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Abstract Virtualization is the cornerstone of the develop-
ing third-party compute industry, allowing cloud providers
to instantiate multiple virtual machines (VMs) on a single
set of physical resources. Customers utilize cloud resources
alongside unknown and untrusted parties, creating the co-
resident threat—unless perfect isolation is provided by the
virtual hypervisor, there exists the possibility for unautho-
rized access to sensitive customer information through the
exploitation of covert side channels. This paper presents co-
resident watermarking, a traffic analysis attack that allows
a malicious co-resident VM to inject a watermark signature
into the network flow of a target instance. This watermark can
be used to exfiltrate and broadcast co-residency data from the
physical machine, compromising isolation without reliance
on internal side channels. As a result, our approach is diffi-
cult to defend against without costly underutilization of the
physical machine. We evaluate co-resident watermarkingun-
der a large variety of conditions, system loads and hardware
configurations, from a local laboratory environment to pro-
duction cloud environments (Futuregrid and the University
of Oregon’s ACISS). We demonstrate the ability to initiate
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a covert channel of 4 bits per second, and we can confirm
co-residency with a target VM instance in <10 s. We also
show that passive load measurement of the target and sub-
sequent behavior profiling is possible with this attack. We
go on to consider the detectability of co-resident watermark-
ing, extending our scheme to create a subtler watermarking
attack by imitating legitimate cloud customer behavior. Our
investigation demonstrates the need for the careful design of
hardware to be used in the cloud.

Keywords Cloud security · Traffic analysis ·
Covert channel

1 Introduction

Cloud computing has paved the way for “the long-held
dream of computing as a utility” [3]. Commercial third-party
clouds allow businesses to avoid over provisioning their own
resources and to pay for the precise amount of computing that
they require. Virtualization is a key to this model. By plac-
ing many virtual hosts on a single physical machine, cloud
providers are able to profitably leverage economies of scale
and statistical multiplexing of computing resources. While
many models of cloud computing exist, the Infrastructure-
as-a-Service (IaaS) model used by providers such as Ama-
zon’s Elastic Compute Cloud (EC2) service offers a set of
virtualized hardware configurations for customers [2].

The sharing of a common physical platform among mul-
tiple virtual hosts, however, introduces new challenges to
security, as a customer’s virtual machine (VM) may be co-
located with unknown and untrusted parties. Placement on a
common platform entails the sharing of physical resources
and leaves sensitive data processed in a cloud potentially vul-
nerable to the actions of malicious co-residents sharing the
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physical machine. Researchers have already demonstrated
the methods of bypassing co-resident isolation in virtual-
ization middleware, particularly through cache-based side
channels [43,54,57]. Their results confirm that hypervisors
present a new attack surface through which privacy and iso-
lation guarantees can be compromised. However, defenses
against such vulnerabilities are already being proposed in
the academic literature [25,41].

In this paper, we consider co-residency determination
alternatives that may be available even if current avenues
for exploitation no longer exist. We focus on investigating
the network interface, a channel that is explicitly commu-
nicative and is a multiplexed resource in virtualized settings.
We use concepts explored in the area of active traffic analy-
sis to develop an attack that uses a physical machine’s net-
work interface to create an outbound covert channel for data
exfiltration. Our attack can be carried out with a malicious
Client contacting a victim machine in the cloud (e.g., a Web
server or media server, hereto referred to as the Server)
and observing the throughput of traffic received. In collab-
oration with a Flooder deployed in the cloud, we exam-
ine interpacket delays and the corresponding distribution
of packet delays from the server to determine whether the
Flooder has become co-resident with the Server, using a
Kolmogorov–Smirnov distribution test to make this determi-
nation. In general, there is limited visibility into the cloud,
but we correlate ground-truth measurements based on out-
of-band communication with production cloud providers to
validate our results. We show that despite different net-
work packet scheduling strategies among hypervisors used
in clouds, our attack is implementation-independent. We can
determine whether instances are co-resident in under 10 s and
in as few as 2.5 s for a given probe. We further describe how
a covert channel can be deployed that can transmit 4 bits per
second, and describe how our attack can be used to perform
passive load measurement on the victim Server, allowing
us to profile its activity.

This paper makes the following contributions:

– Investigates virtualization side channels in physical hard-
ware Previous research in cloud security has investi-
gated sharing at the hypervisor software layer. Our work
takes a bottom–up approach by considering whether or
not hardware designed for non-virtual environments is
safe for cloud deployment. We make the surprising dis-
covery that technologies designed to aid virtualization
such as SR-IOV and VMDq actually facilitate co-resident
watermarking.

– Assesses severity of threat through extensive evaluation
We determine the practicality of our attack through an
extensive series of tests. These tests demonstrate co-
resident watermarking’s robustness under Xen, VMWare
ESXi, and KVM hypervisors, with varying server loads,

network conditions, and hardware configurations, and
in geographically disparate locations. In a final test, we
employ our scheme in a production science cloud to suc-
cessfully watermark a target network flow within 2.5 s.

– Introduces proof-of-concept attacks for the network flow
channel We develop an accurate load measurement attack
that explicitly detects and filters out the activity of other
virtual machines, an issue left unaddressed in the previous
work [43]. We also demonstrate the creation of a covert
channel capable of transmitting 4 bps of information.

– Develops detection-avoidance strategies for cloud water-
marking The inherent noise of compute cloud data cen-
ters offers advantages in the development of detection-
avoiding network flow watermarks. We enhance our orig-
inal scheme by masking the delay signal in innocuous
cloud customer activity and discuss how this scheme could
be further adapted to behave as specific cloud-based public
Web services. Using an extremely conservative parameter-
ization, our proof-of-concept implementation can confirm
co-residency with minimized risk of detection in under
2 min.

The rest of this paper is organized as follows. We provide a
brief introduction to the issue of cloud co-residency in Sect. 2
and present the relevant concepts of active traffic analysis,
particularly network flow watermarking, in Sect. 3. Section 4
presents a threat model and our co-resident watermarkingen-
coding and decoding steps. In Sect. 5, we elaborate on the
application of our scheme. Our attack is thoroughly evalu-
ated in Sect. 6, where it is tested under various conditions.
Practical use scenarios are considered in Sect. 7. We adapt
our original attack to frustrate detection attempts in Sect. 8
and discuss countermeasures to the co-resident network flow
side channel in Sect. 9. Related work is considered in Sect. 10
before we conclude in Sect. 11. An overview of hypervisor
resource-sharing mechanisms is included in Appendix A, as
well as an introduction to virtualization-aware hardware in
Appendix B.

2 Cloud co-residency

In compute clouds, the co-resident threat considers a mali-
cious and motivated adversary that is not affiliated with the
cloud provider. Victims are legitimate cloud customers that
are launching Internet-facing instances of virtual servers to
do work for their business. The adversary, who is perhaps a
business competitor, wishes to use the novel abilities granted
to him by cloud co-residency to discover valuable informa-
tion about his target’s business. This may include reading
private data or compromising a victim machine. It could also
include more subtle attacks such as performing load measure-
ments on the victim’s server or launching a denial-of-service
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attack. Masquerading as another legitimate cloud customer,
the adversary is free to launch and control an arbitrary num-
ber of cloud instances. As is necessary for the general use
of any third-party cloud, the cloud infrastructure is a trusted
component.

Co-residency detection through virtualization side chan-
nels is a danger that was first exposed by Ristenpart et al.
[43]. This work lays out strategies for exploiting the instance
placement routines of the Amazon EC2 cloud infrastructure
in order to probabilistically achieve co-location with a tar-
get instance. From there, co-residency can be detected using
a cross-VM covert channel as a ground truth. While more
advanced methods of successful placement are outlined, such
as abusing temporal locality of instance launching, it is shown
that a brute force approach is also modestly successful. Mas-
querading as a legitimate customer, an attacker is able to
launch many instances, perform the co-residency check, ter-
minate, and repeat until the desired placement is obtained.
Several cross-VM information leakage attacks are also out-
lined, such as the load profiling and keystroke timing attacks.

However, we independently confirmed that many of the
approaches in previous work, such as the use of naive net-
work probes, are no longer applicable on the EC2. This, com-
bined with academic proposals that better isolate cross-VM
interference impacts [41], makes co-residency detection sig-
nificantly more difficult at this time. Instead, we introduce
an alternate viable co-location test, co-resident watermark-
ing. In our exploration of potential defenses, we conclude
that closing the employed covert channel is difficult without
costly dedicated hardware or reduced network performance.
Our approach is not dependent on adversarial advantages
such as cloud cartography and placement locality that were
available in [43], although these would still ease the work of
the attacker.

3 Active traffic analysis

Our approach uses concepts previously explored in network
flow watermarking and other active traffic analysis attacks.
Network flow watermarking is a type of network covert tim-
ing channel [11,12], capable of breaking anonymity by trac-
ing the path of a network flow. Normally requiring the coop-
eration of large autonomous systems or compromised routers
in anonymity networks, a target’s traffic is subjected to con-
trolled and intentional packet delay at an institutional bound-
ary in order to give it a distinct and recognizable pattern
[23,24,50,56]. When the traffic exits the institutional bound-
ary, that pattern is still present and can be decoded. Network
flow watermarking can be employed to perform a variety of
traffic analysis tasks. They are of great interest recently as
a method for detecting stepping stone relays [7,14,33,51],

and compromising network anonymity services (e.g., TOR
network) [27,34].

Previous work has considered a number of challenges
in the design of a watermarking scheme. Schemes can
be grouped into blind and non-blind approaches. In blind
schemes, the watermarking parties do not store any state
information for their target. All of the necessary informa-
tion is contained within the watermark, which is itself a side
channel. In a non-blind scheme, state information about the
target is stored for access by the exit gateways. Watermarks
must be robust to modifications from network traffic and
jitter. If the watermark is also resistant to intentional tamper-
ing or removal, it is said to be actively robust. Watermarks
are also ideally invisible so a target cannot test for its pres-
ence. If detection mechanisms such as the multi-flow attack
are viable, the target can recover the secret parameters and
remove the watermark [27]. However, recent work has shown
that even the most advanced schemes do not possess the invis-
ibility property [11,20,34]. As such, the preliminary focus
of this work is to determine the efficacy and throughput of
the co-resident network flow channel. After quantifying the
effectiveness of our approach, we then leverage the unique
advantages of the compute cloud domain to develop an invis-
ible watermark scheme in Sect. 8.

Our methodology also bears similarities to previous work
on traffic analysis of Tor. Murdoch et al. [36] demonstrated
that a corrupt Tor node can collude with a network server to
extract information about the path of a Tor connection. This
is accomplished through latency measurements of Tor relays
after filling the connection with probe traffic. These results
were novel and troubling in that Tor necessarily relied on mix-
ing traffic from different sources to establish anonymity. Our
work exploits virtualization’s dependence on traffic mixing
to improve performance and resource utilization. Critically,
our work differs from [36] in that it does not require a cor-
rupt network server. Instead, we rely on a colluding VM to
manipulate the behavior of its co-resident victim.

4 System design

We next present a simple scheme that can be applied from the
co-resident position to inject a target’s network traffic with a
persistent watermark. Given a sufficiently long network flow,
it can break hypervisor isolation guarantees regardless of
cloud or network conditions. Due to the coarse-grained abil-
ities of a co-located VM to inject network delay, we employ
an On- Off interval-based packet arrival scheme rather than
attempting to control the delay between individual packets.
Our scheme leverages out-of-band communication between
the encoding and decoding points in order to overcome its
limited ability to inject delay through network activity.
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4.1 Threat model

This work’s primary motivation is to investigate the existence
of hardware-level side channels in cloud infrastructures, call-
ing into question the viability of isolation assurances for
virtual machines. We go beyond the traditional co-resident
threat model and imagine a cloud in which naive timing chan-
nels such as network probes are unavailable to the adversary;
cloud administrators have chosen to route all local traffic
through a switch that fuzzes the results of these services and
prevents co-residency detection. To their credit, the admin-
istrators in this cloud have also proactively applied patches
that have all but eliminated popular cache-based hypervisor
side channels. Given the relatively small attack surface that
the virtual hypervisor represents, this is not too imaginative
of a leap. In fact, we observed that some of these security
measures had been taken in our own investigation of EC2. In
spite of these obstacles, our adversary wishes to discretely
discover his victim in the cloud through innocuous use of his
own instances.

We assume system administrators are not interfering with
the activities of their customers and will not intervene with
customer behavior unless it is a threat to service level agree-
ments (SLAs) or to the general health of their business [1]. We
also assume that our victim is trusting the cloud infrastruc-
ture and expects modest delays imposed by other cloud cus-
tomers. From the isolation of their VMs, the victim will be
unable to make inferences about the cause of variances in sys-
tem performance. As a result, the victim is unable to differ-
entiate between the activities of the adversary and the actions
of other legitimate cloud guests. Finally, we assume that the
victim’s instances are available to the adversary over an open
network and that the adversary is able to create network flows
from these instances on the order of several seconds.

4.2 Co-resident watermarking

Like previous work in cloud co-residency, the co-resident
watermarking attack relies on the pigeonhole principle to
probabilistically achieve co-location with a victim virtual
machine, launching many virtual machines and then per-
forming statistical side channel tests from each [43]. To begin
the search for his target, the attacker launches a large num-
ber of instances on the cloud. We refer to these instances as
Flooders. Each Flooder announces its presence to a mas-
ter host, the Client, which is a colluding agent situated out-
side of the cloud. The attack begins when the Client initiates
a Web session with our target instance, the Server, which
is accessible at a predetermined IP address. Systematically,
the Client iterates through its list of registered Flooders,
sending a series of signals to each. Based on these signals,
the Flooder injects network activity into the outbound inter-
face of its physical host machine. This activity is multiplexed

Third Party Compute Cloud

Cloud Node

Server

NIC

* Adversary-controlled hosts

Client*

Flooder*

Fig. 1 The attack model considered for co-resident watermarking.
Two colluding hosts, the Clientand Flooder, attempt communicate
through the legitimate network flow of the Server

with the outbound traffic of the server, creating delay in the
legitimate Server flow. This delay constitutes the building
block of our watermark scheme. In the event that a Flooder
is co-resident to the Server, the Client–Server flow can
be imprinted with a watermark signature. This creates a bea-
con through which the Client can test for co-location. The
Client tests each Flooder’s location for a portion of its net-
work flow. If no watermark signature is detected, the attacker
can terminate all instances and launch a new set until co-
location is achieved. In the event that a signature is detected,
the attacker can use the co-resident Flooder for a second
phase of attack. This could involve another known exploit
or continued use of the network flow side channel. Our co-
resident watermarking attack is pictured in Fig. 1.

4.3 Signal encoding

In this section, we explain the watermark embedding process.
An unwatermarked network flow of length T between a cloud
server instance and a remote client can be divided into n
intervals of length ti . Each interval ti will observe a certain
number of packet arrivals pi over its portion of the network
flow. Traditionally, the encoding of a watermark requires that
two different levels of packet delay, d+ and d−, be repeat-
edly and randomly introduced to a network flow with equal
probability. These two delay levels form the bits to be read
from the side channel. The watermark is therefore made up
of components {wi }n

i=1 where

wi =
{

d+ with probability 1
2

d− with probability 1
2

From the co-resident position, we are limited in our ability
to inject arbitrary amounts of delay into the flow, nor can
we inject a negative amount of delay. Therefore, our delay
values (d+, di ) represent the maximum and minimum total
amount of network activity we are able to introduce from
a co-resident virtual machine. Upon receiving a signal to
mark the flow, d+ is achieved through a co-resident Flooder
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host injecting a constant stream of UDP packets onto the
network interface. Conversely, d− is achieved through taking
no action for the length of the interval.

In addition to the activities of co-resident instances, the
variance in pi will reflect other system noise: hypervisor
scheduling, network congestion, and virtualization-imposed
artifacts. While these factors will not remain constant for any
meaningful length of time [44], their effects can be ignored
due to the random assignment of delay value d+ or d− to each
sequential wi . The statistical measure for decoding water-
mark signals described in Sect. 4.4 filters this noise; over a
sufficiently long trial, system noise impacts both delay val-
ues (distributions) equally. In Sect. 6, we demonstrate that
watermark signals can be decoded in spite of the presence of
any of these factors.

4.4 Signal decoding

At the decoding point, packet arrivals per interval are
recorded over the length of the flow. After each measurement,
the intervals are sorted into samples Xd+ and Xd− based on
the prenegotiated co-resident activity representing d+ and
d−, and with Xd+ and Xd− , respectively, containing n+ and
n− measurements. If co-residency has been achieved, then
these two interval groupings represent the flow during two
distinct network states. We can therefore expect the interval
grouping samples to have different discrete distributions.

These two samples can be compared using statistical sim-
ilarity tests. In this work, we employed the nonparametric
Kolmogorov–Smirnov (K S) test for independence [40]. This
statistical measure has been employed previously in other
analysis of covert timing channels [20,38]. To test the null
hypothesis that the two samples are from the same distribu-
tion, a statistic is calculated and compared to a look-up value
corresponding to 95 % confidence. If the test fails, then the
decoder rejects the similarity of the distributions and declares
the instances to be co-residents.

For the Kolmogorov–Smirnov test, the decoder calcu-
lates the empirical cumulative distributions F1,n+(Xd+) and
F1,n−(Xd−). The K S statistic is then calculated as follows:

Dn+,n− = sup|F1,n+(X+) − F1,n−(X−)|,
where sup is the supremum of the differences in the cumu-
lative distributions. The null hypothesis can be rejected with
confidence α if√

n+n−
n+ + n−

Dn+,n− > Kα,

where Kα is a critical value from the Kolmogorov distribu-
tion.

Both sides of this relation can range in value from 0 to 1.
The three factors to consider in the relation are the α value,
the K S statistic representing the greatest difference between

the two distributions (Dn+,n−), and the sample sizes. Smaller
α values correspond to greater confidence levels and thus
increase the value of Kα (e.g., for a given n, K.05 > K.1).
The significance of the K S statistic increases with either the
size of the supremum or the sample size. Hence, the K S test
may succeed with a large supremum over a short number of
measurements or a small supremum over a large number of
measurements.

An alternate nonparametric test that is better known for use
with discrete distributions is the Pearson’s chi-square (χ2)

test. We chose not to use this metric because of the difficulty
of handling the trivial case in which samples are extremely
dissimilar. χ2 struggles with any cell frequencies that are less
than 5, and quite often in our evaluation, we found that the
Flooder’s impact was such that there was no overlap in the
contingency tables of the marked and clear intervals. Relying
on the χ2 test would have also hindered our ability to make
swift determinations of co-residency.

5 Implementation

Our target instance, the Server, was a virtual machine serv-
ing static content via Apache 2. The Client host initiated a
TCP session with the Server, continuously re-requesting a
10 MB file. To create more realistic Web traffic conditions,
we wrote a PHP script that simulated background noise on a
server. The script conservatively estimated a 1:3 write-to-
read traffic ratio, creating a more turbulent channel from
which to perform our measurements. Upon execution, the
script reads a bounded amount of non-cached data from a
file, optionally executes a disk write, and finally performs a
CPU-bound set of computations. This closely models appli-
cations on a production Web server, where for each request,
the server will fetch data from a database, perform some
computation or transformation on it, and return it to the user.
Alternately, in the case of the disk write, this models the
other common case seen inside Web applications where a
user sends data, computation is performed, and the data are
written to disk. As read requests are more common for many
Web servers, we weighted these probabilities accordingly. To
simulate the activity of additional cloud customers, a Guest
VM ran a script that behaved similarly to the Server.

Our Flooder used a raw socket injection binary, writ-
ten in C, that responded to prompts from a Client host to
create outbound multi-threaded UDP streams for specified
intervals. The packet streams were directed by MAC address
to a neighboring cloud instance that was not otherwise a par-
ticipant in the trial. Alternately, the Flooder could set the
time-to-live of packets to 0 and direct the flood to a host out-
side of the cloud. The former is a more appealing option, as it
decreases the cost of the attack on services, such as Amazon
EC2, that have fees for data transferred into and out of the
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cloud. Under either design, the Flooder’s activity passes
through the network interface and then immediately leaves
the path of the Client–Server flow. In Sect. 6.6, we demon-
strate that this is sufficient to avoid secondary bottlenecks that
might lead to false positives in our co-residency check.

The Client monitored the watermark impact by signaling
the Flooder and performing synchronized reads on the net-
work flow between the Client and Server. The flow was
measured by monitoring the number of packet arrivals by
interval. Synchronization was established through estimat-
ing the round-trip time between the Client and Flooder.
Various hypervisors introduce additional delays and artifacts
through their fair resource scheduling algorithms. In order
to ensure the Flooder’s effect was captured, we limited the
hypervisor’s ability to react to the Flooder’s activity. We
measured in small bursts of 250 ms and then waited 2 s before
signaling the flooder again. This was sufficient to ensure
that our measurements were independent. The Kolmogorov–
Smirnov test was then applied using the scipy statistical
library.

6 Evaluation

We used a number of different testbeds to evaluate our
approach, as shown in Fig. 2. The first was a local area net-
work that contained a commodity switch, two Dell work-
stations and one Dell PowerEdge R610 server with two
4-core Intel Xeon E5606 processors and 12 GB RAM. Each
machine had a network interface card that could transmit in
1000 BaseT. In a subsequent trial, we replaced the server’s
NIC with an SR-IOV enabled Intel 82599 10 Gbps Ethernet
controller and attached it to the LAN with a fiber-to-copper
Ethernet transceiver. The server was dual-booted with both
VMWare ESXi 4.1 and a Xenified Linux 2.6.40 kernel. On
both hypervisors, we launched two or more similarly provi-
sioned virtual machine guest images that acted as our cloud
instances. Each VM ran the Linux 2.6.34 kernel allocated
with resources similar to those afforded to an Amazon EC2
small instance, approximately 1 vCPU compute unit and
1.7 GB memory.

Additionally, we used two science clouds for further
analysis. The first, the University of Oregon’s ACISS, ran
OpenStack KVM. Here, each guest image was provisioned
with 1 vCPU and 2 GB memory. The instances received net-
work access through a bridged 10 GbE network card. Each
physical host was connected to a 1:1 provisioned Voltaire
8700 switch with fiber channel. The switch had 2 10 GbE
trunks to a Cisco router that connected to the university net-
work. The second cloud was Futuregrid’s Sierra at the San
Diego Super Computer Center. Sierra ran the Nimbus ser-
vice package with the Xen 3.0 hypervisor. Instances on Sierra
were also bridged onto a 10 GbE switch. Each of the inves-
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Cloud Node
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Cloud Node
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Switch
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Third Party Compute Cloud

Cloud Node

Flooder
NIC Switch Client

Cloud Node
Server

Flooder
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Packet Sink

...

(c)

Fig. 2 Testbed topologies used in evaluation. Adversary-controlled
hosts are shaded in red. a Local testbed, b cloud, successful co-location,
c cloud, failed co-location (color figure online)

tigated hypervisors used default network management con-
figurations, and none imposed traffic shaping or bandwidth
ceilings on the managed VMs.

The Client process requires little processing power and
can be run from any commodity PC or reasonably provi-
sioned virtual machine. On our local testbed, it was run
primarily from a bare metal workstation running a Linux
2.6.40 kernel with 4 GB memory and a Pentium dual-core
3 GHz CPU. The workstation had a NIC that was sup-
ported to 1000BaseT full duplex. We used additional per-
formance tools to confirm that the Client host was suffi-
ciently provisioned to handle these tasks. To test our abil-
ity to decode the watermark with longer paths and realis-
tic network conditions, we launched Client instances that
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performed the watermark attack on our local testbed from a
bare metal machine at a geographically disparate university.
This instance was running a Linux 2.6.38 kernel with 8 GB
memory, an Intel Xeon X3450 2.67 GHz processor, and a
NIC set to 1000BaseT full duplex.

6.1 Xen hypervisor

We first attempted our co-resident watermarking scheme
using the local Xen testbed. This configuration is pictured
in Fig. 2a. The default Xen bridged networking settings
were used for domU’s virtual interfaces, which were set to
100BaseT full duplex. As we note in Appendix A.1, Xen’s
dom0 bridge imposes major delays and represents the trans-
mission bottleneck of this first test. Although this does not
exploit the physical interface, we chose to examine this Xen
configuration due to its popularity. Subsequent trials demon-
strate that our approach is not dependent on any particular
hypervisor or network interface.

For this initial test, the Clientinitiated a single TCP ses-
sion with the Server’s apache process. The Clientthen
generated a random binary signal that was transmitted to
a Flooder, causing it to generate intermittent UDP traffic
floods. The Client measured packet arrivals by interval and
sorted these into marked (d+) and clear (d−) samples. The
probability density of these two samples is pictured in Fig. 3a.
This figure and all others are based on 3,200 total measure-
ments that correspond to 13 min and 20 s of observed net-
work flow. Immediately after the trial, a second control test
was launched in which the Flooder was not signaled and
took no action.

Based on visual inspection alone, it can be observed that
there is great similarity between the packet arrival distribu-
tions for the clear intervals and the undisturbed control flow.
In contrast, there is great difference between the distribu-
tions of the clear intervals and marked intervals. After just
2.5 s of observed network flow, the K S statistic for the clear
and marked distributions is 0.98. The p value, which rep-
resents the likelihood of obtaining such an extreme result
under the null hypothesis, is 0.01. This is sufficient to reject
the null hypothesis, and confidence only increases through-
out the remainder of the trial. In contrast, comparing the clear
interval sample to the control flow yields a K S test statistic
of 0.38, which is insufficient to reject the null hypothesis at
95 % confidence. This is because Kα = .41 with n = 10 and
α = 0.05.

The combination of these two tests is sufficient to declare
that our instances are co-located. For the remainder of our
evaluation, we will discuss only the K S test in which the clear
and marked intervals are compared. In each trial, though, we
also apply the K S test to the clear and control samples in
order to confirm that they are statistically indistinguishable.
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Fig. 3 Probability density functions for co-resident watermarking.
Marked intervals represent the distribution for delay value d+. Clear
intervals represent the distribution for delay value d−. Control flow
represents the distribution for a second trial in which the Flooder VM
takes no action, a Xen on local testbed, b VMWare ESXi on local testbed

6.2 VMWare ESXi hypervisor

To determine whether differences in hypervisor scheduling
affect our watermarking results, we repeated the above trial
on the same testbed, now using the VMWare ESXi hyper-
visor. In contrast to Xen, ESXi does not have an adminis-
trative domain through which packets are routed. Instead,
packet transmission requests are sent directly to the hypervi-
sor and are scheduled with a simple round-robin algorithm
(see Appendix A.2). Resultantly, ESXi is much more efficient
at packet transmission. The results, shown in Fig. 3b, show
that that our Server running on ESXi enjoys significantly
higher throughput than Xen under similar conditions. Once
again, the unmarked sample is similar to the control flow,
but dissimilar to the marked sample. As there is no overlap
between the clear and marked intervals, the K S statistic is
1. We are once again able to reject the null hypothesis, con-
firming that our Flooder is co-resident to the Server. This
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Fig. 4 Probability density functions for co-resident watermarkingwith increasing numbers of I/O bound Web server guest instances. These trials
were otherwise identical to those run in Sect. 6.1. a 1 additional Guest, b 2 additional Guests, c 3 additional Guests

Table 1 Results of tests in Xen as system load increases

Trial Length (s) K Sd+,d− p value Result

Serverand Flooder 2.5 0.99 0.01 Co-Res

Add 1 Guest 3.75 0.78 0.05 Co-Res

Add 2 Guests 3.75 0.91 0.01 Co-Res

Add 3 Guests 10 0.49 0.05 Co-Res

Length is the minimum flow lengths required to achieve 95 % confi-
dence. K Sd+,d− is the K S statistic that compares the clear and marked
samples after length seconds. p value is the likelihood of obtaining such
an extreme result under the null hypothesis

demonstrates the feasibility of co-resident watermarkingon
two of the major hypervisor families.

6.3 System load

To demonstrate its applicability in real cloud environments,
we assessed the ability of the Flooder to inject a watermark
signature under increasingly adverse system conditions. In
addition to launching Flooder and Server instances on
our local Xen testbed, we launched an increasing num-
ber of Guest instances. These Guests represent other
communication-intensive customers in the cloud that are
non-participants in our attack. Each Guest behaved iden-
tically to the Server, running Apache and serving up files
over prolonged HTTP sessions.

We repeated our standard trial with up to 3 Guests for a
total of 5 instances on the machine. This load approached the
maximum capacity of our testbed. The results of these trials
are pictured in Fig. 4a–c. As the number of Guests on the
machine increases, we see distribution of the marked sam-
ples begins to approximate the distribution of the clear sam-
ples. From this, we suspect that extreme load can potentially
erase our watermark signature. However, the Kolmogorov–
Smirnov test offers a more precise measurement than visual
observation. These results, shown in Table 1, demonstrate
that co-resident watermarkingcan be used to confirm co-
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Fig. 5 Probability density functions for co-resident watermarkingon
Xen over long network path

residency in 10 s with 95 % confidence, even when system
load is high.

6.4 Network conditions

Our next experiment measured the resiliency of encoded
watermarks when traveling across longer network paths. To
do this, we executed our Client process from a bare metal
host at a geographically disparate university. The Client
issued HTTP requests to the Server that resided on our
local Xen testbed. To smooth the observable network flow
in the presence of higher round-trip times, the Client ini-
tiated 5 TCP sessions with the Server. Results from this
long-distance trial are pictured in Fig. 5. Once again, there
is no visible similarity between the clear and marked dis-
tributions. The watermark signature is still identifiable after
just 2.5 s and yields a K S statistic of 1 (p value 0.01). We
are once again able to reject the null hypothesis, confirming
that our Flooder is co-resident to the Server. The persis-
tent presence of the watermark means that the co-resident
watermarking attack is not distance bounded relative to the
location of the cloud provider.
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6.5 Science clouds

Having found success on our local area network, we set out
to replicate our results on industry-class hardware in a par-
tially controlled environment. We used the ACISS compute
cloud service as well as Futuregrid’s Sierra cloud at the San
Diego Supercomputing Center. On the private science cloud,
we were able to launch two instances that were confirmed to
be co-resident by the cloud staff. On Sierra, we confirmed
co-residency by querying the Nimbus cloud client for the
physical host of our instances. We did not have any fore-
knowledge of the activity of other users in these clouds.
Our initial attempts to launch co-resident watermarking in
this environment failed due to an unforeseen network bot-
tleneck. On ACISS, we were only able to generate approx-
imately 3.2 Gbps of traffic from a single Flooder instance,
falling well short of the 10 Gbps channel. Through con-
sultation with the cloud staff, we discovered that this bot-
tleneck was due to the virtio_net driver, which has been
shown by the KVM community to be incapable of filling
a 10 Gbps link with a single VM [55]. We encountered simi-
lar problems with Xen in the Sierra deployment, which used
a paravirtualized network configuration that imposed even
greater delays on packet transmission (see Appendix A).
Thus, we were prevented from injecting packet delay into
the Client–Server flow. Because we were only off by a
small constant factor, though, we reattempted the trial with
multiple co-resident Flooders. This topology is pictured in
Fig. 2b. While achieving “tri-residency” would not be a real-
istic attack scenario, this served as a stand-in for a more
sophisticated denial-of-service attack against the physical
network interface. Additionally, as many cloud applications
are communication intensive [19], we can expect some of
the difference in bandwidth to be made up for by the activ-
ities of other cloud customers. Recent work in VM network
performance enhancement, if adopted and deployed, could
also increase the instance throughput sufficiently to make
tri-residents unnecessary [19,42].

The results of these trials are visible in Figs. 6 and 7. In
spite of the unknown and uncontrolled state of the cloud clus-
ter, the watermark signature between the clear and marked
interval samples is still clearly visible. After 5 s of observed
flow on the ACISS cloud, the result is a K S statistic of
0.98 with a p value of 0.01. We are once again able to
reject the null hypothesis, confirming that our Flooder is
co-resident to the Server. These results demonstrate the
feasibility of co-resident watermarking for the KVM hyper-
visor. Under similar conditions, we successfully launched
co-resident watermarkingon a Futuregrid cloud. The K S test
yielded a statistic of 0.97 with p value of 0.02 after 2.5 s
of observed flow. These tests demonstrate that our current
implementation is nearly practical for industrial compute
clouds.
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6.6 Neighboring node false positives

We have shown co-resident watermarkingto be capable of
detecting co-residency in a variety of circumstances. How-
ever, for this attack to be practical, it must also avoid false
positives, reports that the Flooder is co-located with the
Server when it in fact is not. This is of greatest concern
for topologies in which the instances are not co-resident but
share a common network path. In order to be multiplexed
at the network interface, the Flooder’s activity necessarily
must reach the first switch; if packets are resultantly delayed
at this point, then the watermark signature would be injected
on all network flows that share the switch. Due to our design
decision to inject layer 2 packets that are routed by MAC
address to another adversary-controlled instance, we know
that the Flooder and Server flows’ paths share only a sin-
gle hop.

To confirm that co-resident watermarkingis not suscep-
tible to false positives, we configured a new topology on
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Fig. 8 Packet arrivals on ACISS (KVM) when the Server and
Flooder are hosted on different nodes. The high level of overlap
between marked and clear traffic indicates that flooding activity does
not impact neighboring physical machines

ACISS in which the Server was not co-resident to the
Flooders, but shared a common upstream switch one hop
away. This topology is pictured in Fig. 2c. We confirmed this
topology through ARP table inspection and conferring with
the cloud staff. We then repeated the trial. The results are pic-
tured in Fig. 8. The activity of the Flooders does not appear
to impact neighboring instances. In fact, the clear intervals
and marked intervals yield a K S statistic of 0.46 and p value
of 0.65 after 2.5 s of observed network flow. The test becomes
more conclusive over prolonged observation, with a statis-
tic of 0.11 and p value of 0.37 after 5 min. The two samples
are not distinct enough to reject the null hypothesis; the test
concludes that they were drawn from the same distribution.

6.7 Virtualization-aware hardware

To investigate the viability of hardware-level defenses against
co-resident watermarking, we repeated our original Xen trial
on an SR-IOV-enabled NIC. SR-IOV [30] is a specification
that allows physical I/O devices to present themselves to the
host as multiple virtualized I/O devices, allowing for direct
access to PCI interfaces. This especially impacts network
access in Xen, eliminating the need for dom0to be involved
in copying packet buffers from the guest domain. Since each
domUhas access to its own PCI virtual function, SR-IOV also
provides individual queues for each VM. Arriving packets
are sorted into these queues based on their destination, then
are copied directly to the guest OS memory using DMA.
We discuss virtualization pass-through technologies further
in Appendix B.

We tested our watermarking technique using an Intel
82599 ES 10 Gbps Ethernet controller that supports the SR-
IOV specification using theixgbe driver. We configured the
driver to present two virtual functions (VFs) on a single out-
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going port, which appear as separate PCI devices. We then
connected the Server and Flooder to one VF each on our
Xen testbed. The outbound port was connected to our local
workstation with a fiber-to-copper Ethernet transceiver; this
reduced the bandwidth of the Ethernet controller, but pre-
served the driver’s behavior.

The results from this trial are shown in Fig. 9. We observe
that by eliminating the middleware of the virtual hypervisor,
co-resident watermarking has become even more effective.
When both the Flooder and Server are actively filling
their dedicated packet queues, each receives roughly 50 %
of the available system throughput (∼0.41 Gbps). When the
Flooder is inactive, the Server is able to transmit at the
highest possible rate (∼0.83 Gbps). The KS test trivially
rejects the null hypothesis. The Flooder’s ability to have
such an impact indicates that, unlike hypervisor-managed
network sharing schemes, the ixgbe driver imposes no fair-
ness measures based on anomalous virtual machine behavior.
As a result, the bandwidth of our side channel had increased
due to virtualization-optimized hardware. The security ram-
ifications of future performance-driven enhancements for
virtualization need to be carefully considered before their
adoption.

7 Analysis

We have demonstrated that co-resident watermarkingis capa-
ble of bypassing VM isolation and exploiting underlying
hardware configurations. There are a variety of circum-
stances in which an attacker could consider making use of the
outbound traffic side channel. Traditional co-resident threats
such as covert communication and load measurement are
considered below. In a laboratory environment, we developed
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a proof-of-concept attack for each. In future work, we hope
to further develop these approaches.

Co-resident watermarking’s low cost makes it an appeal-
ing scouting mechanism to precede the use of a more dev-
astating exploit, such as a zero day against the hypervisor.
The exact cost of launching this attack depends on the cloud
being considered. However, we can provide a rough estimate
by using the results of Ristenpart et al.’s brute force attack,
in which an 8.4 % placement was obtained over 1,684 targets
using 1,784 probes. At the current minimum instance charge
of $0.08 per hour for small Amazon EC2 instances, our attack
would cost $1.01 and require 6 min, 20 s per successful co-
location. Note that this estimate is based on the full mini-
mum hourly charge imposed by Amazon, even though the
time required by the probe is much less; the low cost per co-
location is obtained through having a large set of targets. We
also assume here that the Client is also an EC2 instance, thus
avoiding additional fees for outbound cloud traffic. While
Amazon’s cloud services have expanded rapidly in the past
several years, these numbers demonstrate that the amortized
cost per successful attack is low when a large enough net is
cast.

7.1 Covert communication

Up to now, the network flow side channel has been used
to make a binary determination of co-residency. Once co-
residency has been determined, however, any manner of com-
munication can take place over the channel. We are able to
transmit a secret such as a small key or message with only
a small amount of redundancy. We demonstrated this on our
local ESXi testbed by creating a self-synchronizing Client
script that did not rely on out-of-band signaling from the
Flooder. The Client’s only prior knowledge is the size
of the flood interval. The Client reconstructs the signal by
taking extremely rapid measurements and then searching for
the local minima and maxima of the arrival patterns. These
represent the 1’s and 0’s of the channel. It would also be pos-
sible to build more sophisticated communication protocols
such as Cloak over this channel [32].

In the trial, the Client initiated a TCP session with the
Server and awaited a 2,048 bit message from the Flooder.
The first 10 s of the ensuing message is pictured in Fig. 10.
Our Client was able to decode the message with 100 % accu-
racy. As discussed by Cabuk et al. [12], the efficacy of an
IP-based covert channel can be affected by contention noise
in the channel and jitter in packet timings, which can lead
to a loss of synchronization. Error-correcting codes, self-
synchronizing codes, and phase-locked loops can be used
to mitigate these issues. In our investigation, we included a
16-bit checksum for every 64-bit block transmitted by the
Flooder. This allowed the Client to detect and recover
from misreads in the watermark signal. This led to a total
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Fig. 10 A decodable side channel message created with co-resident
watermarking. Flooder activity in an interval reduces the Client–
Server connection bandwidth, signaling the transmission of a 1 bit

transmission of 2,560 bits. This required 10 min and 40 s
of observed network flow, leading to a 4.00 bps side chan-
nel throughput. This bit rate compares favorably with other
I/O-based covert channels [37]. If the participants possess
outside knowledge about hardware and hypervisor config-
urations, they could further increase the bandwidth of the
channel by decreasing the measurement size and reducing
the wait time between sent bits. Additionally, more advanced
error-correcting mechanisms such as the use of Hamming
codes can increase the channel efficiency.

One particularly useful application of this method could
be embedding a message into a network flow so as to bypass
filtration mechanisms such as a national Web filter. In such a
case, the message sender could co-locate to a known-allowed
server, at which point they could embed a message into the
server’s network flows. There are two main benefits to this
approach. First, the message is effectively multicast to all
visitors to the server, meaning that even if the message were
detected, the intended target would not be revealed. Second,
an interested party, through entirely legitimate traffic, can
retrieve the message while retaining plausible deniability.
Additionally, this method works with no cooperation of the
known-allowed host.

7.2 Load measurement

Previous work has demonstrated that virtualization side chan-
nels can be used to measure co-resident server load [43]. We
build on this work with co-resident watermarking, discover-
ing more accurate traffic information about our target’s busi-
ness. We accomplish this by simply monitoring the through-
put of the undisturbed Client–Server TCP session. The
key insight that a co-resident instance provides is the ability
to filter out additional causes of performance variance that
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would otherwise lead to false inferences—namely network
congestion and changes in the load of co-resident instances.
A co-resident flow serves as a second data point that allows
for an accurate perspective of the target instance’s load.

To perform load measurement, the Flooder instance first
uses co-resident watermarking to confirm that it is co-resident
to the target Server. It then becomes a regular Web server,
and the Client initiates a single TCP session with both the
Server and Flooder. The Client is able to observe the ratio
between the throughputs of the two flows to generate a traffic
profile of the victim. Network congestion can be detected and
ignored by the fact that, since both flows will usually share
a network path, flows will be impacted equally by network
conditions. Thus, the ratio between the flows will remain
constant. Changes in the load of other customers’ virtual
machines, or other noise introduced by the cloud datacenter,
can be similarly disregarded. They affect both the Server
and Flooder flows equally, and therefore, the ratio between
the flows will not change. The only scenario that changes
the ratio between the Client–Server and Client–Flooder
connections is when the Server’s load changes.

To demonstrate this behavior, we executed proof-of-
concept trials on our local Xen testbed. The Client initiated
a single TCP session with the Server and Flooder and then
performed rapid measurements on both flows. Next, different
load events were introduced and observed. For the first trial,
pictured in Fig. 11, an increasing number of Web requests
were issued from another host on the local network in 10-
s intervals. The Client calculated exponentially weighted
moving averages of the two flows’ packet arrivals and then
took the ratio of the two. It can be observed that the Server-
to-Flooder throughput ratio decreases linearly, and basic
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Fig. 11 Load Measurement Case 1: When Server load increases,
decreasing the Server’s per-connection performance, the ratio between
the Client–Server and Client–Flooder flows changes, allowing an
attacker to profile the target Server
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Fig. 12 Load Measurement Case 2: When additional guest VMs are
introduced that decrease Serverperformance, the ratio between the
Client–Server and Client–Flooder flows remains constant, allow-
ing an attacker to filter out system noise

system profiling techniques would allow the Client to esti-
mate the number of visitors to the victim instance. In the
second trial, pictured in Fig. 12, Web requests are instead
issued to other co-resident virtual machines. Every 22.5 s, 10
TCP sessions were initiated with a previously inactive vir-
tual machine. In this scenario, the Server-to-Flooder ratio
remains roughly constant as both flows are adversely but pro-
portionately affected. The increasing instability of the TCP
flow may also serve as a second indicator of extreme load on
the physical cloud node.

8 Toward detection avoidance

Up to this point, we have not considered the detectability
of co-resident watermarking. Invisibility is a critical pursuit
in all network flow watermarking schemes; if the attack is
detected, the target can take a variety of countermeasures
to frustrate the efforts of the watermarker. In the case of
co-resident watermarking, we must also consider the pos-
sibility of anomaly detection systems put in place by the
cloud administrator, which would be likely to monitor net-
work activity. If the watermarking attempt is detected, the
attacker’s instances could be flagged as malicious or possi-
bly terminated.

A serious limitation of the scheme proposed in Sect. 4, in
which a co-resident VM launches large amounts of UDP
probe traffic, is that it is easily detectable. Administra-
tors, noticing multi-gbps UDP flows, could perform cursory
packet inspection to establish that the probe traffic served
no productive purpose. Worse yet, even the watermark tar-
get would be able to detect the attack. One way to accom-
plish this would be to monitor the timing of TCP packet
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acknowledgments, which would also contain the delay sig-
nals of the attack and could therefore be used to guess the
watermark parameters and decode the signal. Below, we
explore how an attacker might be able to overcome these
limitations by impersonating the inherent noise of cloud dat-
acenters.

8.1 Nature of cross-VM delay

Under regular circumstances, whether or not it is possible
to create an invisible network flow watermark is an open
question [11,20,34]. This is due largely to the fact that any
anomalous delay, even small amounts, is observable by the
watermark target. However, our domain-specific watermark
scheme possesses several advantages over previous network
flow watermarking attack models. First, in the absence of
costly SLAs, cloud users must necessarily accept unpre-
dictable delays, sometimes to the point of serious degradation
of VM performance [5]. Due to limited ability to make infer-
ences about co-resident VMs, identifying anomalies from the
customer vantage point is also difficult. Additionally, hyper-
visors feature work-conserving configurations that allow cus-
tomers to make use of free resources. Public clouds often
enable these configurations in order to maximize efficiency
at the cost of isolation, making resource contention between
customers an inherent part of cloud usage.

We propose that this acceptance of delay, along with other
out-of-band knowledge, can be used to create arbitrarily sub-
tle watermarking schemes within the compute cloud domain.
The heterogeneous nature of cloud use makes inference about
malicious network activity extremely difficult. Consider the
behavior of a legitimate cloud-based Web service. Such a
service will provision exactly the number of VMs required
to handle its current business level. In a steady state, we
would therefore expect each instance to be highly utilized. If
the business level drops, the service will terminate instances
until all machines are again well saturated. If business sud-
denly spikes, the service will automatically provision more
instances or migrate existing instances onto larger VMs.
A variety of automated management solutions exhibiting this
behavior have already been proposed by industry and the aca-
demic literature [46,53]. This leaves us with intuition that (i)
instances are generally highly utilized, and (ii) spikes in traf-
fic will occasionally overload user instances until more are
provisioned and the load is rebalanced.

8.2 Design for detection avoidance

These observations are sufficient to create a co-resident
watermark signature using seemingly innocuous customer
behavior. We created a new scheme that leverages this insight,
replacing conspicuous UDP probe traffic with innocuous
TCP sessions. This new attack is pictured in Fig. 13. Using
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Fig. 13 Attack Model for TCP-based, detection-avoiding co-resident
watermarking

out-of-band signaling, the Client instructs a fleet of Flood
Helper VMs, referred to henceforth as Helpers, to initi-
ate HTTP sessions with the Flooder. To a system admin-
istrator, this activity appears to be purposeful communica-
tion between two different cloud-based services. The Client
instructs Helpers to keep the Flooder at a moderate work-
load. When it is time to send a signal, the Client calls on
more Helpers to saturate the Flooder, leading to a sub-
sequent drop in Server throughput. These two Flooder
states, moderately utilized and saturated, represent the d+ and
d− signals of our original scheme. The Client then proceeds
to monitor packet arrivals by interval and perform statistical
analysis as before. From an administrator perspective, this
appears as a sudden spike in business for an innocent cus-
tomer. When the Flooder returns to a reasonable workload,
it appears that load has been rebalanced across more virtual
machines; and in fact, the attacker will be provisioning more
instances in order to conduct more probes. At no point is the
activity of the Flooder conspicuous.

Even while imitating a Web service, the attacker’s activi-
ties could be detected by discovering a timing pattern within
the observed delay. In order to frustrate attempts at discover-
ing the existence of a watermark attack, we randomized the
parameters of the watermark: signal length, signal strength,
and wait between signals. The Client sleeps for a random
length of time before signaling, then selects a random signal
length, and finally requests the signal from a random subset
of all available Helpers. As a result, the target and admin-
istrator are no longer able to guess the parameters of the
watermark scheme, significantly increasing the complexity
of proving the existence of the attack.

This new TCP-based scheme can be adjusted to the needs
of the attacker, who faces a trade-off between efficiency and
detectability. For cloud environments with minimal admin-
istrative supervision, the scheme can be parameterized to
be as efficient as the original scheme explored earlier in
this work. Alternately, the scheme can be further adjusted
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Fig. 14 Activity footprint of Flooder in the two proposed co-resident
watermarkingschemes

to better emulate the behavior of a particular cloud behav-
ior, such as the auto-scaling of Amazon EC2’s CloudWatch
service.

8.3 Results with detection avoidance

The results for the two watermark schemes are contrasted in
Fig. 14, which shows the outbound network activity of the
co-resident Flooder. It can be observed that the throughput
of the Flooder in this new scheme is significantly reduced.
The flooding network activity is now HTTP traffic, which
is unlikely to arouse the suspicions of cloud administra-
tors. Moreover, the delta in flooding activity between the
d+ and d− signal is now approximately 0.2 Gbps, instead of
2.3 Gbps, and the Flooder is always engaging in some activ-
ity. Even with this new scheme, co-resident watermarking is
still extremely effective. We are able to confirm co-residency
in just 10 measurements on average. Our implementation
verified co-location in less than 2 min, with an average
wait between signals of 10 s and an average signal length
of 10 s.

The ability to trigger resource contention with TCP, a pro-
tocol known for its fairness, requires further explanation.
Fig. 14 shows us that that the total amount of flooding activ-
ity has been greatly diminished. This is because the TCP
flows between the Flooder and Helpers are good network
citizens, sharing more of the outbound bandwidth with the
Server’s flows. However, we also know that TCP will greed-
ily increase its sending rate until it reaches an optimal band-
width for the given network path. We showed in Sect. 6.6
that the bottleneck in our network path is likely to be the
outbound interface of the cloud node. As a result, increased
contention at the network interface will trigger the TCP con-
gestion control mechanism. When more Flooder connec-
tions are introduced, each of the existing TCP sessions back

off, creating a measurable delay in the Client–Server con-
nection. TCP-based co-resident watermarking can therefore
be used in any environment in which the UDP-based scheme
was previously successful.

9 Limitations

The co-resident network flow represents a versatile side chan-
nel within the cloud. There are several defenses against the
attack that we have explored in this work; one of them is
restrictive network bandwidth caps, which was the mech-
anism that prevented us from successfully launching co-
resident watermarkingon Amazon EC2 [48]. We explore the
effectiveness and the economic drawbacks of various coun-
termeasures below:

1. The most obvious defense is to provide each virtual
machine instance with a dedicated path out of its phys-
ical host. Our approach is dependent on network flow
multiplexing at the hypervisor and network interface
card. While this defense would be 100 % effective, provi-
sioning dedicated hardware is orthogonal to the purpose
of cloud computing, which depends on the sharing of
devices to provide low cost compute resources.

2. We also observed that co-resident watermarkingcan be
thwarted by imposing bandwidth caps, conducting traffic
shaping, or under provisioning of instances relative to the
network transmission speed of their physical host. In fact,
we confirmed the presence of a 300 Mbps transmission
cap on EC2 small instances, making it significantly more
difficult to launch our attack on their service [48]. Unfor-
tunately, these techniques open up cloud providers to the
possibility of wasted resources. Moreover, they are not
foolproof defenses. In the case that VM density is high
enough to avoid waste, network contention is reintro-
duced and co-resident watermarkingonce again becomes
practical. Studies point to a rapid increase in VM density
[19], indicating that network communication bottlenecks
could become increasingly common in EC2.

3. It may also be possible that new, virtualization-aware
hardware can address and close this side channel. How-
ever, our experience with the Intel 82599 ES controller
indicates that, for manufacturers, addressing virtualiza-
tion’s performance challenges is paramount. In fact, the
isolation mechanism in the ixgbe driver allowed our
Flooder to throttle the Server’s throughput at will. SR-
IOV and other pass-through technologies increase the
exposure of underlying hardware and may continue to
increase the effectiveness of side channels unless isola-
tion is made a primary design goal.

4. Another possible defense would be to apply the ran-
dom scheduling strategy previously employed in cache
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measurements [25] to do outbound packet scheduling.
While this would be effective, it could trigger TCP con-
gestion control [47] and degrade performance across all
virtual machines. Our attack is different from cache-
based attacks in that the protocol and expected behavior
act as an enforcement mechanism to prevent excess non-
determinism from marring our data. Additionally, the
proposed defenses would break certain network-related
aspects of resource scheduling by the hypervisor.

The problem we illustrate is inherent in resource shar-
ing and is particularly essential to the cloud computing
economy, which is based on maximizing resource utiliza-
tion. By launching co-resident watermarkingon three of the
major virtual hypervisor platforms, we have demonstrated
that systemic resource-sharing vulnerabilities are not unique
to a particular virtualization initiative. Moreover, we have
demonstrated that delegating resource management to the
hardware level can further exacerbate this problem. A con-
sequence of this work is the need for hardware drivers
that extend the isolation guarantees of the hypervisor, sac-
rificing minimal performance in exchange for increased
privacy.

10 Related work

10.1 Cloud side channel attacks

A variety of cross-VM side channels have been demonstrated
in the academic literature. Deficiencies in performance iso-
lation, similar to those leveraged in this work, have been
exploited for a variety of purposes. Noting that cache and net-
work utilization are often contested between VMs, a resource
freeing attack (RFA) has been proposed that allows a greedy
customer to manipulate the performance of co-resident VMs
by shifting their resource bottlenecks [48]. This work oper-
ates under a similar attack model as our own, targeting public
network cloud services and manipulating VMs from a helper
host. However, where RFA is a performance enhancement
strategy for the cloud, co-resident watermarking is a method
of information extraction.

Cache-based side channel attacks, in which timing differ-
ences in access latencies between the cache and main mem-
ory are exploited, have attracted the most attention for cloud
computing. Most notably, Zhang et al. [58] demonstrated
that the machine instructions of a co-resident VM can be
recovered from shared L1 caches, permitting the reconstruc-
tion of secret keys in the circumstance that they influence
the code path of a decryption routine. Ristenpart et al. [43]
showed that cache usage can be examined as a means to
measure the activity of other instances co-resident with the
attacker. Furthermore, they demonstrated that they can detect

co-residency with a victim’s instance if they have information
about the instance’s computational load. In contrast, Zhang
et al. [57] utilized cache-based side channels as a defensive
mechanism. Their scheme works by measuring cache foot-
prints for evidence of other VMs. Leveraging this scheme,
they can challenge correct functionality on the part of the
cloud provider and discover other unanticipated instances
sharing the same host.

Bowers et al. [8] have proposed use of a different net-
work timing side channel in order to challenge fault toler-
ance guarantees in storage clouds. This work measures the
response time of random data reads in order to confirm that
a given file’s storage redundancy meets expectations. This
scheme can be used to detect drive-failure vulnerabilities and
expose cloud provider negligence. We intend to investigate
the applicability of storage cloud co-resident watermarking
in future work.

10.2 Hypervisor security

Raj et al. [41] proposed two other mechanisms for prevent-
ing cache-based side channels, cache hierarchy aware core
assignment, and page-coloring-based cache partitioning. The
former groups CPU cores based on last level cache (LLC)
organization and checks whether such organization has any
conflict with the SLA of the clients. The latter is a soft-
ware method that monitors how the physical memory used
by applications maps to cache hardware, grouping applica-
tions accordingly to isolate clients. Another effective defense
against cache-based side channels is changing how caches
assign memory to applications, such as non-deterministic
caches [26]. Non-deterministic caches control the lifetime
(decay interval) of cache items. By assigning a random decay
interval to cache items, the cache behavior becomes non-
deterministic, and hence, side channels cannot exploit it.
Work in performance isolation in Xen can also lead to added
security benefits [21].

Other work aims to combat virtualization vulnerabilities
by reducing the role and size of the hypervisor. Most drasti-
cally, Keller et al. [25] eliminate a large attack surface by
proposing the near elimination of the hypervisor. This is
achieved through preallocation of resources, limited virtu-
alized I/O devices, and modified guest operating systems.
While this approach inarguably reduces the likelihood of
exploitable implementation flaws in the virtualization code
base, it necessarily places VMs closer to underlying hard-
ware. Intuitively, this can only increase the bandwidth of
the isolation-compromising side channel that we explore
in this work. Other proposals reduce the hypervisor attack
surface by considering only specific virtualization applica-
tions such as rootkit detection or integrity assurance for crit-
ical portions of security-sensitive code [35,45] or by dis-
tributing administrative responsibilities across multiple VMs
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[10]. We do not consider these systems in our work because
they are not intended for the third-party compute cloud
model.

10.3 In-the-wild exploits

The Xen and VMWare communities have discovered only
a handful of privilege escalation exploits. The presence of
such attacks greatly incentivizes efficient co-resident detec-
tion schemes. An early version of Xen 3 included a bug
that caused domU grub files to be executed without protec-
tion in dom0 [15]. The exploit allowed users to craft mali-
cious grub.conf files that led to arbitrary code execution in
the administrative domain. Earlier versions of Xen included
a buffer overflow error that allowed specially crafted disk
images to execute code in dom0 [16]. In 2008, a bug was
discovered in the folder-sharing feature of some VMWare
product lines that allowed for unprivileged user code to be
executed by the vmx process [49]. More recently, a pag-
ing function in Linux kernels 2.6.35.2 and earlier allowed
for a guest domain to perform a memory exhaustion attack
on the system [17]. Lastly, in 2012, partial source code for
VMWare’s ESX hypervisor leaked [9], and while no exploits
have been directly attributed to this leak yet, such incidents
increase the risk of compromise.

11 Conclusion

In this work, we have leveraged active traffic analysis tech-
niques as a means of determining co-residency of instances
in cloud environments. We show that our co-resident water-
markingscheme can be used to make a determination of co-
residency in under 10 s for a given probe in the cloud. We
demonstrate the feasibility of this attack by deploying it in
multiple production cloud environments in geographically
disparate locations and running a diverse set of hypervisors.
We are able to interpose a covert channel on our target’s net-
work flow and show means of performing passive attacks
such as load measurement against the cloud-based target.
We go on to create a detection-avoidance strategy that masks
co-resident watermark signaling within innocuous cloud
customer activities. These investigations further demon-
strate the ramifications of multiplexing hardware in virtu-
alized environments, demonstrating a need for cloud hard-
ware that is performed without introducing undesired side
effects.
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Appendix A Hypervisor scheduling

A.1 Xen

Xen is a popular type I virtual hypervisor that allows mul-
tiple operating systems to share hardware through the use
of abstracted paravirtualized interfaces. Xen separates pol-
icy and mechanism by having its hypervisor’s device sched-
uler providing only the most basic operations. Higher-level
scheduling algorithms are the responsibility of the domain
0 (dom0) guest operating system, which acts as an admin-
istrator and has access to a hypervisor control interface.
In this way, Xen’s schedulers implement fair scheduling of
resources for guest domains (domU).

Xen schedules domain CPU utilization using the Bor-
rowed Virtual Time (BVT) algorithm [4]. BVT has a spe-
cial low-latency wake-up mechanism that temporarily favors
domains that have just received an event. This allows for
the effect of virtualization to be minimized for services such
as TCP that require accurate round-trip time measurements.
Xen provides real time, virtual time, and wall-clock time to
guest domains to ensure correct sharing of time slices for
their own applications.

For networking, Xen provides virtual network interfaces
(VIFs) that attach to a virtual firewall-router (VFR). Each
VIF in dom0corresponds to an interface that is visible in
a domU. The VFW performs services such as demultiplex-
ing received packets based on destination IP and port. VIFs
emulate physical network interface cards by providing trans-
mit and receive I/O rings. Guest domains transmit packets
by enqueueing packets onto the transmit ring and receive
packets by exchanging unused page frames for each packet
dequeued from the receive ring. Each domUpacket passes
through dom0on its way to or from the physical interface.
Xen packet scheduling is a simple round robin.

Recent work has shown that the Xen hypervisor introduces
considerable packet transmission delays under heavy net-
work usage, adding on the order of 100 ms to round-trip times
[52], limiting network throughput to as little as 2.9 Gbps [42].
A great deal of this delay is introduced through the packet
needing to pass through dom0. The use of paravirtualized
interfaces and software network bridges also adds delay when
compared to hardware virtualization. As our work seeks to
inject as much delay into a network flow as possible, we
made use of these artifacts of the Xen hypervisor in addition
to the limitations of underlying physical devices. However,
we demonstrate in Section 6 that our scheme is also effective
on lightweight hypervisors.

A.2 VMWare ESXi

VMWare ESXi is another operating system-independent
hypervisor that allows multiple virtual machines to share
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physical hardware. Unlike Xen, ESXi eliminates the privi-
leged guest partition and runs all management and infrastruc-
ture services directly from a micro-kernel (VMkernel). The
reduced footprint of the ESXi hypervisor creates a smaller
surface for vulnerability. ESXi implements a proportional-
share- based algorithm for domain CPU utilization schedul-
ing. With this mechanism, scheduling decisions are priori-
tized based on the ratio of the consumed CPU resources to the
entitled resource limit of each virtual CPU (vCPU). Lower
ratios are given higher priority, thus giving vCPUs with
greater resource needs higher precedence. To increase per-
formance, ESXi also implements relaxed coscheduling with
symmetric multi-processing, which allows multiple threads
or processes to be executed in parallel over multiple physi-
cal CPUs. Packet scheduling relies on a simple round-robin
method.

A.3 KVM

KVM is a type 2 hypervisor for Linux platforms and is
designed to reuse as much of the underlying Linux infrastruc-
ture as possible. With KVM, each VM is treated as a process
and is scheduled using the default Linux scheduler, which
is the Completely Fair Scheduler (CFS) [22]. CFS tracks the
virtual runtime of each process, which is the time allocated to
each task to access the CPU. Smaller virtual runtimes result
in higher priority. CFS also implements sleeper fairness, in
which waiting processes are treated as if they were on the
run queue, so they receive a comparable share of CPU time
when they need it.

In contrast to many other schedulers, CFS uses a time-
ordered red-black tree instead of a queue to maintain waiting
processes. Processes with higher priority (lower virtual run-
time) are placed on the left side of the tree, and processes
with lower priority (higher virtual runtime) are stored in the
right side. The scheduler selects the leftmost node to run,
and then to maintain fairness, the process’s execution time
is added to the virtual runtime and the process is reinserted
into the tree. This tree is self-balancing, and tree operations
run in O(log n) time.

Appendix B Virtualization-aware devices

As the number of VMs operating on a system increases, net-
work performance can drastically decrease in hypervisors
that mediate network access with an administrative domain.
The traditional single CPU core handling received packets
is not sufficient to service the number of incoming packets
on a 10 GB Ethernet connection. Virtualization-aware hard-
ware can be employed to mitigate these bottleneck risks and
increase networking efficiency. Two such hardware specifi-

cations are Virtual Machine Device Queues (VMDq) [13]
and Single Root I/O Virtualization (SR-IOV) [18].

VMDq is a silicon-level technology that alleviates net-
work traffic bottlenecks by offloading packet-sorting respon-
sibility from the hypervisor to the NIC. Within the NIC, there
exist unique queues for each VM to receive their assigned
packets. Relieving the VMM of network traffic sorting allows
more CPU cycles to be granted to the VMs themselves. Both
Xen and ESXi support VMDq technology with baked-in soft-
ware provided for additional efficiency. Xen implements a
new protocol for I/O channels, called Netchannel2, which
reduces I/O bottlenecks in dom0 by performing packet sort-
ing within the receiving domain instead of in dom0. ESXi’s
VMDq support comes from NetQueue, a similar software
package.

SR-IOV is a specification that allows physical I/O devices
to present themselves to the host as multiple virtualized I/O
devices, allowing for direct access to PCI interfaces. This
is especially impactful when considering network access in
Xen, as it eliminates the need for dom0 to be involved in copy-
ing packet buffers from the guest OS. Since each domU has
access to its own PCI virtual function, SR-IOV also provides
individual queues for each VM. Arriving packets are sorted
into these queues by the physical device based on their desti-
nation, then are copied directly to the guest OS memory using
direct memory access (DMA). VMWare’s implementation
of SR-IOV, called VMDirectPath, permits direct-assignment
technologies to achieve device sharing.
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