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Abstract Researchers have previously looked into the
problem of determining whether a given set of security hard-
ening measures can effectively make a networked system
secure. However, system administrators are often faced with
a more challenging problem since they have to work within
a fixed budget which may be less than the minimum cost of
system hardening. An attacker, on the other hand, explores
alternative attack scenarios to inflict the maximum damage
possible when the security controls are in place, very often
rendering the optimality of the controls invalid. In this work,
we develop a systematic approach to perform a cost-ben-
efit analysis on the problem of optimal security hardening
under such conditions. Using evolutionary paradigms such
as multi-objective optimization and competitive co-evolu-
tion, we model the attacker-defender interaction as an “arms
race”, and explore how security controls can be placed in a
network to induce a maximum return on investment.

Keywords Security management · Attack trees ·
Multi-objective optimization · Competitive co-evolution

R. Dewri (B)
Department of Computer Science, University of Denver, Denver,
CO 80208, USA
e-mail: rdewri@cs.du.edu

I. Ray · D. Whitley
Department of Computer Science, Colorado State University,
Fort Collins, CO 80523, USA
e-mail: indrajit@cs.colostate.edu

D. Whitley
e-mail: whitley@cs.colostate.edu

N. Poolsappasit
Department of Computer Science, Missouri University of Science and
Technology, Rolla, MO 65409, USA
e-mail: nayot@mst.edu

1 Introduction

Network-based computer systems form an integral part of
any information technology infrastructure today. The dif-
ferent levels of connectivity between these systems directly
facilitate the circulation of information within an organiza-
tion, thereby reducing invaluable wait time and increasing the
overall throughput. As an organization’s operational capacity
becomes more and more dependent on networked computing
systems, the need to maintain accessibility to the resources
associated with such systems has become a necessity. Any
weakness or vulnerability that could result in the breakdown
of the network has direct consequence on the amount of yield
manageable by the organization. This in turn requires the
organization to not only consider the advantages of utilizing
a networked system, but also consider the costs associated
with managing the system.

Researchers have proposed building security models for
networked systems using paradigms like attack graphs [1–5]
and attack trees [6–9], and then finding attack paths in these
models to determine the scenarios that could lead to dam-
age. However, determining possible attack paths, although
useful, does not help the system administrators much. They
are more interested in determining the best possible way of
defending their network in terms of an enumerated set of
hardening options [10]. Moreover, the system administrator
has to work within a given set of budget constraints that may
preclude her from implementing all possible hardening mea-
sures or even measures that cover all the weak spots. Thus,
the system administrator needs to find a trade-off between the
cost of implementing a subset of security hardening measures
and the damage that can potentially happen to the system if
certain weak spots are left unpatched. We performed a Pareto
analysis of this multi-objective problem in one of our earlier
works [11]. The method is driven by an attack tree model
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that captures the cause-consequence relationships between
different network states. These relationships are then used
to determine a set of security controls that exhibit non-dom-
inance characteristics with respect to the control cost and
residual risk.

While such trade-off analysis provides valuable insights
into the problem of optimal security hardening, the approach
provides only a static perspective to the problem. The
assumption here is that the end goal is to identify a set
of security controls that can prevent a particular security
breach from occurring. An attacker, meanwhile, continues
to explore alternative attack scenarios to inflict maximum
damage possible to a system, despite the security controls
that are in place. Many a times, the attacker’s goal may be
just to cause some damage and not necessarily cause the spe-
cific security breach that the defender is trying to protect
against. The attacker may be aided by several factors in this
quest. Defenses may have unknown vulnerabilities that can
be exploited as a system evolves with time. Misconfigura-
tion of defenses can render them susceptible to attacks. If the
attacker has insider knowledge about system configuration,
weak spots and defenses (or lack thereof), such knowledge
can be used to increase the probability of a defense failing.
Such a situation may not be acceptable to the higher ups
in the organization. Their perspective may be to not only
prevent a specific security breach but also accept minimal
collateral damage. This may require a continual updating of
the defense strategy based on attacker activities. Thus, one
important objective of security hardening is to make life as
difficult for the attacker as possible by adjusting security
controls. It seems worth investigating if such an arms race
between the attacker and the defender will be perpetual or
there exists a state involving security controls in which the
defender is guaranteed that unexpected damages will never
be inflicted no matter how the attacker changes his strategies.

In this paper, we begin with the formal definition of attack
trees first suggested in our earlier work [11]. Using a model
that quantifies the potential damage in a system and the
security control cost incurred to implement a set of secu-
rity hardening measures, we show how a cost-benefit anal-
ysis can be performed on an attack tree to aid the decision
maker. As the primary contribution of this work, we extend
the trade-off analysis to explore the optimal security hard-
ening problem keeping in view the attacker’s perspective,
namely defenses can be broken. Our goal is to identify how
security controls can be decided to maximize the return on
investment for a defender, under the scenario that an attacker
is actively engaged in maximizing its return on attacks. We
explore the optimal security control placement problem as a
dynamic engagement between the defender and the attacker,
and model the problem as an “arms race”. Solutions to the
optimization problem are obtained using the competitive co-
evolution paradigm and show how the constant engagement

between a defender and an attacker drives the solution toward
a state of equilibrium.

Using the outcomes of this analysis, we highlight the inad-
equacy of current research in addressing the security harden-
ing problem. We argue that research in this frontier has mostly
adopted a perspective of optimality that becomes question-
able under the light of changing network and attacker dynam-
ics. Hence, toward the end, we present a few insights into
what alternative perspective is required.

The rest of the paper is organized as follows. Section 2
explores some of the major works in optimal security hard-
ening. Section 3 gives some background information on
multi-objective optimization and competitive co-evolution.
In Sect. 4, we describe a simple network that we use to illus-
trate our problem formulation and solution. The attack tree
model is presented in Sect. 5. In Sect. 6, we discuss a moti-
vating example to show how the attacker’s perspective may
bring about changes in the choice of a security control. In
Sect. 7, we define the cost models used in this study. This is
followed by the formalization of the optimization problems
in Sect. 8. Specifics on the solution methods are presented
in Sect. 9. Empirical results and discussions are presented in
Sect. 10. Finally, we conclude in Sect. 11 with references to
future work.

2 Related work

Network vulnerability management has been previously
addressed in a variety of ways. Noel et al. use exploit depen-
dency graphs [10] to compute minimum cost-hardening mea-
sures. Given a set of initial conditions in the graph, they
compute Boolean assignments to these conditions, enforced
by some hardening measure, so as to minimize the total cost
of those measures. As pointed out in their work, these ini-
tial conditions are the only type of network security condi-
tions under our strict control. Hardening measures applied
to internal nodes can potentially be bypassed by an attacker
by adopting a different attack path. Jha et al. [2] on the other
hand do not consider any cost for the hardening measures.
Rather, their approach involves finding the minimal set of
atomic attacks critical for reaching the goal and then finding
the minimal set of security measures that cover this set of
atomic attacks.

Such analysis is meant for providing solutions that guar-
antee complete network safety. However, the hardening mea-
sures provided may still not be feasible within the financial
or other business constraints of an organization. Under such
circumstances, a decision maker must perform a cost-benefit
analysis to understand the trade-off between hardening costs
and network safety. Furthermore, a minimum cost harden-
ing measure set only means that the root goal is safe, and
some residual damage may still remain in the network. Owing
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to these real-world concerns, network vulnerability manage-
ment should not always be considered as a single-objective
optimization problem.

A multi-objective formulation of the problem is presented
by Gupta et al. [12]. They consider a generic set of security
policies capable of covering one or more generic vulnerabili-
ties. A security policy can also introduce possible vulnerabil-
ities, thereby resulting in some residual vulnerabilities even
after the application of security policies. The multi-objec-
tive problem considered is the minimization of the cost of
implementing the security policies, as well as the residual
vulnerabilities introduced by the policies themselves. How-
ever, the authors finally scalarize the two objectives into a
single objective using relative weights.

Bistarelli et al. propose defense trees as an extension to
attack trees to analyze the economic profitability of security
measures and their deterrent effects on attackers. A game the-
oretic perspective of the problem is introduced in an attempt
to discover Nash equilibrium points between the security pro-
vider and the attacker [13]. Early indications of using game
theory for network security are provided by Syverson [14].
The work considers the example of a network divided into
“good” and “evil” nodes and reasons how game playing can
be used to achieve secure computing. Lye and Wing model
the interactions between an attacker and an administrator as a
two-player stochastic game and use non-linear programming
techniques to compute the Nash equilibria or best-response
strategies for the players [15]. They propose that attacker
and administrator actions probabilistically change the state
of a network, resulting in gains and losses for the two play-
ers involved. Sallhammar et al. [16,17] propose the use of
stochastic game theory to compute probabilities to attacker
actions. They also share the view that attacks can be mod-
eled as transitions between system states, and show how the
attacker’s behavior is influenced by parameters of the game
on-going with the defender. Liu and Wang [18] propose a sys-
tematic incentive-based framework to model attacker intent,
objectives and strategies (AIOS). Their motivation is aimed
toward separating attacker actions and attack effects since
the same attack may be the source of different intentions
on part of the attacker. The discussion in their work brings
out an important characteristic of game-theoretic modeling—
termed the dual property—the best attack (defense) strategy
is dependent on the defense (attack) strategies taken. Buldas
et al. [19] propose a risk-analysis method based on attack
trees to estimate the cost and risk probability of attacks. Their
argument is based on the fact that attacks where the cost sur-
passes the benefit are unlikely in a system and hence such
factors should be considered while making a rational deci-
sion on security measures. Zhang et al. [20] develop a par-
tially observable Markov decision process to measure the
attacker’s and defender’s behavior in terms of intent and cost
factors. Their model aims at revealing the significant aspects

of a system that are more likely to be exploited by an attacker
and thus aid a defender in detecting on-going attacks based
on atomic actions of the attacker. Jiang et al. [21] propose
an optimal active defense strategy decision (OADSD) algo-
rithm to compute defense strategies with minimum cost from
an iterative attacker-defender game.

An implicit assumption in these works is the existence of
a payoff matrix that can be used by a software tool to deduce
the points of equilibrium. However, as we explain later, the
payoff matrix can be too large to be computed for a given
problem. Our solution methodology differs here in the adap-
tation of payoff functions defined on attack models, which can
then be used by an evolutionary algorithm to find the equi-
librium points. Further, the solution methodology adopted
by us implicitly models the game undergoing between the
attacker and the defender, revealing not only the equilibrium
solutions (if any) but also the evolutionary path traversed by
the game while reaching the solution. This information pro-
vides a decision maker the added knowledge to understand
the dynamics of the attacker-defender interactions.

3 Background on solution methods

3.1 Multi-objective optimization

Multi-objective optimization differs from single-objective
ones in the cardinality of the optimal set of solutions. Single-
objective optimization techniques are aimed toward finding
the global optima. There is no such concept of a single opti-
mum solution in case of multi-objective optimization. This
is due to the fact that a solution that optimizes one of the
objectives may not have the desired effect on the others.
As a result, it is not always possible to determine an opti-
mum that corresponds in the same way to all the objectives
under consideration. Decision making under such situations
thus requires some domain expertise to choose from multiple
trade-off solutions depending on the feasibility of implemen-
tation.

Due to the conflicting nature of the objective functions,
a simple objective value comparison cannot be made to
compare two feasible solutions of a multi-objective prob-
lem. Most multi-objective algorithms thus use the concept of
dominance.

Definition 1 Dominance and Pareto- optimal set

In a minimization problem with M objective functions
f1, . . . , fM , a feasible solution vector x is said to dominate
another feasible solution vector y if

1. ∀i ∈ {1, 2, . . . , M} fi (x) ≤ fi (y) and
2. ∃ j ∈ {1, 2, . . . , M} f j (x) < f j (y)
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y is then said to be dominated by x. If the two condi-
tions do not hold, x and y are said to be non-dominated with
respect to each other. Further, the set of all non-dominated
solutions obtained over the entire feasible region constitutes
the Pareto-optimal set.

In other words, a Pareto-optimal solution is as good as
other solutions in the Pareto-optimal set, and not worse than
other feasible solutions outside the set. The surface gener-
ated by these solutions in the objective space is called the
Pareto-front or Pareto-surface.

The classical way to solve a multi-objective optimization
problem is to follow the preference-based approach. A rel-
ative weight vector for the objectives can help reduce the
problem to a single-objective instance, or impose orderings
over the preference given to different objectives. However,
such methods fail to provide a global picture of the choices
available to the decision maker. In fact, the decision of prefer-
ence has to be made before starting the optimization process.
Relatively, newer methods have been proposed to make the
decision process more interactive.

Evolutionary algorithms for multi-objective optimization
(EMO) have been extensively studied and applied to a wide
spectrum of real-world problems. One of the major advan-
tages of using evolutionary algorithms for optimization is
their ability to scan through the global search space simulta-
neously, instead of restricting to localized regions of gradient
shifts. An EMO works with a population of trial solutions,
trying to converge on to the Pareto-optimal set by filtering
out the infeasible or dominated ones. Having multiple solu-
tions from a single run of an EMO is not only an efficient
approach, but also helps a decision maker obtain an intuitive
understanding of the different trade-off options available at
hand. The effectiveness of an EMO is thus characterized by
its ability to converge to the true Pareto-front and maintain a
good distribution of solutions on the front.

A number of algorithms have been proposed in this con-
text [22,23]. We employ the non-dominated sorting genetic
algorithm (NSGA-II) [24] for the multi-objective optimiza-
tion in this study. NSGA-II has gained a wide popularity in
the multi-objective optimization community, partly because
of its efficiency in terms of the convergence and diversity of
solutions obtained, and partly because of its extensive appli-
cation to solve the real-world problems.

3.2 Competitive co-evolution

Competitive co-evolution refers to the concurrent evolution
of two distinct species in which the fitness of an individual
in one species is based on its competitive abilities against the
individuals of the other species. Fitness evaluation with such
reciprocal actions is hypothesized to occur in nature. Game
theory–based models of such interactions are first presented

in Axelrod’s Prisoners’ Dilemma [25]. The evolution of spe-
cies in a competitive habitat usually leads to an evolutionary
stable strategy [26], which cannot be invaded by the process
of natural selection. In other words, the species reverts back
to the stable strategy over time.

Competitive co-evolution has been successfully applied
to the evolution of strategies for games such an Tic-Tac-Toe
and Nim [27]. The range of potential opponent strategies is
typically very large in such games, thereby making it diffi-
cult to determine an exogenous fitness evaluation function.
Other domains such as software reliability testing face a sim-
ilar problem. The solution using competitive co-evolution
involves using two populations, one representing the soft-
ware solutions and the other representing the test cases, each
taking turns in testing and being tested against the other [28].
A survey of other real-world applications is available in [29].

Success of competitive co-evolution is attributable to the
emergence of an evolutionary arms race [30]. Consider two
populations of defense strategies and attack strategies. To
begin with, both populations are likely to have strategies of
poor quality. Most of the host strategies will have low payoffs
brought forth by one or two good strategies existing in the
opponent population. However, since defense strategies are
evolving based on their competitive abilities against attack
strategies, the success of the defender implies the failure of
the attacker. When the attacker finds strategies to improve its
payoff by overcoming the failure, it helps the defender iden-
tify gaps previously unthought of in its strategies. The same
idea drives the attacker’s strategies. New opponent strategies
drive hosts toward better counter strategies, improving host
performance by forcing it to respond to a wider range of more
challenging test cases.

The next question that comes to mind is whether a good
host strategy of the current generation can prove its compe-
tence against opponent strategies that are lost in the evolu-
tion of the opponent population. This is referred to as the
memory property in co-evolution. To handle such situations,
co-evolutionary algorithms employ a “hall of fame” [31] sub-
population which keeps track of the best opponent solutions
found from earlier generations. Success of a competition for
a host strategy is not only measured relative to the current
opponent strategies but also dependent on its performance
against the opponent’s hall of fame. Other similar methods
are elaborated in [32,33].

4 A simple network model

We consider the hypothetical network shown in Fig. 1 to
illustrate our methodology. The setup consists of four hosts.
A firewall is installed with a preset policy to ensure that only
the FTP and SMTP servers are allowed to connect to the
external network. In addition, FTP and SSH are the only two
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Fig. 1 Example network model

Table 1 Initial vulnerability per host in example network

Host Vulnerability CVE#

FTP Server Ftp. rhost attack 1999-0547

196.216.0.10 Ftp buffer overflow 2001-0755

Ssh buffer overflow 2006-2421

SMTP Server Ftp. rhost attack 1999-0547

196.216.0.1

Terminal LICQ remote-2-user 2001-0439

196.216.0.3 “at” heap corruption 2002-0004

Data Server LICQ remote-2-user 2001-0439

196.216.0.2 suid buffer overflow 2001-1180

Table 2 Connectivity in example network

Host Host Port

*.*.*.* 196.216.0.1 21,25

*.*.*.* 196.216.0.10 21,22

196.216.0.1 196.216.0.2 ANY

196.216.0.1 196.216.0.3 ANY

196.216.0.3 196.216.0.2 ANY

196.216.0.10 196.216.0.2 ANY

services an external user can use to communicate with these
servers. We assume that an external user wants to compro-
mise the Data Server that is located inside the firewall. The
firewall has a strong set of policies setup to protect access
to the internal hosts. There are six different attack scenarios
possible to achieve the ultimate goal from a given set of initial
vulnerabilities and network topology as listed in Tables 1, 2.

To compromise the Data Server, an attacker can exploit
the FTP and SMTP Servers using the ftp/.rhost attack. Both
servers are running ftp server versions that are vulnerable
to these exploits. In addition, their rhost directories are not
properly write-protected. As a consequence of the ftp/.rhost
exploit, an attacker establishes a trust relation between the
host and attacker machines, and introduces an authentica-

tion bypassing vulnerability in the victim. An attacker can
then log in to these servers with user access privilege. From
this point, the attacker can use the connection to the Data
Server to compromise it. The attacker may also compromise
the SMTP Server, or choose to compromise the Terminal
machine in order to delay an attack. The Terminal machine
can be compromised via the chain of LICQ remote to user
attack and the local buffer overflow attack on the “at” dae-
mon. Finally, the attacker from either the FTP server, SMTP
server or the Terminal machine can use the connectivity to
the Data Server to compromise it through the chain of LICQ
exploit and “suid” local buffer overflow attack. Such attack
scenarios can be succinctly represented using an attack tree,
discussed in details in the next section.

5 Attack tree model

Materializing a threat usually requires the combination of
multiple attacks using different vulnerabilities. Represent-
ing different scenarios under which an asset can be damaged
thus becomes important for preventive analysis. Such repre-
sentations not only provide a picture of the possible ways to
compromise a system, but can also help determine a mini-
mal set of preventive actions. Given the normal operational
state of a network, including the vulnerabilities present, an
attack can possibly open up avenues to launch another attack,
thereby taking the attacker a step closer to its goal. A certain
state of the network in terms of access privileges or machine
connectivity can be a prerequisite to be able to exploit a vul-
nerability. Once the vulnerability is exploited, the state of
the network can change enabling the attacker to launch the
next attack in the sequence. Such a pre-thought sequence of
attacks gives rise to an attack scenario.

It is worth noting that such a notion of a progressive attack
induces a transitive relationship between the vulnerabilities
present in the network and can be exploited while decid-
ing on the security measures. Attack graph [1,2,4,10] and
attack tree [8,9] representations have been proposed in net-
work vulnerability management to demonstrate such cause-
consequence relationships. The nodes in these data structures
usually represent a certain network state of interest to an
attacker, with edges connecting them to indicate the cause-
consequence relationship. Although different attack scenar-
ios are easily perceived in attack graphs, they can potentially
suffer from a state space explosion problem. Ammann et al.
[1] identified this problem and propose an alternative formu-
lation with the assumption of monotonicity. The monotonic-
ity property states that the consequence of an attack is always
preserved once achieved. Such an assumption can greatly
reduce the number of nodes in the attack graph, although
at the expense of further analysis required to determine the
viable attack scenarios. An exploit-dependency graph can be
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extracted from their representation to indicate the various
conjunctive and disjunctive relationships between different
nodes. For the purpose of this study, we adopt the attack tree
representation since it presents a much clearer picture of the
different hierarchies present between attacker subgoals. An
attack tree uses explicit conjunctive and disjunctive branch
decomposition to reduce the visualization complexity of a
sequence of operations.

Different properties of the network effectuate different
ways for an attacker to compromise a system. We first define
an attribute-template that lets us generically categorize these
network properties for further analysis.

Definition 2 Attribute- Template

An attribute-template is a generic property of the hardware
or software configuration of a network, which includes, but
not limited to, the following:

- system vulnerabilities (which are often reported in vulner-
ability databases such as BugTraq, CERT/CC, or NetCat).

- network configuration such as open port, unsafe firewall
configuration.

- system configuration such as data accessibility, unsafe
default configuration, or read-write permission in file
structures.

- access privilege such as user account, guest account, or
root account.

- connectivity.

An attribute-template lets us categorize most of the atomic
properties of the network that might be of some use to
an attacker. For example, “running SSH1 v1.2.23 on FTP
Server” can be considered as an instance of the system vul-
nerabilities template. Similarly, “user access on Terminal” is
an instance of the access privilege template. Such templates
also let us specify the properties in propositional logic. We
define an attribute with such a concept in mind.

Definition 3 Attribute

An attribute is a propositional instance of an attribute-tem-
plate. It can take either a true or false value.

The success or failure of an attacker reaching its goal
depends mostly on what truth values the attributes in a net-
work take. It also lays the foundations for a security manager
to analyze the effects of falsifying some of the attributes
using some security policies. We formally define an attack
tree model based on such attributes. Since we consider an
attribute as an atomic property of a network, taking either
a true or false value, most of the definitions are written in
propositional logic involving these attributes.

Definition 4 Attack

Let S be a set of attributes. We define Att to be a mapping
Att : S × S → {true, f alse} and Att (sc, sp) = truth value
of sp.

a = Att (sc, sp) is an attack if sc �= sp ∧ a ≡ sc ↔ sp.
sc and sp are then respectively called a precondition and
postcondition of the attack. The set of all preconditions and
postconditions of a are denoted by pre(a) and post(a), respec-
tively.

Att (sc, sp) is a φ–attack if ∃non-empty S′ ⊂ S|[sc �=
sp ∧ Att (sc, sp) ≡

(∧
i

si ∧ sc

)
↔ sp] where si ∈ S′.

An attack relates the truth values of two different attributes
so as to embed a cause-consequence relationship between
the two. For example, for the attributes sc =“vulnerable to
sshd BOF on machine A” and sp =“root access privilege
on machine A”, Att (sc, sp) is an attack – the sshd buffer
overflow attack. We would like to clarify here that the bi-
conditional logical connective “↔” between sc and sp does
not imply that sp can be set to true only by using Att (sc, sp);
rather it means that given the sshd BOF attack, the only way
to make sp true is by having sc true. In fact, Att (“vulner-
able to local BOF on setuid daemon on machine A”, sp) is
also a potential attack. The φ-attack is included to account
for attributes whose truth values do not have any direct rela-
tionship. However, an indirect relationship can be established
collectively. For example, the attributes sc1 = “running SSH1
v1.2.25 on machine A” and sc2 = “connectivity(machine B,
machine A)” cannot individually influence the truth value of
sc, but can collectively make sc true, given they are individ-
ually true. In such a case, Att (sc1, sc) and Att (sc2 , sc) are
φ–attacks.

Definition 5 Attack Tree

Let A be the set of attacks, including the φ–attacks. An
attack tree is a tuple AT = (sroot , S, τ, ε), where

1. sroot is an attribute which the attacker wants to become
true.

2. S = Ninternal ∪ Nexternal ∪ {sroot } is a multiset of attri-
butes. Nexternal denotes the multiset of attributes si for
which �a ∈ A|si ∈ post (a). Ninternal denotes the
multiset of attributes s j for which ∃a1, a2 ∈ A|[s j ∈
pre(a1) ∧ s j ∈ post (a2)].

3. τ ⊆ S × S. An ordered pair (spre, spost ) ∈ τ if
∃a ∈ A|[spre ∈ pre(a) ∧ spost ∈ post (a)]. Further,
if si ∈ S and has multiplicity n, then ∃s1, s2, . . . , sn ∈
S|(si , s1), (si,s2), . . . , (si , sn) ∈ τ , and

4. ε is a set of decomposition tuples of the form 〈s j , d j 〉
defined for all s j ∈ Ninternal ∪ {sroot } and d j ∈
{AN D, O R}. d j is AN D when

∧
i
[si ∧ (si , s j ) ∈ τ ] ↔

s j is true, and O R when
∨
i
[si ∧ (si , s j ) ∈ τ ] ↔ s j is

true.
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Fig. 2 Example attack tree

Figure 2 shows an example attack tree, with the attribute
“root access on machine A” as sroot . The multiset S forms
the nodes of the tree. The multiset Nexternal specify the leaf
nodes of the tree. These nodes reflect the initial vulnerabilities
present in a network and are prone to exploits. Since an attri-
bute can be a precondition for more than one attack, it might
have to be duplicated, hence forming a multiset. The attribute
“machine B can connect to machine A” in the example is one
such attribute. The set of ordered pairs τ reflects the edges in
the tree. The existence of an edge between two nodes implies
that there is a direct or indirect relationship between their
truth values, signified by the decomposition at each node.
The AND decomposition at a node requires all child nodes to
have a truth value of true for it to be true. The OR decompo-
sition at a node requires only one child node to have a truth
value of true for it to be true. Using these decompositions,
the truth value of an attribute s j ∈ Ninternal ∪ {sroot } can be
evaluated after assigning a set of truth values to the attributes
si ∈ Nexternal . Figure 3 shows the attack tree for our exam-
ple network model. It depicts a clear picture of the different
attack scenarios possible, as outlined in the previous section.

Attack trees for large networks can get complex. We have
the search space bound to the number of attributes that spec-
ify what vulnerabilities are present in which machines. The
size of the attribute instances can be as large as A × M ,
where A is the number of attributes and M is the number of
machines in the system. However, note that the generation
of the attack tree is a one-time cost and is not done in real
time. Our in-house tool takes as input an initial vulnerability
table, generated by a vulnerability scanner, and the network
topology. Using a sequence of SQL queries on a vulnerabil-
ity exposure database, the tool creates consequence attributes
for the tree until no further implications can be derived. Com-
mercial tools (e.g., CAULDRON: http://proinfomd.com) are
also available that explore the topological and security depen-
dencies in a large-scale, real-world network.

A defender installs defenses on the network (makes some
or all leaf nodes false) so as to prevent the root node from
becoming true. The defender’s choice of defenses may be
determined by factors such as the installation cost and the
potential damage residual after making the choice. From an
attacker’s perspective, the attack tree is a model showing the
different ways it can compromise the root node. However, we
do not restrict our focus to the root node alone. An attacker’s
strategy might as well be directed toward inflicting the most
damage in the presence of defenses, rather than just compro-
mising the root node. The choice of such a strategy is also
influenced by the difficulty that the attacker has to overcome
in order to bypass any installed defenses. In the next section,
we give a formal outline of a defense and an attack strategy.

6 Defense and attack strategy

Incorporating the attacker’s perspective in the optimal secu-
rity hardening problem is not easy. We consider a hypotheti-
cal example to illustrate how a defender’s decision to employ
a particular strategy is influenced when the attacker’s gains
are kept in consideration. Consider the payoff matrix shown
in Fig. 4. The example assumes that the defender has two pos-
sible defense strategies d1 and d2, and the attacker has two
different attack strategies a1 and a2 to try out. The objective
of the defender is to decide on one defense strategy to adopt.
The first value in a cell (i, j) is a measure of some payoff
that the defender derives by adopting strategy di under the
situation when the attacker uses strategy a j . Given that the
defender is only interested in its payoff value, it uses an aver-
age case analysis and finds that strategy d1 can maintain a
higher average payoff than d2 – 7.5 compared to 5.5. The
defender will arrive at the same strategy even with a best
case analysis. The defender therefore installs the defense d1.
However, the decision on d1 can reveal itself to be flawed
when the attacker’s payoffs are introduced.

The second value in a cell (i, j) is a measure of the pay-
off that the attacker derives by adopting attack a j when
defense di is in place. With d1 in place, the attacker sees
that its payoff is more (6 compared to 2) by adopting strat-
egy a1. Hence, it will always employ a1, in which case the
defender will always derive a payoff of 5. This value is
not only less than the average payoff of d1, but also less
than the average payoff of d2. The value is not even better
than the individual payoffs possible with d2, i.e. 6 when a1

occurs and 5 when a2 occurs. Further, if we consider the
situation where the attacker does not know which defense
is in place and wants to choose a strategy using an aver-
age or best case analysis, strategy a1 is the favorable choice.
This is because strategy a1 always provides a higher pay-
off than a2 no matter which defense is in place. In light of
this analysis, the defender should thus be choosing strategy
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Fig. 3 Attack tree of example network model

Fig. 4 A hypothetical payoff matrix showing defender and attacker
payoffs

d2. Since the attacker’s choice is inclined toward using a1,
the defender now derives a payoff of 6, compared to 5 when
choosing d1.

Another interesting facet of d2 is the equilibrium it main-
tains with a1. Let us assume that the defender does a best case
analysis, as in the case when the attacker’s payoffs are not
known, and chooses d1. The attacker then employs a1 to max-
imize its payoff. The defender notices that its payoff is not
optimal when a1 occurred and so switches to d2 to increase
it. Hereafter, although the defense strategy has changed, the
attacker’s best strategy is to stick to a1. In other words, the
defender and the attacker enter a state of equilibrium where

none benefits any further from changes in strategy. Hence,
even though d1 appears to be the optimal strategy at first
glance, over time the defender changes policies to finally
settle down with d2—the equilibrium strategy.

One may ask what is the equilibrium solution’s rela-
tion to the notion of optimal security hardening. Con-
sider the scenario where a defender installs defenses based
on some optimality criteria on a system. Over time an
attacker finds the best possible way to exploit the system
under the defensive configuration. The defender notices the
attacker’s exploitation mechanism and modifies its poli-
cies keeping in consideration the optimality criteria. The
attacker adapts to the changes and the process continues.
When the defense policies corresponding to the equilib-
rium condition are instantiated and the attacker adapts to
it, the defender is already running the optimal set of poli-
cies possible for the attacker’s adaption and does not need to
change it. Thus, in the long run, the notion of optimal secu-
rity hardening converges toward security in equilibrium with
attacks.

Performing an analysis of the nature shown in the simple
example is relatively more difficult on a larger scale. First,
the payoff matrix can be very large in a real scenario. For
d defense controls and a attack nodes, this matrix can be
as large as 2d × 2a . Filling the matrix can thus involve an
immense number of evaluations. Second, even if the matrix
can be computed, performing the analysis to decide on the
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best strategy can be impractical. Note that a best (or equi-
librium) defense strategy as depicted in the example may
not exist at all. For example, if the values at cell (2, 1) are
replaced by (4, 10), then the best strategy for the attacker
varies depending on the defense. Nonetheless, we can argue
that d1 is a better defense strategy in this case since the payoff
is better than from d2 – 5 with a1 as the strategy of choice for
the attacker compared to 4 with a2 as the attacker’s choice.

Ideally, it would be sufficient to decide on a defense strat-
egy by comparing it against others under the light of attack
strategies resulting in higher payoffs for the attacker. One
may visualize the attack strategies as test cases to measure the
competence of a defense strategy. Better test cases are those
which are more difficult to solve, or in other words, result
in inferior performance of the defense strategy. Similarly, an
attack strategy should only be analyzed against defense strat-
egies that result in higher payoffs for the defender. The pres-
ence of such cyclic dependencies in the evaluation process
makes the analysis hard to conduct. Moreover, the optimal
defense strategy will most likely have to be changed over
time to maintain maximum payoff depending on what strat-
egy is chosen by the attacker. Hence, we believe it is worth
investigating if an equilibrium strategy exists for the security
hardening problem.

First, we define the notion of a security control (or defense)
in the context of the attack tree definition.

Definition 6 Security Control (Defense)

Given an attack tree (sroot , S, τ, ε), the mapping SC :
Nexternal → {true, f alse} is a security control if ∃si ∈
Nexternal |SC(si ) = f alse.

In other words, a security control is a preventive measure
to falsify one or more attributes in the attack tree, so as to stop
an attacker from reaching its goal. Further, in the presence of
multiple security controls SCk , the truth value of an attribute
si ∈ Nexternal is taken as

∧
k

SCk(si ). Given a security control

SC , the set of all si ∈ Nexternal |SC(si ) = f alse is called the
coverage of SC. Hence, for a given set of security controls,
we can define the coverage matrix specifying the coverage
of each control. For a given set of d security controls, we use
the Boolean vector S = (S1,S2, . . . , Sd) to indicate whether
a security control is chosen by a security manager.

In order to defend against the attacks possible, the
defender can choose to implement a variety of safeguard
technologies. Each choice of action can have a different cost
involved. Besides, some measures can have multiple cov-
erages but with higher costs. The defender has to make a
decision and choose to implement a subset of these policies
in order to maximize the resource utilization.

Definition 7 Defense Strategy

For a given set of d defenses, the defense strategy SD =
(SD1,SD2 , . . . , SDd ) is a Boolean vector indicating which

defenses are chosen by the defender. SDi = 1 if defense
Di is chosen, zero otherwise.

The choice of this vector indirectly specifies which leaf
nodes in the attack tree would be false to begin with. An
attacker typically exploits leaf nodes that are not covered
by any defense in order to progressively climb up the tree,
inflicting some amount of damage to the network at every
step. However, it is not always correct to assume that an
attacker can no longer exploit some parts of the attack tree
because of the installed defenses. With the appropriate tools
and knowledge, an attacker may have the potential to bypass
a defense as well. In other words, leaf nodes that were made
false by a defense can be reverted back to being true. We thus
assume an attacker with the requisite knowledge to breach a
defense. However, in order to do so, the attacker will have
to incur some cost, often related to the number of defenses
in place and the difficulty to breach them. If an attacker’s
gains are less than the cost incurred, then its effort to breach
the defense is not worth the time and value. This primarily
motivates the defender to still install defenses despite there
being a chance of breach.

Given that the attacker can bypass an installed defense
(after incurring a cost), it can start its exploits from any leaf
node on the attack tree. The attacker’s progress toward the
root is then decided by the leaf nodes it choose. Note that
choosing all leaf nodes that can collectively make an inter-
mediate node true need not always be the best approach for
the attacker. For instance, given that defenses will be in place
at different levels of the tree and the attacker will have to
incur a cost to bypass them, it is possible that the attacker
derives more payoff by inflicting damages at different parts
of the attack tree rather than continuing along a single sce-
nario all the way up to the root. An example of this situation
is depicted in Fig. 5. With the given values and the defense
in place, the strategy 101 generates a higher payoff than try-
ing to reach the root node with strategy 111. This happens
because the cost to breach the installed defense nullifies any
gains derived from breaching it.

An attack strategy is thus defined as follows.

Definition 8 Attack Strategy

Let n denote the number of unique leaf nodes in an attack
tree. An attack strategy SA = (SA1,SA2 , . . . , SAn ) is a Bool-
ean vector indicating which leaf nodes in the tree are chosen
by the attacker for exploit. SAi = 1 if node Ai ∈ Nexternal is
chosen, zero otherwise.

Thus, an attack strategy specifies the path(s) that the
attacker pursues to an intermediate or the top level of the
attack tree. The success of the strategy depends on the defense
strategy adopted by the defender, as well as the number of
levels it can move up on the tree. Another way to visualize
an attack strategy is the set of leaf nodes that the attacker
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Fig. 5 Payoff for different attack strategies in hypothetical attack tree.
Circles denote nodes of the attack tree, and the rectangle denote a
defense. Value within a circle signifies a payoff value that the attacker
receives if it succeeds in reaching the node. Value within the rectangle
is the cost that the attacker incurs to bypass the defense

assumes to be true, or will make true by breaching the
defenses protecting them.

7 Cost model

Security planning begins with risk assessment which deter-
mines threats, loss expectancy, potential safeguards and
installation costs. Many researchers have studied risk assess-
ment schemes, including the National Institute of Standards
and Technology (NIST) [34]. For simplicity, the security
manager can choose to evaluate the risks by considering
a relative magnitude of loss and hardening costs [34–36].
However, relative-cost approaches do not provide sufficient
information to prioritize security measures especially when
the organization faces resource constraints. We adapt Butler’s
multi-attribute risk assessment framework [37,38] to develop
quantitative risk assessments for our security optimization.
Butler’s framework enables an aggregated representation of
the various factors dominating the business model of an
organization.

7.1 Evaluating potential damage

The potential damage Pj represents a unit-less damage value
that an organization may have to incur in the event that an
attribute s j becomes true. Based on Butler’s framework, we
propose four steps to calculate the potential damage for an
attribute s j .

Step 1 Identify potential consequences of having a true
value for the attribute. In our case, we have identified
five outcomes – lost revenue (monetary), non-pro-
ductive downtime (time), damage recovery (mon-
etary), public embarrassment (severity) and law

penalty (severity) – denoted by x1 j , x2 j , x3 j , x4 j

and x5 j .
Step 2 Estimate the expected number of attack occurrence,

Freq j , resulting in the consequences. A security
manager can estimate the expected number of attack
from the organization-based historical data or public
historical data.1

Step 3 Assess a single value function, Vi j (xi j ), for each
possible consequence. The purpose of this function
is to normalize different unit measures so that the
values can be summed together under a single stan-
dard scale.

Vi j (xi j ) = xi j

Max
j

xi j
× 100, 1 ≤ i ≤ 5 (1)

Step 4 Assign a preference weight factor, Wi , to each possi-
ble consequence. A security manager can rank each
outcome on a scale of 1 to 100. The outcome with the
most concern would receive 100 points. The man-
ager ranks the other attributes relative to the first.
Finally, the ranks are normalized and set as Wi .

The potential damage for the attribute can then be calcu-
lated from the following equation.

Pj = Freq j ×
5∑

i=1

Wi Vi j (xi j ) (2)

When using an attack tree, a better quantitative represen-
tation of the cost is obtained by considering the residual dam-
age once a set of security controls are implemented. Hence,
we augment each node in the attack tree with a value signi-
fying the amount of potential damage residing in the subtree
rooted at the node and the node itself.

Definition 9 Augmented- Attack Tree

Let AT = (sroot , S, τ, ε) be an attack tree. An augmented
attack tree ATaug = AT |〈I, V 〉 is obtained by associating a
tuple 〈Ii , Vi 〉 to each si ∈ S, where

1. Ii is an indicator variable for the attribute si , where

Ii =
{

0, if si is false

1, if si is true

2. Vi is a value associated with the attribute si .

In this work, all attributes si ∈ Nexternal are given a zero
value. The value associated with s j ∈ Ninternal ∪ {sroot } is

1 Also known as an incident report published annually in many sites
such as CERT/CC or SANS.ORG.
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then computed recursively as follows.

Vj =

⎧⎪⎨
⎪⎩

∑
Vk

k|(sk ,s j )∈τ

+ I j Pj , if d j is AND

max Vk
k|(sk ,s j )∈τ

+ I j Pj , if d j is OR
(3)

Ideally, Pj is same for all identical attributes in the multi-
set. We took a “panic approach” in calculating the value at
each node, meaning that given multiple subtrees are rooted
at an attribute with an O R decomposition, we choose the
maximum value. We do so because an attacker’s capabilities
and preferences cannot be known in advance. A similar worst
case modeling is also adopted later when computing attacker
and defender payoffs. The residual damage of the augmented
tree is defined as follows.

Definition 10 Residual Damage

Given an augmented attack tree (sroot , S, τ, ε)|〈I, V 〉 and
a defense strategy SD, the residual damage is defined as the
value associated with sroot , i.e.,

RD(SD) = Vroot .

7.2 Evaluating security cost

Similar to the potential damage, the security manager first
lists possible security costs for the implementation of a secu-
rity control, assigns the weight factor on them, and com-
putes the normalized value. The only difference is that there
is no expected number of occurrence needed in the evalu-
ation of security cost. In this study, we have identified five
different costs of implementing a security control – instal-
lation cost (monetary), operation cost (monetary), system
downtime (time), incompatibility cost (scale) and training
cost (monetary). The overall cost C j , for the security control
SC j , is then computed in a similar manner as for potential
damage, with an expected frequency of 1. The total security
cost for a set of security controls implemented is then defined
as follows.

Definition 11 Total Security Control Cost

Given a set of d security controls, each having a cost
Ci ; 1 ≤ i ≤ d, and a defense strategy SD, the total secu-
rity control cost is defined as

SCC(SD) =
d∑

i=1

(SDi Ci ).

7.3 Estimating attacker and defender payoffs

In order to compute the attacker and defender payoffs, the
value associated with each node of the attack tree, Vj as
given by (3), is modified as follows. All attributes si ∈

Nexternal are given a zero value. The value associated with
s j ∈ Ninternal ∪ {sroot } is then computed recursively as

Vj =
∑

Vk

k|(sk ,s j )ετ

+ I j Pj . (4)

Under this formulation, the value associated with a node
signifies the sum of the total potential damage present in the
child subtree(s) and the potential damage of the node itself. If
no defense is installed, i.e. all leaf nodes are true, then Vroot

gives the maximum damage possible on the attack tree. When
a defender decides on a defense strategy, it essentially sets
the truth values of the covered leaf nodes to false. Uncovered
leaf nodes are set to true. An attacker reverts any falsified leaf
node to true if the node is chosen as part of the attack strat-
egy. With this configuration, we can then find out the damage
inflicted on the attack tree as a result of an attack strategy.

Definition 12 Damage Inflicted

For a given defense strategy SD and an attack strategy SA

on an augmented attack tree ATaug , the damage inflicted DI
is given by the value of the root node of the tree, i.e.

DI (SD, SA) = Vroot .

The payoff for a defender and an attacker is an esti-
mate of the gain they receive by adopting a particular strat-
egy and after incurring the corresponding costs associated
with the implementation of the strategy. For a defender, the
cost of implementation relates to factors such as operations
cost, training cost, system downtime, incompatibility cost
and installation cost, and is given by Definition 11. For an
attacker, the cost of realizing an attack strategy is related to
the effort it has to put forward in overcoming any defenses
on its way. We model this cost under a simplistic assump-
tion that stronger defenses are likely to have a higher cost
of implementation. Under this assumption, we measure the
relative difficulty to breach a defense—a value in [0, 1] – and
assign the cost to breach it, BC(·), as a fraction (given by the
difficulty value) of the cost of implementation of the defense,
i.e.

BC(Di ) = Ci

Max
i

Ci
× Ci . (5)

Definition 13 Attack Strategy Cost

Given a set of d defenses, a defense strategy SD and an
attack strategy SA on an attack tree AT , the attack strategy
cost ASC is defined as

ASC(SD, SA) =
d∑

i=1

∑
j |Di (A j )= f alse

[BC(Di )SDi SA j ].

The expression above iterates through the leaf nodes cov-
ered by a particular defense. Thereafter, the cost to breach
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the defense is added to the attack strategy cost if the defense
is part of the defense strategy and the leaf node is part of
the attack strategy. When a breach occurs, the cost paid by
the defender to install it (Ci ) is a loss, called the breach
loss BL(·) and expressed in a manner similar to the above
equation.

BL(SD, SA) =
d∑

i=1

∑
j |Di (A j )= f alse

[Ci SDi SA j ] (6)

We then define the defender and attacker payoffs as
follows.

Definition 14 Payoff for Defender and Attacker

For a given defense strategy SD and an attack strategy SA

on an augmented attack tree ATaug , the defender’s payoff
P O D is given as

P O D(SD, SA) = DI (0, 1) + SCC(SD)

−DI (SD, SA) − BL(SD, SA)

and the attacker’s payoff P O A is given as

P O A(SD, SA) = DI (SD, SA) − ASC(SD, SA).

Here, DI (0, 1) signifies the maximum damage possible
on the attack tree, which happens when there are no defenses
installed and the attacker exploits all leaf nodes. 0 represents
the all zero vector and 1 is the all one vector. Note that both
payoff functions employ the same DI value derived from
the attack tree. One can argue that the attacker’s knowledge
on the damages sustained by the defender when compro-
mising a node is rather limited and thus cannot be the same
as that of the defender. Further, the attacker need not have
the complete knowledge about the cost of implementing a
defense and hence will not know the exact value of ASC .
We understand that both are rational arguments. Our justifi-
cation to them is based on the fact that the P O A function
need not be an exact estimate of the actual payoff derived by
the attacker. The optimization process only needs to compare
payoff values to determine the relative effectiveness of two
attack strategies, in which case it suffices to have a value pro-
portional to the actual payoff. The P O A function satisfies
this requirement since the attacker’s actual payoff is likely to
be proportional to the damage it inflicts on the tree. More-
over, the cost paid by the attacker to overcome a defense will
likely be proportional to the sustainability of the defense.

Cost factors play a crucial role in any form of network
hardening. At the same time, factors such as potential dam-
age and control costs are subjective to an organization. As
highlighted in [34], cost assessment must be a part of any
enterprise-level system hardening program, overlapping sig-
nificantly with the capital planning within the organization.
An organization must evaluate its assets before and during
the enforcement of a mitigation plan. For our simulation,

we choose numbers to maintain relative levels of importance
between nodes, depending on what information is contained
in the node. These numbers do not have to represent actual
monetary values to demonstrate the significance of the cost-
benefit analysis.

8 Problem formulation

The two objectives considered in the multi-objective formu-
lations are the total security control cost and the residual
damage in the attack tree of our example network model.
For the attack tree corresponding to the example network
model, we identified 19 different security controls possible
by patching or disabling of different services, as well as by
changing file access permissions. With about half a million
choices available (219), an enumerated search would not be
an efficient approach to find the optima. The security con-
trols are listed in Table 3. We maintain some relative order of
importance between the different services, as in a real-world
scenario, when computing the potential damage and security
control costs.

Problem 1 The Single-objective Optimization Problem
Given an augmented attack tree (sroot , S, τ, ε)|〈I, V 〉

and d security controls, find a vector T∗ = (T ∗
i ), T ∗

i ∈
{0, 1}; 1 ≤ i ≤ d, which minimizes the function

αRD(T) + βSCC(T)

where α and β are preference weights for the residual dam-
age and the total cost of security control, respectively, 0 ≤
α, β ≤ 1 and α + β = 1.

The single-objective problem is the most likely approach
to be taken by a decision maker. Given only two objectives, a

Table 3 Security controls for example network model

Security control Action

SC1/SC2 Disable/Patch suid @ 196.216.0.2

SC3/SC4 Disable/Patch LICQ @ 196.216.0.2

SC5 Disable “at” @ 196.216.0.3

SC6/SC7 Disable/Patch LICQ @ 196.216.0.3

SC8 Disable Rsh @ 196.216.0.1

SC9 Disable Ftp @ 196.216.0.1

SC10 Disconnect Internet @ 196.216.0.1

SC11 Chmod home directory @ 196.216.0.1

SC12/SC13 Disable/Patch Ftp @ 196.216.0.10

SC14/SC15 Disable/Patch SSH @ 196.216.0.10

SC16 Disconnect Internet @ 196.216.0.10

SC17 Disable Rsh @ 196.216.0.10

SC18 Patch FTP/.rhost @ 196.216.0.10

SC19 Chmod home directory @ 196.216.0.10
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preference-based approach might seem to provide a solution
in accordance with general intuition. However, as we find in
the case of our example network model, the quality of the
solution obtained can be quite sensitive to the assignment
of the weights. To demonstrate this effect, we run multiple
instances of the problem using different combination of val-
ues for α and β. α varied in the range of [0, 1] in steps of
0.05. β is always set to 1 − α.

Problem 2 The Multi-objective Optimization Problem
Given an augmented attack tree (sroot , S, τ, ε)|〈I, V 〉

and d security controls, find a vector T∗ = (T ∗
i ), T ∗

i ∈
{0, 1}; 1 ≤ i ≤ d, which minimizes the total security control
cost and the residual damage.

The next level of sophistication is added by formulating
the minimization as a multi-objective optimization problem.
The multi-objective approach alleviates the requirement to
specify any weight parameters, and hence, a better global
picture of the solutions can be obtained.

Problem 3 The Multi-objective Robust Optimization
Problem

Let T = (Ti ) be a Boolean vector. A perturbed assignment
of radius r, Tr, is obtained by inverting the value of at most
r elements of the vector T. The robust optimization problem
can then be defined as follows.

Given an augmented attack tree (sroot , S, τ, ε)|〈I, V 〉
and d security controls, find a vector T∗ = (T ∗

i ), T ∗
i ∈

{0, 1}; 1 ≤ i ≤ d, which minimizes the total security control
cost and the residual damage, satisfying the constraint

max
Tr

RD(Tr) − RD(T) ≤ D

where D is the maximum perturbation allowed in the residual
damage.

The third problem is formulated to further strengthen the
decision process by determining robust solutions to the prob-
lem. Robust solutions are less sensitive to failures in secu-
rity controls and hence subside any repeated requirements to
re-evaluate solutions in the event of a security control fail-
ure. The hardening problem explored here assumes known
attacks, the pre- and postconditions of which are available
from vulnerability databases. Unknown attacks can be mod-
eled by introducing likelihoods in the edges of the attack tree.
Leaf nodes can be assigned a probability of being true (mod-
eling an unknown attack), and Bayesian inference techniques
can be used to propagate the likelihoods to the root node. It
is worthwhile to note that unknown attacks play a crucial
role in the optimality of security policies. Our motivation for
robust hardening is grounded on the fact that such attacks
can invalidate a security mechanism; however, the potential

risk to organizational assets should be bounded in the event
of such breaches.

The fourth problem incorporates an estimation of attacker
payoffs. In this case, our attempt is to find solutions that
are possibly points of equilibrium in the arms race between
the attacker and the defender. To do so, we first normalize
the P O D and P O A functions in order to account for dif-
ferences arising in the magnitude of the values. The P O A
function is in the range of [−ASC(SD, SA), DI (0, 1)] which
is remapped to [0, ASC(SD, SA) + DI (0, 1)] by adding
ASC(SD, SA) to the value. P O D function is in the non-
negative range [0, SCC(SD) + DI (0, 1)]. The normalized
functions for P O D and P O A – in the range of [0, 1] – are
then given as

P O Dnorm(SD, SA) = P O D(SD, SA)

SCC(SD) + DI (0, 1)
(7)

P O Anorm(SD, SA) = P O A(SD, SA) + ASC(SD, SA)

ASC(SD, SA) + DI (0, 1)
(8)

The normalized versions are more intuitive in understand-
ing what the payoff functions model. The defender has an
investment worth SCC(SD) + DI (0, 1) on the attack tree.
P O Dnorm gives the fraction of this investment protected by
the defender’s strategy for a particular attack strategy. In other
words, P O Dnorm gives the fractional return on investment
for the defender. From an attacker’s perspective, the best it
can do is to gather the payoff from maximum damage and also
retain the cost incurred while doing so to itself. DI (SD, SA)

is the amount that it actually derives. P O Anorm is thus the
fractional return on attack to the attacker.

The defender’s optimization problem is to find a defense
strategy SD that gives maximum P O Dnorm under all possi-
ble attack strategies. The attacker’s optimization problem is
to find an attack strategy SA that gives maximum P O Anorm

under all possible defense strategies. However, such a strat-
egy may not exist. Besides, as argued earlier, evaluating a
host strategy with all opponent strategies is often impracti-
cal. We introduce here the terms host and opponent to refer to
the party whose strategy is being tested and the party against
whom it is being tested, respectively. In order to compare two
host strategies, it is sufficient to evaluate them against their
respective best opponent strategy (one generating the high-
est payoff for the opponent with the host strategy in place).
Hence, a more suitable statement of the optimization problem
is as follows.

Problem 4 The Attacker-Defender Arms Race Problem
Defender’s Optimization Problem: Given an augmented

attack tree ATaug and d defenses, find the defense strategy
SD

∗ that maximizes P O Dnorm(SD, SA
∗), where SA

∗ satis-
fies the relation P O Anorm(SD, SA

∗) ≥ P O Anorm(SD, SA)

for any attack strategy SA.
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Attacker’s Optimization Problem: Given an augmented
attack tree ATaug and d defenses, find the attack strategy SA

∗
that maximizes P O Anorm(SD

∗, SA), where SD
∗ satisfies the

relation P O Dnorm(SD
∗, SA) ≥ P O Dnorm(SD, SA) for any

defense strategy SD.

The brute force method to solve each problem is to first
generate the payoff matrix and then mark the cell, for every
host strategy, with the highest opponent payoff. The solution
is the host strategy that has the highest payoff in the marked
cells. If, given the host strategy in the solution, the opponent’s
payoff is also the highest, and vice versa, then the solution
admits a Nash equilibrium [39].We want to emphasize here
that solving just one problem is not sufficient. For example,
assume that the defender has found the optimal solution to its
problem. The P O Dnorm reported by the solution implicitly
assumes that the attacker will launch the strategy SA

∗ that
gives the highest attacker payoff – established in the optimi-
zation problem by the constraint. If the attacker also solves
its own optimization problem, there is no guarantee that the
best strategy found by it is the same SA

∗ as found in solving
the defender’s optimization problem. The outcome in this
case could be that both the attacker and the defender get sub-
optimal payoffs. This instantiates the requirement to solve
both problems simultaneously, the desired solution being the
aforesaid equilibrium. The equilibrium defense and attack
strategy pair SD

∗ and SA
∗ satisfy the conditions

1. P O Dnorm(SD
∗, SA

∗) > P O Dnorm(SD, SA
∗) and

2. P O Anorm(SD
∗, SA

∗) > P O Anorm(SD
∗, SA)

for any given defense strategy SD( �= SD
∗) and attack strategy

SA( �= SA
∗).

9 Specifics of solution methods

We use a simple genetic algorithm (SGA) [40] to solve
Problem 1. The non-dominated sorting genetic algorithm-
II (NSGA-II) [24] is used to solve Problems 2 and 3. The
method of competitive co-evolution is used to find solutions
to Problem 4.

9.1 NSGA-II

NSGA-II starts with a population P0 of N randomly gener-
ated security control vectors T. For each trial solution, the
total security control cost is calculated using Definition 11.
To compute the residual damage, the attributes covered by
a security control vector in the attack tree are decided using
Table 3 and set to false. The truth values for the remaining
attributes in Nexternal are set to true. A postorder traversal
of the tree is then used to determine the truth values of the

internal nodes using the decomposition at each node. This
enables us to compute the value Vroot for the root node (the
residual damage) using (3).

A generation index t = 0, 1, . . . , GenM AX keeps track of
the number of iterations of NSGA-II. Each generation of the
algorithm then proceeds as follows. An offspring population
Qt is first created from the parent population Pt by apply-
ing the usual genetic operations of selection, crossover and
mutation [40]. The residual damage and total security control
cost corresponding to each solution in the child population
are also computed.

The parent and offspring populations are combined to
form a population Rt = Pt ∪Qt of size 2N . A non-dominated
sorting is applied to Rt to rank each solution based on the
number of solutions that dominate it. A rank k(> 0) solution
is dominated by solutions of rank lower than k. For Problem
3, the solutions that violate the robustness constraint, i.e. an
infeasible solution, are given unique ranks higher than the
highest feasible solution rank. The ranking starts in ascend-
ing order from the infeasible solution with least constraint
violation.

The population Pt+1 is generated by selecting N solutions
from Rt . The preference of a solution is decided based on its
rank: lower the rank, higher the preference. However, since
not all solutions from Rt can be accommodated in Pt+1, a
choice is likely to be made when the number of solutions
of the currently considered rank is more than the remain-
ing positions in Pt+1. Instead of making an arbitrary choice,
NSGA-II uses an explicit diversity-preservation mechanism.
The mechanism, based on a crowding distance metric [24],
gives more preference to a solution with a lesser density of
solutions surrounding it, thereby enforcing diversity in the
population. The NSGA-II crowding distance metric for a
solution is the sum of the average side-lengths of the cuboid
generated by its neighboring solutions in objective space.
Figure 6 depicts a single generation of the algorithm.

The algorithm parameters are set as follows: population
size = 100, number of generations = 250, crossover prob-
ability = 0.9 and mutation probability = 0.1. We ran each
instance of the algorithm five times to check for any sen-
sitivity of the solutions obtained from different initial pop-
ulations. Since the solutions always converged to the same
optima, we dismiss the presence of such sensitivity.

9.2 Competitive co-evolution

We begin with two randomly generated populations PopA

and PopD of size NA and ND , respectively. PopA refers
to the population of attack strategies {SA

1, . . . , SA
NA } and

PopD refers to that of defense strategies {SD
1, . . . , SD

ND }.
In every generation, every strategy in a population is eval-
uated with the best opponent strategy (one with highest fit-
ness as described later) of the previous generation to find
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Fig. 6 One generation of NSGA-II

P O Anorm and P O Dnorm . The notations SD
prevbest and

SA
prevbest are used to denote the best defense and attack

strategy from the previous generation, respectively. For the
first generation, the best strategies are chosen randomly from
the populations.

Next, each strategy in the populations is assigned an age
count, Age(·), signifying the number of iterations for which
it has survived the evolutionary process. Each strategy begins
with an age count of zero, which is incremented every time
it manages to enter the next population. The age is reset to
zero if the strategy no longer exists in the next population.
With this, the fitness of a defense strategy SD

i in generation
(iteration) t is assigned as

F(SD
i , t) = F(SD

i , t − 1) × Age(SD
i ) + P O Dnorm (SD

i , SA
prevbest )

[Age(SD
i ) + 1] (9)

and that of an attack strategy SA
j in generation t is assigned

as

F(SA
j , t) = F(SA

j , t − 1) × Age(SA
j ) + P O Anorm (SD

prevbest , SA
j )

[Age(SA
j ) + 1]

(10)

The fitness is an average measurement of the payoff of a
strategy throughout the evolutionary process. With this fit-
ness assignment, each population then independently under-
goes the usual process of evolution as in a genetic algorithm
(GA)—selection, crossover and mutation [40]—and creates
a new population of strategies. The best strategies of the
past H generations replace H randomly selected strategies
in the respective populations. The process is repeated until
a set number of generations. Figure 7 depicts the algorithm.
The parameters of the algorithm are set as follows: NA =
100, ND = 100, H = 10, single point crossover with prob-
ability 0.5, probability of mutation = 0.01, 2-tournament
selection and 1,000 generations. In the experiments, we use
the 19 defenses shown in Table 3 and the attack tree has 13

unique leaf nodes. The defender thus has 219 defense strat-
egies, and the attacker has 213 attack strategies to choose
from.

10 Empirical results

We first present the sensitivity results of NSGA-II and SGA
to their parameters in the multi-objective problem solution
methods. Increasing the population size from 100 to 500
gives us a faster convergence rate, although the solutions
reported still remain the same. The effect of changing the
crossover probability in the range of 0.7–0.9 does not lead
to any significant change of the solutions obtained. Similar
results were observed when changing the mutation probabil-
ity from 0.1 to 0.01. The solutions also do not change when
the number of generations is changed from 250 to 500. Since
we did not observe any significant change in the solutions
by varying the algorithm parameters, the following results
are presented as obtained by setting the parameters as cho-
sen in the previous section. For competitive co-evolution,
some parameters involved in the GA affect the dynamics
of the arms race undergoing between the two populations.
Using a higher probability of crossover or mutation affects
the age count of a solution. A high probability decreases
the chances of a strategy surviving for long across iterations,
thereby interrupting its chances of competing against a wider
variety of opponent strategies. Increasing the population size
gives a faster convergence rate, although the solution remains
unaffected. We also increased the number of iterations from
1,000 to 5,000 to see whether a dormant strategy becomes
prominent over time. However, no such outcome is observed.

10.1 Problem 1: Single-objective optimization

It is usually suggested that the preference-based approach
should normalize the functions before combining them into
a single function. However, we did not see any change
in the solutions of the normalized version of Problem 1.
Figure 8 shows the solutions obtained from various runs of
SGA in Problem 1 with varying α. A decision maker, in gen-
eral, may want to assign equal weights to both the objective
functions, i.e. set α = 0.5. It is clear from the figure that
such an assignment does not necessarily provide the desired
balance between the residual damage and the total security
control cost. Furthermore, such balance is also not obtain-
able by assigning weight values in the neighborhood of 0.5.
The solutions obtained are quite sensitive to the weights, and
in this case, much higher preference must be given to the
total security control cost to find other possible solutions.
Since the weights do not always influence the objectives in
the desired manner, understanding their effect is not a trivial
task for a decision maker. It is also not possible to always
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Fig. 7 Schematic of competitive co-evolution of attack and defense strategies

Fig. 8 SGA solutions to Problem 1 with α varied from 0 to 1 in steps
of 0.05

do an exhaustive analysis of the effect of the weights on the
objectives. Given such situations, the decision maker should
consider obtaining a global picture of the trade-offs possible.
With such a requirement in mind, we next consider Prob-
lem 2.

10.2 Problem 2: Multi-objective optimization

The two solutions corresponding to α = 0.25 and 0.1 in
Fig. 8, including any other solution in the vicinity, are likely

candidates for a decision maker’s choice. Unlike the single-
objective approach, where determining such vicinal solutions
could be difficult, the multi-objective optimization approach
clearly revealed the existence of at least one such solu-
tion. Figure 9 shows the solutions obtained from a single
run of NSGA-II on Problem 2. NSGA-II reported all the
solutions obtained from multiple runs of SGA, as well as
three more solutions. Interestingly, there exists no solution
in the intermediate range of [25, 45] for residual damage.
This inclination of solutions toward the extremities of the
residual damage could be indicative of the non-existence of
much variety in the security controls under consideration.
The number of attack scenarios possible is also a deciding
factor. Most of the security controls for the example network
involve either the disabling or patching of a service, resulting
in a sparse coverage matrix. For a more “continuous” Pareto-
front, it is required to have security controls of comparative
costs and capable of covering multiple services. A larger,
more complex real-world problem would likely have more
attack scenarios and a good mixture of both local and global
security controls, in which case, such gaps in the Pareto-front
will be unlikely.

10.3 Problem 3: Robust optimization

Once the decision maker has a better perspective of the
solutions possible, further analysis of the solutions may be
carried out in terms of their sensitivity to security control fail-
ures. Such sensitivity analysis is helpful in not only reducing
valuable decision making time, but also to guarantee some
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Fig. 9 NSGA-II solutions to Problem 2 and sensitivity of a solution to
optimum settings

level of fault tolerance in the network. Figure 9 shows the
sensitivity of one of the solutions to a failure in one of the
security controls corresponding to the solution. This solu-
tion, with security controls SC4 and SC11, will incur a high
residual damage in the event of a failure of SC4. Thus, a
decision maker may choose to perform a sensitivity analysis
on each of the solutions and incorporate the results thereof in
making the final choice. However, the decision maker then
has no control on how much of additional residual damage
would be incurred in the event of failure. Problem 3 serves
the requirements of this decision stage by allowing the deci-
sion maker to specify the maximum allowed perturbation in
the residual damage. It is also possible to specify the scope
of failure—the radius r—within which the decision maker
is interested in analyzing the robustness of the solutions. For
this study, we are mostly interested in obtaining solutions
that are fully robust, meaning the residual damage should
not increase, and hence set D to zero. Also, because of the
sparse nature of the coverage matrix, we set the perturbation
radius r to 1. Figure 10 shows the solutions obtained for this
problem.

The solutions to Problem 3 reveal that none of the opti-
mum solutions previously obtained, except the trivial zero
SCC solution, is fully robust even for a single security con-
trol failure. Such insight could be of much value for a decision
maker when making a final choice. Table 4 shows the security
controls corresponding to the robust solutions. With the final
goal of obtaining a solution with a good balance between
the residual damage and the total security control cost, the
decision maker’s choice at this point can be justifiably biased
toward the selection of solution R3.

Fig. 10 NSGA-II solutions to Problem 3 with D = 0 and r = 1.
Problem 2 solutions are also shown for comparison

Table 4 Fully robust solutions obtained by NSGA-II with r = 1

Robust-optimum security controls RD SCC

R1 SC9, SC11, SC13, SC15, SC16, SC19 0.0 26.0

R2 SC3, SC4, SC9, SC11, SC18, SC19 10.5 21.0

R3 SC3, SC4, SC7, SC11 13.5 12.0

R4 SC3, SC4 22.8 8.0

R5 SC7, SC11 49.5 4.0

R6 null 58.8 0.0

10.3.1 Inside the robust solution R3

We present certain interesting properties exploited by solu-
tion R3 from the attack tree. To point out the salient features,
we compress the attack tree for our example network model
as shown in Fig. 11. The compressed tree is obtained by col-
lapsing all subtrees to a single node until a node covered by a
security control from R3 contributes to the calculation of the
residual damage. All such nodes, represented by rectangles
in the figure, are labeled with the maximum residual damage
that can propagate to them from the child subtree and (+)
the damage value that can occur at the node itself. A triangu-
lar node represents the security controls that can disable that
node. The individual damage value is accrued to the resid-
ual damage from the child node only if the attached security
control, if any, fails.

The solution R3 clearly identifies the existence of the
subtrees ST1 = {{n7, n10}, {n8, n11}, {n9, n12}} and ST2 =
{{n3, n7, n10}, {n6, n9, n12}}. In the event of a failure of
SC11, n7 would collect a value of 10.8. Since n3 has an
AN D decomposition with SC7, it will be disabled, thereby
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Fig. 11 Compressed attack tree showing residual damage computation
with R3 as security control set

not contributing its individual damage value of 12 to the
residual damage at that node (10.8). On the other hand, if
SC7 fails, SC11 will disable n7 which in turn will disable
n3. In fact, in this case, the residual damage at n3 would be
zero. Similarly, n6 and n8 also never propagate a residual
damage of more than 10.8 to its parent node. Consequently,
n2 never propagates a value more than 13.5. The individual
cost of 36 at n1 is never added to this residual damage value
of 13.5 from n2 since, owing to the AN D decomposition, n1

is always falsified by security controls SC3 and SC4, only
one of which is assumed to fail at a time. The solution wisely
applies security controls covering multiple attack scenarios,
and at multiple points in those scenarios to keep the damage
to a minimum.

10.4 Problem 4: Arms race

Figure 12 shows how the fitness of the best strategy in the
defender and attacker populations change across generations.
The random initialization of the two populations usually
starts off the competition with comparatively higher frac-
tional payoff for the defender. However, the attacker imme-
diately finds strategies to improve its payoff and reciprocally
decreases the payoff for the defender, as can be seen on the
steep decline of the defender’s payoff. There is even a phase
between the 50th to 150th generations when the attacker con-
tinued to evolve strategies with similar payoff, but ones that
continued to decrease the payoff for the defender. The arms
race becomes prominent after this phase. The arms race is
indicative of the period when the defender and the attacker
continuously change their strategies to cease the decline in
their payoffs brought forth by an improved opponent strat-
egy. In a way, this arms race depicts the change in policies

Fig. 12 Fitness of best defense and attack strategies in every iteration
of the co-evolutionary process

that the defender has to sporadically keep enforcing in order
to subdue the effects of an evolving attacker.

10.4.1 Dynamics of the arms race

Figure 13 depicts the dynamics of the two populations dur-
ing the 100th to the 200th generations. The average fitness of
each population is plotted to show the interactions happen-
ing between them. The arms race is distinctly visible after
the 130th generation—one population reacts to changes in
the other. Rising up to a peak indicates the phase of steady
improvement in host strategies against those of the oppo-
nent’s. Falling down to a pit signifies the reverse. As depicted
by the vertical lines, a rising period in one population results
in a falling period in the other, and vice versa. Note that the
rise in one population and the fall in the other are not cor-
related in terms of the payoff values. An attacker’s marginal
improvement in payoff can result in a significant drop in
the defender’s payoff. More interestingly, there is no fixed
duration within which the two populations alternate between
rise and fall. In other words, the dynamics of finding a strat-
egy to tackle the currently dominating opponent strategy is
not known. We stress on this phenomena since any defense
strategy not in equilibrium with that of the attacker eventu-
ally results in a decline in the payoff. Ideally, the better the
strategy, the slower will be the decline, emphasizing that the
attacker faces more difficulty in finding a counter strategy to
improve its payoff.

However, with the static attack tree in place, the process of
arms race does not continue forever. Both the attack and the
defense strategies stabilize at around the 500th generation.
No host at this point manages to find a strategy to improve its
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Fig. 13 Average fitness of defender and attacker strategies showing
“arms race” population dynamics between the 100th and the 200th
generations

payoff given the best strategy the opponent has at the point.
However, this stability in the strategies is not sufficient to
conclude that the attacker and defender are now in an equi-
librium. This follows from the fact that there may exist an
undiscovered opponent strategy that can reduce the payoff
generated from the stable host strategy.

10.4.2 Verifying an equilibrium point

In order to demonstrate the effectiveness of competitive co-
evolution in generating an equilibrium strategy pair, we per-
form the following supplementary analysis. The defender’s
best strategy SD

bestt in every generation t (1 ≤ t ≤ 1,000) of
the process is noted. For each such strategy, we run a simple
genetic algorithm to generate the attack strategy SA

bestt with
the highest attacker payoff. Figure 14 shows the defender and
attacker payoffs (in circles) for the pairs SD

bestt and SA
bestt .

A similar process is done by taking the attacker’s best strat-
egy of every generation. The plus signs in the plot depict
the payoffs for the pairs obtained from the process. We find
that the only circle and plus coinciding corresponds to the
stable strategy of the defender and the attacker as returned
by the co-evolutionary optimization. If the defender chooses
the stable defense strategy, the attacker’s payoff is maximum
when it uses the stable attack strategy. If the attacker uses
the stable attack strategy, the defender’s payoff is maximum
when it uses the stable defense strategy. In other words, the
stable defense and attack strategy pair is indeed an equilib-
rium point.

Fig. 14 Payoffs when an independent GA is run for each best host
strategy from every generation to find the best opponent strategy for it.
o/+ represent the payoffs when the defender/attacker is the host

10.5 Revisiting the optimality criterion

One of the forthcoming questions resulting from this anal-
ysis is whether an organization’s investments be directed
toward a static minimal cost security policy or proactively
be channeled toward an equilibrium policy. We have argued
in this work that the conventional notion of an optimal secu-
rity policy (a minimum cost policy) ignores the possibility of
constraints in terms of available resources to implement the
security controls. Pareto analysis of the nature performed
here can be instead used to identify a minimal policy depend-
ing on the resource constraints of the organization. In this
case, the optimality criterion is represented by the non-dom-
inance characteristic of the Pareto solutions. Robust hard-
ening limits the extent of unforeseen damage that can be
inflicted on the system. However, we are still working under
the assumption of fixed attacker capabilities.

The minimal policy resulting from a one-time evaluation
may incur a lower cost with respect to a short time window,
but under an evolving attacker model, this cost must be sup-
plemented by further investments over time. We emphasize
that the evolution of attack strategies need not relate to a
single active attacker. The attack strategies at different evo-
lution points might as well be executed by different attackers.
The evolving strategies are a platform to demonstrate how the
optimality of an organization’s security policies is invalidated
over time (again and again) due to the constant engagement
of the attacking entities. Under such grounds, the optimal-
ity of the chosen policy can no longer be guaranteed. This
can have a serious impact on business dynamics, since busi-
ness models are often driven by investment returns. We have
demonstrated using a game-theoretic analysis of the security
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hardening problem that an optimal security policy converges
with the idea of equilibrium points in the long run. This opti-
mality criterion ensures that an organization’s resources are
not spent in intermediate policies that are likely to undergo
changes as attacker capabilities evolve over time.

While multiple attempts to define the optimality criterion
have been made (including the work here), we believe these
definitions cannot be complete without the inclusion of an
evolving defender. It is important to note that security hard-
ening is an on-going process. Therefore, the optimality of a
policy should not only be dependent on the amount of risk it
can eliminate (or how much it costs), but also on how much it
deviates from existing policies. In other words, reusability of
already invested resources needs to be stressed. A minimal
policy (in the Pareto sense) should be minimally dissimilar
from the current policy, a factor that can be easily incorpo-
rated into the non-dominance-based definition of optimality.
An equilibrium policy, by definition, needs no revision. How-
ever, this is only true when the network characteristics do not
change over a long period of time. Any change in the network
can invalidate the equilibria of a policy since the equilibrium
conditions hold only for a particular snapshot of the net-
work. Other definitions of optimality also suffer from this
drawback. We believe this necessitates an approach where
an evolving defense model and an evolving network model
are integral to the definition of an optimal security policy.
Ideally, such an approach should target a trade-off between
the short-term gains achievable by evaluating a snapshot of
the network and the long-term gains achievable by consid-
ering the evolving attacker capabilities (as in an equilibrium
policy).

11 Conclusion and future work

Incorporating strong defenses against malicious attackers is
challenging. Simply installing the best available defenses
does not work for several reasons. The security administra-
tor has to work within fixed budgetary constraints and has to
explain the return on investment of security controls to the
management. However, any convincing argument explaining
the return on investment must take the attacker’s benefits into
consideration.

In this paper, we addressed the system administrator’s
dilemma, namely how to select a subset of security hard-
ening measures from a given set, so that the total cost of
implementing these measures is not only minimized but also
within budget and, at the same time, the cost of residual dam-
age is also minimized. One important contribution of our
approach is the use of an attack tree model of the network
to drive the solution. By using an attack tree in the prob-
lem, we were able to better guide the optimization process
by providing the knowledge about the attributes that make an

attack possible. Further, a systematic analysis enabled us to
approach the problem in a modular fashion, providing added
information to a decision maker to form a concrete opinion
about the quality of the different trade-off solutions possible.

We argue that the notion of optimal security hardening
is often dictated by the constant interaction between the
defender and the attacker. What is perceived as the optimal
return on investment would cease to be so once the attacker’s
strategy to exploit the defensive configuration is understood.
We highlight that the dynamic engagement between the
attacker and the defender is a continuous process ending only
when both enter a state of equilibrium. To this end, we for-
mulate the requisite optimization problems and present the
notion of equilibrium in terms of the formulated problems. As
a viable methodology, we propose the use of competitive co-
evolution to generate the aforementioned equilibrium strat-
egies. The method involves an algorithm that intrinsically
models the arms race undergoing between the attacker and
the defender, with the ability to effectively find the equilib-
rium solutions.

Evolutionary algorithms often receive criticism for their
time complexity, compared to other optimization meth-
ods. The multi-objective algorithm used in this study has
a complexity of O(G N log N ), where G is the number of
generations and N is the population size. However, the pop-
ulation-based approach also makes it highly suitable for dis-
covering multiple solution points on the Pareto-front. These
algorithms are inherently parallel and can easily be adapted to
utilize the processing power of most massively parallel sys-
tems [41]. The evolutionary algorithm is one viable method-
ology for the multi-objective optimization that we can think
of at this moment. There is no doubt that more efficient meth-
ods are required. A similar argument applies to the competi-
tive co-evolution algorithm as well. At this point, we are not
aware of a more efficient method to explore the arms race.
We strongly believe this would motivate some future studies
in this area.

The cost model that we adopt in this paper is somewhat
simplistic. We assume that, from a cost of implementation
perspective, the security measures are independent of each
other when in real life they may not be so. The problem
can be made more interesting by designing payoff models
that incorporate multiple attackers working in conjunction to
achieve a particular objective (collaborative attacks). Incor-
porating network connectivity and the trust relations across
organizations into the attack tree will generate far more com-
plex attack scenarios. These forms of attacks are very likely
in today’s networked infrastructure and warrant a further
study. Further work can be directed toward designing algo-
rithms that can identify the existence of multiple equilib-
rium points simultaneously. We believe that Pareto analysis
intended toward generation of such solutions is a promis-
ing avenue to explore. Formal analysis to determine whether
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equilibrium solutions exists at all would be a major contribu-
tion as well. Furthermore, the possible decomposition of an
attack tree to divide the problem into subproblems is an inter-
esting alternative to explore. Finally, exploring the optimality
of security policies under the light of changing network char-
acteristics and attacker capabilities remains one of the most
challenging problems in this domain.
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