LSOD as the fundamental mechanism because
it has the huge advantage of being scheduler independent.
However, attempts to define LSOD in a termination-sensitive
way led to severe restrictions (see below). We therefore aim
for a definition which is termination insensitive, but flow-,
context-, and object-sensitive. From a practical viewpoint,
we believe that these features are more important than ter-
mination sensitivity; they also overcome previous obstacles
to the use of LSOD. In particular, our new RLSOD criterion
will not prohibit secure low nondeterminism.

2.3 Flow sensitivity

A flow-sensitive analysis takes statement order into account,
and a context-sensitive analysis takes procedure calling con-
text into account. PDG-based IFC was introduced because
PDGs are naturally flow- and context-sensitive. Studies have
shown that this reduces false alarms considerable (e.g. [15]);
Fig. 2 left presents two sequential examples (we assume h to
contain a high value and l to contain a low value). For object-
oriented programs, object- and field-sensitivity are similarly
important [16].

Now consider the multi-threaded example in Fig. 2 right.
A flow-insensitive IFC analysis ignores statement order, thus
assumes that lines 8 and 9 are interchangeable and gener-
ates a false alarm. We will return to this example in Sects. 3
and 8. Note that typical security type systems are flow- and/or
context-insensitive and will reject all programs in Fig. 2.

The type system in [21] is flow-sensitive, but not context-
sensitive.

2.4 Classification of statements and data

Program data and operations are classified either low (public)
or high (secret).2 Note that in our flow-sensitive approach,
classification of values and variables happens per statement
or expression in the source code—there is no global classifi-
cation of variables. Technically, PDG nodes n (in particular
nodes for (sub)expressions in statements) are statically clas-
sified: cl(n) = L resp. cl(n) = H . It is enough to classify
inputs (sources) and outputs (sinks), as the classification of all
intermediate nodes can easily be computed by a fixpoint iter-
ation on the PDG [16]. Hence, a variable may at one program
point (PDG node) contain a low value, and at another point
a high value, as both variable occurrences are represented by
different PDG nodes. Still, soundness is guaranteed, while
flow sensitivity (which is naturally provided by PDGs) offers
precision gains and fewer restrictions on programs.

We further assume that program input and output con-
sist of streams of (perhaps nonprimitive) values, where a
complete stream has a security classification. In accordance
with flow sensitivity, high input streams are not part of initial
memory, but all streams (except stdin and stdout) have
to be explicitly opened.3 Inputs are low-equivalent if they
coincide on low input streams.

2.5 Attacker model

We assume that an attacker knows the source code and
can observe execution of all operations (i.e. dynamically
executed statements) and their operands that are classified
low. However, the attacker cannot observe high operations
or high operands. For example, if the source statement
print(stream,x) is classified low, then its dynamic exe-
cution outputs a value on a low output stream, which can
be observed; if read (stream,x) is classified high, the
dynamically read value of x comes from a high input stream
and cannot be observed.4 As explained, variables do not pos-
sess a global classification; correspondingly, the attacker can-
not see all low values at any time.

We assume that the attacker can distinguish the relative
order of reads/writes to different variables (in contrast to [53],
see discussion in Sect. 8). We further assume the attacker can-

2 The implementation can handle arbitrary security lattices.
3 Reads and writes on unopened streams are assumed to throw an excep-
tion, and PDGs can handle exceptions precisely [14,16].
4 If read(stream,x) is classified low, but stream is classified
high, the resulting explicit illegal flow is trivially discovered in the PDG
[16]. Similarly if print(stream,x) is classified high, but stream
is classified low.

123

266 D. Giffhorn, G. Snelting

not observe whether a program is in an infinite loop. But the
attacker may have knowledge about the probabilities Pi (r)
of input i causing a certain low-observable behaviour r .

2.6 Low-equivalent traces

The definition of LSOD is based on low-equivalent traces.
A trace of a program execution is a (possibly infinite) list of
program configurations, where a configuration includes the
executed operation, the memory before execution, and the
memory after execution. Note that a trace is valid only with
respect to a specific interleaving of program threads. Low-
observable events are configurations from a trace which read
or write low values; only memory cells which are read or
written by a low operation are part of low-observable events.
The low-observable behaviour of an execution trace is the
subtrace which contains only low-observable events. As the
attacker knows the source code and PDG, the attacker can
reconstruct from the low-observable behaviour which PDG
node caused a low-observable event.

Low-equivalent traces have identical low-observable
behaviour. LSOD demands that any two executions with low-
equivalent inputs have low-equivalent traces. Thus, LSOD
is defined similarly to classical (sequential) noninterference,
using traces instead of program states. This natural definition,
as formalized in the literature, however, allows one trace to
terminate and the other to not terminate. Hence, the prob-
lem of infinite traces and termination channels needs to be
discussed before we formally present the new definition of
low-equivalent traces.

2.7 Termination leaks

Consider the top right program in Fig. 3, whose input in line
2 is high data and whose print-statement is low observ-
able. If a run of the program does not terminate, the print-
statement is delayed infinitely, which leads to the conclusion
that the input was <0. Worse, Fig. 3 bottom right exploits
a termination channel that leaks the PIN completely. The
two left programs behave identically to the bottom right
program and also contain termination channels, but con-
tain an additional implicit flow (the right programs do not
contain implicit flow).5 It is characteristic for termination
leaks that the attacker must know that a program loops, in
order to exploit the observable behaviour. It is known that in
interactive programs, termination channels can leak arbitrary
amounts of information [2].

To prevent termination channels, several variants of LSOD
and PN forbid low-observable events behind loops guarded
by high data. Such algorithms will disallow the programs in

5 The bottom left program was proposed by an anonymous reviewer of
a previous version of this work.

1

2 void main() :
3 x = inputPIN() ;
4 while (x > 0)
5 print ("x") ;
6 x ;
7 while (true)
8 skip ;

1 void main() :
2 x=inputPIN() ;
3 while (x>0)
4 print ("x") ;
5 x ;
6 i f (x==0)
7 {while (true)
8 skip;}

1 void main() :
2 x = inputPIN() ;
3 while (x != 0)
4 x ;
5 print (1);

1 void main() :
2 x = inputPIN() ;
3 while
4 skip ;
5 print ("x") ;
6 while
7 skip ;
8 print ("x") ;
9 . . .

10 while
11 skip ;
12 print ("x") ;
13 . . .

Fig. 3 Four tough nuts for termination-insensitive definitions of low-
equivalent traces. All programs contain termination leaks and gradually
leak (part of) the PIN

Fig. 3. However, in practice this is an unacceptable restric-
tion. Sometimes, program analysis can deduce that a loop will
terminate, and the restriction can be relaxed. But in general,
no other means to always avoid termination leaks are known.
Therefore, several authors—including ourselves—allow ter-
mination channels (see also Sect. 8). Hence, our attacker
model assumes that the attacker cannot observe nontermina-
tion.

We thus aim at a sound definition of LSOD which, how-
ever, may allow termination leaks. This approach has already
been tried in earlier research—in particular in [47,53]. Their
LSOD definitions permit termination channels and declare
traces to be low equivalent if their low-observable behaviour
is equal up to the length of the shorter sequence of low-
observable events. But as pointed out in [20], this may lead
to unintended leaks. Consider the program in Fig. 3 top left,
whose traces always diverge and assume that the input PIN is
high data and that the print statement is low observable. The
program exposes the input PIN by printing an equal number
of x’s to the screen. If low equivalence of traces is confined to
the length of the shorter sequence of low-observable events,
this behaviour is perfectly legal, because all traces with low-
equivalent inputs are equal up to the length of the shorter
sequence.

2.8 The new approach

To solve this problem, we suggest the following new defin-
ition of low-equivalent traces: For finite traces, we stick to
the common definition that they are low equivalent if their
low-observable behaviours are equal. If one trace is finite and
the other is infinite, then the finite trace must have at least
as many low-observable events as the infinite one, the low-
observable behaviours must be equal up to the length of the

123

A new algorithm for low-deterministic security 267

shorter sequence, and the low-observable events missing in
the infinite trace must be missing due to nontermination. The
latter constraint is new. It means that prior to the missing
events, a condition, e.g. in an IF (“branching point”) must
have been evaluated which dynamically led into an infinite
loop. Thus, the new constraint makes sure that the missing
events leak information only via termination channels.

Of course, for two infinite traces with infinite low-
observable subtraces, these subtraces must coincide com-
pletely. The new definition of low-equivalent traces is
soundly approximated through PDGs and slicing, resulting
in a precise analysis for probabilistic noninterference. Addi-
tional exploitation of the concurrent control flow graph pre-
vents rejection of secure low-nondeterminism.

3 Formalizing low-equivalent traces and LSOD

In the following, we will formally develop the definition of
the noninterference criterion, prove that it guarantees LSOD,
and use it as basis for an algorithm. To begin with, let us repeat
the original PN Definition [42,44]:

Definition 1 (Probabilistic noninterference)A program sat-
isfies probabilistic noninterference if for all pairs (t, u) of
low-equivalent inputs the following holds:

Let Θ be the set of possible program runs (traces) resulting
from t and u. For each T ∈ Θ , the following must hold: Let
T be the set of program runs possibly caused by t that are
low equivalent to T . Let U be the analogous set for u. Then
∑

r∈T Pt (r) = ∑
r∈U Pu(r) must hold, where Pi (r) is the

probability of trace r under input i .

Note that Definition 1 is scheduler specific: for some par-
ticular scheduler, the definition might be violated and a leak
occurs, for other schedulers not. In particular the Pi (r) can
be scheduler dependent and are very difficult to compute or
measure; worse, the number of summands might be infinite.
Fortunately we will see later that no values for the Pi (r) are
needed for LSOD, as LSOD guarantees Definition 1 for every
scheduler. The definition of possibilistic noninterference is
much simpler [40]:

Definition 2 A program or statementC satisfies possibilistic
noninterference if for all initial states s1, s2: s1 ≈low s2 �⇒
O(C, s1) ≈low O(C, s2); where O(C, s) is the set of all
possible outputs under all possible interleavings in initial
state s, and ≈low denotes low-equivalency of states resp.
outputs.

Thus, possibilistic leaks are also probabilistic, but not vice
versa. The program in Fig. 1 right is possibilistically secure,
because it has no low input (so all initial states are low equiv-
alent), and the sets of possible low outputs are the same: “0”

as well as “1” can both be produced by some interleaving,
regardless of the initial state or PIN. However, the program
contains a probabilistic leak: Definition 1 is violated under
uniform (or similar) scheduling.6

Formally, Definition 1 is violated as follows: There is only
high input, so all inputs are low equivalent. Let t = 0, u = 1
be two input PINs, and Θ be the set of possible traces result-
ing from t or u. Let T ∈ Θ . Case a): “print(0)”∈ T .
Let T be all traces caused by t low equivalent to T , let U be
all traces caused by u low equivalent to T . Thus, T contains
traces which print “0” under input PIN 0, and U contains
traces which print “0” under input PIN 1. For r ∈ T, P0(r) is
the probability of trace r under input PIN 0.

∑
r∈T P0(r) is

thus the overall probability that “0” is printed under input PIN
0. Likewise,

∑
r∈U P1(r) is the overall probability that “0”

is printed under input PIN 1. These probabilities depend on
scheduling. Assume the scheduler picks each thread with the
same probability and schedules after every executed state-
ment. Then enumerating all scheduling possibilities shows
that

∑
r∈T P0(r) = 44

64 , while
∑

r∈U P1(r) = 57
64 . Case b) is

analogous.

3.1 Traces and dynamic dependences

Definition 3 (Trace) An operation is a dynamic instance of
a program statement (e.g. assignment execution, procedure
call, thread fork). For operation o, stmt(o) is the correspond-
ing source program statement.

A trace is a list of events of the form (m, o,m), where o
is an operation, m is the memory before execution of o, and
m is the memory after execution of o.

The low-observable behaviour of a trace

T = (m1, o1,m1), . . . , (mk, ok,mk)

is a list of events

obslow(T) = evtlow(m1, o1,m1), . . . , evt low(mk, ok,mk)

where

evt low(m, o,m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m |use(o), o,m |de f (o)) o reads or

writes low

values;

λ otherwise.

de f (o) are the variables defined (written) in o, while use(o)
are the variables used (read) in o. m |use(o) resp. m |de f (o) are
the memory cells in m resp. m which are used resp. defined
by o; λ is the empty event.

6 If the scheduler always executes thread 1 completely before thread 2,
Definition 1 is not violated.

123

268 D. Giffhorn, G. Snelting

6 3 7 4 9 10

63 7 7’ 9 104 8

1 main():
2 fork thread_1();
3 l = 0;
4 print(l);

5 thread_1():
6 h = inputPIN();
7 while (h != 0)
8 h--;
9 l = input();
10 print(l2);

dyn. data dependence

dyn. control dependence

void

void

1 5

1 5

s 2

2s

Fig. 4 A program and two possible traces. The first trace results
from input (inputPIN() = 0, input() = 0), the second from (input-
PIN() = 1, input() = 0). The shaded nodes represent the low-observable
behaviour

We write o ∈ T iff ∃m,m : (m, o,m) ∈ T , and LO(o)
iff for o ∈ T : evt low(m, o,m) �= λ. For o, o′ ∈ T , we write
o < o′ if o is executed before o′: o = oi , o′ = o j , i < j .

It is important to note that a trace includes all operations
of a specific program execution with specific input; due to
interleaving, many traces for the same input may exist. Oper-
ations in (different) traces can be uniquely identified by their
calling context and control flow history (see below). Oper-
ations which read or write low values are low observable,
together with the corresponding parts of the memory. Thus,
only m |use(o) resp. m |de f (o) are low observable.

To better understand the latter fact, remember that due
to flow sensitivity, there is no fixed separation into low and
high memory. m |use(o) and m |de f (o) are exactly all the
low cells touched by o; this “operation-wise exact fit” has
the effect to weaken the requirements for low equivalence
while maintaining soundness (see below), ultimately reduc-
ing false alarms. A global low memory Mlow would ren-
der less traces low equivalent (i.e. more false alarms), as
m |use(o),m |de f (o)⊆ Mlow. This subtle insight is another
explanation why flow-sensitive IFC is more precise.

Example Figure 4 presents examples for traces and their low-
observable behaviour. Remember that only input and output
are explicitly classified as low or high and that memory cells
are not globally classified.

Dynamic dependences Our LSOD criterion is very much
based on the notion of “dependency”. Dependency between
statement x and statement y means that x can somehow influ-
ence the behaviour (or results) of y. Dependency exists in
various flavours; one typical example is called data depen-
dency and means that in x , a variable v is assigned which
is used in y, where there is possible control flow from x to
y which does not redefine v. Dependency is a dynamic phe-
nomenon, but can be soundly approximated by static program
dependence graphs (PDGs). In the following, we formally
define various kinds of dynamic dependences (the descrip-
tion of static dependences and PDGs is postponed to Sect. 4).
Traces are enriched with dynamic dependences as in Fig. 4:

dynamic data dependences connect dynamic reads and writes
of variables (with no intermediate writes to the variables), and
dynamic control dependences connect conditions in if, while
etc., and the operations “governed” by these conditions.

Definition 4 (Dynamic dependences) Let T be a trace.

1. Operation o ∈ T is dynamically control dependent on

operation b ∈ T , written b
dcd��� o, iff

– o is a thread entry and b is the corresponding fork
operation, or

– o is a procedure entry and b is the operation that
invoked that procedure, or

– b is the director of the innermost control region of o.7

2. Operation o is dynamically data dependent on operation

a in T , written a
v��� o, iff there exists a variable v ∈

use(o)∩de f (a), a < o, and there is no operation o′ ∈ T ,
v ∈ de f (o′) where a < o′ < o.

3. DFST (o) = {q ∈ T | o (
v��� ∪ dcd���)∗q} denotes the

set of all operations that are (transitively) dynamically
control or data dependent on o.
DCDT (o) = 〈start, q2, . . . , qn−1, o | qi ∈ T, qi <

qi+1, qi
dcd���

∗
o〉 is the list of operations on which o is

(transitively) dynamically control (but not data) depen-
dent.

If T is fixed, we just write DFS and DCD. Note that
dynamic dependencies are cycle free.DFS(o), the operations
potentially influenced by o, can be seen as a dynamic forward
slice; DCD can be seen as a dynamic backward control slice
(cmp. Sect. 4). Every operation has exactly one predeces-
sor on which it is dynamically control dependent (except the
start operation, which has no dynamic predecessor). For

o �= start and b
dcd��� o, b is the unique dynamic control

predecessor of o, written b = dcp(o).

Example In Fig. 4 (lower part),DFS(5) = {6, 7, 8,7′, 9, 10},
and DCD(4) = 〈start, 1, 4〉.

3.2 Infinite delay and low equivalency

We are now ready to tackle low equivalency of traces. As
explained earlier, we want to define low equivalency of two
traces T,U such that for infinite T , if T misses a low-
observable operation o executed in U , o is missing due to
an infinite delay in T . Other reasons for nonexecution of o
in T are not allowed.

This idea requires a formalization of the notions of “infi-
nite delay” and “an operation happens in two different

7 That is, b is a branching point with immediate post-dominator PD(b)
and b < o < PD(b) [52].

123

A new algorithm for low-deterministic security 269

traces”. First we observe that an operation is uniquely iden-
tified by its calling context and control flow history. More
formally, p = q holds for operations p ∈ T and q ∈ U
if stmt(p) = stmt(q), and either p = q = start , or
dcp(p) = dcp(q). This recursive definition terminates as
backward control dependency chains are finite. Thus, p =
q ⇐⇒ DCD(p) = DCD(q). This definition explicitly
includes the case that an operation occurs in two different
traces T and U , written o ∈ T ∩ U . Note that o ∈ T ∩ U
still allows that the memories (in particular the high parts) in
both traces at o are not identical.

Next we observe that the execution of a branching point in
a trace T triggers the execution of all operations in the cho-
sen branch which are dynamically control-dependent on the
branching point, up to the next branching point. For exam-
ple, in the code fragment if(b){o1; o2}, both o1 and
o2 are (statically and dynamically) control dependent on b
(but o2 is not control dependent on o1). If b evaluates to
true and the then-branch is executed, both o1 and o2 are
executed, unless o1 does not terminate.8

In terms of traces, if b1
dcd��� o1, o2 . . . ok

dcd��� b2 (where

not necessarily oi
dcd��� oi+1), and o1 ∈ T (that is, o1

belongs to the branch chosen by b1 and thus is executed)
then o2, . . . ok are executed as well, unless there is nonter-
mination in some oi , causing oi+1 to be delayed infinitely.
Other possibilities for the nonexecution of oi+1 do not exist,
because control dependency by its very definition implies that
b1 (and nobody else) decides about the execution of o1 . . . ok .
The same argument applies if b occurs in two traces T and
U . Hence, we define

Definition 5 (Infinite delay) Let T,U be traces and let both
execute branching point b: b ∈ T ∩ U . Let o ∈ T be an

operation where b
dcd��� o (thus, o belongs to the branch b

chooses to execute in T). If o �∈ U , U infinitely delays o.

Thus, if both T andU execute b and choose the same branch,
then either both T and U execute o, or U does not execute
o due to an infinite loop between b and o. This definition is
used for the formalization of low-equivalent traces:

Definition 6 (Low equivalence of traces, ∼low) Let T
and U be two traces. Let obslow(T) = (m0, o0,m0) · · ·
and obslow(U) = (n0, q0, n0) · · · be their low-observable
behaviours. Let kT be the number of events in obslow(T)

and kU be the number of events in obslow(U). T and U are
low equivalent, written T ∼low U , if one of the following
cases holds:

8 Note that exceptions and handlers generate additional control depen-
dencies in PDGs and traces [16]. Thus, if o1 may throw an excep-
tion, the dependency situation is more complex than in a “regular”
if(b){o1;o2}. Still, the subsequent argument for traces holds.

1. T and U are finite, kT = kU , and ∀0 ≤ i < kT : mi =
ni ∧ oi = qi ∧ mi = ni

2. T is finite and U is infinite, and

– kT ≥ kU ,
– ∀0 ≤ i < kU : mi = ni ∧ oi = qi ∧ mi = ni , and
– ∀kU < j < kT : U infinitely delays an operation
o ∈ DCD(o j).

3. T is infinite and U is finite, and

– kU ≥ kT ,
– ∀0 ≤ i < kT : mi = ni ∧ oi = qi ∧ mi = ni , and
– ∀kT < j < kU : T infinitely delays an operation
o ∈ DCD(q j).

4. T and U are infinite, and

– if kT = kU , then ∀0 ≤ i < kT : mi = ni ∧ oi =
qi ∧ mi = ni .

– if kT > kU , then ∀0 ≤ i < kU : mi = ni ∧ oi =
qi ∧mi = ni , and ∀kU < j < kT :U infinitely delays
an operation o ∈ DCD(o j).

– if kT < kU , then ∀0 ≤ i < kT : mi = ni ∧ oi =
qi ∧mi = ni , and ∀kT < j < kU : T infinitely delays
an operation o ∈ DCD(q j).

– if kT = kU = ∞, then ∀i : mi = ni∧oi = qi∧mi =
ni .

In fact the definition can be expressed in a more compact
form:

Observation T ∼low U ⇐⇒

– ∀0 ≤ i ≤ min(kT , kU) : mi = ni ∧ oi = qi ∧ mi = ni ,
and

– if kT �= kU , and w.l.o.g. kT > kU , then U is infinite
and ∀kU ≤ j < kT : U infinitely delays an operation
o ∈ DCD(q j).

We will, however, refer to cases 1–4 in the following text.
If all programs terminate, Definition 5 reduces to case 1,
which does not rely on DCD or infinite delay. In case of non-
termination, i.e. infinite traces, all low-observable o j missing
in the shorter trace must be missing due to infinite delay. “U
infinitely delays o ∈ DCD(o j)” expresses that the delayed
operation o must not necessarily be o j itself, but can be a
dynamic control predecessor of o j . In any case, o is on the
dynamic control path between okU−1 and o j , and the infinite
loop in the shorter trace is before o: according to Defini-
tion 5, there must be a branching point b ∈ T ∩ U , where

b
dcd��� o, o �∈ U .

123

270 D. Giffhorn, G. Snelting

Interestingly, the essence of Definition 6 can be expressed
without infinite delay.9 Imagine every program has an
additional print(’done’) as the very last statement.
Then the condition “U infinitely delays an operation o ∈
DCD(o j)” implies “print(’done’) �∈ U”. Perhaps it
would be possible to re-formulate Definition 6 accord-
ingly (thus replacing “U infinitely delays ...” by “print
(’done’) �∈ U”) and construct an alternate soundness
proof. In any case, DCD and DFS are needed for the proof.

Note that Definition 6 is stronger than the low-equiva-
lency Definitions in [20,53]: the latter authors demand low
equivalence not for T and U , but only for all subtraces of
individual variables. This weaker definition results in more
traces being low equivalent; it assumes, however, that the
attacker cannot distinguish between relative access order for
different variables. It also assumes that variables are globally
classified, which in our flow-sensitive setting they are not.
Section 8 compares both definitions in detail.

The following definition of LSOD is standard, but uses
the new definition of low-equivalent traces:

Definition 7 (Low-security observational determinism) A
program is low-security observational deterministic if the
following holds for every pair (t, u) of low-equivalent inputs:
Let T and U be the sets of possible traces resulting from t
and u. Then ∀ T,U ∈ T ∪ U : T ∼low U must hold.

Note that we will later relax this definition and allow
secure low nondeterminism while maintaining soundness.
We will now discuss Definitions 6 and 7 using the examples
from Figs. 2 and 3.

Example 1 For a simple multi-threaded program without ter-
mination leaks, consider Fig. 2 right. print(l) is explic-
itly classified low, and inputPIN is explicitly classified
high. Remember that l and h are not globally classified; only
input/output is explicitly classified. For all other statements
the classification is computed through a fixpoint iteration
on the PDG.10 In particular, if x ∈ BS(y), cl(x) � cl(y)
must hold, where Low � High [16]. Thus, h in line 6
is high, l in line 5 is low, as inputPIN ∈ BS(h6) and
l5 ∈ BS(print(l)). l=h is, however, not classified low,
because l=h �∈ BS(print(l)) (see the PDG in Fig. 5).

Next we observe that all inputs are low equivalent, as the
only input is high. Now let T,U be two possible traces for dif-
ferent inputPINs (in this example, several traces exist for
the same input due to interleaving). Hence,l=0,print(l)
are the only low-observable operations in T andU . The oper-
ation order may, however, be different for T and U due to

9 We thank one reviewer for observing this.
10 PDGs and the backward slice BS are explained in detail in Sect. 4;
here we rely on some preliminary understanding.

thread_1

l = 0

h = inputPIN()

thread_2

print(l)

l = h

interference dependence
control dependence

Fig. 5 PDG for example in Fig. 2 right. BS(print(l)) is shaded

interleaving. Hence, T �∼low U . The example demonstrates
the central weakness of LSOD: even secure low determinism
is prohibited. The new RLSOD criterion, however, accepts
the example (see below). But RLSOD only works because
flow sensitivity of BS prevents l=h to be low observable,
which otherwise would cause a false alarm.

Example 2 To understand the treatment of termination leaks,
consider the top left program in Fig. 3. Again all inputs are
low equivalent. We show that the program does not ful-
fil Definition 6. Obviously the program diverges for any
inputPIN, but for different inputPINs prints different
numbers of "x"s. Let us select trace T for one inputPIN n
and traceU for a different inputPINm. Then we are in the
infinite/infinite case of Definition 6. T contains n instances of
print("x"), as well as n instances of while(x>0) and
n instances of x—; thus, kT = 3n. U contains m instances
print("x") etc., W.l.o.g., assume kT > kU . The low-
observable o j are the print("x") in T which are missing
in U . DCD(o j) is the list of operations qi ∈ T on which
o j ∈ T is dynamically control dependent, namely the list of
dynamically executed loop tests: DCD(print("x")) =
〈while(x>0), while(x>0), ...〉.

Definition 6 demands thatU infinitely delays an operation
o from this list: there must be an infinite loopbefore o. But this
is not the case! According to Definition 5, it would not only
require o �∈ U (which is the case for the first while(x>0)

not inU), but that there is a branching point b ∈ T ∩U, b
dcd���

o which selects the same branch in both traces, but never
proceeds to o in U .

Such a b does not exist. Indeed, the operation causing the
infinite delay, namely while (true), is not between any
b and o, but at the end of the program. Thus, T �∼low U .
Hence, this program is not LSOD; it violates Definition 7. In
this example, Definition 6 discovered the termination leak,
but in general it will not discover termination leaks—as in
the next example.

Example 3 The bottom left program in Fig. 3 fulfils Def-
inition 6 as follows. Let T,U, kT , kU , o j as above. Thus,

123

A new algorithm for low-deterministic security 271

the first low-observable operation o j ∈ T missing in U is
occurence no. kU +1 of print("x"). Again o j is dynam-
ically control dependent on some o = while(x>0). But
this time, there is b ∈ T ∩ U , namely occurence kU − 1 of
if(x==0), which dynamically controls the kU ’st

while(x>0) in T . But the latter is not in U any more.

Thus, b
dcd��� o, and the infinite loop indeed happens between

b and o. Hence, T ∼low U . That is, by Definitions 6 and 7,
the program is wrongfully declared secure—which is ok, as
we exclude termination leaks.

We see that Definitions 6 and 7 may miss termination
leaks—which is a design feature. But sometimes we are
lucky, and termination leaks are discovered anyway, as in
example 2.

3.3 Soundness of the LSOD criterion

Soundness means that, under the conditions of the following
theorem, all probabilistic leaks are discovered by Definition
7. Precision means that the number of false alarms is small.
In this section we outline the soundness proof. Precision is
investigated in Sect. 7.

Zdancewic and Myers [53] observed that probabilistic
leaks can only occur if the program contains concurrency
conflicts such as data races. LSOD is guaranteed if there is
no implicit or explicit flow, and in addition, program parts
influencing low-observable behaviour are conflict free. Their
observation served as a starting point for our own work, as we
realized that not only explicit and implicit flow can naturally
be checked using PDGs, but also conflicts and their impact
are naturally modelled in PDGs enriched with conflict edges.
We thus provide the following definition:

Definition 8 (Data and order conflicts) Let a and b be two
operations that may happen in parallel.

– There is a data conflict from a to b, written a
dcon f� b, iff

a defines a variable v that is used or defined by b.

– There is an order conflict between a and b, written a
ocon f�

b, iff both operations are low observable: LO(a)∧LO(b).
– An operation o is potentially influenced by a data conflict

if there exist operations a, b such that o ∈ DFS(b) and

a
dcon f� b.

The following lemma states that in all possible traces
which are produced by a set of low-equivalent inputs, the
operations which are not influenced by high data or by exe-
cution order conflicts are identical “modulo termination”. In
particular, for terminating traces these operations are com-
pletely identical.

Lemma 1 Let p be a program. Let T be a trace of p andΘ be
the set of possible traces whose inputs are low equivalent to
the one of T . Let o be an operation of p that is not potentially

influenced by a data conflict a
dcon f� b or by an operation q

reading high input: o �∈ DFS(a) ∪ DFS(b) ∪ DFS(q). If
o ∈ T , then every U ∈ Θ either executes o or infinitely
delays an operation in DCD(o).

The proof is in appendix A; the full proof can be found in
[8]. Without the dependency machinery from Definition 6,
the proof would not be possible. From the lemma it is a small
step to the statement that low-equivalent inputs generate low-
equivalent traces. This fundamental soundness theorem can
now be stated:

Theorem 1 A program is low-security observational deter-
ministic according to Definition 7 if for all traces T and all
operations o, o′, o′′ ∈ T :

1. no low-observable operation o is potentially influenced
by an operation reading high input:

LO(o) ∧ ¬LO(o′) �⇒ o �∈ DFST (o′)

2. no low-observable operation o is potentially influenced
by a data conflict:

LO(o) ∧ o′ dcon f� o′′ �⇒ o �∈ DFST (o′) ∪ DFST (o′′)

3. there is no order conflict between low-observable oper-
ations:

¬(o
ocon f� o′)

Proof see Appendix A; the full proof is in [8]. ��
In the criterion, the first rule ensures that implicit and

explicit flow to o do not transfer high data. The second rule
ensures that high data cannot influence the data flowing to o
via interleaving. The third rule ensures that high data cannot
influence the execution order of low-observable operations
via interleaving. Note that the theorem is only valid if sequen-
tial consistency in the sense of the Java memory model can be
assumed. The Java memory model was designed to guaran-
tee sequential consistency for race-free programs, and formal
definitions plus machine-checked guarantees of the JMM are
available [26,27].

Theorem 2 If a program is LSOD according to Definition 7,
it is probabilistically noninterferent according to Definition
1 for all schedulers.

Proof see Appendix A. The proof is in a sense trivial, as the
sum of probabilities for all traces possibly generated by two

123

272 D. Giffhorn, G. Snelting

low-equivalent inputs must equal 1 (which also explains why
LSOD does not need explicit probability values for traces).
Note that for two low-equivalent inputs more than one trace
may result, because our algorithm—as explained below—
does not prohibit useful nondeterminism, as long as sound-
ness is maintained. ��
Corollary 1 LSOD, as defined in Definition 7, is scheduler-
independent.

Proof Using the terminology of Definition 1, scheduler
behaviour will influence the probability distributions for cer-
tain interleavings and thus the Pt (r) resp. Pu(r). The proof
of Theorem 2, however, demonstrated that under LSOD, the
sum of these probabilities is always 1. Only these sums are
needed to guarantee probabilistic noninterference; thus, the
latter is invariant under the probability distribution of inter-
leavings. ��

4 Dependence graphs and noninterference

In the following, we will present a static analysis which
soundly approximates the above LSOD criterion. This analy-
sis is based on program dependence graphs (PDGs). In this
section, we present the necessary facts about PDGs for multi-
threaded programs, which are then exploited in Sects. 5 and 6.

4.1 PDGs for sequential programs

Program dependence graphs are a standard tool to model
information flow through a program. In an (intraprocedural)
PDG G = (N ,→), N comprises program statements or
expressions. There are two kinds of edges: data dependences

and control dependences, thus → = D→ ∪· C→. Dependence

x
D→ y means that statement x assigns a variable which is

used in statement y, without being reassigned on any con-

trol flow path from x to y. Dependence x
C→ y means that

the mere execution of y depends directly on the value of
the expression x (which is typically a condition in an if- or
while-statement, see e.g. [23] for formal definitions). A path
x →∗ y means that information can flow from x to y; if
there is no path, it is guaranteed that there is no information
flow [17,36,38,51]. Exploiting this fundamental property, all
statements possibly influencing y (the so-called backward
slice) are easily computed as BS(y) = {x | x →∗ y}. y is
called the slicing criterion of the backward slice. Similarly,
the forward slice is FS(x) = {y | x →∗ y}.

As a small example, consider the program and its depen-
dence graph in Fig. 6 (from [16]). Control dependences are
shown as straight edges, data dependences are shown as
curved edges. There is a path from statement 1 to state-
ment 9 (i.e. 9 ∈ FS(1)), indicating that input variable a

1 a = u() ;
2 while (f ()) {
3 x = v() ;
4 i f (x>0)
5 b = a;
6

7 else
8 c = b;
9 }

10 z = c;

Fig. 6 A small program and its dependence graph

may eventually influence output variable z. Since there is no
path (1) →∗ (4) (1 �∈ BS(4)), there is definitely no influence
from a to x>0.

The Slicing Theorem [17,38] states that for any terminat-
ing execution reaching statement x , the program and BS(x)
compute the same sequence of values for each variable used
in x . Thus, a correct PDG may have too many edges, but
never too few (“soundness”). But of course, PDGs should
have as few edges as possible (“precision”). Note that due
to decidability problems, “complete” precision can never be
achieved while maintaining soundness. Section 5 contains
formal soundness properties of slices, as exploited by our
static LSOD check.

PDGs and slices for languages with procedures, excep-
tions, pointers, objects, arrays, etc., are much more complex.
Interprocedural analysis is typically based on the context-
sensitive Horwitz-Reps-Binkley (HRB) algorithm [18,37],
which uses summary edges to model flow through proce-
dures.11 Full sequential Java requires even more complex
algorithms, in particular for pointer analysis. The pointer
analysis used in JOANA is object-sensitive, field-sensitive,
and optionally flow-sensitive; it is described in [11,16]. Pre-
cise pointer analysis is a prerequisite for precise treatment of
dynamic dispatch in object-oriented languages [16]. Another
issue are exceptions, which may cause a lot of additional
control flow. Precise treatment of exceptions in PDGs is
described in [14,16]. Thus, in general, computing BS(x)
involves more than just backward paths in the PDG.

In-depth descriptions of slicing techniques can be found
in [23]. Note that the slicing theorem has been shown for all
the extensions mentioned above—and the soundness of the
current work only depends on the slicing theorem, not on the
specific variant of slicing or pointer analysis.

Of course, slicing precision directly influences IFC preci-
sion and false alarms. In the early days of PDGs and slicing,
often a backward slice comprised almost the complete pro-
gram. Today, PDGs have become much more precise since
they are flow-sensitive, context-sensitive, and object-sensi-
tive: the order of statements is taken into account, as is the

11 HRB use so-called system dependence graphs, which in this article
are subsumed under the PDG notion.

123

A new algorithm for low-deterministic security 273

actual calling context for procedures, and the actual refer-
ence object for method calls. Thus, the backward slice never
indicates influences that are in fact impossible due to the
given statement execution order or call stack of the pro-
gram; only so-called realizable paths are considered (that
is, paths dynamically possible with respect to call stack and
statement order). As a consequence, slice size has dropped
dramatically (see, e.g. [3,4]). But this precision is not for
free: interprocedural PDG construction can have complexity
O(|N |3), object-sensitive pointer analysis is similarly expen-
sive, and flow-sensitive pointer analysis is so expensive that
it is activated on demand only. In practice, PDG use is lim-
ited to programs of about 100kLOC [4]. Section 7 presents
data about precision and scalability of our PDG construction
algorithm.

4.2 Noninterference and PDGs

As mentioned, a �∈ BS(b) guarantees that there is no infor-
mation flow from a to b. This is true for all information flow
which is not caused by hidden physical side channels such
as timing leaks. It is therefore not surprising that slicing is a
natural tool for IFC [1,45]. Illegal flow becomes visible as a
PDG path from a secret value to a public variable. In Fig. 6,
assume x is secret and z is public; the PDG path 3 →∗ 9 (i.e.
3 ∈ BS(9)) exposes the illegal (implicit) flow from x to z.
In Fig. 7, slicing uncovers an illegal flow in a multi-threaded
example (see next section).

More examples for PDG-based IFC can be found in [8,16].
In 2009, we provided a machine-checked proof that (sequen-
tial) noninterference holds if no high variable or input is in
the backward slice of a low output. This result was shown
for the intraprocedural as well as the interprocedural (HRB)
case [49,51].

Let us finally mention that—due to potentially nonlo-
cal effects of any points-to, alias, or dependency relation—
the PDG of a complete system cannot be obtained by
just combining PDGs of subsystems. PDGs thus require a
whole-program analysis, and all library functions have to be
analysed together with the client code (or at least “stubs”
must be provided, which simulate the dependencies through
library functions). The consequence is that PDG-based IFC is
not compositional: security of a program cannot be inferred
just from the security of its components. Only recently, com-
positional PDGs were tackled (see Sect. 9).

4.3 PDGs and slicing for multi-threaded programs

For multi-threaded programs operating on shared memory,
PDGs are extended by so-called interference dependencies12

12 “Interference dependencies” have nothing to do with “noninterfer-
ence” in the IFC sense; the naming is for historical reasons.

int x, y;

void thread_1 () :
x = y + 1;
y = 0;

void thread_2 () :
a = y;
x = <input>;
i f a > 0

b = 0;
else

y = 0;

thread_2

a > 0

a = y

b = 0

thread_1

control dep.

data dep.

interference dep.

x yx y y x

x = y + 1

x

y = 0

y = 0

x = <input>

y

Fig. 7 PDG for two threads with interference dependences

which connect an assignment to a variable in one thread with
a read of the same variable in another thread [22]. Figure
7 shows a small example with two interference edges. The
backward slice from node x = y+ 1 consists of the grey
nodes.13 Now assume x and b are public; a and y are secret.
The illegal explicit flow from y to x is captured in the PDG

by (among others) the data dependence y
D→ x = y+ 1;

the illegal implicit flow from a to b is captured by the control

dependence a > 0
C→ b = 0.

The simplest slicer for multi-threaded programs is the iter-
ated two-phase slicer (I2P) [14,33]. I2P uses the context-
sensitive HRB algorithm,14 but does not traverse interference
edges directly. Instead, I2P adds the starting point of inter-
ference edges to a work list and thus repeatedly applies the
intra-thread HRB backward slice algorithm for every inter-
ference edge.

I2P can be improved by using May-happen-in-parallel
(MHP) information. Often MHP analysis can prove that, due
to locks or the fork/join structure, certain statements cannot
happen in parallel. Such information can be used to prune
interference dependencies, drastically improving scalability
and precision. Various MHP algorithms for Java have been
published, e.g. [8,25,34].

Time-sensitivity. A time-sensitive analysis discards impos-
sible, “time-travelling” flows.15 Time-travelling means that
the source of a flow would be executed physically later than
the sink—which is impossible for any sequentially consistent
interleaving. I2P is context-sensitive inside threads, but not
time-sensitive. Time-sensitive interprocedural slicing algo-
rithms are very complex and cannot be described in detail
here; for many years, no scalable algorithm existed. Today,
our new algorithms, which are based on earlier work by

13 Where the light grey node is pruned by time-sensitive analysis; see
below.
14 HRB slicing has two phases, hence the name I2P.
15 “Time sensitivity” has nothing to do with “timing leaks” in the IFC
sense, the naming is for historical reasons.

123

274 D. Giffhorn, G. Snelting

Krinke and Nanda [22,33] allow analysis of at least a few
kLOC of full Java [7–9]. Benchmarks have shown that I2P
precision (i.e. slice size) is ca. 25% worse than the best known
time-sensitive slicer [8].

Lock-sensitivity. Most concurrent programs contain
explicit locks and synchronization. However, many MHP
algorithms ignore locks – they only analyse fork-join struc-
ture, perhaps in a context-sensitive manner. The reason is
that lock-sensitive MHP needs a precise must-alias analy-
sis, which is notoriously difficult and expensive [8]. Section
9 discusses approaches to lock-sensitive PDGs. Note that a
lock-sensitive MHP only improves precision, but does not
affect correctness of PDGs and IFC.

5 A slicing-based static LSOD check and the RLSOD
criterion

5.1 The static check

Let us now come back to our LSOD criterion and its sound,
static approximation through PDGs and slicing. First we
emphasize that dynamic dependencies and thus DFS and
DCD can be soundly approximated by static slices and PDGs.
In particular, the following soundness properties for BS and
FS hold [16,17]:

Observation Let o be an operation in trace T .

1. If DFST (o) = {p1, . . . , pk, . . .} then

{stmt (p1), . . . , stmt (pk), . . .} ⊆ FS(stmt (o))

2. If stmt (o) �∈ BS(stmt (p)), then p �∈ DFST (o), and it
is guaranteed that o cannot influence p through explicit
or implicit flow.

Due to these properties, the three conditions of theo-
rem 1 can naturally be checked using slicing for concurrent
programs. Furthermore, a sound and precise MHP analysis
is needed; we write MHP(s, s′) if this analysis concludes
that PDG nodes s, s′ ∈ N may be executed in parallel.
Remember that cl(s) is the classification (H or L) of PDG
node s; we assume a two-element security lattice where
L � H . de f (s) are the variables defined (written) in s, while
use(s) ⊇ de f (s) are the variables used (read or written)
in s.

Then the following static conditions are sufficient to guar-
antee the three dynamic conditions in theorem 1:

Static check For all s, s′, s′′ ∈ N ,

1. cl(s) = L ∧ cl(s′) = H �⇒ s′ �∈ BS(s)
2. MHP(s, s′) ∧ (∃v : v ∈ de f (s) ∧ v ∈ use(s′)

)

∧ cl(s′′) = L �⇒ s, s′ �∈ BS(s′′)
3. MHP(s, s′) �⇒ (

cl(s) = H ∨ cl(s′) = H
)

The first condition is also the basis for the sequen-
tial IFC [16], the second disallows data conflicts between
low-observable operations, and the last demands that no
two low-observable operations are in an order conflict.
Thus, Zdancewic’s original idea, namely to disallow con-
flicts between publicly observable effects, is naturally imple-
mented through slicing of concurrent programs.

Example 1 For the program in Fig. 1 right, we have
cl(inputPIN()) = H , cl(print(x)) = cl(print(2)) =
L . There are no explicit or implicit leaks, so rule 1 does not
fire. But MHP(print(x),print(2)), so there is an order

conflict: print(x)
ocon f� print(2). Indeed, rule 3 rejects

the program immediately. Furthermore, MHP(print(x),

x = 1); thus, there is a data race concerning x. Since any
PDG node is in its own backward slice, rule 2 rejects the
example as well, where s′ = s′′ = print(x).

Example 2 Consider again Fig. 3. The programs in the right
are accepted, as there are no explicit, implicit or probabilis-
tic flows. Both programs contain termination channels which
are, however, not discovered by the static check. The top left
program contains an additional implicit flow (inputPIN()

∈ BS(print("x"))) and thus is rejected by the static check
– even though its behaviour is identical to Fig. 3 bottom right.
But the check analyses program text, not program behaviour
(and behaviour equivalence is undecidable). For the program
bottom left, which again behaves identical to top left and bot-
tom right, the static check discovers the same implicit flow.

Now remember that for this program—in contrast to the
top left program—Definition 7 is fulfilled: it does not dis-
cover the termination leak. The static check is, however, a
sound overapproximation of Definition 7: in rare cases, it
rejects programs which are accepted by Definition 7. In par-
ticular, it rejects more termination leaks than Definition 7,
but it never misses nontermination leaks. In Fig. 3, the static
check thus discovers 2 of 4 termination leaks, while Defini-
tion 7 discovers only 1 of 4 termination leaks. The example
indicates that the static check is, after all, “only 50% termina-
tion insensitive”; however, this number has not been validated
in realistic experiments.

5.2 RLSOD: allowing noncritical conflicts

Often LSOD is criticized as it may prohibit useful nondeter-
minism (due to rules 2 and 3). For example, if several threads

123

A new algorithm for low-deterministic security 275

nondeterministically write to the same public file, LSOD as
described so far will always prohibit such nondeterministic
writes due to rule 3.

But note that a race or conflict is only harmful if there
is a possible control flow from a high node to the conflicting
nodes—otherwise the conflict cannot cause a leak. In particu-
lar, programs without high sources may contain arbitrary low
determinism, and arbitrary high nondeterminism is allowed
if it cannot influence low events. This important observation
allows to prevent spurious rejection of useful nondetermin-
ism.

The result is a criterion which, strictly speaking, cannot
be called LSOD any more, as LSOD Definition 7 absolutely
disallows any low nondeterminism. We call the new criterion
RLSOD (relaxed LSOD). It is easy to implement: potential
control flow can be checked in the threaded control flow
graph (see Sect. 6). Thus, item 3 in the above static check
now reads

3’.
(
MHP(s, s′) ∧ ∃a : cl(a) = H ∧ (f low(a, s) ∨
f low(a, s′))

) �⇒ (
cl(s) = H ∨ cl(s′) = H

)

Examples In Fig. 2 right, neither l=0nor print(l) can be
reached from high events, as both are initial in their thread.
Thus, the example is RLSOD even though it is not LSOD
(cmp. example 1 in Sect. 3.2). In Fig. 8 top, the inputPIN
cannot influence the writes to the public debug file; hence,
the nondeterminism present in the high-influenced parts is
allowed. In Fig. 8 bottom, there is no high input, and hence, all
low conflicts are allowed. Thus, both examples are RLSOD.
Similar anti-LSOD examples from the literature are RLSOD
likewise. Thus, the long-standing statement “LSOD prohibits
useful nondeterminism” has lost its foundation.

Note, however, that low nondeterminism can be insecure—
even if the RSLOD criterion (or any PN criterion) is
satisfied—if the scheduler can be manipulated. A manipu-
lated scheduler could, for example, read a high value before
scheduling (e.g. h=0 or h=1), and then schedule low deter-
minism (e.g. in l = 0 || l = 1;) in a way such that
the high value is copied to a low variable. This is the rea-
son why some authors disallow schedulers which read high
data [42], while others favour scheduler-specific IFC and PN
[19,35] (see also Sect. 8). In the current work, the possibility
of manipulated schedulers is ignored, and low nondetermin-
ism is considered secure if in the program code it is not influ-
enced by high events. We consider this approach consistent
with the notion of “language-based” security.

6 Implementation

We assume that all PDG nodes n ∈ N , as well as input/output
streams, are annotated (classified) with a security level cl(n).

1 class Example {
2 static volatile int [] buffer = new int[100];
3 int y;
4
5 static class A extends Thread {
6 public void run() {
7 int newentry = y;
8 . . . / / code that enters new entry into buffer
9 . . . / / buffer may contain high values ,

10 . . . / / but these are not observable!
11 }
12 }
13
14 static class B extends Thread {
15 public void run() {
16 y = inputPIN() ;
17 print ("debug info") ;
18 . . . / / code that consumes entries from buffer
19 print ("more debug info") ;
20 } }
21 }

1 class Example {
2 static int x;
3
4 static class A extends Thread {
5 public void run() {
6 x = 0;
7 print (x) ;
8 }
9 }

10
11 static class B extends Thread {
12 public void run() {
13 int y = inputLowData() ; / / low input instead of high PINs
14 while (y > 1)
15 y ;
16 x = 1;
17 print (2);
18 } }
19 }

Fig. 8 The RLSOD criterion does not prohibit useful nondeterminism

It is enough to annotate inputs I ⊆ N and outputs O ⊆
N (also called sources and sinks), as the security level for
intermediate nodes n ∈ N\(I ∪ O) can be determined by a
fix-point iteration similar to data flow analysis on the PDG
[16]. The analysis can handle arbitrary lattices of security
levels, not just the two-element lattice L � H .

For the implementation, the PDG is enriched with data and
order conflict edges. The result is called a CPDG (conflict-
enriched program dependency graph).

Definition 9 (Data and order conflict edges) Let G =
(N ,→) be a PDG. Let m, n ∈ N where MHP(m, n). There
is a data conflict edgem →dcon f n toG ifm defines a variable
v that is used or defined by n: ∃v : v ∈ de f (m)∧v ∈ use(n).
There is an order conflict edgem ↔ocon f n toG if both nodes
are classified as sources or sinks: m, n ∈ I ∪ O .

Example Figure 9 shows the CPDG of the program on
the right hand side of Fig. 1. The example assumes that y

= inputPIN() is classified as a source of high data and
print(x) and print(2) are classified as sinks of low data.

123

276 D. Giffhorn, G. Snelting

control dependence

data dependence

data conflict

interference dependence

order conflict

thread_2thread_1

x = 0

print(x)

y=inputPIN()

whi le(y !=0)

y--

x = 1

print(2)

Fig. 9 PDG of the program on the right side of Fig. 1, enriched with
data and order conflict edges. The grey nodes denote the slice for node
print(x). Note that the slice ignores conflict edges

The CPDG contains two order conflict edges, one between
print(x) and print(2) and one between print(x) and y

= inputPIN(), and three data conflict edges, from x = 0 to
x = 1, from x = 1 to x = 0 and from x = 1 to print(x).

Definition 10 (TCFG) A Threaded Control Flow Graph
(TCFG) consists of the interprocedural CFGs for the indi-
vidual threads, connected by fork and join edges.

A formal definition of TCFGs can be found in [8]. A path
in the TCFG is written a →∗

TCFG b (or f low(a, b) for
short).16 Once CPDG and TCFG have been constructed, the
IFC checker proceeds as follows:

1. Compute BS(s) for every sink s ∈ O .
2. If the backward traversal encounters a source i ∈ I where

cl(i) �� cl(s), then the program may leak data of level
cl(i) via explicit or implicit flow and is rejected. This
criterion is also used in our sequential IFC [16].

3. If the traversal encounters an incoming data conflict
m →dcon f n, the program may contain a probabilistic
data channel and is rejected.

4. If the traversal encounters an order conflict m ↔ocon f n,
check if the order conflict is low observable, i.e. cl(m) =
cl(n) = L . If so, the program may contain a probabilistic
order channel and is rejected.

Example. Consider Fig. 9. The backward slice for print(2)
encounters the order conflict edge between print(2) and
print(x), so the program may contain a probabilistic order
channel. The slice for print(x), highlighted grey in Fig. 9,
encounters all data conflict edges, so the program may con-
tain a probabilistic data channel as well, whereas its implicit
and explicit flow is secure.

In order to allow noncritical conflicts (RLSOD criterion,
see Sect. 5.2), we change item 4 in the algorithm as follows:

4’. If the traversal encounters an order conflict m ↔ocon f n,
check if cl(m) = cl(n) = L . If so, check in the TCFG

16 The latter notation was already used in Sect. 5.2.

if any node that can be executed before both conflicting
nodes is a high source: ∃ a ∈ N : cl(a) = H∧a →∗

TCFG
m ∧ a →∗

TCFG n. If so, the program may contain a
probabilistic order channel and is rejected. If not, the
conflict is not critical.

In the implementation, rules 2–4 are integrated into a
backward I2P slicer. A time-sensitive slicer would be more
precise, but would make the algorithm much more complex
and expensive. In practice, I2P precision is often sufficient;
time-sensitive slicing can have exponential runtime and thus
should only be applied if the I2P approach produces false
alarms. Algorithms 1, 2 and 3 present detailed pseudocode.
Algorithm 1 receives a CPDG in which sources and sinks are
already classified and which already contains the order con-
flict edges, the corresponding TCFG and the security lattice
in charge. It then runs a slicing-based check of the implicit
and explicit flow (that is, it checks rule 2; in fact, the algo-
rithm from [16] is used). If the program passes that check, it
is scanned for probabilistic channels by checking rules 3 and
4. This is done by Algorithm 2.

Algorithm 2 receives the CPDG, the TCFG, the security
lattice and a source or sink s of a certain security level l.
The algorithm first checks whether s is involved in a low-
observable order conflict that can be preceded by a source of
high data. This task is delegated to the auxiliary procedure
benign in Algorithm 3. After that, it executes an extended
I2P slicer which additionally checks if s is potentially influ-
enced by a data conflict whose nodes can be preceded by a
source of high data. This check is again delegated to proce-
dure benign. The “phase 1” and “phase 2” in the I2P loop

Algorithm 1 Information flow control for concurrent pro-
grams.

Input: A classified CPDGG = (N , E), its TCFGC , a security lattice
L.
Output: ‘true’ if the program is LSOD (up to declassification and
harmless conflicts), ‘false’ otherwise.
Let src(n) be the source level of node n (= ⊥ if n is not a source)
Let sink(n) be the sink level of node n (= � if n is not a sink)

/* Check implicit and explicit flow: */
Let flow(G,C,L) be a function that returns false if G contains
illicit implicit or explicit flow.
if flow(G,C,L) == false then

return false
/* Scan the program for probabilistic channels. */
/* Check sources: */
for all n ∈ N : src(n) �= ⊥ do

if prob(G,C, n,src(n),L) == false then
return false

/* Check sinks: */
for all n ∈ N : sink(n) �= � do

if prob(G,C, n,sink(n),L) == false then
return false

return true

123

A new algorithm for low-deterministic security 277

Algorithm 2 Procedure prob detects probabilistic channels.
Input: An CPDG G = (V, E), its TCFG C , a node s, its security
level l, the security lattice L.
Output: ‘false’ if s leaks information through a probabilistic channel,
‘true’ otherwise.
/* Check G for probabilistic order channels. */
/* inspect order conflicts: */
for all m ↔ocon f s do

if benign(C,m, n, ocon f ,L, x) == false then
return false

/* Check G for probabilistic data channels. */
/* initialize the modified I2P-slicer*/
W = {s} /* a worklist */
M = {s �→ true} /* maps visited nodes to true (phase 1) or false
(phase 2) */
repeat

remove first node n from W
/* look for data conflicts */
for all m →dcon f n do

if benign(C,m, n, dcon f ,L, l) == false then
/* conflict is harmful */
return false

/* proceed with standard I2P slicing */
for all e = m → n where e is not a conflict edge do
/* if m hasn’t been visited yet or we are in phase 1 and m has
been visited in phase 2 */
if m �∈ dom M ∨ (¬M(m) ∧ (M(n) ∨ e is a concurrency edge
)) then
/* concurrency edges comprise interference edges, fork-in,
fork-out and join-out edges */
if M(n) /* we are in phase 1 */ ∨e is not a parameter-in or call
edge then

append m to worklist W
/* determine how to mark m: */
if M(n) ∧ e is a parameter-out edge then
/* we are in phase 1 and e is a parameter-out edge: mark m
with phase 2 */
M = M ∪ {m �→ f alse}

else if ¬M(n) ∧ e is a concurrency edge then
/* we are in phase 2 and e is a concurrency edge: mark m
with phase 1 */
M = M ∪ {m �→ true}

else
/* mark m with the same phase as n */
M = M ∪ {m �→ M(n)}

until W = ∅
return true /* no probabilistic channels */

are just the two phases of the HRB slicer, which is inlined
into the I2P algorithm.

Procedure benign implements rule 4. First it checks
whether the given conflict is an order conflict and whether
it is low observable, which it is if both conflicting nodes
are visible to the attacker. To allow noncritical conflicts, it
additionally checks if the conflicting nodes are preceded by a
high source n. This is the case if n reaches them on realizable
paths in the TCFG or if it may happen in parallel to them.

Example 1. The sequential programs in Fig. 3 right are
accepted by Algorithm 1, as there are no explicit, implicit or
probabilistic flows. Both programs contain termination chan-

Algorithm 3 Procedure benign identifies benign conflicts.
Input: A TCFG C = (N , E), two conflicting nodes a and b, the kind
e of the conflict, a security lattice L, a security level l ∈ L.
Output: ‘true’ if the conflict is harmless, ‘false’ otherwise.
Let reaches(m, n,C) return ‘true’ if there exists a realizable path
from node m to node n in C .

/* Check visibility of order conflicts. */
if e == ocon f then
x = (src(a) �= ⊥∧src(a) � l)∨(sink(a) �= �∧sink(a) �
l) /* is ‘a’ visible? */
y = (src(b) �= ⊥∧src(b) � l)∨ (sink(b) �= �∧sink(b) �
l) /* is ‘b’ visible? */
if ¬x ∨ ¬y then

return true /* the order conflict is not visible */
/* Check if a source of high data may execute before the conflicting
nodes. */
for all n ∈ N do

if src(n) �� l then
if (reaches(n, a) ∨ MHP(n, a)) ∧ (reaches(n, b) ∨
MHP(n, b)) then

return false /* the conflict is harmful */
return true /* the outcome of the conflict cannot be influenced by
high data */

nels which, however, are not discovered by Algorithm 1. On
the other hand, the left programs contain additional implicit
flow and thus are rejected by Algorithm 1—even though their
behaviour is identical to the bottom right program. This seem-
ing inconsistency is a deliberate consequence of allowing
termination leaks, as discussed at length in Sect. 2.

Example 2. Consider Fig. 9. Algorithm 1 passes the flow

call successfully (no implicit or explicit flows, as checked by
sequential IFC for every thread). It then calls Algorithm 2 for
the high source y = inputPIN() and for the two low sinks
print(x) and print(2). Tracing the last call, Algorithm
2 sees the order conflict between print(2) and print(x);
hence, it calls Algorithm 3. The latter discovers visibility of
the conflict in the second main phrase of the first if, which
prevents the conflict to be benign—Algorithm 2 immedi-
ately returns false. If we nevertheless trace the algorithm
a little further, the worklist for the I2P slicer is initialized
with print(x). In the first iteration, the for loop discov-
ers m =x=0; and m =x=1; to be in immediate data con-
flict with n =print(x). Algorithm 3 discovers that a source
of high data, namely y=inputPIN(); can reach print(x);
hence, the data conflict is harmful. The example shows that
the RLSOD check is terminated as soon as a leak is found;
it can also be modified to return a list of all leaks, where a
PDG path is given for every leak.

7 Evaluation

The above algorithms have been implemented for full Java
and integrated into JOANA. To our knowledge, no other eval-

123

278 D. Giffhorn, G. Snelting

class Alpha extends Thread {
public void run() {

while (mask != 0) {
while / busy wait /
result = result | mask;
trigger0 = 0;
maintrigger++;
i f

}
}

}
class Beta extends Thread {
public void run() {

while (mask != 0) {
while / busy wait /
result = result & ~mask;
trigger1 = 0;
maintrigger++;
i f

}
}

}
class Gamma extends Thread {
public void run() {

while (mask != 0) {
maintrigger = 0;
i f
else trigger1 = 1;
while (maintrigger < 2) ; / busy wait /
mask = mask / 2;

}
}

}

class SmithVolpano {
static int maintrigger , trigger0 ,

trigger1 = 0, PIN, result = 0;
static int mask = 2048; / / a power of 2

public static void main(String [] args)
throws Exception {

PIN = Integer . parseInt (args [0]);
Thread a=new Alpha();
Thread b=new Beta();
Thread g=new Gamma();
g . s tar t () ; a . s tar t () ; b. s tar t () ; / / start a l l threads
g . join () ; a . join () ; b. join () ; / / join a l l threads
System. out . println (result) ;

}
}

Fig. 10 Example from Smith and Volpano [44]

uations of LSOD or PN precision or scalability have been
published; hence, we cannot compare our implementation to
other algorithms.

7.1 Precision

To assess precision, we analysed examples from the liter-
ature. Our first example is from [44] (Fig. 10). The pro-
gram contains a possibilistic leak: if the input PIN is less
than twice the value of variable mask, then PIN’s value
is copied bit-wise into result and printed (provided that
scheduling is starvation free). Using JOANA, we classified
PIN = Integer.parseInt(args[0]) as a high source and
System.out.println(result) as a low sink. No other

classifications were necessary. Algorithm 1 detected an order
conflict which depends on high data: the assignments to
result in threads Alpha and Beta are conflicting, and
the outcome of the conflict is influenced by the values of
trigger0 and trigger1, which in turn are changed depen-
dent on PIN’s value in thread Gamma. Thus, this program is
rejected by RLSOD.

Our second example in Fig. 11 is from [31]. The pro-
gram is probabilistic noninterferent, which is, however, dif-
ficult to discover. The program manages a stock portfolio
of Euro Stoxx 50 entries. The portfolio data, pfNames and
pfNums, are secret; hence, neither the Euro Stoxx request by
EuroStoxx50, nor the final message sent to a commercials
provider may contain any information about the portfolio.
Indeed, Portfolio and EuroStoxx50 do not interfere; thus,
the Euro Stoxx request does not leak information about the
portfolio. The message sent to the commercials provider is
not influenced by the values of the portfolio, either, because
there is no explicit or implicit flow from the secret portfolio
values to the sent message. Furthermore, the two outputs have
a fixed relative ordering, as EuroStoxx50 is joined before
Output is started. Hence, the program should be considered
secure.

We classified the two statements reading the portfo-
lio from storage, pfNames = getPFNames() and pfNums

= getPFNums(), as high sources and the output flushes
nwOutBuf in EuroStoxx50 and at the end of main as low
sinks; other classifications were not necessary. The challenge
of this program is to detect that EuroStoxx50 is joined before
nwOutBuf is flushed in the main procedure, because other-
wise it cannot be determined that the two flushes of nwOutBuf
have a fixed execution order. And then the program would
have to be rejected because the resulting order conflict is
influenced by both sources.

Our MHP analysis, together with context-sensitive points-
to analysis, was able to detect that the joins of the threads are
must-joins, which enabled the RLSOD algorithm to iden-
tify that there is no order conflict between the two flushes
of nwOutBuf (cmp. Definitions 8, 9), which in turn avoided
false alarms in the “benign” check. Therefore, no probabilis-
tic channel was reported. To our knowledge, algorithm 1 is
the first implementation of LSOD or PN, which was precise
enough to verify that this example is noninterferent.

More case studies can be found in [8].

7.2 Runtime behaviour

We applied our algorithm to a benchmark of 8 programs
between 200 and 3000 LOC (taken from the Bandera bench-
mark and the JavaGrande benchmark). We used three differ-
ent security lattices, called A, B, C, with 3, resp. 22, resp. 254
elements. For each program and lattice, we randomly chose

123

A new algorithm for low-deterministic security 279

Fig. 11 Example from Mantel et al [31], converted to Java. For brevity, some methods are not shown

10 sources and 10 sinks, then 33 sources and 33 sinks, and
finally 100 sources and 100 sinks of random security levels
and analysed the classified programs. We measured the total
execution times, and separate execution times of the scan for
probabilistic channels and of the scan for explicit or implicit
flow. Every test was run ten times.

Table 1 shows the average execution times (measured on
a rather old standard PC). It contains one row for each com-

bination of program and lattice, i.e. row “LG + A” contains
the results for program “LaplaceGrid” and lattice A. The
numbers reveal that the most important factor influencing
the runtime behaviour is, besides the sheer size of the pro-
gram, the number of sources and sinks. With an increasing
number of sources and sinks the size of lattice C eventually
became the dominating cost factor. A more detailed analysis
reveals that the sequential IFC check in algorithm 1 needs

123

280 D. Giffhorn, G. Snelting

Table 1 Average execution times of algorithm 1 for different programs,
lattices and numbers of sources and sinks (in seconds)

Name + Lattice Sources × sinks

10 × 10 33 × 33 100 × 100

LG + A 1.6 4.8 21.2

LG + B 1.6 5.8 29.7

LG + C 2.0 9.5 170.7

(200 LOC)

SQ + A 5.9 17.2 54.0

SQ + B 5.5 17.3 68.0

SQ + C 5.8 21.1 162.5

(350 LOC)

KK + A 25.7 58.5 170.0

KK + B 22.1 57.5 187.8

KK + C 25.2 64.9 256.2

(600 LOC)

RT + A 8.9 25.3 99.3

RT + B 7.3 23.9 116.1

RT + C 8.4 27.2 175.1

(950 LOC)

MC + A 17.1 53.3 224.2

MC + B 18.7 53.3 173.6

MC + C 17.5 54.8 205.0

(1400 LOC)

JS + A 2.2 5.2 18.8

JS + B 2.4 5.6 20.3

JS + C 2.4 5.8 40.7

(500 LOC)

PO + A 6.4 18.1 54.6

PO + B 7.4 19.1 66.8

PO + C 7.0 20.4 89.8

(2000 LOC)

CS + A 19.4 52.5 153.3

CS + B 21.5 52.1 160.2

CS + C 21.0 53.6 177.3

(3000 LOC)

about the same execution time as the additional probabilistic
checks.

Table 2 shows the percentage share of the probabilistic
channel detection among the overall execution times. The
remaining time was consumed by the algorithm of Hammer
et al. [16], which is employed for verifying the explicit and
implicit flow. The results show that the two checks were sim-
ilarly fast. However, the probabilistic check seems to decline
in performance for large lattices, compared with Hammer et
al.’s algorithm, which is consistent with the above-mentioned
performance sensitivity for very large lattices.

Table 2 The percentage share of the probabilistic channel detection
among the overall execution times

Name + Lattice Sources x sinks

10 × 10 33 × 33 100 × 100

LG + A 53 48 62

LG + B 56 54 73

LG + C 58 73 94

SQ + A 44 39 44

SQ + B 43 40 55

SQ + C 43 50 80

KK + A 57 45 43

KK + B 58 46 45

KK + C 58 48 58

RT + A 44 40 44

RT + B 49 41 50

RT + C 47 46 67

MC + A 45 38 38

MC + B 43 38 39

MC + C 44 40 47

JS + A 52 46 41

JS + B 46 46 46

JS + C 53 54 71

PO + A 46 38 35

PO + B 45 37 36

PO + C 43 39 46

CS + A 38 29 28

CS + B 34 30 28

CS + C 32 31 34

8 Discussion and related work

In the following, we compare our definition of LSOD with
PN and LSOD definitions from the literature.

8.1 Weak probabilistic noninterference

Smith and Volpano’s weak probabilistic noninterference
(WPN) property [43,48] enforces probabilistic noninterfer-
ence viaweak probabilistic bisimulation. A program is WPN
if for each pair of low-equivalent inputs, each sequence of
low-observable events caused by one input can be caused by
the other input with the same probability.

WPN addresses explicit and implicit flow and probabilis-
tic channels. Like in our analysis, timing channels and termi-
nation channels are excluded (which permits the probabilistic
bisimulation to be weak). This renders their interpretation of
low-observable behaviour very similar to ours: It consists of
a sequence of low-observable events, but lacks information
about the time at which such an event occurs. The major

123

A new algorithm for low-deterministic security 281

void thread_1 () :
h = inputPIN() ;
i f (h < 0)

h = h (1);
l = 0;

void thread_2 () :
x = 1;

void thread_1 () :
h = inputPIN() ;
i f (h 0)

h = h + 2;
else

h = h 2;
l = 0;

void thread_2 () :
l = 1;

Fig. 12 Two examples comparing LSOD and WPN. We assume that
Smith and Volpano’s technique classifies variables h and x as high and
l as low and that our technique classifies h = inputPIN() as a
high input and l = 0 and l = 1 as low output. The left program is
accepted by our condition and rejected by theirs, the right program is
rejected by ours and accepted by theirs

difference concerning low-equivalent behaviour is that their
definition disallows low-observable events to be delayed infi-
nitely in one low-observable behaviour and to be executed
in the other. Thus, WPN is stricter with respect to termina-
tion channels and only permits the sheer termination of the
program to differ.

WPN globally partitions the program variables into high
and low, and the attacker is able to see all low variables at any
time. In contrast, our attacker can only see low operations
once they are executed. In particular, in our flow-sensitive
approach the same variable can be low at one program point
or high at another, dependent on the context.

Thus, the WPN attacker is generally more powerful than
ours, because we assume that only low operations/events and
their low operands are visible to the attacker. The price to be
paid is flow insensitivity, resulting in strange false alarms, as
we saw in, e.g. Fig. 2. It depends on the application context
which attacker model is more realistic.

Smith and Volpano’s security-type system lacks a detec-
tion of conflicts. Probabilistic channels are prevented by for-
bidding assignments to low variables sequentially behind
conditional structures, which is very restrictive. The program
on the left side of Fig. 12 is rejected by WPN, because the
running time of the if-structure depends on high data and is
followed sequentially by l = 0. However, it does not con-
tain a probabilistic channel because l = 0 is not involved in
an order conflict or influenced by a data conflict. It therefore
satisfies RLSOD.

WPN assumes that a single statement has a fixed running
time. Thus, programs like in Fig. 12 (right) are accepted
by WPN, because the branches of the if-structure have
equal length, and thus, different values of h do not alter
the probabilities of the possible ways of interleaving of
l = 0 and l = 1. We explicitly aim to reject such programs,
arguing that different running times of h = inputPIN()

could already cause a probabilistic channel, and our security

constraint rejects the program because of the data conflict
between l = 0 and l = 1.

Smith and Volpano’s security-type system is restricted to
probabilistic schedulers and breaks, for example, in the pres-
ence of a round-robin scheduler [43]. (R)LSOD holds for
every scheduler.

8.2 Strong security

Sabelfeld and Sands’ security property strong security [42]
addresses implicit and explicit flow, probabilistic channels
and termination channels. It enforces probabilistic noninter-
ference for all schedulers whose decisions are not influenced
by high data. It makes the following requirements to a pro-
gram p and all possible pairs (t, u) of low-equivalent inputs:
LetT andU be the set of possible program runs resulting from
t and u. For every T ∈ T, there must exist a low-equivalent
program run U ∈ U.

Even though it looks like a possibilistic property, strong
security is capable of preventing probabilistic channels, the
trick being the definition of low-equivalent program runs:
Two program runs are low equivalent if they have the same
number of threads and they produce the same low-observable
events and create or kill the same number of threads at each
step under any scheduler whose decisions are not influenced
by high data. This “lockstep execution” requirement allows
ignoring the concrete scheduling strategy.

The attacker sees all low variables at all times and is aware
of program termination. The values of the low variables, their
changes over time and the termination behaviour constitute
the low-observable behaviour. Strong security assumes that
the attacker is not able to see which statement is respon-
sible for a low-observable event and is designed to identify
whether two syntactically different subprograms have equiv-
alent low-observable effects. This makes it possible to iden-
tify programs like Fig. 13 (left) as secure. Even though the
assignments to the low variable l are influenced by high
data via implicit flow, strong security states that the low-
observable behaviour is not, because both branches lead to 0
being assigned to l. Our algorithm is not able to recognize
this program as secure, the same holds for WPN.

Smith/Volpano and we assume that the attacker cannot
exploit termination channels and is able to identify state-
ments responsible for low-observable events, which is seen
contrarily by Sabelfeld and Sands.

The requirement of lock-step execution implies that
strongly secure programs can be combined sequentially or
in parallel to a new strongly secure program (composition-
ality). Sabelfeld [41] has proven that strong security is the
least restrictive security property that provides this degree of
compositionality and scheduler-independence. Its composi-
tionality is its outstanding property and an advantage over our

123

282 D. Giffhorn, G. Snelting

void main() :
h = inputPIN() ;
i f (h < 0)

l = 0;
else

l = 0;

void thread_1 () :
h = inputPIN() ;
i f (h < 0)

h = h (1);
else

skip ;
l = 0;

void thread_2 () :
x = 1;

Fig. 13 Two examples demonstrating the capabilities of strong secu-
rity. We assume that h and x are classified as high and l as low. The
left program is strongly secure, because both branches assign the same
value to l. The right program is a transformation of the program on
the left of Fig. 12, where the additional skip statement removes the
probabilistic data channel

LSOD. However, lockstep execution imposes serious restric-
tions to programs.

Furthermore, the restriction to schedulers which do not
touch high data means that any information possibly used
by the scheduler, for example the mere number of existing
threads, must be classified as low. This in turn means that the
classification of a program becomes scheduler dependent, so
the scheduler independence of strong security is bought by
making the classification scheduler dependent. This allows
breaking strong security, by running the program under a
scheduler for which the attacker knows the classification of
the program to be inappropriate ([42], Sect. 4.1).

8.3 LSOD by Zdancewic and Myers

Inspired by Roscoe’s earlier work [39], Zdancewic and
Myers [53] pointed out that conflicts are a necessary con-
dition of probabilistic channels. They suggested combining
a security-type system for implicit and explicit flow with
a conflict analysis, arguing that programs without conflicts
have no probabilistic channels.

The authors exclude termination channels and probabilis-
tic order channels and justify that by confining the attacker
to be a program itself (e.g. a thread). Such an attacker is not
able to observe the relative order of low-observable events,
because such an observation requires a probabilistic data
channel in which the differing relative orders manifest.

The authors apply the approach to languages with mes-
sage passing and shared memory. The language provides lin-
ear communication channels that are used for transmitting
exactly one message and thus guarantee conflict-free com-
munication. They present a security-type system for a con-
current calculus λPAR

SEC , that verifies confidentiality of implicit
and explicit flow, and verifies that linear channels are used
exactly once. The type system guarantees that well-typed
programs are LSOD if they are additionally free of data con-

flicts. Later, Terauchi provided an improved type system for
LSOD [47] which does not require confluence of the checked
program.

It is interesting to compare their notion of low-equivalent
traces with ours. Technically, they use a weaker notion of
low-equivalence. They do not demand that two traces are
low equivalent as in our Definition 6 (finite case); they only
demand that the projections of the traces onto all individ-
ual variables (“location traces”) are low equivalent. This
implies that low variables undergo the same changes in low-
equivalent traces, but not necessarily at the same time. That
is, more traces are low equivalent than in our definition—
which should also reduce false alarms. Unfortunately, this
approach is not flow- sensitive. Consider again Fig. 2 right:
l is globally classified low; thus, any location trace for l
has the form 〈l = 0, l = 0, l = 0, l = h〉. As h depends
on inputPIN, these location traces are not low equivalent
for different high inputs, causing a false alarm. In general,
the “projection trick” and global variable classification may
abstract away from statement order, implying flow insensi-
tivity. In our analysis,l=h in Fig. 2 is not low observable (see
discussion in Sect. 3.2); hence, the example is RLSOD even
though our Definition 6 demands more than Zdancewic’s.

Zdancewic and Myers’ attacker is weaker than ours, as
probabilistic order channels are excluded. It is explicitly
designed to tackle malicious threads spying out confiden-
tial information. Their requirement that programs are com-
pletely free of data conflicts (which is much stricter than ours)
in practice prevents an application to languages with shared
memory, because many programs contain data conflicts, but
many such conflicts do not influence low-observable behav-
iour. We have provided examples of such programs in Fig. 8.

8.4 LSOD by Huisman et al.

Huisman et al. [20] pointed out that Zdancewic and Myers’
method contains a leak, because its definition of low-
equivalent program runs is restricted to the length of the
shorter run. They close that leak by strengthening the def-
inition of low-equivalent program runs: assignments to low
variables sequentially behind loops iterating over high data
are forbidden.

Closing termination channels additionally requires that
either both program runs terminate or none of them. They also
discover probabilistic order channels, by extending location
traces to the set L of low variables: In that case two program
runs T and U are low equivalent if the set of low variables
in T and U undergoes the same sequence of changes in both
runs up to stuttering.

The authors formalized their different security properties
via temporal logics, for which the model-checking problem
is decidable if the program in question can be expressed by
a finite state machine. This permits a very precise detection

123

A new algorithm for low-deterministic security 283

of relevant data conflicts such that total freedom of data con-
flicts is not required. Hence, their approach can be applied to
languages with shared memory communication.

Closing termination channels has the effect that Huis-
man’s approach is more restrictive than ours. It forbids low-
observable events sequentially behind loops iterating over
high data. Furthermore, the optional treatment of probabilis-
tic order channels imposes severe restrictions on the analysed
programs. As in WPN, each assignment to a low variable is
regarded as a low-observable event. Huisman thus requires
that two low-equivalent program runs must make the same
sequence of changes to low variables. Even if two threads
work on completely unrelated low variables, the assignments
to these variables must have a fixed interleaving order.

In more recent work, Huisman et al. [19,35] introduced
δ-specific observational determinism. Since the then-known
LSOD criteria all turned out to be either too restrictive or
unsound, [19] explicitly reintroduces the scheduling policy
δ into the definition and demands low equivalency of traces
only for traces under the same scheduling policy. Thereby,
some restrictions on the original approach can be relaxed,
while the model-checking approach can be maintained. δ-
specific observational determinism is explicitly scheduler
dependent; like WPN, it is flow insensitive and assumes that
variables are globally classified.

Thus, Huisman et al. depart again from scheduler inde-
pendence, because they consider it to be too problematic.
In contrast, we consider flow insensitivity to be the trouble-
maker, as our flow-sensitive LSOD is scheduler independent,
sound, precise, and has demonstrated practical applicability.
It remains to be seen how the discussion about PN and LSOD
will eventually evolve.

8.5 Low distinguishability by Mantel, Sands, and Sudbrock

In a recent approach to compositional noninterference for
concurrent programs, Mantel, Sands and Sudbrock [28]
employ a flow-sensitive security-type system [21] and MHP
to establish SIFUM-security. Threads are dynamically anno-
tated with “modes”, i.e. assumptions and guarantees about
variable read and write behaviour in program threads. SIFUM
then defines low-distinguishability (which is similar to non-
interference) via strong low bisimulation modulo modes. A
soundness proof is provided.

Mantel, Sands and Sudbrock certainly improve earlier def-
initions by exploiting mode information for variables, and
by being flow-sensitive. Furthermore, compositionality is an
asset not yet provided by PDGs. However, [28] is restricted
to a fixed number of threads and does not consider context-,
object-, or time-sensitivity; evaluations of an implementation
have not yet been reported.

Recently, Sudbrock has shown that for intraprocedural
IFC, PDGs and flow-sensitive type systems such as [21] have

exactly the same precision [30]. But note that all known type
systems for interprocedural IFC are—in contrast to PDGs—
not context- or object-sensitive.

8.6 LSOD for X10 by Chong and Muller

Recently, Chong and Muller presented an LSOD implemen-
tation for the language X10 [32]. X10 is designed for PGAS
(Partitioned Global Address Space) hardware architectures,
where hardware resources are partitioned into so-called tiles.
In X10, tiles ared modelled by so-called places, and using the
at command, computations can be started at remote tiles.

Muller and Chong [32] assumes that every tile may have
a different security level, but all data on a tile have the same
security level. They present an operational semantics for a rel-
evant X10 subset, together with a security-type system which
guarantees LSOD. The approach has been implemented, but
empirical data on scalability and precision have not been pub-
lished. It would be interesting to empirically compare their
implementation to JOANA.17

9 Future work

Let us briefly mention some topics in ongoing and future
work.

Time sensitivity. Recently, an optional time-sensitive slicer
was integrated. We also added an experimental autotuning
facility, which automatically switches between variants of
pointer analysis (flow-sensitive, context-sensitive) and slicer
(time-sensitive and I2P variants). Autotuning is applied to a
benchmark of secure programs, until a setup without false
alarms has been found. However, more algorithm engineer-
ing is needed to balance precision against scalability.

Lock sensitivity. As described in Sect. 2, MHP analysis is
crucial for PDG precision and hence for overall IFC preci-
sion. The current MHP analysis, however, does not analyse
explicit locks in the program. The latter property is called
lock sensitivity and has been explored in [5,6] in the scope of
Dynamic Pushdown Networks. We recently integrated this
analysis. Preliminary experiments indicate that MHP indeed
becomes more precise, as more interference edges are pruned
[13].

Declassification. We currently do not provide a declassifica-
tion mechanism for probabilistic channels, only for sequen-
tial channels (see [16] for details). Instead of declassifying
probabilistic channels, we consider Zdancewic and Myers’

17 An X10 extension for JOANA is in preparation.

123

284 D. Giffhorn, G. Snelting

idea of using linear channels for deterministic communica-
tion between threads [53] more promising. Linear channels
can be integrated in form of a library into languages with
shared memory. We have recently added a preliminary imple-
mentation of such a library.

Compositionality. As explained in Sect. 4.2, the PDG of a
complete system cannot be obtained by just combining PDGs
of subsystems. We recently investigated mechanisms to over-
come this drawback: subsystems can be analysed in isolation
and later plugged into larger systems. However, plug-in of
local PDGs is a nontrivial operation, which may require sec-
ondary fix-point iteration until global dependencies stabilize.

Machine-checked proofs. It is our long-term goal to formal-
ize our RLSOD check in Isabelle and provide a machine-
checked proof for Theorem 1; just as we have provided
machine-checked soundness proofs for the sequential (inter-
procedural) PDG-based IFC [50,51].

Evaluation and comparison. JOANA’s RLSOD implemen-
tation needs to be applied in larger case studies and will be
compared with other IFC tools.

10 Conclusion

We presented a new method for information flow con-
trol in concurrent programs. The method guarantees prob-
abilistic noninterference and is based on a new variant—
named RLSOD—of low-security observational determin-
ism. It turns out that RLSOD can be naturally implemented
through slicing algorithms for concurrent programs, which
are flow-sensitive, object-sensitive, context-sensitive, and
time-sensitive. We also demonstrated how RLSOD fixes
some weaknesses of earlier LSOD definitions. In particu-
lar, secure low nondeterminism is allowed by RLSOD. In
essence, we demonstrated that flow sensitivity is the key to
maintain soundness and precision in IFC for multi-threaded
programs.

Our implementation can handle full Java with an arbitrary
number of threads. It was applied to examples from the litera-
ture and a small benchmark; preliminary experience indicates
high precision and scalability for medium-sized programs.
Future work will explore declassification for probabilistic
channels; we also aim at a machine-checked version of the
soundness proof.

Our current work is part of a long-standing project, which
exploits modern program analysis for software security. The
current work demonstrates that IFC analysis of concurrent
programs can indeed be improved by applying PDGs and
MHP analysis, resulting in algorithms with considerably
enhanced precision and scalability.

Acknowledgments We thank the reviewers for their very insightful
observations and suggestions. Joachim Breitner, Jürgen Graf, Martin
Hecker, and Martin Mohr provided valuable comments.

Appendix A: Proof Sketch for Theorem 1 and 2

In the following, we describe the central steps in the sound-
ness proof. All details can be found in [8].

Theorem 1 A program is low-security observational deter-
ministic if

1. no low-observable operation o is potentially influenced
by an operation reading high input,

2. no low-observable operation o is potentially influenced
by a data conflict, and

3. there is no order conflict between any two low-observable
operations.

Proof Let two low-equivalent inputs be given. We have to
demonstrate that, under conditions 1.–3., all possible traces
resulting from these inputs are low equivalent. The proof
proceeds in a sequence of steps.

1. Definition. For a trace T and operation o, the trace slice
S(o, T) consists of all operations and dependences in T
which form a path from start to o (see Fig. 4). S(o, T) is
thus similar to a dynamic backward slice for o. Similarly
the data slice D(o, T) is the dynamic backward slice
which considers only dynamic data dependencies, but
not control dependencies. Trace and data slices are cycle
free. Note that every operation in S(o, T) has exactly
one predecessor on which it is control dependent, the
start operation being the only exception. Note also that
S(o, T) can be soundly approximated by a static slice on
stmt (o), the source code statement containing o.

2. Lemma. Let q and r be two different operations of the
same thread, and let T and U be two traces which both
execute q and r . Further, let T execute q before r . Then
U also executes q before r . This is a consequence of the
fact that any dynamic branching point b imposes a total
execution order on all operations ∈ DCD(b), because
according to 1., all operations have at most one control
predecessor.

3. Lemma. Let q, r be operations which cannot happen in
parallel, and let T and U be traces which both execute
q and r . Further, let T execute q before r . Then U also
executes q before r . Indeed, if q, r are in the same thread,
this is just the last lemma. Otherwise, MHP guarantees
q executes before r ’s thread is forked, or r executes after
q’s thread has joined. Hence, U executes q before r .

4. Lemma. Let (m, o,m) be a configuration in trace T .
To = m|use(o) denotes the part of memory m that con-

123

A new algorithm for low-deterministic security 285

tains the variables used by o, and To = m|de f (o) denotes
the part of memory m that contains the variables defined
by o. Now let T and U be two traces with low-equivalent
inputs. Let o be an operation. If D(o, T) = D(o,U) and
no operation in these data slices reads high input, then
To = Uo and To = Uo. This lemma is proved by induc-
tion on the structure of D(o, T) (remember D(o, T) is
acyclic).

5. Corollary. Let T,U be two traces with low-equivalent
inputs. Let o be an operation. If S(o, T) = S(o,U) and
no operation in these trace-slices reads high values, then
To = Uo and To = Uo. That is, the low memory parts in
both traces are identical for low-equivalent inputs, if all
operations do not depend on high values.

6. Lemma. Let T and U be two finite traces of p with low-
equivalent inputs. T andU are low equivalent if for every
low-observable operation o, S(o, T) = S(o,U) holds
and no operation in the trace-slices depends on high val-
ues, and T andU execute the same low-observable opera-
tions in the same relative order. This lemma, which seems
quite natural, gives us an instrument for finite traces to
prove the low equivalence of traces resulting from low-
equivalent input, which is necessary for theorem 1. The
infinite cases are treated in the next two lemmata.

7. Lemma. Let T andU be two infinite traces of p with low-
equivalent inputs such that obslow(T) is of equal length
or longer thanobslow(U) (switch the names if necessary).
T and U are low equivalent if

– they execute the shared low-observable operations in
the same relative order,

– for every low-observable operation o ∈ U S(o, T) =
S(o,U) holds and no operation in the trace-slices
reads high input

– and for every low-observable operation o ∈ T and
o /∈ U U infinitely delays an operation b ∈ DCD(o).

8. Lemma. Let T and U be two traces of p with low-
equivalent inputs, such that T is finite and U is infinite.
T and U are low equivalent if

– obslow(T) is of equal length or longer thanobslow(U),
– T and U execute the shared low-observable opera-

tions in the same relative order,
– for every low-observable operation o ∈ U S(o, T) =

S(o,U) holds and no operation in the trace-slices
reads high input

– and for every low-observable operation o ∈ T and
o /∈ U U infinitely delays an operation b ∈ DCD(o).

9. Corollary. Traces T,U are low equivalent if one of the last
three lemmata can be applied. What remains to be shown
is that the preconditions of the lemmata are a consequence
of the conditions 1.–3. in theorem 1.

10. Lemma. If operation o is not potentially influenced by a
data conflict, then S(o, T) = S(o,U) holds for all traces
T and U which execute o. Note that only at this point,
data or order conflicts are exploited. This lemma needs
an induction over the length of T . The base case is trivial,
because both T,U consist only of the start operation,
and trivially S(start, T) = S(start,U). For the induc-
tion step, let q be the next operation in T . If o �∈ DFS(q),
then q �∈ S(o, T), and the induction step trivially holds.
Otherwise, one can show that every dynamic data or

control dependence r
v��� q and r

dcd��� q in S(q, T)

is also in S(q,U). Furthermore, q does not depend on
additional operations in U . Thus, q has the same incom-
ing dependences in T and U . By induction hypothesis,
S(r, T) = S(r,U) for every r on which q is dependent
in T and U . Hence, S(q, T) = S(r, T).

11. Lemma (see section 4.3, lemma 1). Let o be an opera-
tion that is not potentially influenced by a data conflict or
an operation reading high input. Let T be a trace and Θ

be the set of possible traces whose inputs are low equiv-
alent to the one of T . If o ∈ T , then every U ∈ Θ

either executes o or infinitely delays an operation in
DCD(o).

12. Lemma. Let T and U be two traces with low-equivalent
inputs. If there are no order conflicts between any two
low-observable operations, then all low-observable oper-
ations executed by both T andU are executed in the same
relative order.

13. Theorem 1 holds. Lemma 12 guarantees that T and U
execute the shared low-observable operations in the same
relative order. Lemma 11 can be applied to all low-
observable operationso executed by bothT andU ; hence,
S(o, T) = S(o,U). Since the potential influence of a
low-observable operation o does not contain operations
reading high input, this also holds for the operations in
S(o, T) and S(o,U). To prove low equivalence of T and
U , we apply one of the lemmata 6,7, or 8, depending
whether T resp. U are finite or infinite. ��

Remember that the three conditions for theorem 1 can nat-
urally be checked using PDGs and slicing. This fact justifies
our definition of low-equivalent traces and our PDG-based
approach.

Theorem 2 If a program is LSOD according to definition 6,
it is probabilistically noninterferent.

Proof We write Θi for the set of possible traces for input i ;
for a trace r ∈ Θi , Pi (r) is its execution probability. Now let
two low-equivalent inputs t, u be given. Let Θ = Θt ∪ Θu .
Let T ∈ Θ . Let T = {r ∈ Θt | r ∼low T }, U = {r ∈ Θu |
r ∼low T }. We have to show that

∑
r∈T Pt (r) = ∑

r∈U Pu(r)
if LSOD holds.

123

286 D. Giffhorn, G. Snelting

Due to LSOD, all traces in Θ and thus in T ∪ U are low
equivalent, and ∀r ∈ Θ : T ∼low r . Therefore, under
LSOD, T = Θt , because the condition T ∼low r in the
definition of T always holds. That is, T contains all possible
traces for inputs t, u. Therefore,

∑
r∈T Pt (r) = 1. Similarly,

∑
r∈U Pu(r) = 1, and the required equality holds. ��

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calcu-
lus of dependency. In: POPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 147–160. ACM, New York (1999)

2. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-
insensitive noninterference leaks more than just a bit. In Proceed-
ings of ESORICS, volume 5283 of LNCS, pp. 333–348 (2008)

3. Binkley, D., Harman, M.: A survey of empirical results on program
slicing. Adv. Comput. 62, 105–178 (2004)

4. Binkley, D., Harman, M., Krinke, J.: Empirical study of optimiza-
tion techniques for massive slicing. ACM Trans. Program. Lang.
Syst. 30(1), 3 (2007)

5. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analy-
sis of dynamic networks of pushdown systems. In: Concurrency.
Theory (CONCUR 2005), pp. 473–487. Springer, LNCS 3653
(2005)

6. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner,
A.: Join-lock-sensitive forward reachability analysis for concurrent
programs with dynamic process creation. In: VMCAI, pp. 199–213
(2011)

7. Giffhorn, D.: Advanced chopping of sequential and concurrent pro-
grams. Softw. Qual. J. 19(2), 239–294 (2011)

8. Giffhorn, D.: Slicing of concurrent programs and its application
to information flow control. PhD thesis, Karlsruher Institut für
Technologie, Fakultät für Informatik, May 2012. http://pp.info.
uni-karlsruhe.de/uploads/publikationen/giffhorn12thesis.pdf

9. Giffhorn, D., Hammer, C.: Precise slicing of concurrent
programs—an evaluation of precise slicing algorithms for concur-
rent programs. J. Autom. Softw. Eng. 16(2), 197–234 (2009)

10. Giffhorn, D., Snelting, G.: Probabilistic noninterference based
on program dependence graphs. Karlsruhe Reports in Infor-
matics, 6, April 2012. http://pp.info.uni-karlsruhe.de/uploads/
publikationen/giffhorn12kri.pdf

11. Graf, J.: Speeding up context-, object- and field-sensitive sdg gen-
eration. In Proceedings of 9th SCAM, pp. 105–114, September
(2010)

12. Graf, J., Hecker, M., Mohr, M.: Using joana for information flow
control in java programs—a practical guide. In Proceedings of
6th Working Conference on Programming Languages (ATPS’13),
Lecture Notes in Informatics (LNI) 215. Springer, Berlin
(2013)

13. Graf, J., Hecker, M., Mohr, M., Nordhoff, B.: Lock-sensitive inter-
ference analysis for java: Combining program dependence graphs
with dynamic pushdown networks. In Proceedings of 1st Interna-
tional Workshop on Interference and Dependence, January (2013)

14. Hammer, C.: Information Flow Control for Java. PhD thesis, Uni-
versität Karlsruhe (TH) (2009)

15. Hammer, C.: Experiences with PDG-based IFC. In: Massacci, F.,
Wallach, D., Zannone, N. (eds.) Proceedings of ESSoS’10, volume
5965 of LNCS, pp 44–60. Springer, Berlin (2010)

16. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program depen-
dence graphs. Int. J. Inform. Secur. 8(6), December (2009)

17. Horwitz, S., Prins, J., Reps, T.: On the adequacy of program depen-
dence graphs for representing programs. In: Proceedings of POPL
’88, pp. 146–157, ACM, New York (1988)

18. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst. 12(1),
26–60 (1990)

19. Huisman, M., Ngo, T.M.: Scheduler-specific confidentiality for
multi-threaded programs and its logic-based verification. In: Pro-
ceedings of Formal Verification of Object-Oriented Systems (2011)

20. Huisman, M., Worah, P., Sunesen, K.: A temporal logic charac-
terisation of observational determinism. In: Proceedings of 19th
CSFW, p. 3. IEEE (2006)

21. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL
’06, pp. 79–90. ACM (2006)

22. Krinke, J.: Context-sensitive slicing of concurrent programs. In:
Proceedings ESEC/FSE-11, pp. 178–187, ACM, New York (2003)

23. Krinke, J.: Program slicing. In: Handbook of Software Engineer-
ing and Knowledge Engineering, vol. 3: Recent Advances. World
Scientific Publishing (2005)

24. Küsters, R., Truderung, T., Graf, J.: A framework for the crypto-
graphic verification of java-like programs. In Computer Security
Foundations Symposium (CSF), 2012 IEEE 25th. IEEE Computer
Society, June (2012)

25. Li, L., Verbrugge, C.: A practical MHP information analysis for
concurrent Java programs. In: Proceedings LCPC’04, volume 3602
of LNCS, pp. 194–208. Springer, Berlin (2004)

26. Lochbihler, A.: Java and the Java memory model—a unified,
machine-checked formalisation. In: Helmut, S., (ed.) Proceed-
ings of ESOP ’12, volume 7211 of LNCS, pp. 497–517, March
(2012)

27. Manson, J., Pugh, W., Adve, S.V..: The Java memory model. In:
POPL, pp. 378–391 (2005)

28. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees
for compositional noninterference. In: CSF, pp. 218–232 (2011)

29. Mantel, H., Sudbrock, H.: Flexible scheduler-independent security.
In: Proceedings ESORICS, volume 6345 of LNCS, pp. 116–133
(2010)

30. Mantel, H., Sudbrock, H.: Types vs. pdgs in information flow analy-
sis. In: LOPSTR, pp. 106–121 (2012)

31. Mantel, H., Sudbrock, H., Kraußer, T.: Combining different proof
techniques for verifying information flow security. In: Proceedings
of LOPSTR, volume 4407 of LNCS, pp. 94–110 (2006)

32. Muller, S., Chong, S.: Towards a practical secure concurrent lan-
guage. In: OOPSLA, pp. 57–74 (2012)

33. Nanda, M.G., Ramesh, S.: Interprocedural slicing of multithreaded
programs with applications to Java. ACM Trans. Program. Lang.
Syst. 28(6), 1088–1144 (2006)

34. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm
for computing MHP information for concurrent Java programs. In:
Proceedings ESEC/FSE-7, volume 1687 of LNCS, pp. 338–354,
London, UK (1999)

35. Ngo, T.M., Stoelinga, M., Huisman, M.: Confidentiality for prob-
abilistic multi-threaded programs and its verification. In: ESSoS,
pp. 107–122 (2013)

36. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.:
A new foundation for control dependence and slicing for modern
program structures. ACM Trans. Program. Lang. Syst. 29(5), 27
(2007)

37. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing.
In: Proceedings of FSE ’94, pp. 11–20, ACM, New York (1994)

38. Reps, T., Yang, W.: The semantics of program slicing. Techni-
cal Report 777, Computer Sciences Department, University of
Wisconsin-Madison (1988)

39. Roscoe, A.W., Woodcock, J., Wulf, L.: Non-interference through
determinism. In: ESORICS, volume 875 of LNCS, pp. 33–53
(1994)

123

http://pp.info.uni-karlsruhe.de/uploads/publikationen/giffhorn12thesis.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/giffhorn12thesis.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/giffhorn12kri.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/giffhorn12kri.pdf

A new algorithm for low-deterministic security 287

40. Sabelfeld, A., Myers, A.: Language-based information-flow secu-
rity. IEEE J. Select. Areas Commun. 21(1), 5–19 (January 2003)

41. Sabelfeld, A.: Confidentiality for multithreaded programs via
bisimulation. In: Proceeding 5th International Andrei Ershov
Memorial Conference, volume 2890 of LNCS, Akademgorodok,
Novosibirsk, Russia, July (2003)

42. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-
threaded programs. In Proceedings of CSFW ’00, p. 200, Wash-
ington, DC, USA. IEEE Computer Society (2000)

43. Smith, G.: Improved typings for probabilistic noninterference in a
multi-threaded language. J. Comput. Secur. 14(6), 591–623 (2006)

44. Smith, G., Volpano, D.: Secure information flow in a multi-threaded
imperative language. In: Proceedings of POPL ’98, pp. 355–364.
ACM, January (1998)

45. Snelting, G.: Combining slicing and constraint solving for vali-
dation of measurement software. In SAS ’96: Proceedings of the
Third International Symposium on Static Analysis, pp. 332–348.
Springer, London (1996)

46. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions
in dependence graphs for software safety analysis. ACM Trans.
Softw. Eng. Methodol. 15(4), 410–457 (2006)

47. Terauchi, T.: A type system for observational determinism. In: CSF,
pp. 287–300 (2008)

48. Volpano, D.M., Smith, G.: Probabilistic noninterference in a con-
current language. J. Comput. Secur. 7(1) (1999)

49. Wasserrab, D.: From Formal Semantics to Verified Slicing—A
Modular Framework with Applications in Language Based Secu-
rity. PhD thesis, Karlsruher Institut für Technologie, Fakultät für
Informatik, October (2010)

50. Wasserrab, D.: Information flow noninterference via slicing.
Archive of Formal Proofs (2010)

51. Wasserrab, D., Lohner, D., Snelting, G.: On PDG-based noninter-
ference and its modular proof. In: Proceedings PLAS ’09. ACM,
June (2009)

52. Xin, B., Zhang, X.: Efficient online detection of dynamic control
dependence. In: Proceedings of ISSTA, pp. 185–195. ACM (2007)

53. Zdancewic, S., Myers, A.C.: Observational determinism for con-
current program security. In: Proceedings of CSFW, pp. 29–43.
IEEE (2003)

123

	A new algorithm for low-deterministic security
	Abstract
	1 Introduction
	1.1 The JOANA tool

	2 Overview of approach
	2.1 Security policy
	2.2 Why LSOD?
	2.3 Flow sensitivity
	2.4 Classification of statements and data
	2.5 Attacker model
	2.6 Low-equivalent traces
	2.7 Termination leaks
	2.8 The new approach

	3 Formalizing low-equivalent traces and LSOD
	3.1 Traces and dynamic dependences
	3.2 Infinite delay and low equivalency
	3.3 Soundness of the LSOD criterion

	4 Dependence graphs and noninterference
	4.1 PDGs for sequential programs
	4.2 Noninterference and PDGs
	4.3 PDGs and slicing for multi-threaded programs

	5 A slicing-based static LSOD check and the RLSOD criterion
	5.1 The static check
	5.2 RLSOD: allowing noncritical conflicts

	6 Implementation
	7 Evaluation
	7.1 Precision
	7.2 Runtime behaviour

	8 Discussion and related work
	8.1 Weak probabilistic noninterference
	8.2 Strong security
	8.3 LSOD by Zdancewic and Myers
	8.4 LSOD by Huisman et al.
	8.5 Low distinguishability by Mantel, Sands, and Sudbrock
	8.6 LSOD for X10 by Chong and Muller

	9 Future work
	10 Conclusion
	Acknowledgments
	Appendix A: Proof Sketch for Theorem 1 and 2
	References

