
Int. J. Inf. Secur. (2015) 14:103–121
DOI 10.1007/s10207-014-0253-x

SPECIAL ISSUE PAPER

An adaptive threat model for security ceremonies

Jean Everson Martina · Eduardo dos Santos ·
Marcelo Carlomagno Carlos · Geraint Price ·
Ricardo Felipe Custódio

Published online: 7 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Ever since Needham and Schroeder introduced
the notion of an active attacker, significant research has been
conducted regarding protocol design and analysis to ver-
ify that the protocols’ goals are robust against this type of
attacker. Nowadays, the Dolev–Yao threat model is the most
widely accepted attacker model for the analysis of secu-
rity protocols. Consequently, there are several security pro-
tocols considered secure against an attacker under Dolev–
Yao’s assumptions. With the introduction of the concept of
ceremonies, which extends protocol design and analysis to
include human peers, we can potentially find and solve secu-
rity flaws that were previously not detectable. In this paper,
we discuss that even though Dolev–Yao’s threat model can
represent the most powerful attacker possible in a ceremony,
the attacker in this model is not realistic in certain scenar-

Supported by CNPq and FINEP Brazil.

J. E. Martina (B) · R. F. Custódio
Departamento de Informática e de Estatística, Universidade
Federal de Santa Catarina, INE Campus Universitário,
Florianópolis, Brazil
e-mail: everson@inf.ufsc.br

R. F. Custódio
e-mail: custodio@inf.ufsc.br

E. dos Santos
Centre for Doctoral Training in Cyber Security,
Department of Computer Science, University of Oxford,
Parks Road, Oxford OX1 3PW, UK
e-mail: eduardo.dossantos@cybersecurity.ox.ac.uk

M. C. Carlos · G. Price
Information Security Group, Royal Holloway, University
of London, Egham TW20 0EX, UK
e-mail: marcelo.carlos.2009@rhul.ac.uk

G. Price
e-mail: geraint.price@rhul.ac.uk

ios, especially those related to human peers. We propose a
dynamic threat model that can be adjusted according to each
ceremony and consequently adapt the model and the cer-
emony analysis to realistic scenarios. We demonstrate the
feasibility of our approach with a support implementation
using first-order logic and an automatic theorem prover.

Keywords Threat models · Security ceremonies · Security
protocols · Formal verification and specification

1 Introduction

Security protocols are generally secure against passive
attackers who eavesdrop the communication medium. How-
ever, since Needham and Schroeder introduced the idea of
an active attacker in 1978 [22], a lot of research has been
conducted in this area in order to prove protocols’ claims.
Needham and Schroeder’s attacker model assumed that the
attacker could alter, copy, replay and create messages (or
parts of messages) in all communication paths. Dolev and
Yao [18] further developed this attacker model by formalis-
ing it and adding new assumptions. In general, we can say that
the Dolev–Yao attacker has complete control of the network,
but is not able to perform cryptanalysis.

Nowadays, the Dolev–Yao threat model is the most widely
accepted model to analyse security protocols [9]. Con-
sequently, there are several security protocols considered
secure against Dolev–Yao’s assumptions. In general, we
assume that if a protocol is secure against this powerful
attacker, it is secure against less powerful variations.

However, recent research [16,19,20] shows that even pro-
tocols verified under Dolev–Yao threat model assumptions
might be susceptible to attacks when implemented. Several
security protocols, when implemented in practice, are used by

123

104 J. E. Martina et al.

humans. The non-deterministic nature of human behaviour
can produce situations where an unexpected (but plausible)
operation is performed. In general, these problems happen
not due to a design flaw or user’s misconduct, but due to
the implementation of a protocol assumption. Ellison [19]
introduced the concept of a “ceremony” which focuses on
the context surrounding security protocols. In his definition,
a ceremony is an extension of the network protocol; its nodes
may be humans or computers, and the communication chan-
nels are not limited to the network.

By extending protocol analysis to ceremony analysis, we
can potentially find and solve security flaws that were pre-
viously not detectable. However, the formal verification of
ceremonies is not a straightforward process. In ceremonies,
we have new communication mediums, new nodes and con-
sequently new attacker variations. For that reason, an appro-
priate threat model must be designed to fit into this new
architecture. We argue that, even though Dolev–Yao’s threat
model can represent the most powerful attacker possible in
a ceremony, the attacker in this model is unrealistic in some
scenarios. One of the reasons that certain protocols fail when
implemented is that their assumptions are either not well
specified or not realistic, forcing implementations to create
mechanisms to circumvent these problems. Consequently,
these workarounds may introduce security problems, mak-
ing the implementation of the protocol flawed in certain con-
texts. This is due to an inaccurate assumption forced by an
unrealistic threat model, despite the fact that the problem
was created during the implementation. In this paper, we
revisit Dolev–Yao’s threat model so we can have a tailored
threat model for ceremonies, allowing more aligned design
and implementation components for ceremonies.

In Sect. 2, we present a comparison between ceremonies
and protocols. We describe protocols’ threat models in Sect.
3. Our premises for the proposed threat model for ceremonies
are discussed in Sect. 4. The proposed threat model is pre-
sented in Sect. 5. We then introduce some concepts concern-
ing the Bluetooth protocol in Sect. 6 which will be needed in
our scenarios in Sect. 7. Section 8 discusses our formal spec-
ification of the threat model using first-order logic and the
automatic theorem prover SPASS. In Sect. 9, we verify some
of the security goals of the ceremony proposed in Sect. 6, and
in Sect. 10, we discuss the gains of describing ceremonies
under a realistic threat model. Finally, we conclude our paper
with our final thoughts and future expectations in Sect. 11.

2 Ceremony versus protocol

Security protocols can be defined as a prescribed sequence of
interactions between principals designed to achieve certain
goals [24]. Their goals include authentication, key distribu-
tion, secrecy and anonymity, amongst others. Security cere-
monies [19] are a superset of security protocols (as we can see

Fig. 1 Protocol and ceremony association

in Fig. 1). Ceremonies, when compared to protocols, include
additional node types, communication channels and opera-
tions that were previously out-of-bounds. As an example of
these out-of-bound operations, we have user interaction and
pre-key distribution.

The main difference, and probably the most challenging in
terms of design and analysis, is the addition of human nodes
into the specification. In a protocol specification, we usu-
ally have devices (e.g. computers) communicating with other
devices via a network medium. By including a human node,
we have to define and use extra mediums such as user inter-
faces for human–device interaction and a human medium to
represent speech, gestures, etc., for human–human 1 interac-
tion.

In a protocol specification, we define assumptions as a
representation of out-of-bound operations. In ceremonies, we
break down these assumptions into smaller and better defined
assumptions. The inclusion of human interaction, behaviour
and cognitive processes adds a considerable amount of com-
plexity to the design and verification tasks. However, their
inclusion also enriches the details and coverage of the analy-
sis.

In the same way that a ceremony allows a more detailed
analysis of a protocol, the capabilities of an attacker, or the
threat they pose within the ceremony, also requires more
detailed analysis. The assumptions made by Needham and
Schroeder [22] and extended by Dolev and Yao [18] are
the current standard for protocol analysis. However, for cer-
emonies, they are not always consistent with real-world
threats. For example, the notion that an attacker would be
capable of modifying (or replaying) a “speech” packet in a
human–human medium is unrealistic if this communication
were to happen face-to-face.

We anticipate that by specifying and verifying security
ceremonies, we will be able to encompass a more human-

1 Human–human interaction in this paper means face-to-face and in-
person communication.

123

An adaptive threat model for security ceremonies 105

centric security view. The extensions to Dolev–Yao’s threat
model will help us design more realistic ceremonies that will
assist the human peer in assessing the threat they are subject
to. By not overstating assumptions, we inherently make them
plausible and achievable. An example of how a protocol can
assist a human peer in assessing the threat model they are
subject to can be seen in Sect. 7.

3 Abstract threat models for protocols

Security protocols were initially designed to be safe against
a “passive” attacker; that is, an attacker able to eavesdrop
the communication channels and make use of its contents
[18]. The idea of the existence of an “active” attacker, also
called intruder, saboteur or spy, was first mentioned in the
classical Needham–Schroeder paper [22]. They assumed that
an attacker could intervene between parties in all commu-
nication channels. Such an attacker is capable of altering,
copying, replaying and creating messages. Needham and
Schroeder claim that, although it is a very pessimistic sce-
nario, the only way an authentication protocol can be con-
sidered safe is if it resists such a powerful attacker. Subse-
quently, this definition became widely accepted and applied
when discussing whether a protocol is correct or not. In sum-
mary, assuming that the machines involved in the protocol
are safe and that cryptography cannot be broken by brute
force or cryptanalysis, Needham and Schroeder also assume
that an attacker can:

– obtain any message that goes through the communication
channel;

– modify messages and its subcomponents;
– copy messages and its subcomponents;
– replay messages;
– create messages.

In the following years, Dolev and Yao [18] formalised
Needham–Schroeder’s attacker and described the attacker
capabilities in more detail, in order to allow protocols to be
analysed more precisely, with fewer assumptions regarding
the attacker’s behaviour. They added the following assump-
tions to the attacker’s capabilities:

– The attacker is a valid agent of the network and can there-
fore initiate communication with any other agent.

– The attacker can prevent the recipient from receiving a
message.

– The attacker, despite being unable to read the content of
an encrypted message (for which they do not know the
key), can forward its contents to another agent.

– The attacker can perform any operation over a message
except cryptanalysis. For example, they can encrypt and
decrypt messages using a key they know.

This threat model is known as Dolev–Yao and is a de facto
standard for symbolic protocol analysis at present [9]. In sum-
mary, in this model, the attacker controls the communication
channels. From the Dolev–Yao threat model, we have seen
the development of two lines of research. The first consid-
ers that the Dolev–Yao model should be extended because
such an attacker cannot perform cryptanalysis. They take
a probabilistic reasoning-based approach, which has been
described by Bellare and Rogaway [11]. This research thread
has evolved over the years in parallel with the Dolev–Yao
research line [4], although there are a few efforts to reconcile
them [1,6]. The second follows the idea that if a protocol
is secure against a Dolev–Yao attacker, it is secure against
a less powerful variation. Furthermore, the latter argues that
subtleties of protocol attacks can still be found even after a
protocol is proved correct against Dolev–Yao. By adjusting
the powers of the attacker to adhere to the real world and
using the symbolic approach, such subtleties may be discov-
ered [4].

Our main focus is on the second line of research. A first
example of a threat model that considers variations of Dolev–
Yao’s attacker capabilities is BUG [8]. In BUG, the agents are
no longer classified as attacker and non-attacker; instead, they
are partitioned into three groups: Bad, Ugly and Good. Bad
agents may (or may not) collude with each other and attempt
to break the protocol for their own (illegal) benefits. Ugly
agents have an intermediate type of behaviour. They may
follow the protocol or may deliberately not do so, letting the
Bad principals exploit them. Good are principals who follow
the protocol and its rules. The BUG threat model is interest-
ing because of the novelty of having attackers which may
not share their knowledge and may change their behaviour
during the protocol run, depending on the risks of retalia-
tion. In BUG, the Bad and Ugly peers operate with the full
set of capabilities of a single Dolev–Yao attacker. BUG does
not change the capabilities of the Dolev–Yao attacker, but
changes their power by changing how collusion works.

A direct derivation from BUG is the Rational Attacker [4].
The Rational Attacker model drops the separate distinction
of the agent types and simplifies BUG by considering that any
principal makes a cost/benefit decision at any time whether
to behave according to the protocol specification or not. The
attacker must decide whether the gain outweighs the risks of
being caught. The Rational Attacker was followed up by the
General Attacker [4]. In this model, the cost/benefit function
is removed, but any agent may still behave as a Dolev–Yao
attacker. In fact each peer is a potential attacker that can use
the information lawfully acquired to subvert the protocol.
This threat model is more realistic than the BUG and Rational
Attacker models in an Internet scenario and has the benefit
of not having to deal with the gain/loss function.

Finally, there is a refinement of the General Attacker
model, called Multi-Attacker [5]. In this model, each princi-

123

106 J. E. Martina et al.

pal may behave as a Dolev–Yao attacker but will never reveal
his long-term secrets to other agents. The Multi-Attacker adds
some rationality to the General Attacker in a way that it
avoids trivial impersonation attacks.

The BUG family of threat models can be seen as a rele-
vant attempt to represent protocols’ execution environments
in a more accurate manner. In the human-centric security,
and ubiquitous computing areas, we see works from Stajano
[26], Balfanz [7] and Creese et al [15] as interesting starting
points where we can see variations of the Dolev–Yao attacker
applied to the analysis of human-interactive security pro-
tocols. Their models include two different communication
channels to encompass different threats and environments.
In general, they consider a traditional network channel that is
susceptible to a Dolev–Yao attacker and a restricted channel
where a weakened version of the attacker is used to represent
the threat model involving human agents and devices. These
examples are relevant because they introduce the notion that
communication channels involving human peers and human
communication need to be analysed against realistic attacker
actions.

In our work, we will discuss how to modify the attacker
capabilities to analyse security ceremonies under a realis-
tic threat model. This realistic and dynamic threat model
will enable us to devise stronger or weaker attackers (threat
models) depending on the scenarios the ceremony is sub-
ject to. Although initially simple, such a threat model hides
subtleties that can validate (or invalidate) claims regarding
the achievement of security goals. Attacks can be seen as
the marriage between weak goal achievements and the mis-
understanding of the correct threat model, and therefore, the
definition of a realistic and accurate threat model is extremely
important.

4 Premises for ceremonies and ceremonies
threat modelling

It seems obvious that developing a ceremony that is secure
against a Dolev–Yao attacker will imply that the same cere-
mony will be secure against any weaker real-world attacker.
However, it is often the case that, to guarantee that a certain
ceremony is secure against such a powerful attacker, we have
to include very complex mechanisms, which can often lead
to the degradation of usability. By doing that, a new threat is
introduced, which is the fact that the user will try to circum-
vent the security mechanisms in order to accomplish his/her
tasks.

The premises presented below are derived from the work
of Carlos and Price [14]. We especially took into account their
thorough analysis of the human–protocol interaction and
their recommendations for designing security ceremonies.
We did not include all their recommendations, but only those

that directly affect the composition of our proposed threat
model.

If we consider a more realistic threat model, which might
be vulnerable to a Dolev–Yao attacker, but is safe against
a real-world attacker, we can prevent the user from being
overloaded. As a consequence, we should be able to make
the ceremony more usable, and as a result, secure. A realistic
threat model would be a threat model that accurately rep-
resents the threat environment in which the ceremony will
be used, and at the same time, requires only a set of peer-
verifiable assumptions to be available during the execution.

One important premise for a reasonable threat model for
security ceremonies involving human peers is that no being is
omnipotent in human-to-human channels. This premise is
easily verifiable by humans. The detection of powers beyond
usual human capability is straightforward in the setting of
security ceremonies. The impact of such a premise is that,
depending on the situation, the presence of an active attacker
is not realistic. We previously mentioned the example that
replaying or blocking “speech” in a human-to-human chan-
nel will involve the use of powers that are not feasible for a
human peer.

Following a similar pattern, we have a premise that
omnipotence in the human-to-device channel is not
always realistic. Although we have scenarios where we
expect that an attacker has full control over the human-to-
device channel (therefore a Dolev–Yao attacker), in some
specific situations, such a powerful attacker does not repre-
sent reality. An example of such situation is a ceremony that
makes use of single-purpose devices (e.g. one-time password
generators). When these devices are used, the capabilities of
the attacker over the human-to-device channel are limited.
Thus, the threat model used on such channels is ceremony
and context-specific.

Next, we have the premise that a threat model including
human peers should be constrained by the laws of physics.
It is unrealistic to assume an omnipresent attacker in human-
to-human channels. The implications of such a premise will
allow human peers to properly choose a location to execute
their ceremonies, taking into account the verifiable presence
of a potential attacker. This can be exemplified by a ceremony
in a physical context where human peers have strict physical
access control. A real-world example of this premise is the
execution of security ceremonies for PKIs in safe rooms with
strict physical and electromagnetic controls.

Another important premise for security ceremonies is
that humans are capable of performing basic informa-
tion recall or mathematical operations. Some security pro-
tocols and their related security ceremonies are designed
to encompass unrealistic human capabilities regarding the
recall of information or the execution of mathematical oper-
ations. In a realistic threat model, human peers are required to
recall just fresh information and to execute basic mathemati-

123

An adaptive threat model for security ceremonies 107

cal operations. This premise impacts how the personification
of the attacker in the human-to-human channel behaves.

Without support from a device, a human peer has lim-
ited memory and limited mathematical capabilities. The pres-
ence of external aids is detectable and can be used to verify
expected behaviour. An example of such a premise is the
verification of possession of a device in an authentication
scenario to generate one-time passwords.

Finally, we have the premise that one should never use
more crypto than needed.

Using more crypto than needed can potentially create
usability problems, or introduce inaccurate assumptions
about the human-to-device interaction expected in a real-
world context. Although this is not a ceremony specific prob-
lem, as noted by Anderson and Needham [3], it could lead
to problems in related security ceremonies. The addition of
extra layers of crypto, which do not directly address threats
specific to the expected threat model, may induce the user
who is taking part in the ceremony to misunderstand the threat
level to which they are exposed. An example of such an extra
layer not addressing the threat model is the usage of one-time
password devices by banks. Most banks let their costumers
believe they are safer because they posses such tokens, when,
in fact, the real threat models they are subject to allows the
attacker to perform active man-in-the-middle attacks and not
only password eavesdropping. The extra layer of crypto does
not address the active man-in-the-middle attacks, but estab-
lishes a very strong device possession premise. The artefact
protects from password reuse, but does not provide transac-
tion authentication.

With the above premises in mind, we propose a threat
model that encompasses the characteristics of each specific
channel. For every channel, we start from the premises of
Dolev–Yao, but we weaken the attacker to meet real-world
conditions.

5 Proposed threat model for ceremonies

The proposition of a new threat model for security cere-
monies is justified because no protocol is executed without
context. It is known that even if a protocol is proven secure
against a powerful attacker (e.g. Dolev–Yao), it might still
fail, the reason for which may include:

– Usability problems: despite the fact that user interaction
is usually part of a protocol’s assumptions (and not an
explicit part of the specification), in some cases, when
these assumptions are implemented, they may require an
unrealistic set of user capabilities to achieve the expected
goals. Therefore, a user may not be able to perform their
tasks correctly and/or not be able to execute them at all.

– The assumptions are too big/strong or generic: it is often
necessary to assume that previous steps were success-
fully performed, or that the user is capable of perform-
ing some kind of operation. However, in some scenar-
ios, converting an assumption into an implementation
that achieves the same (expected) security properties
might be extremely challenging. One example of such
strong and generic assumptions is the identity guaran-
tees yielded by digital certificates in SSL/TLS protocols.
It is mostly true for certificates issued by Certification
Authorities, but when the user is allowed to accept self-
signed certificates, the assumption becomes weaker than
necessary.

While those reasons are not directly related to the net-
work channel, and therefore one could state that the proto-
col achieves its security goals, we cannot make the same
statements when the protocol is implemented. When put
in practice, assumptions that involve human-to-device and
human-to-human interaction have to be implemented some-
how. These assumptions must be replaced by dynamic user
interactions. In doing so, we introduce two new possible com-
munication channels. In this case, we cannot ensure that the
expected security properties assumed in the protocol design
will hold in the ceremony.

Another important issue regarding threat models for secu-
rity ceremonies is the fact that humans make different deci-
sions regarding their security, based on a dynamic evalu-
ation of the environmental threat level to which they are
exposed [23]. An example of such an embodied decision-
making strategy is the evolutionary pressure humans suf-
fered when considering the trade-offs of whether to engage
in attacks to become hunters or to maintain a gatherer way of
life, and thus be exposed to less risk [2]. This inherent faculty
of human nature is usually not taken into account when we
always assume the worst-case scenario as in a Dolev–Yao
setting. Some attacks may be thwarted by using a very pes-
simistic threat model, but inherently this action may provoke
human nature into acting and finding an easier and plausible
solution if the user does not consider the alternative path as
risky.

In taking the above into consideration, we stress that the
threat model for a security ceremony must be adaptive. Even
the same protocol might be used in the context of differ-
ent threat models and achieve its goals in different but still
reasonable ways. Considering the worst case is not always
the best option as it degrades usability. The adaptive model
we are proposing applies mostly to the human-to-device
and human-to-human channels. For network communication
(device-to-device channel), in the majority of cases, we will
assume a Dolev–Yao attacker since it is the de facto standard.
This is important since it is very well studied and developed.

123

108 J. E. Martina et al.

In addition, having different threat models for different
environments can potentially “teach” users to be more aware
of the threats they face, and to better (intuitively) understand
the threat model for each circumstance. For example, a user
pairing two Bluetooth devices at home is subject to different
threats than when at an airport. The same may be said for an
ATM cash withdrawal ceremony differing between America
and Europe, or even when the ceremony takes place in the
same location but at different times. All of these scenarios
can be subtly different.

Based on that, the most challenging step in designing
and analysing ceremonies is to define the threats and the
conditions under which the ceremonies will be used. A
threat model for ceremonies must be ceremony and context-
dependent. However, we can define a limited set of threats
which encompass the great majority of those cases. The exis-
tence of a standardised threat model scenario is paramount to
the establishment of security goals of ceremonies and for the
comparison between the efficiency of different ceremonies.

Therefore, our proposal for a threat model for ceremonies
is based on the set of capabilities of Dolev–Yao’s attacker.
We list and describe each capability, and we dynamically
add and remove them from the threat model we define. For
example, we might use a threat model where the attacker may
have the eavesdrop and initiate capabilities only to enable the
fulfilment of our premises. Our final goal is to measure the
security of ceremonies against a realistic attacker, whose set
of capabilities may be a subset of the abilities of Dolev–Yao’s
attacker. This approach will also help us reuse some of the
abstract verification techniques and tools already in use for
security protocols.

To describe our threat model approach, we first create a
set of the potential capabilities of an attacker based on the
Dolev–Yao model. By using this set and defining a threat
model, we will be able to design and verify ceremonies that
are secure against a realistic attacker with different capabil-
ities on different channels (e.g. Dolev–Yao attacker on the
network channel, while an attacker with eavesdrop, initiate
and block exists on the human-to-device channel, and finally
a passive attacker, who only eavesdrops on the human-to-
human channel).

We will use a simple notation to describe the powers of
the attacker on a specific channel. We begin with no threat
model, or simply, a model where the attacker has “no capa-
bilities”. From that point on, we add the desired capabilities
for each attacker. For example, E for eavesdrop only, or E B
for eavesdrop and block only. Another way of approaching
the notation is by presenting a weakened version of Dolev–
Yao’s attacker model instead of using a composition of capa-
bilities. We will consider that “DY” is a Dolev–Yao attacker,
and everything followed by a “–” symbol will represent the
capabilities removed from this attacker. For example, a “DY–
BR” means a Dolev–Yao attacker without the blocking and

replaying capabilities. We would like to stress that this is
more a matter of notation, and if we use both strategies, we
will always achieve equivalence. However, before making
use of the secondary notation, we would need a formal and
precise definition of Dolev–Yao’s set of capabilities, which
we will not include here. We will therefore use only the first
type of notation in this paper.

Using the same initial assumptions of Dolev and Yao about
the attacker—that is, that the attacker is a valid agent of the
network and cannot perform cryptanalysis—we list below the
attacker’s set of capabilities which we include in our adaptive
threat model. All the capabilities we list are based on Dolev–
Yao’s attacker, and their informal definitions are shown. We
start with the definition for the Eavesdrop capability as shown
below:

Definition 1 (Eavesdrop – E)

∀X ∈ M. A → B : X ⇒ X ∈ knows(I)

Our definition for the eavesdrop capability reads as fol-
lows: for all messages X in the set of messages M , if the agent
A sends to B a message X , this implies that the intruder I will
learn X . All the logical connectives have their usual meaning
and the set knows (Y), represent the set of knowledge of an
agent Y in the protocol.

Another important capability of a Dolev–Yao attacker is
the capacity of initiating a new communication with another
peer using the knowledge the attacker possesses. The Defin-
ition 2 describes such capability:

Definition 2 (Initiate – I)

∀X ∈ knows(I). I → B : X

Definition 2 reads as follows: for all messages X in the
knowledge set of the intruder I , the intruder I can initiate a
communication with a peer B and send message X .

Next, we define the capability that enables the attacker to
break a message down into its atomic parts. This capability
is relevant so that the intruder can use atomic components
of previously learned messages to produce new ones. The
definition for the Break Down capability is shown in Defin-
ition 3:

Definition 3 (Atomic Break Down – A)

∀{X, Y } ∈ knows(I). ⇒
{X} ∈ knows(I) ∧ {Y } ∈ knows(I)

The atomic break down definition is: for all pairs com-
posed by some X and Y elements in the knowledge of the
intruder I , the element X and Y are also in the knowledge of
the intruder I individually.

The cryptographic capabilities of the attacker are pre-
sented in the Definition 4:

123

An adaptive threat model for security ceremonies 109

Definition 4 (Crypto – C)

∀{X}k ∈ M ∧ k ∈ knows(I). A → B :
{X}k ⇒ X ∈ knows(I)

This definition is described as: for all X ciphered using
a key k in the set of messages M , and the key k is in the
knowledge of the intruder I , if an agent A sends a message
X encrypted with the key k to an agent B, the unencrypted
version of X will also be in the knowledge of the intruder I .

The attacker capability of blocking messages, that is, pre-
venting the receiver from learning the contents of a message
sent to them, is presented in the Definition 5:

Definition 5 (Block – B)

∀X ∈ M. A → B : X ⇒ X /∈ knows(B)

This definition is read as: for all messages X in the set of
possible messages M , if an agent A sends a message X to
agent B, the agent B will not have the message X in its set
of knowledge knows(B).

An important capability of the attacker is the use of a pub-
licly known function to fabricate new messages. Examples
of such functions can be cryptographic hashes, public-key
encryption or any other function publicly available within
the ceremony. Fabricate may be an n-ary function, differently
than presented below. The capability of fabricating messages
is presented in the Definition 6:

Definition 6 (Fabricate – F)

∀X ∈ knows(I) ⇒ F(X) ∈ knows(I)

This definition is read as: for all messages X in the set of
knowledge of the intruder I , the result of the application of a
publicly available function F() is also in the knowledge set
of the intruder I .

Spoofing messages is an attacker’s capability where he is
able to send a message to an agent pretending to be some
other agent. The definition of spoof is presented below:

Definition 7 (Spoof – S)

∀X ∈ knows(I). Spoof (I, A) → B : X

This definition is read as: for all messages X in the knowledge
of the intruder I , an intruder I can spoof the identity of an
agent A to the agent B and send a message X . Spoof differ-
entiates from initiate in deliberately not allowing the attacker
to be an internal agent in the execution of the ceremony.

The final capability that we can selectively detach from
the original Dolev–Yao attacker model is the capability of
re-ordering messages, as in Definition 8:

Definition 8 (re-Order – O)

∀X, Y ∈ M. A → B : X ∧ C → B : Y

⇒ Y ∈ knows(B) ∧ · · · ∧ X ∈ knows(B)

It reads as: for all messages X and Y in the set of possible
messages M , so that A first sends to B the message X , and
at a later point in time C sends the message Y to B, it will
imply that the attacker can add those messages to B’s set of
knowledge in a different order to the one in which they were
sent, and possibly with some other messages in between. An
important aspect of this capability is that it is described from
the receiver’s point of view, since there are many different
ways in which the intruder may achieve this re-ordering. We
deliberately show this on Definition 8 by using two different
senders. Nevertheless, this can also be achieved with A = C .

Some of the well-known attacker capabilities (based on the
Dolev–Yao threat model) are not directly shown here, since
they can be achieved by the combination of our definitions.
For example, the capability of Modifying (M) messages on
the communication channels can be defined as the use of
Block + textbfInitiate or more precisely Block + Fabri-
cate, while Replaying (R) messages can be represented as
Eavesdrop + Initiate. It is important to note that the list
we present is necessarily incomplete, simply because new
attacks and/or attacking tactics can be discovered or exist
under different scenarios that we do not initially cover. Nev-
ertheless, our dynamic and adaptive threat model inherently
allows additions to the set of attacker’s capabilities.

The adaptive threat model we propose here can be applied
to all the communication channels in a ceremony. Although
we recommend that the device-to-device channel should be
verified in the majority of cases against a Dolev–Yao attacker,
it is important to always consider whether the Dolev–Yao
attacker is realistic for every channel, even for device-to-
device communication.

6 Bluetooth pairing ceremony

Bluetooth is a short-range communications system intended
to replace the cables connecting portable and/or fixed elec-
tronic devices [12]. The establishment of such communi-
cation is temporary in nature, created for data exchange
between the devices. Bluetooth has been designed by
focusing on robustness, low power consumption and low
cost.

Bluetooth devices work in two modes of operation,
namely discoverable and non-discoverable. When operat-
ing in discoverable mode, the device responds to enquiries
made by other (unknown) devices. On the other hand,
when in non-discoverable mode, a device only responds to
enquiries from devices with whom it has previously set up
communication.

When two devices are communicating for the first time,
they do not have a common link key. Therefore, a key is
created. To create a new key, a procedure called “pairing”
is used. There are two procedures for pairing. The first is

123

110 J. E. Martina et al.

the legacy pairing protocol and the second is secure simple
pairing [12].

The legacy pairing protocol, in use from Bluetooth ver-
sions 1.0–2.0 (known as legacy pairing), uses a user input to
establish the connection. Users of both devices in the pairing
protocol are asked to type a conventional PIN that is used as
part of connection establishment. For devices with limited
input capabilities (e.g. headsets), a fixed PIN is used (e.g.
0000), whereas for advanced devices, such as mobile phones
or computers, a numeric or alphanumeric PIN is used. Usu-
ally, at least one of the devices executing the Bluetooth proto-
col will have some sort of input capability, so that the pairing
with a chosen device can be achieved.

For recent versions of Bluetooth, a different pairing mech-
anism is defined. This new pairing procedure is called
“Secure Simple Pairing” (SSP) and is used from version 2.1
+ EDR (Enhanced Data Rate) onwards. SSP was designed to
solve several problems found in earlier versions of the pair-
ing protocol. Firstly, it simplifies the pairing process from
the user’s point of view, offering different pairing options
and requiring fewer and simpler interactions. In addition
to the usability improvements, it adds increased protec-
tion against passive (eavesdropping) and active (man-in-the-
middle) attacks. This additional protection solves flaws found
on earlier versions that allowed attackers to deploy man-in-
the-middle (MITM) attacks [12,13,21,25].

SSP presents four distinct association modes designed to
cover most device types. The just works model is designed
for devices with limited display and input capabilities, pos-
sibly without them altogether. In this mode, the associating
devices exchange public keys, nonce and a commitment value
but nothing is displayed to the user, except in some imple-
mentations where the user might be asked whether to accept
the connection or not. The numeric comparison association
mode, which is our focus in this paper, makes use of the same
protocol as the just works mode. The difference between
them is that the numeric comparison mode is designed for
devices capable of displaying digits (a six digit number) and
accepting user inputs (“yes” or “no”). Because of the addi-
tional capability of the device, the protocol includes an addi-
tional authentication step, which is performed by the user.
Both devices display a number (based on the nonce and public
keys shared between the devices), and the users have to check
whether the numbers shown are the same on both devices. If
they are the same, the pairing is successful. The third asso-
ciation mode is out of band (OOB), and it is designed for
scenarios where an out of band mechanism is used for discov-
ering devices as well as exchanging the cryptographic infor-
mation required for the pairing process. The last mode is the
passkey entry, which is designed for situations where the
pairing devices have different input and display capabilities;
for example, where one device has only input capabilities,

such as a keyboard, the other has only display capabilities,
such as a screen [13].

The SSP protocol is divided into five phases, and phases
one, three, four and five are the same for all modes/protocols.
Phase two, which is most important stage for the authenti-
cation process between the devices, is unique for each asso-
ciation mode used. Our focus in this paper is on the SSP
protocol under the numeric comparison (NC) mode. There-
fore, we will concentrate on phase two of the SSP protocol
using the NC mode and assume that all other phases are cor-
rect.

Phase two is run as soon as phase one is concluded. In
phase one, the initiating device (A) sends its public key
(P Ka) to the non-initiating device (B). Next, B replies to
A, sending its public key (P Kb), and phase one is fin-
ished. Phase 2 under the NC mode, considering that Na and
Nb are nonces and the function f 1 is a function to gener-
ate the 128-bit commitment value Cb, is described as fol-
lows:

1. B −→ A : Cb = f 1(P K B, P K A, Nb, 0)

2. A −→ B : Na

3. B −→ A : Nb

There are only 3 steps in phase two in the NC mode.
However, there is one very important step missing in the
description above. After message 3, two confirmation val-
ues are calculated by the devices A and B. These val-
ues are Va and Vb which are generated via a known func-
tion g using the values P K A, P K B, Na, Nb as parame-
ters which were shared between the devices during the pre-
vious protocol messages. Va and Vb are values that will
be shown on the device A and B displays, respectively.
Finally, the users of these two devices will then compare
whether Va and Vb are the same and confirm by (usually)
pressing a button on the device. Without this user verifi-
cation of Va and Vb, this protocol is vulnerable to MITM
attacks.

As we can see, there is more involved in this protocol than a
classic protocol analysis is able to cover. There is human veri-
fication and interaction with the devices and humans commu-
nicating with each other. This makes the SSP protocol (and
even the legacy mode) an excellent case study for ceremony
analysis.

When described as a ceremony, phase two of SSP includes
two more agents UA and UB , and two additional communi-
cation channels H D and H H , to represent the human-to-
device channel and human-to-human channel, respectively
(in this ceremony, we will identify the network channel used
in the protocol description as the DD—device-to-device—
channel).

Thus, phase two of SSP described using the NC mode, as
a ceremony, is described as follows:

123

An adaptive threat model for security ceremonies 111

M1.B −−→
DD

A : Cb = f 1(P K B, P K A, Nb, 0)

M2.A −−→
DD

B : Na

M3.B −−→
DD

A : Nb

M4.A −−→
H D

UA : Va = g(P K A, P K B , Na, Nb)

M5.B −−→
H D

UB : Vb = g(P K A, P K B , Na, Nb)

M6.UA −−→
H H

UB : Va

M7.UB −−→
H H

UA : Vb

When compared to the protocol description, we have four
additional steps in the ceremony version. These steps are M4

that represents the device A sending the value Va to the user
UA; M5 that represents the device B sending the value Vb to
the user UB ; M6 that represents the user UA sending the value
Va to the user UB ; and finally M7 that represents the user UB

sending the value Vb to the user UB . It is important to notice
that in our case study, we are assuming two humans pairing
two devices. The main reason for using this assumption is
that it allows us to introduce the idea of the H H channel in a
realistic scenario. However, there is also the possibility of a
single human pairing two devices, which would remove the
need for the H H channel. In that case, we would just assume
that messages sent by both devices via the H D channel would
be sent directly to the same human who would then compare
their values.

By adding these four additional steps, the pairing cer-
emony encompasses the whole pairing process and there
is nothing left uncovered. Furthermore, when analysing
the specifications, we find that both legacy mode and
SSP are designed under assumptions that the attacker pos-
sesses a restricted set of capabilities during the pairing
process. Usually, protocols are designed and analysed against
a very powerful attacker model defined by Dolev and
Yao [17].

In this paper, we will formally analyse SSP using the NC
mode against a Dolev–Yao attacker, and then against less
powerful (but more realistic) variations.

7 Example scenario: bluetooth pairing protocol

In our analysis, we consider the ceremony using the numeric
comparison (NumComp) mode under different variations of
the threat model. The theorems below present the results of
our analysis.

Theorem 1 (NumComp+DY) If the protocol messages M1

to M7 are run against a DY attacker, the attacker can prevent
UA from learning Va or Vb and UB from learning Vb or Va,
forcing them to learn Vi instead.

M1...7 ∪ DY

Va ∧ Vb ∧ Vi ∈ knows(I)∧
Va /∈ knows(A) ∧ Vb /∈ knows(A)∧
Vb /∈ knows(B) ∧ Va /∈ knows(B)∧
Vi ∈ knows(UA) ∧ Vi ∈ knows(UB)

Proof Due to space limitations, we will skip the initial steps
of the proof and assume that the intruder I , acting as a man-
in-the-middle, initiated two simultaneous pairing sessions
with A and B during messages M1 to M3. The authentica-
tion from A to B starts in M4 where the value Va is sent to UA.
The equivalent message from B to UB occurs in M5. A DY
intruder I , by using his block (B) and initiate (I) capabili-
ties, can prevent message M4 and M5 from being delivered to
UA and UB , respectively, and instead, send them any chosen
value Vi . In M6 and M7, A and B would complete the pro-
tocol by sending Vi to each other, successfully concluding
the pairing and allowing the man-in-the-middle attack to be
deployed.

Using an alternative threat model, which we term the
Adaptive Threat Model V1, we assume the attacker can only
eavesdrop the HD channel. In the specific case of the Blue-
tooth pairing, the assumption is that the device is free from
malware and the display is presenting the correct informa-
tion.

Theorem 2 (NumComp + Ad. Threat Model V1) If the
protocol messages M1 to M3 are run against a DY attacker;
the messages M4 to M5 are run against an attacker with E
capability only; and messages M6 to M7 are run against a
DY attacker, the attacker can prevent UA from learning Vb

and UB from learning Va, forcing them to learn the repetition
(replay) of Va and Vb (respectively) instead.

(M1...3 ∪ DY) ∧ (M4...5 ∪ E)∧)(M6...7 ∪ DY)

Va ∧ Vb ∈ knows(I) ∧ Va /∈ knows(B) ∧ Vb /∈ knows(A)

Proof Again, due to space limitations, we will skip the initial
steps of the proof and assume that the intruder I , acting as
a man-in-the-middle initiated two parallel pairing sessions
with A and B during messages M1 to M3. The authentica-
tion from A to B starts in M4 where the value Va is sent to
UA. The equivalent message from B to UB occurs in M5. In
this case, an intruder with only E capability can only learn
the values Va and Vb. In M6 and M7, A and B complete the
protocol by sending Va and Vb, respectively, to each other. A
DY attacker in messages M6 and M7 can perform a similar
attack to the one described in Theorem 1. By preventing Va

from being delivered from UA to UB in M6 and Vb from UB

to UA in M7, and then replaying the values Vb and Va (respec-
tively) instead (by making use of Blocking, Replaying and
Spoof capabilities), the protocol run would be successfully
concluded and would allow a man-in-the-middle attack to be
deployed.

123

112 J. E. Martina et al.

Finally, when using an alternative threat model, which we
call the Adaptive Threat Model V2, the attacker can eaves-
drop both the HD and the HH channels, that is, the attacker
can eavesdrop on any communications in the pairing process
that involve the humans.

Theorem 3 (NumComp + Ad. Threat Model V2) If the
protocol messages M1 to M3 are run against a DY attacker
and the messages M4 to M7 are run against an attacker with
E capability only the attacker cannot produce any relevant
attack.

(M1...3 ∪ DY) ∧ (M4...7 ∪ E)

∅
Proof Once again, due to space limitations, we will skip the
initial steps of the proof and assume that the intruder I , acting
as a man-in-the-middle, initiated two parallel pairing sessions
with A and B during messages M1 to M3. The authentication
from A to B starts in M4 where the value Va is sent to UA.
The equivalent message from B to UB occurs in M5. In this
case, an intruder with only E capability can only learn the
values Va and Vb. In M6 and M7, A and B complete the
protocol by sending Va and Vb, respectively, to each other. In
messages M6 and M7, an intruder with only E capability can
only learn the values Va and Vb, and in this case, Va received
by UB in M6 and Vb received by UA in M7 would not match
the Vb and Va in knows(B) and knows(A), respectively, not
allowing the attack to succeed.

Although the attack described in Theorem 1 is plausible in
real-world scenarios, it is very difficult to deploy. An attacker
would have to corrupt both devices as well as start paral-
lel sessions with both users during a short period of time.
By removing capabilities B and I from the attacker, we can
analyse the protocol further, and possibly find other (more)
relevant attacks.

The second attack, found in Theorem 2, is completely
unrealistic. To be deployed in practice, the attacker would
have to block communication between two humans and then
replay some data over a channel where the user would easily
notice whether some other party wanted to spoof the identity
of the sender. In this case, the attack does not exist in practice.

The idea is similar for the other association modes. Each
one of them must consider the real-world scenario and define
the threat model. In addition to that, it should not be possible
to use an association mode under a different threat model to
the one specified.

8 Specifying the ceremony

The processes of formalisation and verifications were carried
out in first-order logic (FOL) with the help of the automated
theorem prover SPASS version 3.5 [27]. We chose to use

first-order logic because of its automation and completeness.
Basically, our formalisation follows the same structure as the
one presented by Weidenbach [28], with the addition of logic
elements particular to our protocol and ceremony. Further-
more, the main difference between Weidenbach’s work and
ours relies on an extended version of threat models as well
as on an extra number of communication channels.

The formalisation process consisted of translating all the
steps of the Bluetooth protocol into FOL formulae. A formula
in this logic system makes use of the following elements:
quantifiers, predicates, functions and connectives. Quantifi-
cation in FOL only occurs over functions of 0-arity (con-
stants). Predicates return a Boolean value, either true or
f alse, whereas functions return an element from the uni-
verse of discourse.

Throughout the formalisation, we adopt the following syn-
tax: quantifiers (∀ – “for all” and ∃ – “there exists”); connec-
tives (¬ – “not”, ∧ – “and”, ∨ – “or”, �⇒ – “implies”, ⇔
– “if and only if”, and = – “equality”). In addition, predicate
names start with an upper-case letter and function names start
with a lower-case letter. Names of variables always start with
an “x”. Parentheses define the relationship between elements
and brackets limit quantifiers’ scope.

Before moving to describe the protocol in logic formulae,
we must firstly explain the meaning of each predicate and
function used. This is a useful step towards a better under-
standing of our formalisation.

– Agent predicates. These predicates define what are
agents and subclasses of agents. For example: Agent (x)

(x is an ordinary agent), Honest (x) (x is an honest agent)
and I ni tiator(x) (x is an agent that may start the proto-
col execution).

– Knowledge predicate. This predicate indicates the
knowledge belonging to a certain agent. That is,
K nows(x, y) (the knowledge x belongs to agent y).

– Communication channels predicates. The communi-
cation channels used in our threat model. They are:
M DD(x) (for communication between devices),
M H D(x) (for communication between a human user and
a device or vice-versa) and M H H(x) (for communica-
tion between humans). In all these predicates, the variable
x refers to the message being exchanged on the channel.

– Message exchange function. this function indicates
a message exchange operation between two agents:
sent (x, y, z). The variable x points to the agent that sends
the message (the issuer) and variable y points to the agent
to which the message is being sent (the receiver). The
message content is represented by variable z. Moreover,
this function should be used together with the predicates
of communication channels.

– Cryptographic key functions. these functions establish
possession relationships between cryptographic mater-

123

An adaptive threat model for security ceremonies 113

ial and their corresponding owner agents. For example:
krkey(x, y) (private keys), kukey(x, y) (public keys)
and nonce(x, y) (nonces). In these functions, the cryp-
tographic material x belongs to the agent y. Also, there
is a function intended to group a private key with its cor-
responding public key in a key pair: kp(x, y).

– Human agent function. This function returns the human
user associated with a certain agent x : human(x).

– Bluetooth specific functions. these functions represent
the Bluetooth protocol’s internal cryptographic func-
tions: c_ f 1(x, y, z, x1) (for function Cb = f 1(. . .)) and
v_g(x, y, z, x1, x2) (for function Va = g(. . .)). In func-
tion v_g(. . .), the additional fifth variable refers to the
agent who created V . We will provide further explana-
tion of this addition to the specification. Functions Cb and
Va are formalised together to f 1 and g because, other-
wise, it would bring unnecessary redundancy to our logic
problem. We recommend reading Bella’s Goal Availabil-
ity principle for a detailed explanation of this redundancy
elimination technique [10].

– Agents constants. The agents themselves. For example:
a and b (for the first and second agents, respectively).

– Keys constants. The sensitive material (private keys,
public keys and nonces). Respectively, kra, kua, and na
(for agent a); and krb, kub and nb (for agent b).

– Connection results constants. The final result of a Blue-
tooth pairing: ok (in case of success) and f ail (in case
of failure).

– The zero constant. This number is used in the calculation
of function Cb (see Sect. 6).

We would like to note the formulas presented below are
a direct translation from our SPASS implementation. Thus,
some redundancies in pre-conditions are present to help
SPASS to reason faster. This was done for the sake of fidelity
with our experiments.

Finally, the whole logic problem is modelled. It is divided
into three sub-models: Preliminary Operations, The Main
Logic Model, and The Intruder Model. The first sub-model,
Preliminary Operations, contains basic formulae available
throughout the specification. Next, the second sub-model,
Main Logic Model, formalises the Bluetooth protocol’s mes-
sage flow. The last sub-model, Intruder Model, formalises
the operations that an arbitrary intruder (attacker) can make
use of in their attempt to compromise the protocol.

8.1 Preliminary operations

This sub-model defines general-purpose operations available
throughout the protocol. These operations refer to the rela-
tionship between agents, cryptographic keys and communi-
cation channels. Their main objective is to avoid needless

repetition of conditions and in the formulae of the main logic
model.

Formula 1 states that if something is an agent, its cor-
responding human being will also be an agent. The same
follows for honest agents in Formula 2.

1. ∀xa[
Agent (xa) �⇒ Agent (human(xa))]

2. ∀xa[
Honest (xa) �⇒ Honest (human(xa))]

We also specify two formulae for dealing with keys. For-
mula 3 states that, if a certain agent has a public-private
key pair in his knowledge, then he will also have each key
in his knowledge individually. The inverse is also possi-
ble under the equivalence operator (⇔). In addition, For-
mula 4 states that the order of keys in a key pair does not
matter.

3. ∀xkukey, xkrkey, xagent[
Agent (xagent) �⇒
(K nows(kp(kukey(xkukey, xagent),
krkey(xkrkey, xagent)), xagent) ⇔
(K nows(kukey(xkukey, xagent), xagent) ∧
K nows(krkey(xkrkey, xagent), xagent))))]

4. ∀xkukey, xkrkey, xagent[
Agent (xagent) �⇒
(K nows(kp(kukey(xkukey, xagent),
krkey(xkrkey, xagent)), xagent) ⇔
K nows(kp(krkey(xkrkey, xagent),
kukey(xkukey, xagent)), xagent)))]

When a message is sent in the protocol, we assume it
will always arrive at the intended recipient. Therefore, the
message receiver will automatically be able to put it in his
knowledge set. Formulae 5, 6 and 7 represents this behav-
iour for channels DD (device–device), H D (device–human)
and H H (human–human), respectively. Later, we will for-
malise situations in which the recipient is prevented from
receiving the message through a block operation made by the
attacker.

In this context, it is worth noting that we cannot make any
assumption about the message’s issuer. An intruder imper-
sonating an honest agent might have sent the message. In
this circumstance, what the receiver sees is the honest agent
as the message author, not the intruder himself. Thus, we
cannot enforce knowledge of the issuer when a message is
sent, otherwise we would inadvertently break the protocol
structure. Nevertheless, under our basic logic framework, an
agent will only be able to engage in creating a message using
components he already possesses.

123

114 J. E. Martina et al.

5. ∀xa, xb, xm[
M DD(sent (xa, xb, xm)) �⇒
K nows(xm, xb)

6. ∀xa, xb, xm[
M H D(sent (xa, xb, xm)) �⇒
K nows(xm, xb)]

7. ∀xa, xb, xm[
M H H(sent (xa, xb, xm)) �⇒
K nows(xm, xb)]

8.2 Main logic model

The second sub-model in our logic problem involves the
description of the Bluetooth ceremony. To do so, we firstly
formalise the agents and their initial knowledge bases. Then,
we formalise the Bluetooth protocol and ceremony.

In Formula 5, we introduce the first agent in the protocol
(Agent A). That is, the constant a is introduced as an agent.
It is also an honest agent (Formula 6) and it may initiate the
protocol (Formula 7). In its initial knowledge base, there is
the possession of its keypair and nonce (specified by Formu-
lae 8 and 9). Formulae 10–12 establish equality between key
constants and their corresponding key functions.

5. Agent (a)

6. Honest (a)

7. I ni tiator(a)

8. K nows(kp(krkey(kra, a), kukey(kua, a)), a)

9. K nows(nonce(na, a), a)

10. kra = krkey(kra, a)

11. kua = kukey(kua, a)

12. na = nonce(na, a)

The second agent in the protocol is introduced in the same
way (Formulae 13–19).

13. Agent (b)

14. Honest (b)

15. K nows(kp(krkey(krb, b), kukey(kub, b)), b)

16. K nows(nonce(nb, b), b)

17. krb = krkey(krb, b)

18. kub = kukey(kub, b)

19. nb = nonce(nb, b)

We now advance to the Bluetooth protocol specifica-
tion. In general, our formal model follows a simple pat-
tern. Each step in the protocol is represented by a single
formula containing an implication (�⇒), which means that
its pre-conditions must be satisfied in order to have its post-
conditions evaluated (causality). Pre-conditions are on the
left side of the implication arrow, whereas post-conditions are

on the right side. Usually, the pre-conditions involve check-
ing what the agent has in its knowledge set at the current
step. It is expected that the agent has accumulated knowl-
edge during the protocol execution but has not created new
knowledge inadvertently. To ensure an ordered execution, the
pre-conditions test not only the K nows predicate, but also
the messages previously exchanged on the communication
channel. That is, to acquire a certain message (K nows pred-
icate), the agent must have previously received it at some
point during the execution.

In the first step (Formula 20), the following conditions
must be observed. There must be two agents, where one of
them must be allowed to initiate the protocol and this agent
must also have his public key in its K nows predicate. If all of
these conditions are true, the initiating agent sends his public
key over the DD channel to the other agent.

20. ∀xa, xb, xkua[(
Agent (xa) ∧ Agent (xb) ∧ I ni tiator(xa) ∧
K nows(kukey(xkua, xa), xa))

�⇒ M DD(sent (xa, xb, kukey(xkua, xa)))]

In the second step (Formula 21), the sequence of events
is basically the same, but with a few differences. Besides
checking whether he is in possession of his own public key,
the current agent also verifies whether he received the public
key from the initiating agent in the previous step. This check
is done on both the K nows and M DD predicate.

21. ∀xa, xb, xkua, xkub[(
Agent (xa) ∧ Agent (xb) ∧ K nows(kukey(xkub, xb),

xb) ∧ K nows(kukey(xkua, xa), xb) ∧
M DD(sent (xa, xb, kukey(xkua, xa))))

�⇒ M DD(sent (xb, xa, kukey(xkub, xb)))]

The same agent who performed the second step performs
the third step. To be able to generate Cb (represented logically
as function c_ f 1(. . .)), the agent must have both public keys
and his nonce in its predicate K nows.

22. ∀xnb, xb, xkub, xkua, xa[(
Agent (xa) ∧ Agent (xb) ∧ I ni tiator(xa) ∧
K nows(nonce(xnb, xb), xb) ∧
K nows(kukey(xkub, xb), xb) ∧
K nows(kukey(xkua, xa), xb) ∧
K nows(kukey(xkub, xb), xa) ∧
M DD(sent (xb, xa, kukey(xkub, xb))))

�⇒ M DD(sent (xb, xa, c_ f 1(xkub, xkua, xnb, 0)))]

The fourth step consists of, upon receipt of Cb(c_ f 1(. . .)),
the initiator agent sends its nonce. Formula 23 illustrates this.

123

An adaptive threat model for security ceremonies 115

23. ∀xna, xa, xb, xkub, xkua, xnb[(
Agent (xa) ∧ Agent (xb) ∧
K nows(nonce(xna, xa), xa) ∧
K nows(kukey(xkua, xa), xa) ∧
K nows(kukey(xkub, xb), xa) ∧
K nows(c_ f 1(xkub, xkua, xnb, 0), xa) ∧
M DD(sent (xa, xb, kukey(xkua, xa))) ∧
M DD(sent (xb, xa, c_ f 1(xkub, xkua, xnb, 0))))

�⇒ M DD(sent (xa, xb, nonce(xna, xa)))]

In the fifth step (Formula 24), the second agent sends his
own nonce at the moment it receives the nonce of the initiator.
This is illustrated in Formula 24.

24. ∀xnb, xb, xa, xna, xkua, xkub[(
Agent (xa) ∧ Agent (xb) ∧
K nows(nonce(xnb, xb), xb) ∧
K nows(nonce(xna, xa), xb) ∧
K nows(kukey(xkub, xb), xb) ∧
K nows(kukey(xkua, xa), xb) ∧
M DD(sent (xb, xa, kukey(xkub, xb))) ∧
M DD(sent (xb, xa, c_ f 1(xkub, xkua, xnb, 0))) ∧
M DD(sent (xa, xb, nonce(xna, xa))))

�⇒ M DD(sent (xb, xa, nonce(xnb, xb)))]

In Formulae 25 and 26, agents forward to their correspond-
ing human users the value of function Vx . A significant dif-
ference in these formulae is the use of the predicate M H D
(channel human to device) and the function human(x).

25. ∀xa, xb, xkua, xkub, xna, xnb[(
Agent (xa) ∧ Agent (xb) ∧
K nows(nonce(xna, xa), xa) ∧
K nows(nonce(xnb, xb), xa) ∧
K nows(kukey(xkua, xa), xa) ∧
K nows(kukey(xkub, xb), xa) ∧
K nows(c_ f 1(xkub, xkua, xnb, 0), xa) ∧
M DD(sent (xb, xa, kukey(xkub, xb))) ∧
M DD(sent (xb, xa, c_ f 1(xkub, xkua, xnb, 0))) ∧
M DD(sent (xb, xa, nonce(xnb, xb))))

�⇒ M H D(sent (xa, human(xa), v_g(xkua, xkub,

xna, xnb, xa)))]

26. ∀xa, xb, xna, xnb, xkua, xkub[(
Agent (xa) ∧ Agent (xb) ∧
K nows(nonce(xna, xa), xb) ∧
K nows(nonce(xnb, xb), xb) ∧
K nows(kukey(xkua, xa), xb) ∧
K nows(kukey(xkub, xb), xb) ∧
M DD(sent (xa, xb, kukey(xkua, xa))) ∧
M DD(sent (xb, xa, c_ f 1(xkub, xkua, xnb, 0))) ∧
M DD(sent (xa, xb, nonce(xna, xa))) ∧

M DD(sent (xb, xa, nonce(xnb, xb))))

�⇒ M H D(sent (xb, human(xb), v_g(xkua, xkub,

xna, xnb, xb)))]

After receipt of Vx from their corresponding devices, each
human user exchanges it with his counterpart. Formula 27
shows this in a general way (i.e. the formula does not take
the agents order into account). The result of this formula is
a message containing Vx to be sent over channel H H to the
opposite human user.

27. ∀xa, xb, xkua, xkub, xna, xnb, xag, xag2[(
Agent (xa)∧Agent (xb)∧Agent (xag)∧Agent (xag2)∧
K nows(nonce(xna, xa), xag) ∧
K nows(nonce(xnb, xb), xag) ∧
K nows(kukey(xkua, xa), xag) ∧
K nows(kukey(xkub, xb), xag) ∧
K nows(v_g(xkua, xkub, xna, xnb, xag),

human(xag)) ∧
M H D(sent (xag, human(xag), v_g(xkua, xkub, xna,

xnb, xag))))

�⇒ M H H(sent (human(xag), human(xag2),

v_g(xkua, xkub, xna, xnb, xag)))]

Vx is a function that will take into account the four vari-
ables and generate a truncated number that is manageable
for the human agent. Once human users have exchanged Vx

between each other, they must verify its integrity. To do so,
they compare the digits output by their own function v_g(. . .)

against the other digits received. The V-function’s fifth vari-
able is not compared because it is only used as a mark to indi-
cate the agent who generated the V -function into considera-
tion. This is just a technical necessity for the implementation
and does not matter for the ceremony. Without this marking
strategy, we would not be able to distinguish between two
different V s. In the case in which both values match, then a
successful connection is established. Otherwise, something
went wrong.

The integrity verification described above is shown in For-
mula 28. This formula can be divided into two parts. Part one
(represented by the first implication) enforces the causality
property seen so far in our logic model. This is done by check-
ing whether the predicate M H H was used to exchange v_g
between humans. Next, part two (represented by the sec-
ond and third implications) tries to determine whether the
V s exchanged are equal or not. This is done by comparing
each element that makes part of V _g. Here, the second and
third implications make an if-then-else statement in FOL. In
case the comparison is successful, the connection result ok
is sent to the device over channel M H D. Otherwise, f ail is
sent.

123

116 J. E. Martina et al.

28. ∀xa, xb, xkua1, xkua2, xkub1, xkub2, xna1, xna2,

xnb1, xnb2, xag[(
Agent (xa) ∧ Agent (xb) ∧
K nows(v_g(xkua1, xkub1, xna1, xnb1, xb),

human(xa)) ∧
M H H(sent (human(xb), human(xa),

v_g(xkua1, xkub1, xna1, xnb1, xb))) ∧
K nows(v_g(xkua2, xkub2, xna2, xnb2, xa),

human(xb)) ∧
M H H(sent (human(xa), human(xb),

v_g(xkua2, xkub2, xna2, xnb2, xa))))

�⇒
(((

(xkua1 = xkua2) ∧
(xkub1 = xkub2) ∧
(xna1 = xna2) ∧
(xnb1 = xnb2))

�⇒
(

M H D(sent (human(xa), xa, ok)) ∧
M H D(sent (human(xb), xb, ok)))

∧ (

¬(

(xkua1 = xkua2) ∧
(xkub1 = xkub2) ∧
(xna1 = xna2) ∧
(xnb1 = xnb2))

�⇒
(M H D(sent (human(xa), xa, f ail)) ∧
M H D(sent (human(xb), xb, f ail)))]

The formulae that make part of our ceremony formalisa-
tion can be grouped in the set �main as:

�main = { Formula 1, . . ., Formula 28 }.

8.3 Intruder model

The intruder model (also known as the attacker model) is the
set of formulae expressing actions an intruder can take in his
attempt to break our ceremony. Some new logic elements are
added to help us better describe the intruder’s capabilities.
They are the following:

• Intruder predicate. This predicate defines which ele-
ments are intruders: I ntruder(x). This predicate works
in the same way as Agent (x) and Honest (x).

• Block predicate. This predicate is a support predicate
for dealing with the intruder’s capability of preventing a
message from arriving at its intended receiver. In princi-
ple, blocking messages is an overly powerful capability.
An intruder capable of blocking messages may be able

to prevent the entire protocol or ceremony from execut-
ing in real life, but in our model, we must limit this in
some way so that our solver can complete. Therefore,
we must limit it in some way. We adopt the criteria that
the intruder can block a maximum of one message for
each agent in the whole logic problem. For this, we use
predicate Blocks Agent Once(x, y) (x and y are, respec-
tively, the message and agent blocked). Dealing with this
attacker capability is rarely seen in protocol formalisa-
tions, since it will always lead to the detection of Denial
of Service attacks.

• Intruder agent constant. As well as other agents, we
created a constant to represent the intruder. In this
case, i .

• Intruder keys constants. Intruder’s cryptographic mate-
rial: kri (private key), kui (public key) and ni (nonce).
These are necessary so that the intruder is able to imper-
sonate an honest agent in the protocol.

We want to emphasise the necessity of having a block
predicate in our threat model. Our proposition was to be able
to represent all the derivative properties of the Dolev–Yao
model, so being able to perform at least some sort of blocking
is important to create certain composite properties, such as
Modifying.

In a similar way to other agents, we specify the intruder in
Formulae 29–31. We highlight some key points: the intruder
is considered an active agent in the ceremony (Formula 30);
the human users corresponding to the intruder device is also
considered an intruder (Formula 31); and the intruder’s cryp-
tographic material is defined in Formulae 32 and 33.

29. I ntruder(i)
30. Agent (i)
31. ∀xi[I ntruder(xi) �⇒ I ntruder(human(xi))]
32. K nows(kp(krkey(kri, i), kukey(kui, i)), i)
33. K nows(nonce(ni, i), i)
34. kri = krkey(kri, i)
35. kui = kukey(kui, i)
36. ni = nonce(ni, i)

The most basic intruder capacities consist of eavesdrop-
ping and spoofing messages. Formulae 37–39 express the
eavesdrop and Formulae 40–42 express the sending of faked
messages (spoof). In both cases, the operations are replicated
for each communication channel. These operations are car-
ried out for honest agents only since it does not make much
sense in our threat model that an intruder can eavesdrop and
spoof against himself or other intruders.

37. ∀xa, xb, xm[
((Honest (xa) ∧ Honest (xb) ∧

123

An adaptive threat model for security ceremonies 117

M DD(sent (xa, xb, xm))

�⇒ K nows(xm, i)))]
38. ∀xa, xb, xm[

((Honest (xa) ∧ Honest (xb) ∧
M H D(sent (xa, xb, xm))

�⇒ K nows(xm, i)))]
39. ∀xa, xb, xm[

((Honest (xa) ∧ Honest (xb) ∧
M H H(sent (xa, xb, xm))

�⇒ K nows(xm, i)))]
40. ∀xa, xb, xm[

((Honest (xb) ∧ K nows(xm, i)
�⇒ M DD(sent (i, xb, xm))))]

41. ∀xa, xb, xm[
((Honest (xb) ∧ K nows(xm, i)
�⇒ M H D(sent (i, xb, xm))))]

42. ∀xa, xb, xm[
((Honest (xb) ∧ K nows(xm, i)
�⇒ M H H(sent (i, xb, xm))))]

With the eavesdrop capacity set up, the intruder can
accumulate knowledge over time. He can then try to break
the Bluetooth computing functions Cx and Vx out of the
eavesdropped messages. This is possible provided that he
learns the sensitive cryptographic material (keys and nonces)
exchanged between honest agents. Formulae 43 and 44 illus-
trates the fabrication of Cx and Vx , respectively. Furthermore,
the intruder can use his own keys and nonces as inputs to these
formulae.

43. ∀xkua, xkub, xnb, xa, xb[
(

Agent (xa) ∧ I ni tiator(xa) ∧ Agent (xb) ∧
¬I ni tiator(xb) ∧ K nows(kukey(xkua, xa), i) ∧
K nows(kukey(xkub, xb), i) ∧
K nows(nonce(xnb, xb), i))
�⇒ K nows(c_ f 1(xkub, xkua, xnb, 0), i)]

44. ∀xkua, xkub, xna, xnb, xa, xb, xag[
(

Agent (xa) ∧ Agent (xb) ∧ Agent (xag) ∧
K nows(kukey(xkua, xa), i) ∧
K nows(kukey(xkub, xb), i) ∧
K nows(nonce(xna, xa), i) ∧
K nows(nonce(xnb, xb), i))
�⇒ K nows(v_g(xkua, xkub, xna, xnb, xag), i)]

Formula 45 explicitly defines that an intruder can initiate
a message exchange with an honest agent over channel H D.

45. ∀xb, xm[
(

Honest (xb) ∧ K nows(xm, i))
�⇒ (M H D(sent (i, human(xb), xm))∧I ni tiator(i))]

As seen before, we limit the number of blocking opera-
tions that an intruder can perform to one block per honest
agent only. We use the Blocks Agent Once(x, y) predicate
to do so. Formulae 46–47 illustrates the blocking operations
for channels H D and H H .

46. ∀xa, xb, xm[
(

Honest (xa)∧Honest (xb)∧M H D(sent (xa,xb,xm))∧
¬∃xblock[Blocks Agent Once(xblock, xb)])
�⇒ (¬K nows(xm, xb) ∧ Blocks Agent Once
(xm, xb))]

47. ∀xa, xb, xm[
(

Honest (xa)∧Honest (xb)∧M H H(sent (xa,xb,xm))∧
¬∃xblock[Blocks Agent Once(xblock, xb)])
�⇒ (¬K nows(xm, xb) ∧ Blocks Agent Once
(xm, xb))]

The intruder specification ends here. The formulae used
in the intruder model can be grouped into the set Γintruder

as.

Γintruder = { Formula 29, . . ., Formula 47 }.
Finally, we also define the set �extended containing our

whole logic model. It is represented as a union of all the two
previous sets.

Γextended = {Γmain ∪ Γintruder }.
We acknowledge that representing this problem with a

more expressive formalisation such as HOL would enrich
the details we were able to prove. Nevertheless, the effort
in constructing proofs in HOL outweigh its benefits at the
moment. We would also like to note that converting the cer-
emony to the formulae below is a laborious and error-prone
work. In the future, we plan to automate such transcription
tasks as well as the use of a more expressive formalism.

9 Results

In this section, we show the main results of our formalisa-
tion. Some of these results are merely informational, serving
to assure that the protocol and ceremony were specified cor-
rectly; others are full proofs for theorems.

To find a proof, SPASS negates the conjecture (refutation),
and then, it exhaustively generates all possible clauses. Due

123

118 J. E. Martina et al.

to space limitations, the output generated by SPASS is not
included in this paper.

9.1 Saturation of main logic model

The first fact obtained in the formal analysis is the satura-
tion of our main logic model (Γmain). This is achieved by
running the problem without conjectures. If it terminates, it
means that SPASS can derive a finite set of clauses from it.
Otherwise, if running the problem without conjectures would
cause the theorem prover to run indefinitely, this would mean
that it was undecidable due to the nature of first-order logic.
Saturation is a strategy for enumerating the unsatisfiability
problem in FOL, squatting it into the decidable portion of the
logic.

We must keep in mind that saturation is not straightfor-
ward. During the formalisation process, we faced several
issues: for example, SPASS entering in infinite loops, deriv-
ing invalid clauses from the practical viewpoint. We had to
continually refine our logic description until we arrived at
its current version. We would also like to emphasise that
although the model saturates, it represents potentially infi-
nite parallel executions with a potentially infinite set of agents
engaging on different runs.

9.2 Normal execution

To evaluate the correctness of our specification, we tested a
conjecture to verify whether the main logic model runs as
specified; in other words, its last step (represented by For-
mula 28) is reachable by the derivations embedded in the
model. This conjecture basically tests whether both honest
agents (a and b) have the ok connection confirmation in their
K nows predicate. That is:

Γmain [K nows(ok, a) ∧ K nows(ok, b)]

The proof analysis shows us that all formulae are used in
the proof. This is of extreme importance because no steps
should be left out. This theorem also concerns our descrip-
tion of the Bluetooth NC SSP as a ceremony. It demonstrates
that our multi-media communication scheme is able to dis-
tribute knowledge properly to different types of peers during
protocol execution.

9.3 Abnormal execution attempt

Alternatively, we ran a conjecture for the hypothetical sce-
nario of agents being unable to establish a connection on
normal circumstances (no intruder present). That is:

Γmain � [K nows(f ail, a) ∨ K nows(f ail, b)]

The execution of this conjecture only causes SPASS to
saturate the problem, and it is unable to find any proof. This
demonstrates our logic model follows the expected behav-
iour. This result further assures the correctness of our speci-
fication. This is the expected behaviour as the protocol should
not fail without the interference of an intruder.

We now begin to examine the logic model in conjunction
with an intruder. This will help us to further elaborate on the
specifications, since the ceremony will be tested against a
proper threat model.

9.4 Saturation of extended logic model

The extended logic model, combining the main logic model
plus the intruder model, also saturates. Thus, SPASS can also
derive a finite set of clauses from the larger problem. Due to
the considerations of the attacker capabilities we now have
the ceremony executing in its threat model environment.

Γextended [K nows(ok, a) ∧ K nows(ok, b)]
One important thing to note here is that the size of the prob-

lem increases dramatically by adding the threat model. The
number of clauses deviated by SPASS increases significantly.
The saturation here also demonstrates that our implementa-
tion works. During the validation phase, we proved some
smaller lemmas regarding the capabilities embedded in the
threat model. We took special care to verify how knowledge
was being distributed to peers across the different media.

9.5 Proof of Theorem 1

The first theorem involves executing the whole model under
a Dolev–Yao threat model. Its original description is:

“If the protocol messages M1 to M7 are run against a
DY attacker, the attacker can prevent UA from learning
Va or Vb and UB from learning Vb or Va , forcing them
to learn Vi instead”.

In logic notation, we have:

Γextended [K nows(v_g(kua, kub, na, nb, a), i)∧
K nows(v_g(kua, kub, na, nb, b), i)∧
K nows(v_g(kua, kui, na, ni, i), i)∧
K nows(v_g(kui, kub, ni, nb, i), i)∧

¬K nows(v_g(kua, kub, na, nb, a), b)∧
¬K nows(v_g(kua, kub, na, nb, b), a)∧

K nows(v_g(kua, kui, na, ni, i), human(a))∧
K nows(v_g(kui, kub, ni, nb, i), human(b))]

The conjecture above strictly lists which Vi we want
the intruder to fake. Formula 44 says that the intruder can
try any possible combination of public keys and nonces
in order to generate some V . Therefore, we must restrict
the possible values of Vi to v_g(kua, kui, na, ni, i) and

123

An adaptive threat model for security ceremonies 119

v_g(kui, kub, ni, nb, i). In the first case, a initiates a con-
nection with i and, in the second case, i initiates a connection
with b. The proof of this theorem is automatically checked
using the theorem prover SPASS.

An important result is shown here: the Bluetooth Pair-
ing Protocol in Numeric Comparison mode is insecure when
analysed under a Dolev–Yao threat model. This also happens
for the related ceremony as shown above.

9.6 Proof of Theorem 2

The second theorem tests what happens if we restrict the
threat model in channel H D by only allowing eavesdropping.
Its original description is:

“If the protocol messages M1 to M3 are run against a
DY attacker; the messages M4 to M5 are run against
a N+E attacker; and messages M6 to M7 are run
against a DY attacker, the attacker can prevent UA from
learning Vb and UB from learning Va , forcing them to
learn the repetition (replay) of Va and Vb (respectively)
instead”.

To do so, we must remove Formulae 41 and 46 (Block
and Spoof in channel H D, respectively). The channels DD
and HH continue using a Dolev–Yao threat model. In logic
notation, we have:

Γextended − { Formula 41, Formula 46
} [K nows(v_g(kua, kub, na, nb, a), i) ∧

K nows(v_g(kua, kub, na, nb, b), i) ∧
¬K nows(v_g(kua, kub, na, nb, a), b) ∧
¬K nows(v_g(kua, kub, na, nb, b), a)]

The theorem above shows us a nuance of the threat model
which the Bluetooth SPP ceremony is exposed to. When
removing the block and spoof capabilities of the attacker in
the H D channel only, we still find unrealistic attacks against
the ceremony. We were able to prove that the attacker would
be able to break the ceremony attacking the H H channel,
using his blocking and spoof capabilities. This is an exam-
ple of an attack that would surface using the full Dolev–Yao
capabilities, but that in a real-world setting is unrealistic. As
we demonstrate, our specification and verification framework
is capable of capturing this nuance.

9.7 Proof of Theorem 3

The last theorem has a similar purpose to the previous one.
It replaces the Dolev–Yao model with a weaker version, but
now on both channels H D and H H . Its original description
is:

“If the protocol messages M1 to M3 are run against
a DY attacker and the messages M4 to M7 are run

against an N+E attacker the attacker cannot produce
any relevant attack”.

Although the original statement of the theorem is open,
we decided to specify it as the attacker’s capability to fool
the human behind the screen. To achieve that, we propose a
man-in-the-middle attack happening in the Human–Human
channel. Again, to do so, we remove Formulae 41, 46, 42 and
47 from Γextended . In logical notation, we then have:

Γextended − { Formula 41, Formula 42, Formula 46,
Formula 47 } [¬(

M H H(sent (human(i), human(a),

v_g(kua, kui, na, ni, i)))
∧

M H H(sent (human(i), human(b),

v_g(kui, kub, ni, nb, i))))]
The proof generated by SPASS, of the negation of a man-

in-the-middle attack, shows us that the attacker is indeed
unable to compromise the ceremony when he only possesses
the eavesdrop capability on channels H D and H H . Thus,
we have proved that the man-in-the-middle attack does not
happen in this setting.

10 Gains of ceremony description under a realistic
threat model

If the correct threat model for each association mode in the
Bluetooth protocols was misunderstood, it would lead us to
two types of incorrect conclusions:

– The protocol (and related ceremony) is not secure
because they do not cope with an overly pessimistic threat
model. Usually this would lead the protocol/ceremony
designer to add features that would assume non-plausible
assumptions and/or degraded usability.

– The protocol is secure, but the user misunderstands the
threat he is subject to. This is again related to the costs of
the added security measures to protect against all threats,
even the unrealistic ones.

The ceremony for the Bluetooth pairing can be described
avoiding the above conclusions. The ceremony could enforce
the correct choice of threat model at the implementation level
by restricting the modes available to the strongest type pos-
sible for that specific device; or at application level, where
the application would dynamically allow/block association
modes depending on the environment.

For example, the Bluetooth protocol could be imple-
mented with the dynamic threat model in mind. Bluetooth
devices are capable of sensing their surroundings, and in

123

120 J. E. Martina et al.

some cases—for example, in the case of smart phones—they
can pinpoint the exact location they are at that moment. With
these capabilities, the implementation of the ceremony could
avoid the user misunderstanding the threat model he is sub-
ject to. As examples we can cite that a pairing ceremony with
a fixed-pin device could only happen after sensing the radio
and not detecting the presence of any other devices around,
thus sticking to the designed threat model. Or, when pair-
ing with other semi-constrained devices, this pairing does
not happen in a known public place, as this is not covered
by the actual threat model the ceremony was design for. In a
more precise way, the ceremony should take into account, for
example, whether there are more Bluetooth-enabled devices
around before allowing pairing under the just works mode.
If there is more than one, the just works mode should not be
available, as the weakened threat model requires that, if only
one device is found, the just works mode could be securely
used, since it respects the threat model specified for its use.

This kind of ceremony potentially leads to a positive side
effect; it trains users to detect different threat models for
those situations. In the same example, the user is able to
learn through experience that to be more protected in public
environments they need to use stronger authentication mech-
anisms, while in private they are subject to different threats.

Although the examples discussed in this paper focus on
the Bluetooth pairing protocol, the idea of using variations
of the threat model can be applied for several different cer-
emonies, varying from ATM authentication ceremonies to
TLS handshake protocol implementations and its variations.

11 Conclusions

The existence of a single worst-case scenario threat model
is justifiable in security protocol scenarios. However, the
same cannot be said for security ceremonies. Human agents
executing security ceremonies are constrained by the laws
of physics and usual abilities expected from human beings.
The existence of such a powerful agent in a setting involv-
ing human-to-human communication is not plausible and is
likely to demand solutions that are not tailored to reality.

Our approach for describing a threat model for security
ceremonies is based on a well-established model for security
protocols. In our approach, we weaken the attacker to con-
form to the premises governing human–device interaction
and human-to-human interaction. This strategy seems plau-
sible because it will help security protocols and ceremony
designers to develop ceremonies with reasonable assump-
tions and tailored to the real capacities of the attacker.

In this paper, we presented our proposal and demonstrated
using examples that the goals of our proposal are already
embedded in industry deployed protocols. We described a
fraction of a ceremony where a dynamic threat model using

the weakened versions of the all-powerful attacker is used.
Additionally, we showed that we can design a ceremony that
helps the user by ensuring the correct assumptions are made
by protocol designers. We also presented a set of formulae
that provide support for mechanised and automated verifica-
tion of security ceremonies. To specify these formulae, we
used the theorem prover SPASS and first-order logic. We
extended a scheme presented by Weidenbach [28] that per-
forms the verification using an unbounded number of parallel
runs and an unbounded number of peers per run. An impor-
tant characteristic of the formulae we produced is that they
are generic, so we can easily reuse them in the verification
and specification of other ceremonies.

Our formulae also include the specification and verifica-
tion of the variable threat model proposed. We managed to
dismantle the threat model into a set of formulae that can
easily be added or removed from the specification. With this
strategy, we can represent all the threat model nuances pro-
posed for the Bluetooth Pairing Protocol in Numeric Com-
parison mode. This attacker model can also be re-used in the
verification of other ceremonies with little effort.

Finally, we were able to formally verify that the SSP cere-
mony under the NC mode holds the expected properties when
the threat model is correctly specified. We specified the pro-
tocols and the ceremony together in a scheme that can trace
the distribution of knowledge between peers. These results
match the empirical analysis performed. Our framework can
also easily build a proof path, which will teach the ceremony
designer or verifier how to reproduce any attack found. This is
an implicit characteristic inherited from Weidenbach’s spec-
ification.

Our contributions are at least threefold. Firstly, we are
able to mechanise a scheme capable of specifying and for-
mally verifying security ceremonies. Secondly, we created
a deconstruction of the Dolev–Yao attacker so that it can be
used following the ideas stated in earlier sections. Finally, our
mechanised scheme is able to teach the ceremony designer
or verifier the exact steps he should follow to construct a
real-world attack if possible.

In addition to showing that a tailored threat model is
important to realistically analyse security ceremonies, we
could perceive how our model can be useful to detect attacks
to ceremonies. A straightforward example is that the attacks
found on the legacy mode could be easily detected by our
implementation if we describe this protocol as a ceremony.
An attacker with the capability of eavesdropping on the H D
or H H channel would be able to learn the PIN (e.g. hear-
ing/reading the PIN value), which should be secret. The
attacker, in possession of this value, would be able to decode
all the messages between the devices.

The next steps for research in this area clearly include
implementing and refining the formulae by using them to
verify other ceremonies, especially those that make more

123

An adaptive threat model for security ceremonies 121

use of encryption and digital signatures schemes (the SSP
does not directly uses encryption and digital signatures). A
natural next step is the implementation of our formal model
in a more expressive logic, such as higher-order logic (HOL).
Although, it will probably be more difficult to implement in
the beginning, if we specify this current framework in HOL,
some more conclusive findings can be asserted.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography
(the computational soundness of formal encryption). J. Cryptol.
20(3), 395–395 (2007)

2. Alexander, R.D.: The evolution of social behavior. Annu. Rev. Ecol.
Syst. 5 (1974). http://www.jstor.org/stable/2096892

3. Anderson, R., Needham, R.: Robustness principles for public key
protocols. In: CRYPTO ’95. Springer (1995)

4. Arsac, W., Bella, G., Chantry, X., Compagna, L.: ARSPA-WITS.
Lecture Notes in Computer Science. In: Degano, P., Viganò, L.
(eds.) Validating Security Protocols Under the General Attacker,
pp. 34–51. Springer (2009). doi:10.1007/978-3-642-03459-6

5. Arsac, W., Bella, G., Chantry, X., Compagna, L.: Multi-attacker
protocol validation. J. Autom. Reason. 46(3–4) (2011). doi:10.
1007/s10817-010-9185-y

6. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic
secrecy. IACR Cryptology ePrint Archive 2004, 300 (2004), http://
eprint.iacr.org/2004/300

7. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking
to strangers: Authentication in ad-hoc wireless networks. In:
NDSS’02. San Diego (2002)

8. Bella, G., Bistarelli, S., Massacci, F.: Retaliation: can we live with
flaws? In: IACS, vol. 6. IOS Press (2006)

9. Bella, G.: Formal Correctness of Security Protocols. Information
Security and Cryptography. Springer, Berlin (2007)

10. Bella, G.: Formal Correctness of Security Protocols, Information
Security and Cryptography, vol. XX. Springer, Berlin (2007)

11. Bellare, M., Rogaway, P.: Entity authentication and key distribu-
tion. In: CRYPTO’ 93, LNCS, vol. 773. Springer (1994)

12. Bluetooth Special Interest Group: Bluetooth specifications 1.0
- 2.1+EDR. Technical specifications. http://www.bluetooth.com
(1999–2007)

13. Bluetooth Special Interest Group: Simple pairing whitepaper
v10r00. Technical report (2006)

14. Carlos, M.C., Price, G.: Understanding the weaknesses of human-
protocol interaction. In: Proceedings of the 16th International Con-
ference on Financial Cryptography and Data Security. pp. 13–26.
FC’12, Springer, Berlin, Heidelberg (Mar 2012)

15. Creese, S., Goldsmith, M., Roscoe, A.W., Zakiuddin, I.: The
attacker in ubiquitous computing environments: formalising the
threat model. In: FAST’03 (2003)

16. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works.
In: SIGCHI’06. ACM, New York (2006). doi:10.1145/1124772.
1124861

17. Dolev, D., Yao, A.: On the security of public key protocols. IEEE
Trans Inf Theory 29(2), 198–208 (Mar 1983)

18. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE
Trans. Inf. Theory 29(2), 198–208 (1983)

19. Ellison, C.: Ceremony Design and Analysis. Cryptology ePrint
Archive. Report 2007/399 (Oct 2007)

20. Jakobsson, M.: The human factor in phishing. In: Priv. Secur. Con-
sum. Inf. ’07 (2007)

21. Jakobsson, M., Wetzel, S.: Security weaknesses in bluetooth. In:
CT-RSA 2001, LNCS, vol. 2020. Springer (2001)

22. Needham, R.M., Schroeder, M.D.: Using encryption for authen-
tication in large networks of computers. Commun. ACM 21(12)
(1978)

23. Parker, G.: Assessment strategy and the evolution of fighting behav-
iour. J. Theor. Biol. 47(1) (1974). http://www.sciencedirect.com/
science/article/pii/0022519374901118

24. Ryan, P., Schneider, S.: Modelling and Analysis of Security Pro-
tocols, 1st edn. Addison Wesley, Boston (2001)

25. Shaked, Y., Wool, A.: Cracking the bluetooth pin. In: MobiSys
’05s. ACM, New York (2005)

26. Stajano, Anderson: The resurrecting duckling: security issues for
ad-hoc wireless networks. In: IWSP: International Workshop on
Security Protocols, LNCS (1999)

27. Weidenbach, C.: SPASS Input Syntax Version 1.5. Max-Planck-
Institut fur Informatik

28. Weidenbach, C.: Towards an automatic analysis of security proto-
cols in first-order logic. In: 16th International Conference on Auto-
mated Deduction, pp. 314–328. Springer, London, UK (1999)

123

http://www.jstor.org/stable/2096892
http://dx.doi.org/10.1007/978-3-642-03459-6
http://dx.doi.org/10.1007/s10817-010-9185-y
http://dx.doi.org/10.1007/s10817-010-9185-y
http://eprint.iacr.org/2004/300
http://eprint.iacr.org/2004/300
http://www.bluetooth.com
http://dx.doi.org/10.1145/1124772.1124861
http://dx.doi.org/10.1145/1124772.1124861
http://www.sciencedirect.com/science/article/pii/0022519374901118
http://www.sciencedirect.com/science/article/pii/0022519374901118

	An adaptive threat model for security ceremonies
	Abstract
	1 Introduction
	2 Ceremony versus protocol
	3 Abstract threat models for protocols
	4 Premises for ceremonies and ceremonies threat modelling
	5 Proposed threat model for ceremonies
	6 Bluetooth pairing ceremony
	7 Example scenario: bluetooth pairing protocol
	8 Specifying the ceremony
	8.1 Preliminary operations
	8.2 Main logic model
	8.3 Intruder model

	9 Results
	9.1 Saturation of main logic model
	9.2 Normal execution
	9.3 Abnormal execution attempt
	9.4 Saturation of extended logic model
	9.5 Proof of Theorem 1
	9.6 Proof of Theorem 2
	9.7 Proof of Theorem 3

	10 Gains of ceremony description under a realistic threat model
	11 Conclusions
	References

