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Abstract Passive radio-frequency identification (RFID)
tags have long been thought to be too weak to implement
public-key cryptography: It is commonly assumed that the
power consumption, gate count and computation time of full-
strength encryption exceed the capabilities of RFID tags.
In this paper, we demonstrate that these assumptions are
incorrect. We present two low-resource implementations of a
1,024-bit Rabin encryption variant called WIPR—in embed-
ded software and in hardware. Our experiments with the soft-
ware implementation show that the main performance bot-
tleneck of the system is not the encryption time but rather
the air interface and that the reader’s implementation of the
electronic product code Class-1 Generation-2 RFID standard
has a crucial effect on the system’s overall performance.
Next, using a highly optimized hardware implementation,
we investigate the trade-offs between speed, area and power
consumption to derive a practical working point for a hard-
ware implementation of WIPR. Our recommended imple-
mentation has a data-path area of 4,184 gate equivalents, an
encryption time of 180 ms and an average power consump-
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tion of 11µW, well within the established operating envelope
for passive RFID tags.
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1 Introduction

1.1 Background

The electronic product code (EPC) system is one of the
world’s most ambitious pervasive computing projects. It aims
to replace today’s familiar 14-digit optical-scan universal
product code bar codes with radio-frequency identification
(RFID) tags operating in the ultra-high frequency (UHF)
band, which are based on the EPC standard [1]. As noted
in [2], the additional capabilities of EPC tags create con-
siderable privacy issues which did not exist with optical bar
codes. For example, it is possible to track individuals by
placing EPC readers in multiple locations and searching for
RFID tags carried by a person (for example on RFID-tagged
clothes or banknotes) as he moves between them. Clearly,
the EPC ecosystem will greatly benefit from the use of cryp-
tography to protect the communications between the tag and
the reader. However, adding cryptography to the EPC system
is far from trivial.

There are several factors which make it extremely chal-
lenging to introduce security and privacy into an RFID envi-
ronment. Most significantly, there is the issue of power
consumption—EPC tags are passively powered by the RFID
reader and, as such, have an extremely limited energy bud-
get. Since the power available to the tag decreases in propor-
tion to the square of its distance from the reader, increas-
ing a tag’s energy budget will force it to move closer to
the reader and severely limit its usability. According to [3],
the average power consumption of a typical UHF tag cannot
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exceed 30µW. This limits both the circuit size of the device
and its maximum clock rate. Another constraint is that of
gate count—EPC tags are designed to cost only a few cents,
imposing a severe limit on the chip area and thus on the gate
count. According to [4], the overall gate budget of a passive
RFID tag is on the order of 10,000 gate equivalents (GEs).

Because of these constraints, common wisdom holds that
public-key cryptography is too expensive for such RFID tags
[5]. Specifically, the perception is that full-strength cryptog-
raphy is too slow and that it requires too much energy and
too many gates. Hence, the vast majority of proposed security
schemes for RFID systems rely exclusively on symmetric-
key primitives [6]. However, RFID tags were shown to be vul-
nerable to reverse engineering, even by a moderately funded
adversary [7]. This makes it extremely problematic to store
sensitive data (such as symmetric encryption keys) on these
tags, since the entire system can be compromised as soon as
the secret key is recovered from even a single tag.

WIPR is an encryption scheme, first described in [8],
which is designed to address all three of these challenges—
power consumption, gate count and storage of sensitive data.
WIPR has a very simple design, allowing its implementa-
tion to have both low power consumption and a low gate
count. Significantly, since WIPR is an asymmetric (public-
key) encryption scheme, no sensitive data need to be stored
on the tag itself, dramatically reducing the damage caused by
reverse engineering attacks. WIPR also enjoys a very large
payload capacity, which enables a wide variety of applica-
tions, from supply-chain anti-counterfeiting to secure sensor
networks.

1.2 Related work

The WIPR scheme is based on the randomized variant of
the well-known Rabin cryptosystem [9], first discussed in
[10]. This scheme’s applicability to low-resource smart cards
was explored in [11,12] and later [13]. The Rabin cryptosys-
tem was first implemented in a low-resource setting by [5],
but was found to be unsuitable for the ultra-low-resource
RFID tags. Other public-key RFID contenders can be found
in works such as [14,15], but these implementations gener-
ally require more gates than can fit in a low-cost tag or rely
on uncommon features such as very large random sources.
Several authentication protocols based on other light-weight
primitives such as hash functions were also suggested in
[16,17].

The ultra-low-resource implementation of the Rabin pro-
tocol presented in [8,18] replaces the long pseudo-random
sequence, originally stored on EEPROM in [12], by a
reversible stream cipher using less than 300 bits of RAM,
with gate count estimate (based on partially simulating the
data path) of around 5,000 gate equivalents. A proposed
improvement, which claims reduced hardware requirements

and protects against some attacks, was also presented in
[19]. A prototype for a logistical system that uses WIPR is
described in [20].

Several other works have also evaluated concrete low-
resource implementations of public-key cryptography, as sur-
veyed recently by Najera et al. [21]. In [22], Plos et al.
present the design and implementation of a magnetically cou-
pled near-field communication tag system supporting high-
security features, including an elliptic curve digital signature
system. The gate count of the complete device, including an
analog front end, is 49,999 GEs. In [23], Wenger et al. eval-
uate the cost of adding support for elliptic curve cryptogra-
phy to several popular microcontrollers using instruction set
extensions. The gate cost of adding an ECC core to these
microcontrollers was simulated and found to be between
6,140 and 18,700 GEs excluding RAM, and between 16,786
and 32,034 GEs including RAM. Other works, such as that
of Batina et al. [24], propose additional public-key schemes
suitable for RFID tags, but these works do not discuss com-
plete implementations and as such are difficult to compare to
our system.

1.3 Our contribution

In [8], Oren and Feldhofer presented a preliminary possible
implementation of WIPR’s data path and presented an esti-
mate on the area and power consumption of a device built
using this design. This implementation was improved in the
work of [18], which also presented a deployment scenario
for the WIPR scheme. However, the question of the scheme’s
practicality remained unresolved.

In this contribution, we present detailed software and hard-
ware implementations of WIPR and use them to explore the
technological design space and its limitations.

Our first implementation target was a slow microcontroller-
based software implementation on a custom programmable
RFID tag [25]. We used this implementation to experi-
ment with the protocol, the air interface and the connec-
tion between the tag and the reader. We discovered that the
main performance bottleneck was not the encryption time,
but rather the EPC Class1 Generation2 (C1G2) air interface
and the way the protocol was implemented in the reader.

Our second implementation target was a detailed ASIC
implementation. We used this implementation to explore the
design space of a hardware implementation of WIPR, which
presents a trade-off between area, power, energy and time
for encryption. Through extensive gate-level simulation, we
identified a recommended working point within this design
space which is fast-performing yet frugal enough, both in
its area and in its power consumption, to fit into a passive
supply-chain tag: Our recommended implementation has a
data-path area of 4,184 GEs, an encryption time of 180 ms
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and an average power consumption of 11µW, well within
the established operating envelope for passive RFID tags.

1.4 Document structure

In Sect. 2, we describe the WIPR cryptographic scheme. In
Sect. 3, we describe our embedded software implementation
and experiments. In Sect. 4, we describe our detailed ASIC
implementation. Finally, we conclude our paper in Sect. 5.

2 The WIPR cryptographic scheme

2.1 Theoretical basis

WIPR is a variant of the Rabin’s encryption scheme presented
in [9], first discussed in [10], which is provably as secure
as factoring large numbers. In Rabin’s scheme, the private
key consists of two large prime numbers p and q. These are
multiplied to form the public key n = p · q. The plaintext
P is typically generated from a shorter string (in our case an
ID) by padding it with random bits until it is as long as n. To
encrypt a plaintext P in this scheme, the sender calculates
the ciphertext M as its square, reduced modulo n:

M = P2 (mod n)

To decrypt a ciphertext, the receiver calculates the square
roots of M modulo p and q, and then combines the resulting
values using the Chinese Remainder Theorem [26, §2.4.3].
Each ciphertext has two possible roots modulo p and two
roots modulo q (±m (mod p) and ±m (mod q)), leading
to four possible plaintexts for each ciphertext. To allow the
receiver to determine which of the four possible plaintexts is
the correct one, the sender typically adds some redundancy
to the message (in our case, the reader’s challenge serves this
purpose).

The encryption element of Rabin’s scheme is relatively
easy to implement, requiring only a single multiplication
and modular reduction. However, modular reduction is a
RAM-intensive process, a fact that limits the applicabil-
ity of Rabin’s algorithm to low-resource devices such as
smart cards. To reduce the resource requirements of Rabin’s
scheme, Naccache in [11] and Shamir in [12] and later [13]
suggested a RAM efficient variant, replacing the modular
reduction step by an addition of a large random multiple of
n, where the size of the random value r is at least 80 bits
longer than the size of n (to have no detrimental effects on
security):

M = P2 + r · n

The decryption algorithm is precisely identical to Rabin’s
original scheme. Shamir proved that the security of this
resource-reduced scheme and the original Rabin scheme are

equivalent. The reduced scheme is easier to implement since
it has only multiplication operations and not modular reduc-
tions. In terms of space requirement, the problem of storing
P2 was replaced by the challenge of storing the large ran-
dom number r . However, since r is written to only once per
protocol execution [12], suggested that it should be stored in
EEPROM, which is plentiful on smart cards, and not on the
more scarce RAM. However, rewritable EEPROM is cheap
on smart cards and prohibitively expensive on RFID tags,
due to the high power cost of the write operation.

The final resource reduction in the Rabin scheme was pre-
sented in the WIPR scheme [8,18]. WIPR replaces r with the
output of a low-resource reversible stream cipher. This cipher
is implemented by creating a Feistel structure [27], a well-
known cryptographic construct used in symmetric ciphers
such as DES and TEA. To make use of this cryptographic
building block to provide secure identification, a challenge-
response construction was used, adding a reader-supplied
random challenge to the plaintext P .

2.2 Protocol steps

Given the above description, following is an outline of the
protocol steps:

1. Setup: The tag is provided with the public key n and a
signed unique identifier I D. The reader is provided with
the private key (p, q).

2. Boot: The reader generates a random bit string Rr , where
|Rr | = α. The tag generates two random bit strings Rt1

and Rt2, where |Rt1| = |n|−α−|I D| and |Rt2| = |n|+β.
and α, β are security parameters (both set to 80 in our
implementation).

3. Challenge: The reader sends Rr to the tag.
4. Response: The tag generates a plaintext as follows: P =

Rr #Rt,1#I D, where # denotes concatenation, and then
transmits the following message:

M = P2 + Rt2 · n

5. Verification: The reader uses the private key to decrypt
M . There are four candidate decryptions, so the reader
checks which of the four possible decryptions contain
the value of the challenge Rr it sent to the tag. If such a
plaintext is found, the reader outputs the value of I D. In
all other cases, the authentication fails.

The WIPR protocol is based on public-key cryptography—
the public key stored on the tag allows messages to be
encrypted, but does not allow messages to be decrypted, even
if those messages were previously transmitted by the same
tag. In contrast, a system based on secret-key cryptography
must use the same key both on the reader and on the tag,
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and this secret key can be used to encrypt and decrypt all
messages. In such a scenario, capturing and reverse engineer-
ing a tag may compromise the entire authentication system.
As discussed in [20], building a system around public- key
cryptography provides additional security guarantees to the
users of the system and dramatically simplifies the logistics
involved with creating, distributing and deploying the tags.

3 Embedded software implementation

3.1 Objectives

WIPR was shown in [18] to have an acceptable gate count
and power consumption, but the time presented in [18] was
600 ms per encryption, a delay which might be considered
too much in a supply-chain scenario. Through the software
implementation, we wanted to discover whether the crypto-
graphic operation is indeed an inherent time bottleneck, or
whether it can be sped enough to make the system usable.
We also wanted to address the system issues and find out
whether a practical public-key system can be created using
today’s hardware and standards.

3.2 Design

The system we built consists of an EPC C1G2-compliant
RFID tag, an EPC C1G2-compliant RFID reader and two
PC workstations.

The system setup is presented in Fig. 1. Our system used
the UHF Demotag, a hardware prototyping platform devel-
oped by IAIK TU Graz. As stated in [25], the tag is battery-
powered, but behaves like a fully passive tag in the reader
field. It is fully compatible to ISO 18000-6c and EPC C1G2
standards. The tag is optimized for easy adaptability to allow
fast development of prototypes. It features a ATMega128
microcontroller with JTAG and ISP interface for program-
ming. An RS232 interface is available for configuration and
logging. The front end consists of discrete devices on a

Fig. 1 System setup

PCB, with a PCB antenna that is tuned to 868 MHz. The
tag is connected via a serial RS232 communication link
to a Linux workstation running the CrossStudio for AVR
embedded development environment by Rowley Associates,
version 1.4. The firmware executes on power-on from the
Atmega128’s on-chip flash memory. As a reader, we chose
the CAEN RFID DK828EU reader. It features a controller
module with embedded EPC C1G2 reader firmware which is
controlled via USB link by a Windows workstation running
Matlab. The DK828EU reader conforms with European ETSI
power requirements [28]. In our laboratory tests, we found
that this reader has an average read rate of approximately
15 kbps, a fact which dominated the overall performance of
our system. The IAIK SCA Toolkit provides the connection
between the reader’s software libraries and Matlab. Finally,
an RFID wireless link is established between the Demotag
and the reader.

Figure 2 demonstrates the full WIPR protocol flow
through an EPC C1G2 air interface using standard EPC pro-
tocol commands. The reader first sends the standard INVEN-
TORY command. WIPR tags do not respond to this command
with the full EPC, which may be sensitive and should not be
disclosed. Instead, the tag sends a special EPC value indicat-
ing that it is a WIPR tag and possibly disclosing a limited
subset of the EPC which is sufficient for use with non-secure
readers. To allow for a single WIPR tag to be successfully
singulated when multiple WIPR tags are present, part of this
special EPC value will be a random value computed on boot.

Fig. 2 The full WIPR implemented using mandatory C1G2 commands
(based on [1], [annex E])
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The reader then starts sending the 80-bit cryptographic chal-
lenge Rr . This operation is performed through the standard
EPC C1G2 WRITE command. After the challenge is sent, the
tag automatically encrypts its payload of data (consisting of
its ID, the challenge and the locally generated random string
Rt1) and places it in the SRAM buffer on the ATMega128
chip. Once the reader issues a standard BLOCK_READ com-
mand to the tag, the ciphertext is read out from the tag.
The reader is free to initiate as many cycles of data trans-
fer as it wishes between 1 and 138 16-bit words (the entire
encrypted payload). As shown in the following subsection,
larger block sizes result in a faster and more efficient data
transfer.

It is important to note the three times marked in Fig. 2 as
Tchallenge, Tencrypt and Tresponse. While Tchallenge and Tresponse

are determined by the speed of the link between the tag and
the reader, Tencrypt is solely a function of the implementation
quality of the WIPR algorithm. It can also be noted that only
a part of Tresponse (marked as Tresponse′) happens after encryp-
tion is completed. As we discuss in the following subsection,
this is due to a special property of the WIPR algorithm which
allows for the ciphertext to be generated byte by byte.

3.3 Implementation

The tag is provided with a 1,024-bit public key n, which
is stored in the tag’s ROM and can be copied to the heap
on boot to improve performance. The tag also stores its
signed ID, which can be up to 864 bits long (for reference,
a high-security ECDSA signature is 320 bits long). When
issued with a fresh challenge Rr , the tag generates two ran-
dom bit strings Rt1 (between 80 and 1,024 bits) and Rt2

(1,104 bits).
When the tag receives the challenge Rr sent by the reader,

it stores it in heap memory. It then creates its response mes-
sage P = Rr #Rt1#I D—i.e., Rt1 is used as random padding
to bring the plaintext to 1,024 bits. Beginning at the least
significant byte, the encrypted message M = P2 + Rt2 · n
is computed using multiplication by convolution. Note that
there is no modular reduction, so the message M is 2,208 bits
long. The response bytes are then stored in SRAM memory.
The WIPR algorithm structure allows encryption in a byte
by byte on demand fashion, supporting devices with limited
memory and also allowing the response to be generated in
the background.

Our software implementation of the WIPR scheme had a
very minor effect on the resources of the IAIK Demotag. The
code section of a firmware design with the complete WIPR
implementation requires 33,540 bytes, only 7.5 % (2,534
bytes) more than the standard version of the firmware without
WIPR support. WIPR uses only 660 bytes of the available
4 KB of SRAM in its most RAM-heavy implementation.

3.4 Evaluation

Three possible scenarios were evaluated: First we evaluated
a naïve implementation which does not cache the values of
P and Rt2 values in SRAM prior to the multiplication by
convolution, but instead recalculates them on demand. Next,
we tried caching the value of P before convolution. Finally,
we tried caching the values of both P and Rt2. As depicted in
Fig. 3, caching data on the heap has a dramatic effect on the
execution time. The first scenario required 7 s to encrypt. The
second scenario (caching only P) took 1.18 s, while the third
scenario (caching both values prior to the convolution) sped
the calculation to 180 ms. The convolution was implemented
using the ATMega128’s built-in hardware multiplier for all
scenarios.

Figure 4 shows the value of Tresponse as a function of the
amount of bits accessed in each block read operation. Recall
that the computed result of 2,208 bits is read from the tag
in a sequence of BLOCK_READ operations, and the block
size is an implementation parameter of the reader’s software.
If a single 16-bit word is read in every round trip, the 138
read commands issued by the reader take 6.5 s to transfer the
entire payload. On the other hand, a block size of 34 bytes
(272 bits, the maximum size supported by our laboratory
setup) allows the same payload to be transferred in only 0.46 s
using 8 block reads. Upon further investigation, we found that
the system’s bottleneck is concentrated in the CAEN reader
firmware, which takes about 40 ms to perform a single read

Fig. 3 Tencrypt as a function of heap size

Fig. 4 Tresponse as a function of block read size. The solid line shows
the measured time, while the dotted line is the calculated maximum
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operation, regardless of the size of the data exchanged. This
happens because the reader performs a fresh singulation pro-
tocol each time a tag is accessed, even if the tag is already in
the SECURED state. The singulation process results in three
unnecessary protocol round trips per command, dramatically
reducing the I/O performance. The reader we used also pow-
ers up the radio circuit before each command and shuts it
down again after the command concludes, further reducing
performance. The dashed line in Fig. 4 shows an estimated
performance of the same reader assuming the tag enters the
read process powered on and singulated and that the reader
does not repeat the singulation protocol between commands.

Table 1 estimates the values of Tresponse for a reader-tag
link using an optimized EPC C1G2 flow. The estimation
assumes the fixed cost of 40 ms related to powering up and
singulating the tag was already incurred when the challenge
was sent, so all the time incurred is related to the propagation
delay of BLOCK_READ operations performed at 15 kbps.
The current reader’s configuration did not allow us to inter-
fere with its order of execution or implement any protocol
optimization.

3.5 Further optimizations

The results we measured are for a completely serialized oper-
ation, with the transmission of the ciphertext starting only
after the last byte of ciphertext is calculated (Tresponse =
Tresponse′ ). In addition, the current firmware of the Demo-
tag supports writes of no more than 2 bytes and reads of
no more than 34 bytes, resulting in 5 commands for writ-
ing the challenge and at least eight for reading the response.
Finally, the off-the-shelf reader we evaluated communicates
with tags in an inefficient way, as discussed previously. By
implementing relatively minor tweaks to these limitations,
we believe that the operation of the system can be dramat-
ically improved. Table 2 shows the estimated performance
gains of these optimization steps.

The first and immediate improvement could be achieved
by better use of the air interface. By sending the challenge in
a single 80-bit packet and keeping the tag in the SECURED

Table 1 Tresponse as a function of block read size

Ciphertext bytes
read per block

Measured
Tresponse (s)

Estimated
Tresponse (s)

1 13.1 1.02

2 6.5 0.57

4 3.2 0.34

14 1.1 0.18

28 0.52 0.15

34 0.46 0.14

276 Unsupported 0.12

state, we can reduce Tchallenge from 200 ms to an estimated
85 ms. Next, we can remove the unnecessary singulation
steps by making sure the reader keeps the tag powered on
and in the SECURED state throughout the response phase. In
addition, we can pipeline the encryption and response trans-
mission: Using WIPR, the tag can compute the ciphertext
in 34-byte blocks and send them to the reader as soon as
they are ready. The total time to perform the entire protocol
in this case is equivalent to the time required to power on
the tag and send it a challenge (85 ms), the time required for
the tag to calculate the full response (180 ms) and the time
required to send the final 34-byte chunk, which is ready only
after encryption is finished (60 ms). Under these minor mod-
ifications, we estimate the entire protocol (including both
identification and authentication) will take 325 ms.

For a more dramatic optimization, we can read the entire
276-byte response in a single read command which is issued
immediately after the challenge is sent. This is possible since
the tag can be designed to concurrently transmit the initial
bytes of the ciphertext while it calculates the following ones.
Since the data link takes only 112 ms to transfer 2,208 bits,
the entire protocol time is dominated in this case by Tencrypt,
leading to a total estimated time of 265 ms for the entire
protocol.

Passive UHF tags communicate with the reader using
modulated backscatter—instead of explicitly transmitting a
signal back to the reader, the tag rapidly varies the impedance
of its antenna, causing a variation in the phase or amplitude
of the signal it reflects toward the reader [29]. Thus, in con-
trast to traditional radio-based systems, a passive UHF tag
does not consume significantly more power while it is com-
municating with the reader. This property allows the tag to
simultaneously encrypt and transmit without requiring a high
peak power consumption.

3.6 Discussion

We consider the general-purpose 8-bit microcontroller
present on the Demotag to be inherently slower than a cus-
tom designed ASIC implementation. Indeed, a naïve software
implementation of the WIPR protocol which was function-
ally identical to the ASIC’s implementation took an unaccept-
able 7 s to perform an encryption. However, as illustrated in
Fig. 3, the addition of RAM significantly sped up the soft-
ware implementation to the point that the entire encryption
took 180 ms.

We found that the real bottleneck is in communication,
with the dominant parameter being the number of round trips
made by the reader. This problem is even more acute if the
reader being used does not recognize the concept of sessions
and repeats the singulation process with the tag every time it
wishes to send it a command. It will be interesting to investi-
gate whether other reader vendors handle multi-request ses-
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Table 2 Performance of the complete WIPR protocol under various optimizations (all times are in ms)

Protocol Step Current results Partial pipelining Full pipelining Optimization step

Tchallenge 200 85 85 Write all 80 bits of the challenge in a single round trip

Tencrypt 180 180 180

Tresponse 460 180 112 Keep tag alive and singulated

T ′
response 460 60 0 Pipeline encryption and transmission

(via FIFO or via background calculation)

Total 840 325 265

sions to a single tag more efficiently. If the tag can calculate
the response bits faster than they are transmitted, optimal per-
formance can be achieved by a pipeline design which trans-
mits the ciphertext byte by byte as it is being generated within
the context of a single large read command. This results in
a very efficient performance and a saving of valuable RAM.
Even when using minimal optimizations, the time required
for the complete protocol is quite reasonable (≈ 325 ms).

4 Detailed ASIC implementation

4.1 Objectives

In this part of the work, we wanted to test the feasibility
of a realistic ASIC-based implementation of WIPR, beyond
the sketches of [8,18], and to evaluate whether indeed it fits
the constraints of EPC C1G2 tags. Our first objective was to
present a fully functional implementation of a WIPR tag in
RTL, including data-path control logic and test-bench stim-
uli. The next objectives were to propose optimizations for
gate cost and power consumption, implement and analyze
the alternatives.

4.2 Design

4.2.1 Design flow and tool-chain

We used Cadence’s Incisive tool suite version 11.10.006 [30]
for compilation, elaboration, simulation and debug using the
following commands—ncvhdl, ncvlog, ncelab, ncsim, irun.
The RC tools-suite version 11.23.000 was used for synthesis
and power analysis.

We selected TSMC’s T SMC65L P 65nm low-power
process silicon process [31] due to our experience and its
maturity and reliability. Virage [32] was selected to provide
standard cell libraries for the above process.

The reference gate size (used to convert area to gate equiv-
alents) for this technology is 1.8µm · 0.8µm = 1.44 µm2,
and VDD of 1.08 V. For reference, dynamic power dissipa-
tion, a single data flip-flop of the simplest kind (positive-
edge triggered, q-only) consumes an energy of 0.0188 pJ

when clocked and both input (D) and output (Q) are tog-
gling. Assuming that an RFID tag has an average power of
20µW and a clock rate of 1 MHz, this allows for approxi-
mately 1,000 flip-flops to toggle every clock period.

4.2.2 Original hardware architecture of a WIPR tag

Our starting point was the hardware architecture first pre-
sented in [8] and [18], with chosen protocol parameters
of n = 1,024, α = 80, β = 80 to achieve an 80-
bit security level, comparable with 1,024-bit RSA [33].
The properties and total resource requirements of this
implementation sketch are presented in Table 3. Note that
the numbers for area and power in this table refer to
an implementation with a different process, standard cell
libraries and tools, and are therefore not directly compara-
ble with the implementation alternatives presented in this
work.

The protocol requires two online multiplications: M =
P2 + r · n. This multiplication step can readily be performed
on a multiply-accumulate (MAC) register by convolution.
Assuming a word size of 8 bits (byte), a single multiply-
accumulate register can carry out this multiplication in about
216 steps using 25 bits of carry memory (enough to accu-
mulate 512 8-bit multiply operations). The ciphertext can be
transmitted byte by byte (LSB first) as soon as it is com-
puted, minimizing the need for intermediate registers. The
data-path architecture is depicted in Fig. 5.

The public key (n) is selected as a composite number with
a predefined upper half, thus reducing the ROM cost by half
(see for example [34]), by setting the upper half to a value
easily represented in hardware.

Table 3 Properties of the original ASIC design of WIPR, presented in
[18]

Cipher strength 1,024 bits
Challenge size 80 bits

Response size 2,208 bits

Payload capacity 864 bits

Area (GE) 4,682

Total current draw (µA) 14.2
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Fig. 5 Data-path architecture of WIPR

As suggested in [8], we replace the long random strings
generated by the tag with pseudo-random outputs from a
reversible stream cipher. Instead of storing the entire random
string, we store short seed values (one for Rt2 and two for
each end of Rt1, denoted Rt1a and Rt1b in Fig. 5), and use
the stream cipher operation to evolve them over time. Due
to the sequential nature of accesses to the random strings,
only a single “roll left” or “roll right” operation is required
for each convolution step. The reversible stream cipher was
implemented using a Feistel structure [27] and a represen-
tative one-way function (OWF), as shown in Algorithm 4.1
and Fig. 6.

Algorithm 4.1 Rolling algorithm used to create pseudo-
random sequence

Roll Right:
left_in <= right_out;
right_in <= left_out xor oneway(right_out);

Roll Left:
right_in <= left_out;
left_in <= right_out xor oneway(left_out);

The random bit string Rr which is the challenge provided
by the reader must be stored in a RAM due to the random
access nature of the read transactions.

4.3 Implementation

The WIPR tag was implemented in RTL, written in the
VHDL hardware description language. The design hierar-
chy of the WIPR tag includes a top level which is the test-
bench stimuli, encapsulating the control logic FSM (finite
state machine) which controls the data path through a com-
mon AMBA [35] wrapper. The data path itself has a lower
hierarchy of modules—arithmetic (multiplier, adder, accu-

State

State

Roll Left

Roll Right

Function

Function

Fig. 6 Creating a reversible stream cipher using a Feistel structure and
an arbitrary OWF

Fig. 7 Design hierarchy of the WIPR tag

mulator register), logic (multiplexers, free logic) and stor-
age (RAM, n_const, Feistel). This hierarchy is depicted in
Fig. 7.

The data-path module’s interface which is controlled by
the control logic includes the following types of ports:
addresses (for controlling the various memory blocks),
enable signals, select lines (for controlling the multiplexers),
input buses for external data (challenge) and internal data
(e.g., tag I D) and various controls such as shift and reset.

During the course of the RTL implementation, we needed
to overcome three major issues for the design to work (before
any optimization stage):

1. A single port RAM was not enough, due to the fact that
at some steps of the calculation of P2, different bytes of
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Rr are required to be multiplied by each other. The triv-
ial (though inefficient) solution is placing two identical
instances of this single port RAM—one for each version
of P . This solution was later optimized (see Sect. 4.4).

2. At some steps of the calculation of P2, the strings Rt1a

and Rt1b are required to be multiplied by each other,
therefore should both move at the same step (either left
or right). However, only a single Feistel logic module
exists in the design, so they cannot both move at the same
cycle. Adding another Feistel logic is a costly alternative;
therefore, the control was altered to allow a two-cycle step
only for those specific cases.

3. At each cycle, the Feistel logic outputs two 48-bit halves,
but only a single byte from the Feistel state is fed to the
multiplier. The function which reduces these two halves
into a single byte must be symmetric such that it returns
the same value even if the direction was flipped. We used
the following symmetric function: out = xor(le f t[47 :
40], right[47 : 40]).

4.4 RTL optimizations

Given a functional, bit-accurate design which complies with
the properties of the protocol, the next stage was optimizing
it. The optimizations concentrated mainly, but not solely, on
the data-path module. The first-order optimization parame-
ter was area, while the second-order optimization parameter
was power. Speed was not found to be a real constraint, as
described below.

Three main improvements were introduced:

1. RAM reads—As mentioned above, the single RAM had
to be duplicated for the design to be functional. Two main
optimization alternatives were considered:

(a) A two-cycle read step—each multiplication which
requires two different bytes of Rr simultaneously will
happen during two cycles, reading the multiplicand
in the first cycle and reading the multiplier and mul-
tiplying it by the multiplicand in the second cycle.
This solution requires some added complexity to the
control logic, a few more cycles to the protocol and
more importantly a temporary register to hold the
multiplicand which was read at the first cycle. This
implementation was not as efficient as the next one.

(b) A dual-port-read RAM—allowing two cells (bytes)
of the RAM to be read simultaneously through a dou-
ble interface. Typical RAM architectures (SRAM,
DRAM) do not allow parallel access to all their bit
cells. However, since the RAM was small enough to
be implemented with sequential logic (flip-flops), the
double read interface was rather cheap—only another
set of read multiplexers was required.

2. RAM writes—Rr is stored only once, at the initialization
process of the protocol before calculations take place so
a serial-in random-out implementation was found to be
more efficient than the typical symmetric (read/write)
RAM which was originally designed. There was no
address required for write transactions as they entered
the RAM serially, similar to a typical shift register. Also,
a single write port is all that is needed and writes could
be separated in time from reads, so the existing the read
port can also serve as a bi-directional write port.

3. The security level required 80 bits, but in the original
design, there were 16 bytes. Reducing it to 10 bytes saved
valuable area (even though 10 is not a power of 2, so each
read multiplexer still required a 4-bit select line).

To summarize, out of the several design alternatives, the
chosen RAM architecture consisted of two parallel, random
access read ports and one single serial write port as depicted
in Fig. 8.

4.4.1 Clock gating

Clock gating is a popular technique for reducing dynamic
power dissipation by adding more logic to a circuit to prune
the clock tree. Pruning the clock disables portions of the cir-
cuitry so that the flip-flops in them do not have to switch
states, thus do not consume dynamic power. Clock gating
works by taking the enable conditions attached to registers,
and uses them to gate the clocks. Clock gating can save sig-
nificant die area as well as power, since it removes large num-
bers of multiplexers, or flip-flops with enable ports, replac-
ing them with clock gating logic which is usually a dedicated
optimized library cell.

The synthesis tool rc claims to identify these enable con-
ditions automatically and replace them with CG cells. There-
fore, our first step was having the tool perform its semi-
automatic clock gating process, and indeed all the D-FF
cells which included an enable port were converted to D-FF

Fig. 8 Illustration of the selected RAM architecture (an example with
three RAM cells). The write-path is indicated in blue. Read-paths are
indicated in red (color figure online)
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with no enable port. However, this semi-automatic process
depends on the tool’s static analysis of the design and does
not take into account implicit information which the designer
is aware of. For example consider the multiplexer implemen-
tation described in Algorithm 4.2:

Algorithm 4.2 Example of muxing between buses according
to a select control signal

if (Rt1[a]_moves) then
mux_select <= "00";

else if (Rt1[b]_moves) then
mux_select <= "01";

else // select Rt2
mux_select <= "10";

When both Rt1[a] and Rt1[b] do not move, the mux selects
Rt2 even when it does not need to move (when nothing
moves). In that case, the tool lacks the explicit enable con-
dition which can be automatically translated into clock gat-
ing logic when Rt2 is not actually moving. We implemented
manual clock gating to capitalize on this.

Another manual clock gating was explicitly implemented
for the result register (accumulator), such that when the mul-
tiplication result equals 0 (or alternatively, when one of the
multiplier’s inputs equals 0), the accumulation register is not
enabled.

4.4.2 Reset logic

Initially, some of the sequential logic had been given an asyn-
chronous reset. However, functionally it is not necessary for
the circuit to be reset in that manner, so all the flip-flops were
eventually provided with a synchronous reset.

The accumulator register which had an asynchronous reset
was upgraded to receive a synchronous reset through a reg-
reset control signal initiated by the control logic, resulting
in 13 % area decrease. More specifically, it allowed the syn-
thesis to replace the F D P RB Q library cells (D-Flip-Flop,
positive-edge triggered, lo-async-clear, q-only) with F D P Q
cells (D-Flip-Flop, positive-edge triggered, q-only).

The Feistel states for Rt1[a], Rt1[b] and Rt2 need also an
initial seed value to start with. In our baseline design, this was
implemented using flip-flops with asynchronous set/reset.
We optimized the design via a control sequence which loads
the random seed values into the Feistel states using exist-
ing data paths. These random data are loaded 48 bit per cycle
over 6 cycles to the 3×96 bit Feistel state registers, through an
input multiplexer which is already connected to the Feistel
logic. This allowed to replace F D P RB Q cells (lo-async-
clear) and F D P SB Q cells (lo-async-set) with F D P Q (no
async-set/clear) which translates to 13 and 17 % area reduc-
tion accordingly.

4.4.3 Move-flip Feistel architecture

Each of the strings Rt1[a], Rt1[b] and Rt2 has an instanta-
neous Feistel state composed of two halves– right and left,
48 bit each. As the multiplications of the long strings are
done in a convolutional manner over small chunks (a single
byte each), the corresponding memory accesses to the long
strings are of a sequential nature. Flipping the direction of
movement (from right to left and vice versa) for a given string
was initially performed inside the Feistel logic using a set of
four 2:1 48-bit multiplexers to control which half is fed to
which part of the logic. This baseline architecture is depicted
in Fig. 9.

We observed that when a given Feistel state starts rolling
in a certain direction, it keeps rolling that way until the cur-
rent ciphertext byte is calculated, then flipping its direction
and rolling the other way. We also notice that the rolling oper-
ation is completely symmetric. So, if we can flip directions
cheaply, only once per ciphertext byte, and get rid of the large
multiplexers we can save significant area and power.

This was the incentive to get rid of left–right architecture
and replace it by a novel move-flip notion—a string moves in
a certain direction (whatever that is) for many cycles and is
then flipped in a single extra cycle. The calculations now take
slightly longer due to the extra cycle per flip, but the extra
logic for flipping directions is very cheap, much cheaper than
the above-mentioned multiplexers. This new architecture is
depicted in Fig. 10, which also presents the above-mentioned
synchronous reset logic which feeds in the RAND_IN bus
upon a reset condition.

The control logic was altered accordingly to provide the
flip and move controls instead of the roll-right, roll-left con-
trols.

4.5 Evaluation and discussion

4.5.1 Data analysis

The activity-based reports of the gate-level data-path module
were examined and compared according to the three parame-
ters (in descending priority order): area, power and speed. We
compared three implementations:

1. Baseline—‘naïve’ implementation, based on the proof-
of-concept implementation, after making the necessary
fixes and additions to make it functionally correct and
identical with the reference model.

2. RTL optimized—including optimizations which do not
require knowledge of the WIPR protocol:

(a) Semi-automatic clock gating using the rc tool
(b) Simple dual-port RAM
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Fig. 9 Baseline architecture of
Feistel state and logic

MUX MUX

Fig. 10 New architecture of Feistel state and logic

3. Fully optimized—including all relevant optimizations,
detailed in Sect. 4.4

The graphs in the following sub-sections present the area and
power as function of speed for the three different levels of
optimization.

Fig. 11 Area as function of speed for the three optimization levels—
baseline (dashed), RTL optimized (dotted) and fully optimized (solid)

Table 4 Summary of area for the three implementations

Area Gate Equivalents %

Baseline 7,160 100

RTL optimized 5,579 78

Fully optimized 4,184 58

4.5.2 Area improvements

Figure 11 and Table 4 show the area versus speed for
the three implementations. Each step provided a 20–25 %
improvement over the previous one with a bottom line of
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Table 5 Breakdown of the data-path area for its composing sub-modules

Sub-module Area (gate equivalents) Fully optimized/baseline (%)

Baseline RTL optimized Fully optimized

Rt2Feistel state 767 579 495 65

Rt1[a] Feistel state 767 579 495 65

Rt1[b] Feistel state 771 579 495 64

Feistel logic + OWF 1,374 1,376 906 66

Rr Memory 2,381 1,365 710 30

Constant n 208 208 208 100

Multiplexers 99 99 99 100

Multiplier 402 402 402 100

Adder 115 115 115 100

Accumulator 203 203 184 91

Free logic 74 74 76 102

Total data-path area 7,160 5,579 4,184 58

Fig. 12 Average power (static + dynamic) for two optimization
levels—baseline (dashed) and fully optimized (solid)

4,184 gate equivalents, which stand for a 42 % improvement
over the baseline implementation.

For a detailed analysis of the results, we observed the
breakdown of the data-path design into its sub-blocks to see
what is the improvement factor for each sub-module and vali-
date it with our initial assumptions. The detailed list is shown
in Table 5. This table shows that the pure sequential parts (the
Feistel states and the accumulator) improved by 10–35 %,
mainly due to clock gating and new reset logic. The Feistel
logic (including the OWF) improved by 1/3, mainly due to
the new move-flip architecture. The RAM improved signifi-
cantly by 70 % due to the series of improvements detailed in
Sect. 4.4, while the free logic and arithmetic operations did
not improve at all as none of the applied methods was related
to them.

As for speed dependency, when the speed is higher, the
synthesis tends to use cells with larger drive strength which is
also larger in size, thus increasing the area of the circuit. The
maximum speed is then limited also by the driving strength
of the library cells in hand. This explains the increase in area
seen in Fig. 11 as the clock rate approaches 100 MHz.

Fig. 13 Total energy consumption for two optimization levels—
baseline (dashed) and fully optimized (solid)

4.5.3 Power/energy improvements and speed trade-offs

The next graphs show power and energy as function of speed.
The measured power in Fig. 12 is the average combined
(dynamic and static) power for the duration of the whole
simulation (not instantaneous power). The measured energy
in Fig. 13 is the total energy spent during the entire sim-
ulation. The performance of the RTL-optimized version is
essentially equal to that of the fully optimized version and is
omitted for clarity.

As mentioned in [36], the power dissipation of a digital cir-
cuit is determined by the following formula P = Pd + Ps =
C · V 2 · f + Ps , where Pd is the dynamic power dissipation,
Ps is the static power dissipation, f is the circuit frequency,
V is the supply voltage and C is a process-dependent con-
stant. Thus, if the dynamic power dissipation is much larger
than the static power dissipation, which is typically the case
when the circuit is operating, we can say that the total power
dissipation is linear with the frequency. A second-order phe-
nomenon is an increase in the static power when the dynamic
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power is high, due to temperature effects (heating causes
more leakage).

The absolute numbers for our design are shown in the
following results:

1. Energy consumption of 1.5–3µJ in the interesting speed
range (where area stays constant) and specifically 2µJ
for a clock frequency of 467 KHz, which corresponds to
a protocol duration of 180 ms.

2. Power dissipation of less than 20µW for clock frequen-
cies below 800 KHz.

3. Current draw of 4.2µA at 100 KHz, compared to 14.2µA
reported for a similar frequency in the proof-of-concept
design of [18].

Comparing the three implementations led to the following
observations. First, the average power and energy improve-
ment for the fully optimized implementation over the base-
line implementation are around 20 %. Second, it can be seen
on the power graph (Fig. 12) that the power is linear with
the frequency for all speed ranges, as expected. Note that the
x-axis is logarithmic, and hence, a linear dependence appears
as an exponential curve. Third, the energy is increasing with
simulation duration as the static power (leakage) is accumu-
lated in time, while the dynamic power contribution stays
approximately the same.

4.5.4 Recommended working point

Given the above results, we can summarize:

1. Any speed below 10 MHz is slow enough not to incur in
area penalty.

2. Any speed below 1 MHz is slow enough not to surpass
the 30µW power budget listed by [3], as seen in Fig. 12.

Our recommendation is to work in the 100 KHz–1 MHz fre-
quency range, depending on the application. This translates to
a protocol duration of 800–80 ms, correspondingly. In partic-
ular for a clock rate of 467 KHz, the total energy consumption
is 2µJ and the average power dissipation is 11µW, values
which were shown in [3] to be suitable for typical passive
UHF RFID tags up to a range of 8.5 m.

The EPC standard establishes time constraints for protocol
execution. For example, there is a T1 timing boundary, typi-
cally on the order of 20µs, that establishes the maximum
delay from the interrogator transmission to tag response.
Designing a WIPR implementation that can perform an entire
encryption within this duration would require a high clock
rate and increased power consumption. To allow a WIPR-
based tag to comply with the strict timing requirements of
the EPC standard while remaining at a low clock rate, the
WIPR protocol was designed to employ a challenge-response

mechanism based on memory-mapped I/O [37]. Under this
design, the WIPR challenge is written to the tag in one EPC
command, while the response is read back in one or more
additional commands. Thus, the WIPR tag can always pre-
calculate a few bytes of its response and store them in RAM,
making them immediately available to the reader—the first
precalculation is performed immediately after the challenge
has been written to the tag, and subsequent precalculations
take place immediately after the tag has finished sending
a ciphertext block to the reader. Our software implementa-
tion, which used this mechanism, was tested without issue
against a standard EPC reader with standard timing para-
meters (see Sect. 3). As shown in Sect. 3.4, the amount
of ciphertext bytes sent to the reader in each read opera-
tion has a direct effect on the overall throughput of the tag.
Thus, a trade-off exists between the RAM consumption of
the tag (and thus its overall chip area) and the tag’s read
rate.

5 Conclusions

Public-key cryptography was previously claimed to be
impractical for RFID tags. The reasons for this claim were the
high cost (in gate count and power consumption) of public-
key encryption and its slow performance when compared to
secret-key ciphers or hash functions. In our software imple-
mentation, we demonstrated that even on an inherently slow
8-bit microcontroller, encryption speed was not a bottleneck.
We were able to run the entire encryption in 180 ms using only
standard EPC commands.

We found that the real bottleneck is in communication,
with the dominant parameter being the number of round trips
made by the reader. This problem is even more acute if the
reader being used does not recognize the concept of ses-
sions and repeats the singulation process with the tag every
time it wishes to send it a command. It will be interesting
to investigate whether other reader vendors handle multi-
request sessions to a single tag more efficiently. If the tag
can calculate the response bits faster than they are trans-
mitted, optimal performance can be achieved by a pipeline
design which transmits the ciphertext byte by byte as it is
being generated within the context of a single large read
command.

We also presented an optimized WIPR implementation
which is small enough to fit on an RFID tag: Using a variety
of hardware design optimization techniques, we were able to
identify a working point that is well within a tag’s power and
area budgets, and is fast enough for the intended application.
We conclude that the public-key approach is a viable design
alternative for supply-chain RFID EPC tags.
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