
Int. J. Inf. Secur. (2012) 11:149–165
DOI 10.1007/s10207-012-0157-6

REGULAR CONTRIBUTION

The parazoa family: generalizing the sponge hash functions

Elena Andreeva · Bart Mennink · Bart Preneel

Published online: 5 February 2012
© Springer-Verlag 2012

Abstract Sponge functions were introduced by Bertoni
et al. as an alternative to the classical Merkle-Damgård de-
sign. Many hash function submissions to the SHA-3 com-
petition launched by NIST in 2007, such as CubeHash,
Fugue, Hamsi, JH, Keccak and Luffa, derive from the original
sponge design, and security guarantees from some of
these constructions are typically based on indifferentiability
results. Although indifferentiability proofs for these designs
often bear significant similarities, these have so far been
obtained independently for each construction. In this work,
we introduce the parazoa family of hash functions as a
generalization of “sponge-like” functions. Similarly to the
sponge design, the parazoa family consists of compression
and extraction phases. The parazoa hash functions, however,
extend the sponge construction by enabling the use of a wider
class of compression and extraction functions that need to
satisfy certain properties. More importantly, we prove that
the parazoa functions satisfy the indifferentiability notion of
Maurer et al. under the assumption that the underlying permu-
tation is ideal. Not surprisingly, our indifferentiability result
confirms the bound on the original sponge function, but it
also carries over to a wider spectrum of hash functions and
eliminates the need for a separate indifferentiability analysis.
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1 Introduction

Traditionally, hash functions are designed following the
Merkle-Damgård iterative design [1,2]: to construct a cryp-
tographic hash function H : Z∗2 → Z

n
2 that maps bit strings

of arbitrary length to outputs of fixed length, one first builds a
fixed input length compression function f : Zn

2 ×Z
m
2 → Z

n
2

and then applies it in an iterative manner. Here, the input mes-
sage M ∈ Z

∗
2 is first padded injectively into a bit string of a

length multiple of m. The main design objective behind the
Merkle-Damgård iteration is collision security preservation:
showing that the Merkle-Damgård hash function is collision
secure (Col) when the underlying compression function f is
assumed to be also Col secure. The preservation is achieved
by applying the Merkle-Damgård-strengthening [3]: a suf-
fix-free message padding function used in conjunction with
a fixed initialization value IV. A broad range of hash function
applications requires further security requirements, such as
preimage resistance, second preimage resistance, and resis-
tance to the length extension attack. Together with Col secu-
rity, these are outlined as the main security requirements by
NIST [4] in their call for the design of a future SHA-3 hash
algorithm. Unfortunately, the strengthened Merkle-Damgård
design does not preserve the properties of second preimage
and preimage security [5], and moreover, it does not preclude
length extension attacks [6]. As a result, several Merkle-
Damgård design alternatives have appeared in the literature.
These achieve some of the former security properties and
among others include the chop-Merkle-Damgård [7], pre-
fix-free Merkle-Damgård [6], HAIFA [8], NMAC [9], and
Enveloped Merkle-Damgård [10] hash functions. Provided
that the padding rule is suffix-free, all of the outlined hash
functions preserve Col [11].

To exhibit a preservation result for a security property
X , one assumes that the underlying compression function f
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150 E. Andreeva et al.

also satisfies the property X . Although this idea is widely
employed, one may wonder if it is strictly needed. Instead,
one may consider a different approach and iterate a weak
compression functions sufficiently many times to obtain a
strong hash function.

In 2007, Bertoni et al. introduced the sponge hash func-
tions [12] as an alternative of the Merkle-Damgård de-
sign. The sponge hash function design begins with an
absorbing phase, in which the message is compressed iter-
atively, and ends with an extraction phase, in which the
hash digest is extracted in a possibly iterative manner. The
sponge design idea is to obtain a secure hash function by
iterating a compression function that does not necessarily
satisfy the main hash function security properties. Sponge
functions iteratively “absorb” message blocks of r -bits per
compression function f call, where the iterated state is of
size r + c bits with c being the so-called capacity. Finally,
the hash digest is extracted r bits at a time by applying the
extraction function g. The sponge function employs a single
(r + c)-bits permutation π , and the compression function
f and extraction function g are defined as f (vr‖vc, Mi ) =
π((vr ⊕ Mi )‖vc), where Mi is an r -bit message block, and
g(vr‖vc) = (π(vr‖vc), vr ). Following the indifferentiabil-
ity framework of Maurer et al. [13], it has been proven in
[14] that sponge functions are indifferentiable from a ran-
dom oracle under the assumption that π behaves like a ran-
dom permutation. In particular, a sponge function behaves
like a random oracle for up to O(2c/2) queries.

Since the introduction of sponge functions, it has been
a standard practice in the cryptographic community to call
hash functions “sponge-like” if they bear resemblances with
the original sponge design in terms of iterating a wide state
and employing underlying permutations in an extraction and
absorbing phases. Despite the similarities, the indifferentia-
bility results of the sponge hash function do not carry over in
a straightforward manner to the “sponge-like” constructions,
and hence, an independent security analysis is required. At
times even a small adjustment to the sponge design may ren-
der it insecure (cf. Sect. 3). It is thus an interesting research
problem to come up with a secure class of hash functions
generalizing the original sponge construction and the results
of which could simply be carried over to its members.

1.1 Our contributions

In this work, we introduce the parazoa family of hash func-
tions,1 as a generalization of the sponge hash function. Our
generalization is crafted toward obtaining secure “sponge-
like” hash functions in the indifferentiability theoretic frame-
work by Maurer et al. [13]. The parazoa hash function family

1 Parazoa is the name of the subkingdom of animals to which the
sponges belong [15].

allows for a wider class of compression and extraction func-
tions that satisfy a set of simple conditions. These conditions
facilitate the indifferentiability proof, but we note that these
are easily satisfied and realistic for practical purposes. Simi-
lar to the original sponge design, parazoa functions allow for
variable length outputs. In [16, Sect. 4.2], Stam analyzes per-
mutation-based compression functions satisfying certain cri-
teria, “overloaded single call Type-I compression functions”,
that are similar to the compression functions employed in
the parazoa design (albeit the requirements posited in [16,
Def. 17] are stronger). The major difference is that in the
parazoa design, the compression function is not required to
be preimage/collision resistant. In particular, Stam leaves it
as an open problem to analyze security of overloaded single
call compression functions in the iteration.

We prove that the maximum advantage of any distin-
guisher in differentiating a parazoa hash function, based on
ideal primitive π , from a random oracle is upper bounded by
O((K q)2/2s−p−d), where the distinguisher makes at most
q queries of length at most K blocks. Here, s denotes the
iterated state size, p denotes the number of bits extracted in
one execution of the extraction function, and d is called the
capacity loss, a quantity inherent to the specific parazoa de-
sign (cf. Table 1). Even though the indifferentiability proof
focuses on parazoa designs where both the compression and
extraction function are based on one single permutation, the
result easily extends to designs where multiple random per-
mutations and/or random functions are employed.

Naturally, the sponge function design [12] falls within
the categorization of parazoa functions, and our indifferen-
tiability result confirms the bound of [14]. Additional hash
function designs covered by the parazoa specification are
Grindahl [17] and second round SHA-3 candidate hash func-
tions CubeHash [18], Fugue [19], JH [20], Keccak [21], and
(a restricted variant of) Luffa [22] (the hash functions JH and
Keccak advanced to the final round of NIST’s hash func-
tion competition). The implications of our indifferentiability
results on these functions are summarized in Table 1, and
we elaborate on it in Sect. 7. We note that not all obtained
bounds are as expected. In particular, our indifferentiabili-
ty bound on JH is worse than the indifferentiability bound
proven by Bhattacharyya et al. [23]. The difference may be a
price to pay in return for generality. For the generic parazoa
design, we note that our indifferentiability bound is optimal:
for the original sponge design, the best generic attack meets
the derived security bound [12]. Still, for concrete instanti-
ations of the parazoa hash function, a design-specific proof
may result in a better bound.

1.2 Outline

In Sect. 2, we introduce some mathematical background. In
Sect. 3, we derive from the original sponge hash function
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The parazoa family: generalizing the sponge hash functions 151

Table 1 Implications of the indifferentiability result for the original sponge function design, the Grindahl hash function, and several second round
SHA-3 candidates

Algorithm (s, m, p) d Existing indiff. bound Our indiff. bound

Sponge (r + c, r, r) 0 O
(
(K q)2/2c

)
[14] O

(
(K q)2/2c

)

Grindahl (s, m, n) m – O
(
(K q)2/2s−n−m

)

Quark (r + c, r, r) 0 O
(
(K q)2/2c

)
[14] O

(
(K q)2/2c

)

PHOTON (r ′ ≤ r ) (r + c, r, r ′) r − r ′ O
(
(K q)2/2c

)
[14] O

(
(K q)2/2c

)

PHOTON (r ′ ≥ r ) (r + c, r, r ′) 0 – O
(
(K q)2/2c+r−r ′

)

SPONGENT (r + c, r, r) 0 O
(
(K q)2/2c

)
[14] O

(
(K q)2/2c

)

CubeHash-n (1024, 257, n) 1 – O
(
(K q)2/21023−n

)

Fugue-n (n ≤ 256) (960, 32, n) m [24] O
(
(K q)2/2928−n

)

Fugue-n (n > 256) (1152, 32, n) m [24] O
(
(K q)2/21120−n

)

JH-n (1024, 512, n) m O
(
q3/2512 + K q3/21024−n

)
[23] O

(
(K q)2/2512−n

)

Keccak-n (1600, s − 2n, n) s − 3n O
(
(K q)2/22n

)
[14] O

(
(K q)2/22n

)

Luffa-n (n ≤ 256) (768, 256, 256) 0 – O
(
(K q)2/2512

)

Luffa-384 (1024, 256, 256) 0 – O
(
(K q)2/2768

)

Luffa-512 (1280, 256, 256) 0 – O
(
(K q)2/21024

)

Here, s is the internal state size, m the number of message bits compressed in one round, p the number of bits extracted in one extraction round,
n the number of output bits, and the capacity loss d is further explained in Sect. 5. Parameter q denotes the total number of queries made by the
distinguisher, and K is the maximal length of these queries in blocks. For the second round SHA-3 candidates, n ∈ {224, 256, 384, 512}. The hash
functions JH and Keccak advanced to the final round of NIST’s SHA-3 competition. The results hold under the assumption that the underlying
permutations are ideal. For concrete instantiations of these permutations, we refer to Sect. 7. For Fugue, an indifferentiability result has been derived
by Halevi et al. [24], but we do not include the bound as their work considers a different model

design a sponge-like function that is insecure in the indif-
ferentiability model. Parazoa functions are introduced and
formalized in Sect. 4. An indifferentiability result for par-
azoa functions is given in Sect. 5, and the formal security
proof is given in Sect. 6. We finish the paper with concluding
remarks in Sect. 7.

2 Preliminaries

By Z
∗
2, we denote the set of bit strings of arbitrary length.

For a positive integer n ∈ N, we denote by Z
n
2 the set of bit

strings of length n and by
(
Z

n
2

)∗ the set of bit strings of length
a multiple of n. For two bit strings x, y, we denote by x‖y
their concatenation. The function chopn(x) chops off the n

rightmost bits of a bit string x . If X is a set, by x
$← X , we

denote the uniformly random sampling of an element from

X . By y← A(x) and y
$← A(x), we denote the assignment

to y of the output of a deterministic and randomized algo-
rithm A, respectively, when run on input x . For a function
f , by dom( f ) and rng( f ), we denote its domain and range,
respectively. A random oracle [25] is a function that provides
a random output for each new query. A random l-bit permu-
tation is a function that is taken uniformly at random from
the set of all l-bit permutations. A random primitive will also
be called “ideal”. A function f : Z

m
2 → Z

n
2 for m ≥ n is

called balanced if any y ∈ Z
n
2 has exactly 2m−n preimages

under f . We define its inverse function by f −1 : y �→ {x ∈
Z

m
2 | f (x) = y}.

2.1 Indifferentiability

The indifferentiability framework, introduced by Maurer
et al. [13], is a powerful notion to guarantee security of cryp-
tographic primitives. Informally, it gives a sufficient condi-
tion under which an ideal primitive R can be replaced by
some construction CG based on an ideal subcomponent G.
The indifferentiability bound provides security guarantees
from the hash function against any security attack [11].

Definition 1 A Turing machine C with oracle access to an
ideal primitive G is called (tD, tS, q, ε) indifferentiable from
an ideal primitive R if there exists a simulator S, such that
for any information-theoretic distinguisher D it holds that:

Advpro
C,S(D) =

∣∣∣Pr
(
DCG ,G = 1

)
− Pr

(
DR,SR = 1

)∣∣∣ < ε.

The simulator has oracle access to R and runs in time at most
tS . The distinguisher runs in time at most tD and makes at
most q queries.

Distinguisher D can query both its “left oracle” L (either C
or R) and its “right oracle” R (either G or S). We refer to
CG,G as the “real world”, and to R,SR as the “simulated
world”; the distinguisher D converses with either of these
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worlds and its goal is to tell both worlds apart. In the remain-
der, R will be a random oracle RO, and G will be a random
permutation π . The right oracle R has two interfaces, as the
distinguisher can make forward as well as inverse queries to
the permutation π .

3 Differentiability of a “sponge-like” function

In this section, we show that a simple modification of the
original sponge design can render it insecure with respect
to indifferentiability. To this end, we construct the following
sponge-like design.

Consider the following hash function H : Z∗2 → Z
n
2 that

has a state size 2n and processes message blocks of n bits (see
also Fig. 1). It is based on a 2n-bit permutation π , and uses a
simple injective padding function pad to process messages
of arbitrary length: pad(M) = M‖1‖0−|M|−1 mod n , parsed
into message blocks of n bits. For an initial value IV1‖IV2, the
hash function H processes a message M as follows: H(M)

outputs the n rightmost bits of hk , where (M1, . . . , Mk)←
pad(M), h0 ← IV1‖IV2, and hi ← π(hi−1 ⊕ (M‖0n)) for
i = 1, . . . , k. Notice that this design follows the original
sponge design, with a small modification that the message
digest is defined by the other half of the state (but we stress
that this observation does not invalidate the security of the
sponge function design). We construct a distinguisher D that
can distinguish (Hπ , π) from (RO, SRO), for any simula-
tor S.

– First, D decides on an arbitrary message M of length
0 < |M | < n. It defines M1 = pad(M) and M3 =
1‖0n−1. Notice that M1‖M2‖M3 = pad(M1‖M2) for
any M2 ∈ Z

n
2;

– D queries M to the left oracle, to obtain h1 ← L(M);
– D queries 0‖h1 to the right oracle, to obtain x1‖y1 ←

R(0‖h1);
– D queries (x1 ⊕ M3)‖y1 to the right oracle, to obtain

x2‖y2 ← R((x1 ⊕ M3)‖y1);
– D queries (IV1 ⊕ M1)‖IV2 to the right oracle, to obtain

x3‖y3 ← R((IV1 ⊕ M1)‖IV2);
– D queries M1‖x3 to the left oracle, to obtain h2 ←

L(M1‖x3).

Fig. 1 The “sponge-like” hash function H described in Sect. 3

In the real world, where the distinguisher queries H and π ,
the answers of the oracles satisfy h1 = y3 and h2 = y2

by construction. In the simulated world, however, h2 equals
RO(M1‖x3). As the simulator generated y2 without any
knowledge of M1, equality h2 = y2 holds with negligible
probability only.

4 Parazoa functions

Informally, parazoa functions process a message M as fol-
lows. Firstly, the message is padded into several integral mes-
sage blocks of m bits, using a padding function pad : Z∗2 →(
Z

m
2

)∗. Throughout, by k, we denote the number of message
blocks of a padded message. Then, these message blocks are
absorbed by the s-bit state (compression phase), by apply-
ing sequentially a compression function f : Zs

2×Z
m
2 → Z

s
2

on the state and the message. Next, the state is squeezed
to obtain l ≥ 1 output data blocks of p bits sequentially
(extraction phase). The corresponding extraction function is
denoted by g : Zs

2 → Z
s
2 × Z

p
2 . It operates on the state and

returns an updated state and the extract. A finalization func-
tion fin : Zpl

2 → Z
n
2 combines these l data blocks of p bits

into the n-bit message digest. We require that m, p ≤ s, and
that pl ≥ n. Both the compression function and the extrac-
tion function are based on an s-bit permutation π . Through-
out, we assume this permutation to be ideal.

These functions are further explained in Sects. 4.1–4.4
(for ease of presentation, the function pad is introduced at
last), together with the requirements of these functions for the
security proof in Sect. 5. Now, for a fixed initialization vector
IV of size s, the parazoa function H processes a message M
as follows:

H(M) = h,where:

(M1, . . . , Mk)← pad(M); v0 ← IV, (1a)

vi ← f (vi−1, Mi ) for i = 1, . . . , k, (1b)

(vk+i , Pi )← g(vk+i−1) for i = 1, . . . , l, (1c)

h← fin(P1, . . . , Pl). (1d)

This function is depicted in Fig. 2.

4.1 Compression function f

On input of a state value vi−1 and a message input Mi ,
the compression function first uses an injection function
Lin : Z

s
2 × Z

m
2 → Z

s
2 to inject the message into the

state and then permutes the state with π . This state is
then transformed and combined with a feed-forward using a
function Lout : Z

s
2 × Z

s
2 × Z

m
2 → Z

s
2. Formally, the com-

pression function f is defined as f (vi−1, Mi ) = vi , where
x ← Lin(vi−1, Mi ), y ← π(x) and vi ← Lout(y, vi−1, Mi ).
The compression function f is depicted in Fig. 3.
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The parazoa family: generalizing the sponge hash functions 153

Fig. 2 The parazoa hash function H of (1)

Fig. 3 The compression function f

For any x ∈ Z
s
2, we define its capacity set C(x) = {v ∈

Z
s
2 | ∃ M ∈ Z

m
2 s.t. Lin(v, M) = x}. Intuitively, C(x)

denotes the set of state values v ∈ Z
s
2 for which some mes-

sage injection results in x as input to the permutation. For
two values v, v′ ∈ Z

s
2, we define the function sameC(v, v′),

which outputs true if and only if v and v′ are both a member
of a capacity set C(x) for some x .

Requirement from Lin. We require Lin to satisfy the
following properties: (a) for any x ∈ Z

s
2 and v ∈ C(x),

there exists exactly one M ∈ Z
m
2 such that Lin(v, M) = x ,

and (b) if C(x) ∩ C(x ′) �= ∅, then C(x) = C(x ′). Intui-
tively, the first requirement guarantees that for a state value
v ∈ Z

s
2, a different M results in a different x = Lin(v, M).

The second requirement intuitively guarantees that two ele-
ments x, x ′ ∈ Z

s
2 have either the same or disjoint capacity

sets. As becomes clear in the proof, this requirement can be
relaxed at a security loss of factor 2m . We notice that these
requirements are easily satisfied, and standard injection func-
tions Lin satisfy both. In particular, commonly used injection
functions, for example, functions that consist of XORing the
message with and/or inserting it in a part of the state, clearly
satisfy both properties. Note that the second requirement is
satisfied for any linear transformation.

Requirement from Lout. We require that for any (v, M)

∈ Z
s
2 × Z

m
2 , the function Lout(·, v, M) is a bijection on the

state. Its inverse function is denoted by L−1
out[v, M].

4.2 Extraction function g

On input of a state value vk+i−1, the extraction func-
tion g employs an extracting transformation Lex : Z

s
2 →

Z
p
2 that outputs a data block and then permutes the state

Fig. 4 The extraction function g

with π . Formally, the extraction function g is defined as
g(vk+i−1) = (vk+i , Pi ), where Pi ← Lex(vk+i−1) and
vk+i ← π(vk+i−1). The function g is depicted in Fig. 4.
Similar to f , one can consider an additional transformation
after the call to the permutation, which may have vk+i−1 as
extra input. This generalization would, however, make the
proof considerably more complex (see Sect. 7).

Requirement from Lex. We require Lex to be balanced.
Intuitively, this requirement means that each extract P ∈ Z

p
2

is equally likely to occur. Accordingly, the function L−1
ex is

defined as L−1
ex (P) = {v ∈ Z

s
2 | Lex(v) = P} (see Sect. 2).

4.3 Finalization function fin

The function fin combines the l bit strings, obtained from
squeezing the state, into the message digest. In most of the
existing sponge-based designs, the finalization function sim-
ply consists of concatenating a required number of blocks,
l = �n/p�, and chopping it to the required length of n bits.
Parazoa functions allow for a generalized finalization func-
tion.

Requirement from fin. We require fin to be balanced.
Intuitively, this requirements means that each digest h is
equally likely to occur. Accordingly, the function fin−1 is
defined as fin−1(h) = {(P1, . . . , Pl) | fin(P1, . . . , Pl) = h}
(see Sect. 2).

4.4 Padding function pad

The padding function pad is an injective mapping that trans-
forms messages of arbitrary length into messages of length
an integral multiple of the block size m. Associated to pad is
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154 E. Andreeva et al.

the function depad that processes a message M ′ as follows:
if M ′ = pad(M) for some message M , it outputs this M ,
otherwise it outputs ⊥. Note that the output is unique as the
padding function is injective.

Requirement from pad. We require pad to satisfy the
following property: we either have l = 1, or the last block of a
padded message, Mk , satisfies for any x ∈ Z

s
2 and (v′, M ′) ∈

Z
s
2 × Z

m
2 :

Lin(x, Mk) �= x and Lin(Lout(x, v′, M ′), Mk) �= x . (2)

As explained in Sect. 5.3 in more detail, this requirement
comes from the fact that permutation queries to the simulator
corresponding to the extraction phase (1c) may correspond
to compression function executions f as well. We notice
that for the original sponge design, condition (2) translates
to requiring that the last block of a padded message is not
a zero-block (which is exactly the requirement as posited
by the authors of the sponge design in [14]). Because par-
azoa functions generalize these functions significantly, this
requirement has become more complex accordingly.

5 Indifferentiability analysis of parazoa functions

In this section, we prove the parazoa function of Sect. 4 indif-
ferentiable from a random oracle, under the assumption that
the underlying permutation π behaves like an ideal primi-
tive. Intuitively, the proof consists of demonstrating that there
exists a simulator such that no distinguisher can differentiate
the real world Hπ , π from the simulated world RO, SRO,
except with negligible probability.

For the purpose of the proof, we introduce a technical var-
iable d which we refer to as the capacity loss. Consider the
set of all couples (v, x) such that Lin(v, M) = x for some M
(M is uniquely determinable from v, x). We define d ≥ 0 to
be the minimal value such that

Criterion 1. For fixed x and fixed P ∈ Z
p
2 , there are at

most 2d couples (v, x) such that v ∈ L−1
ex (P);

Criterion 2. For fixed v and fixed P ∈ Z
p
2 , there are at

most 2d couples (v, x) such that x ∈ L−1
ex (P).

Notice that, as a consequence of the first criterion, we obtain
|C(x)| ≤ 2p+d for any x , as any v ∈ Z

s
2 satisfies Lex(v) = P

for exactly one P ∈ Z
p
2 . We note that the second criterion

is not needed in case l = 1 (see Sect. 5.3). The reason why
we opt for the name “capacity loss”, as well as an intuition
behind this parameter, is given in Sect. 5.1.

Theorem 1 Letπ be a random s-bit permutation, and let RO
be a random oracle. Let H be a parazoa function parameter-
ized by l, m, n, p, s, t . Let D be a distinguisher that makes at

most q1 left queries of maximal length (K − 1)m bits, where
K ≥ 1, q2 right queries, and runs in time t. Then:

Advpro
H,S(D) = O

(
((K + l)q1 + q2)

2

2s−p−d

)
, (3)

where S makes at most qs ≤ q2 queries to RO and runs in
time O(q2

2 ).

We note that the bound is optimal for the generic parazoa
design: for the original sponge design, as a particular instanti-
ation of the parazoa functions, the best generic attack requires
about 2(s−p−d)/2 queries [12] and meets the derived indif-
ferentiability bound. In what remains of this section, an intu-
ition behind the capacity loss d is given in Sect. 5.1, basic
preliminary definitions for the description of our simulator
are given in Sect. 5.2, and the simulator used in the proof
is introduced and explained in more detail in Sect. 5.3 and
Fig. 7. Then, Theorem 1 is formally proven in Sect. 6.

5.1 On the capacity loss d

We will provide an intuition for the technical parameter d. It
is used in the computation of the indifferentiability security
bound: in some cases, the simulator has to generate a value v

such that it is not a member of C(x), for one or more values
of x , and moreover such that Lex(v) = P for some fixed P .
Then, by the first criterion, the simulator can choose out of
at least 2s−p−d values for v. Intuitively, the value s − p− d
represents the number of bits of information of a state value
that (1) cannot be affected by the distinguisher by ways of
message injection and (2) that cannot be obtained by the
distinguisher by ways of extraction. We demonstrate this by
ways of two examples.

– Example 1: the sponge hash function [12] (cf. Sect. 1).
The functions Lin and Lex of the sponge hash function
design are given in Fig. 5. We start with the first criterion
that defines parameter d. Fix any x ∈ Z

s
2 and fix any

P ∈ Z
p
2 , where p = r . We are considering the num-

ber of choices for v that satisfy Lin(v, M) = x for some
M and that satisfy Lex(v) = P . As becomes clear from
Fig. 5, the first requirement uniquely fixes the last c bits
of v, while the second statement fixes the first r bits of
c. Altogether, the value v is uniquely determined by the

Fig. 5 The functions Lin and Lex of the sponge hash function [12]
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Fig. 6 The functions Lin and Lex of the sponge-like hash function of
Sect. 3. For sake of explanation, we consider the state size to be r + c

fixed values x and P , and criterion 1 of the definition of
d is satisfied for d = 0. Criterion 2 is equivalent, and
we find that for sponge functions d = 0, hence the value
attains its minimum;

– Example 2: the sponge-like hash function of Sect. 3. The
functions Lin and Lex of this hash function design are
given in Fig. 6. Fix any x ∈ Z

s
2 and fix any P ∈ Z

p
2 ,

where p = c. Again, we are considering the number of
choices for v that satisfy Lin(v, M) = x for some M and
that satisfy Lex(v) = P . As can be observed from Fig. 6,
if the rightmost c bits of x are equal to P , there are exactly
2r choices for v that satisfy these requirement, namely
{(M‖0c) ⊕ x | M ∈ Z

r
2}. Again, criterion 2 is equiva-

lent; we thus obtain d = r = s − p. In this example, the
distinguisher has “full control over the state”: the first r
bits can be freely adjusted by message injection, and the
last c bits can be obtained (in most cases) by message
extraction.

We note that the sponge-like hash function of Sect. 3 (exam-
ple 2) still fits in the parazoa framework, and the indiffer-
entiability result of Theorem 1 applies. Yet, as d = s − p,
we obtain a trivial bound. The same occurs if we consider
an example parazoa function where the message input size
m equals the state size s: it turns out that d = s − p, and
the indifferentiability result of Theorem 1 results in a trivial
bound.

The value d varies between 0 and s − p by construction
and ideally attains its minimum. In this case, the number of
bits of information that cannot be controlled by the adversary
is s− p. This value is exactly the capacity of the sponge hash
function. For increasing d, the value s − p − d decreases,
and therefore, we call d the “capacity loss”.

5.2 Defining the simulator

The simulator maintains an initially empty database Sim-π
that represents the simulated permutation. It consists of tuples
(x, y) ∈ Z

s
2 × Z

s
2, where y denotes the sampled image of x

under π . The simulator maintains a graph (V, E), which ini-
tially consists of the node IV and includes no edges. The
edges in E are labeled by messages M ∈ Z

m
2 and define

input–output pairs of the compression function f : an edge

v
M−→ w means that f (v, M) = w. Abusing notation, we

denote by v
M̄−→ w for M̄ ∈ (

Z
m
2

)∗ that there is a path from
v to w with the edges labeled by M̄ . By definition of Lin,
one query pair (x, y) adds at most 2p+d edges to the graph,
namely the edges leaving from the vertices in C(x). By Vout,
we denote the set of nodes in V with an outgoing edge in
(V, E). Notice that Vout = ⋃

x∈dom(Sim-π) C(x). By τ(V ),
we denote the tree in (V, E) rooted in IV. Additionally, by
τ̄ (V ), we denote the subset of nodes of τ(V ) that are labeled
by a correctly padded message.

In addition, the simulator maintains a database �. This
database will consist of future query inputs x ∈ Z

s
2 of which

the simulator knows that they correspond to the extraction
phase of the parazoa execution (1c). Associated to each
x ∈ � is a tuple (i, Pi+1 · · · Pl) with i ∈ {1, . . . , l − 1}.
Essentially, i denotes the number of executions of g that are
already simulated for this specific path, and Pi+1, . . . , Pl

denote the output values of the subsequent executions of g,
determined by the simulator before. The idea behind � is
further explained in Sect. 5.3.

5.3 Intuition

As is common in indifferentiability proofs, the simulator
needs to be constructed in such a way that the answers
from the oracles (Hπ , π) and (RO, SRO) are close to identi-
cally distributed. In other words, the oracle answers made
by the simulator need to be in consistency with the ran-
dom oracle, in such a sense that any relation among the
query answers in real world holds in the simulated world
as well. In particular, the simulator needs to pay atten-

tion to the following scenario: suppose a path IV
M̄−→ vk

is in the graph, for M̄ ∈ rng(pad) (i.e., vk ∈ τ̄ (V )).
Suppose moreover that vk, . . . , vk+l−1 ∈ dom(Sim-π),
where Pi = Lex(vk+i−1) and vk+i = Sim-π(vk+i−1) (for
i = 1, . . . , l). Then, the values (P1, . . . , Pl) should satisfy
fin(P1, . . . , Pl) = RO(depad(M̄)) in order for the simu-
lator to maintain consistency. However, in general, the sim-
ulator can only guarantee this equation to hold if the Pi ’s
are decided after M̄ is known, but before vk is known (no-
tice that vk determines P1 = Lex(vk) deterministically). The
simulator of Fig. 7 handles this problem in a smart way:
in the query where the last edge (vk−1 to vk) is added, the
simulator decides on (P1, . . . , Pl) on forehand, and based on
these, he fixes the next state value vk such that vk ∈ L−1

ex (P1).
This value equals the input to the next execution of π in the
chaining. It stores (vk; 1, P2, . . . , Pl) in its database �. As
soon as the simulator is then queried vk , the simulator will
apply the same trick: the answer vk+1 ← Sim-π(vk) will
be generated such that vk+1 ∈ L−1

ex (P2). This value vk+1

equals the input to the next execution of π in the chaining.
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Fig. 7 The simulator S for π used in the proof of Theorem 1. The
simulator aborts if a certain GOTO-statement is executed C > 0 times
consecutively, for some constant C

Subsequently, it replaces the corresponding entry in � with
(vk+1; 2; P3, . . . , Pl).

Before describing the simulator in more detail, we note
that it includes several GOTO-statements. These statements
guarantee the randomly generated values to satisfy certain
properties. Associated to the simulator is a constant C > 0:
the simulator aborts if a certain GOTO-statement is executed
C times consecutively. Due to the inclusion of this parameter
C , the simulator operates in polynomial time, rather than in
expected polynomial time. In the security proof (Sect. 6), this
constant is fixed to a certain value.

The simulator will answer its queries such that the tree
τ(V ) grows as little as possible: indeed, any path in the tree
may emerge in the need of an extra element in � and eventu-
ally in an evaluatable query. However, as mentioned before,
one query pair (x, y) defines at most 2p+d edges in the graph,
leaving from the nodes in the set C(x). The simulator will
answer its queries so as to satisfy the following properties
concerning the growth of the graph:

(a) Out of all newly added edges, at most one will be added
to the tree. More generally, the simulator assures the
following property at any time in the execution:

|C(x) ∩ τ(V )| ≤ 1 for any x ∈ Z
s
2; (4)

(b) When a query adds a new edge to the tree, its end node
has no outgoing edge. Together with (a), this implies
that per query at most one edge is added to the tree;

(c) The tree does not contain any colliding paths.

Notice that a query pair (x, y) adds a new edge to the tree if
and only if C(x)∩τ(V ) �= ∅. Indeed, C(x) corresponds to all
nodes with an outgoing edge defined by the query pair (x, y).
In this case, the simulator needs to assure that properties (a–c)
are satisfied. Secondly if x ∈ �, the simulator needs to han-
dle as described above. Ideally, the value x satisfies x �∈ �

and C(x)∩τ(V ) = ∅, which explains the algorithm for S−1.
In forward queries to S, however, x is chosen by the distin-
guisher, and it may be possible that C(x) ∩ τ(V ) �= ∅ or
x ∈ �. We will now explain the algorithm for a forward
query x to S, based on the above observations.

In case C(x) ∩ τ(V ) = ∅ (lines 016–017), no edge will
be added to the tree, and (a–c) are trivially satisfied. In case
C(x) ∩ τ(V ) �= ∅, by (4) and the definition of Lin, there
exists one unique couple v ∈ τ(V ) and M ∈ Z

m
2 such that

Lin(v, M) = x . By construction, the current query adds the

edge v
M−→ w to the tree, where w = Lout(y, v, M). In lines

022 and 033, the simulator assures that this is the only edge
added to the tree, that is, that y is chosen such that w �∈ Vout

(there is no outgoing edge from w) and w �∈ C(x) (no out-
going edge from w will accidentally be added in the current
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round). Additionally, requirements (a) and (c) are covered
by requiring that w does not share a capacity set with a node
already in τ(V ): lines 023 and 034.

Hence, a query adds at most one edge to the tree, and
in particular, in case of evaluatable queries, the last edge

vk−1
M−→ vk is really added at last. We still need to consider

this specific case that τ̄ (V ) is increased. Additionally, we still
need to explain the case of x ∈ �.

τ̄ (V ) gets increased but x �∈ �. This case corresponds to the
else-clause of line 025: the simulator will proceed as pre-
viously described: the next state value vnxt (which equals
the first permutation input of the extraction phase) is gen-
erated, and the original answer y is generated accordingly
in line 031. Notice that we need to assure that no colli-
sion in Sim-π occurs (line 032). In line 036, the node
vnxt is added to �, provided 1 < l. Note that, by (c), the
path to vk is unique, and (P1, . . . , Pl) is generated in a
nonambiguous way;

τ̄ (V ) does not get increased and x ∈ �. This specific case
corresponds to the if-clause of line 002: again, the simu-
lator will generate the next state value vnxt (which equals
the next permutation input of the extraction phase) and
generate the original answer y accordingly (line 006).
It will update � in lines 014–015. Note that in this if-
clause it may still be possible that C(x)∩τ(V ) �= ∅. Then,
the simulator assures properties (a–c) as mentioned before
(by lines 010 and 011);

τ̄ (V )gets increased and x ∈ �. It may be the case that a query
x to S is an element of � and moreover adds an edge to the
tree (this is checked in the if-clause of line008). However,
as we will now explain, the message block that labels this
edge can never be the last block of a padded message, and
hence, τ̄ (V ) will not be increased. As x ∈ �, this specific
value is fixed by the simulator on forehand (in the previous
query of the extraction phase defined as vnxt). In particu-
lar, it is generated in the query where (x ′, y′) ∈ Sim-π is
generated such that either Lout(y′, v′, M ′) = x for some
v′, M ′ (line 031, or such that y′ = x (line 006). How-
ever, x had been generated such that C(x), all start-nodes
of the edges defined by x , had an empty intersection with
τ(V ) (lines 004 and 029).2 Also, in all future queries,
it is assured that new queries cannot make the link to
this specific x (due to “

⋃
x∈� C(x)” in lines 010, 022

and 033). As a consequence, if the query (x, y) adds an
edge to the tree, this only happens for an edge leaving
from the end node of an edge defined by (x ′, y′) (as this
is the only query round in which C(x) is not avoided as
end node of a newly added edge to the tree). In other

2 Notice that, if l = 1, one does not need to assure this property. In
particular, line 004 and 029 become unnecessary. In the proof, these
are the lines that make us require the second property concerning the
capacity loss d (cf. Sect. 5).

words, after the forward query x to S, we have the path

IV
M̄−→ v0

M1−→ v1
M2−→ v2 in the tree for M̄ ∈ (

Z
m
2

)∗

and M1, M2 ∈ Z
m
2 , where the edge (v0, v1) is defined

by (x ′, y′) and the edge (v1, v2) by (x, y). However, the
value M2 satisfying this path particularly satisfies x =
Lin(v1, M2), where v1 = Lout(y′, v′, M ′). Given the spe-
cific property of x (in the beginning of this paragraph), it
either satisfies

x = Lin(x, M2) or x = Lin(Lout(x, v′, M ′), M2),

for some (v′, M ′) ∈ Z
s
2 × Z

m
2 . By the requirement in

Sect. 4.4, we have either l = 1 (which means that � = ∅ at
all time) or that M2 can never be the last block of a padded
message. Summarizing, a query x ∈ � never increases
τ̄ (V ).

The full proof of Theorem 1 is given in Sect. 6.

6 Proof of Theorem 1

Let S be the simulator of Fig. 7, and let D be any distin-
guisher that makes at most q1 left queries of maximal length
(K − 1)m bits, where K ≥ 1, and q2 right queries. Recall
from Def. 1 that the goal is to bound:

Advpro
H,S(D) =

∣∣∣Pr
(
DHπ ,π = 1

)
− Pr

(
DRO,SRO = 1

)∣∣∣ .

(5)

Theorem 1 will be proven via a game-playing argument. In
this aspect, our result is fundamentally different from the
result obtained by Bertoni et al. for the original sponge design
[14]. Each game consists of a left and a right oracle. In the
proof, G1 will equal the simulated world and G9 the real
world. We will go from game 1 to game 9 stepwise and obtain
a bound on (5) using a hybrid argument. We define C = 1,
hence the simulator of Fig. 7 aborts if a certain GOTO-state-
ment is executed.

Game 1: G1 = (L1, RL1
1 ) (Fig. 8). The left oracle L1

of game 1 is defined to be a lazily sampled random ora-
cle, and the right oracle R1 consists of the two interfaces
defined by the simulator of Fig. 7, with an additional dif-
ference that a failure condition bad is added to the GOTO-
statements in lines 005, 007, 012, 024, 030, 032, 035
and 104. The distinguisher does not see the difference until
the adversary in game 1 sets bad (recall that we put C =
1). We obtain

∣∣∣Pr
(
DRO,SRO = 1

)
− Pr

(DG1 = 1
)∣∣∣ ≤

Pr
(DG1 sets bad

)
.

Game 2: G2 = (L L1
2 , RL1

1 ) (Fig. 8). The left oracle of
game 1 is replaced by a so-called relay oracle L2 that passes
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Fig. 8 Games 1, 2 and 3. In game 1, the distinguisher has access to
L1, RL1

1 (oracles L2, L3 are ignored). In game 2, the distinguisher has

access to L L1
2 , RL1

1 (oracle L3 is ignored). In game 3, the distinguisher

has access to L
R

L1
1

3 , RL1
1 (oracle L2 is ignored). Oracle L1 maintains an

initially empty table H

the queries made by the distinguisher to L1 and returns its
responses. The right oracle remains unchanged. The distin-
guisher has identical views in G1 and G2, and we obtain
Pr

(DG1 = 1
) = Pr

(DG2 = 1
)
.

Game 3: G3 = (L
R

L1
1

3 , RL1
1 ) (Fig. 8). The left oracle of

game 2 is now replaced by an implementation of the parazoa
function, which moreover uses the right oracle as a subrou-
tine, rather than L1 directly. The right oracle itself remains
unchanged. In Prop. 1, it is proven that, as long as the bad
flag is not set in any of the two games, both are identical.
Formally, we obtain that

∣∣Pr
(DG2 = 1

)− Pr
(DG3 = 1

)∣∣ ≤
Pr

(DG2 sets bad
)+ Pr

(DG3 sets bad
)
.

Note that in game 3, as well as in all subsequent games,
the right oracle will be queried at most r := (K + l)q1 + q2

times. Indeed, in all of the following games, the left oracle
queries the right oracle at most K times in the compressing
phase and l times in the extraction phase. All subsequent
right oracles are constructed in such a way that each query
to this oracle adds at most 1 element to Sim-π .

Game 4: G4 = (L R2
3 , R2). The right oracle R2 of game

4 differs from oracle R1 of game 3 in the sense that h
$←

L1(depad(M̄‖M)); (P1, . . . , Pl)
$← fin−1(h) (lines 026

and 027) is replaced by (P1, . . . , Pl)
$← Z

pl
2 . Observe that

the games are perfectly indistinguishable: in game 3, R1 is the
only algorithm querying L1, and as the padding is injective,
he never queries L1 twice on the same value. Therefore, he
can just as well generate the random values h himself. Then,
as the function fin is balanced, we have, for any α ∈ Z

pl
2 :

Pr
(
(P1, . . . , Pl)=α : h $← Z

n
2, (P1, . . . , Pl)

$← fin−1(h)
)

= 1/2pl .

In other words, the values (P1, . . . , Pl) follow the uni-
form random distribution on pl bits, and therefore, the right
oracle can just generate them directly. Formally, we have
Pr

(DG3 = 1
) = Pr

(DG4 = 1
)
.

Game 5: G5 = (L R3
3 , R3) (Fig. 9). In game 4, all values

(P1, . . . , Pl) are randomly generated as soon as the first one
is needed. The remaining l−1 values are then associated to a
node x ∈ � (line 036), and as soon as x is queried, the next
value, Pi+1, is taken off of the list and processed. In game
5, these values Pi are not anymore generated in advance, but
generated when needed. As a consequence, we implicitly
adjust the definition of �, in the sense that each element is
labeled by an index i ∈ {1, . . . , l − 1} only. As in both cases
the values (P1, . . . , Pl) are generated uniformly at random,
a distinguisher cannot see the difference. Consequently, we
obtain Pr

(DG4 = 1
) = Pr

(DG5 = 1
)
.
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Fig. 9 Game 5 (for α = 3) and game 6 (for α = 4). In both games,
the distinguisher has access to L Rα

3 , Rα

Game 6: G6 = (L R4
3 , R4) (Fig. 9). In game 5, the val-

ues Pi (i = 1, . . . , l) are taken uniformly at random,
and the state values vnxt are taken according to the prop-
erty that Pi = Lex(vnxt) for all i = 1, . . . , l (lines
004 and 028 in Fig. 9). In game 6, this is the other
way around: vnxt (recall that this value equals the input
to the next permutation execution in the extraction phase)
is taken randomly (permutationwise), and the value Pi is
taken such that Pi = Lex(vnxt) still holds. Hence, the
only changes are in lines 003–004 and 027–028. In
Prop. 2, it is proven that

∣
∣Pr

(DG5 = 1
∣
∣ DG5 sets ¬bad

)−
Pr

(DG6 = 1
∣∣ DG6 sets ¬bad

) ∣∣ ≤ 2r2

2s .

Game 7: G7 = (L R5
3 , R5) (Fig. 10). In game 6, concretely

in the blocks 003–008, where the oracle is queried on an x
belonging to the extraction phase, and 027–032, where the
query answer to x will initiate the extraction phase, the oracle
decides on its answer y based on the next state value vnxt.
In game 7, the answer y is taken uniformly at random, and
the next state vnxt is generated accordingly. The values Pi =
Lex(xi ) are not used in R5, and their generation is omitted. In
Prop. 3, it is proven that

∣∣Pr
(DG6 = 1

∣∣ DG6 sets ¬bad
)−

Pr
(DG7 = 1

∣∣ DG7 sets ¬bad
) ∣∣ ≤ 2r2

2s .

Game 8: G8 = (L R6
3 , R6) (Fig. 10). The right oracle R6

in game 8 differs from R5 in game 7 in the sense that the
GOTO-statements that are accompanied with a bad- state-
ment are removed. As a consequence, game 7 and 8 pro-
ceed identically as long as the bad flag is not set in game 7.
Formally, we obtain that

∣∣Pr
(DG7 = 1

)− Pr
(DG8 = 1

)∣∣ ≤
Pr

(DG7 sets bad
)
.

Game 9: G9 = (L R7
3 , R7). The right oracle R7 mimics a

lazily sampled random permutation π , and the left oracle is
the parazoa specification querying this right oracle. Hence,
G9 = (Hπ , π), and thus Pr

(DG9 = 1
) = Pr

(DHπ ,π = 1
)
.

It turns out that R6 of game 8 also mimics a lazily sam-
pled permutation, due to the removal of the GOTO-state-
ments. In particular, any forward query to R6 is answered
with a y ∈ Z

s
2\rng(Sim-π). As a consequence, we obtain

Pr
(DG8 = 1

) = Pr
(DG9 = 1

)
.

We conclude that (5) reduces to:

Advpro
H,S(D) ≤

∑

i=1,2,3,5,6,7

Pr
(
DGi sets bad

)
+ 4r2

2s
. (6)

In the remainder of the proof, we will evaluate the probability
that the distinguisher sets bad in game 3. Thereafter, we will
elaborate on the other probabilities.

Consider the j th query ( j = 1, . . . , r ) to R1. Notice that,
by Lem. 1, we have |�| ≤ j − 1 and |τ(V )| ≤ j . By the
union bound, the probability that bad is set in this round,
Pr j , equals the probability that bad is set in either of the
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Fig. 10 Game 7 (for α = 5, including the boxed statements) and game
8 (for α = 6, with the boxed statements removed). In both games, the
distinguisher has access to L Rα

3 , Rα

lines 005, 007, 012, 024, 030, 032, 035 or 104. Denote
by Prxxxj the probability that bad is set in the j th query in

line xxx. Observe that Pr012j ≤ Pr024j ≤ Pr035j , and the
simulator will either execute one of these lines. Similar obser-

vation holds for Pr005j ≤ Pr030j and Pr007j ≤ Pr032j . There-

fore, we obtain Pr
(
DG3 sets bad in query j

) = Pr j ≤
Pr030∨032∨035j +Pr104j . We first consider Pr030∨032∨035j .
Boolean bad is set in either of these lines if vnxt, taken uni-
formly at random from a set of size at least 2s−p−2r (notice
that (P1, . . . , Pl) are fixed), violates lines 029, 032, 033 or
034.

029. This line is violated if vnxt corresponds to any capac-
ity set already represented in τ(V ). Consider a node
v ∈ τ(V ). By the definition of the capacity loss d in
Sect. 5 (as Lex(vnxt) = P is fixed), there are at most
2d values vnxt such that v ∈ C(vnxt). In total, there are
at most j2d possible values for vnxt that make this line
violated;

032. Line 032 is violated if L−1
out[v, M](vnxt) hits a set of

size at most j − 1. Recall that Lout forms a bijection
on the state (for fixed v, M);

033. Recall that Vout = ⋃
x0∈dom(Sim-π) C(x0). Line 033

is violated if vnxt hits any of the sets C(x0), for x0 ∈
dom(Sim-π) ∪ {x} ∪ �. However, by the definition
of d, for each x0, there are at most 2d values vnxt that
would satisfy vnxt ∈ C(x0). In total, there are at most
(2 j − 1)2d possible values for vnxt that make this line
violated;

034. This line is violated if vnxt shares the same capac-
ity set with any of the elements in τ(V ). Consider
a node v ∈ τ(V ): this element exactly defines one
capacity set,3 say C(x0). By the definition of d (as
Lex(vnxt) = P is fixed), there are at most 2d values
vnxt that would satisfy vnxt ∈ C(x0). In total, there are
at most j2d possible values for vnxt that make this line
violated.

Summarizing, we obtain Pr030∨032∨035j ≤ (4 j−1)2d+ j−1
2s−p−2r .

Now for Pr104j : notice that bad is set in line 104 if x , taken
uniformly at random from a set of size at least 2s − r , hits
a set of size at most j2p+d + j − 1 (by the definition of d,
each v is a member of at most 2p+d capacity sets). Conclud-

ing, Pr104j ≤ j2p+d+ j−1
2s−r . By the union bound, and under the

assumption that 2r < 2s−p−1, we thus obtain

Pr
(
DG3 sets bad

)
≤ 7r(r + 1)

2s−p−d
.

For games G1, G2, the same analysis holds. For games
G5, G6, G7, the same bound can be obtained similarly, and
we only highlight the major differences: (i) vnxt is now gen-
erated randomly from a set of size at least 2s − 2r , and (ii)

3 Here, we require the property of Lin that all capacity sets are the same
if they share one element. It is clear that this requirement can be relaxed
at a cost of 2m , as mentioned in Sect. 4.1.
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we cannot use the fact that Lex(vnxt) = P is fixed anymore,
but still the same analysis holds with 2d replaced by 2p+d .

In general, however, the same bound is obtained for these
games. Now, combined with (6), these bounds give the
claimed result.

Proposition 1 As long as bad is not set in any of the games
2 and 3, both games are identical. Formally, we have

Pr
(
DG2 = 1

∣∣ DG2 sets ¬bad
)

= Pr
(
DG3 = 1

∣∣ DG3 sets ¬bad
)

.

Proof We need to prove that, until bad is set in either one
of the two games, the query outcomes in games 2 and 3 are
identically distributed. As both games employ the same right
oracle, a distinguisher can differentiate game 2 and 3 only
based on its answers obtained from the left oracle.

Consider an execution of game 2 or game 3. Recall that
Sim-π consists of a list of query pairs to the right oracle
and that (V, E) is the graph defined by these. Denote by
V = (VL ,VR) any view of a distinguisher on an execution
of the oracle (G2 or G3). Here, VL is a list of different query
pairs (Mi , hi ), and VR a list of query pairs for the right world.
In game 2, we have VR = Sim-π , and in game 3, we have
VR ⊆ Sim-π (by construction). Denote by (V , E) the sub-
graph of (V, E) generated by the query pairs in VR . We need
to prove that, given any view V , outcomes of new queries
to the left oracle are identically distributed in both games.
Formally, we need to prove that for any M ∈ Z

∗
2 and any

α ∈ Z
n
2, we have

Pr
(

L2(M) = α in G2

∣∣∣
∣

(VL ,VR); M �∈ dom(VL);
DG2 sets ¬bad

)

= Pr
(

L3(M) = α in G3

∣∣
∣∣

(VL ,VR); M �∈ dom(VL);
DG3 sets ¬bad

)

(7)

Define (M1, . . . , Mk) = pad(M) to be the padded message
of M . We will call the queried message M “determined” by

VR if there exists a path IV
M1−→ · · · Mk−→ vk in (V , E). We

will prove that if M is not determined by VR , both probabili-
ties in (7) equal 1/2n . On the other hand, if M is determined
by VR , both properties are still equal (although they may
naturally have a higher value).

M is not determined by VR . As the tree in (V , E) contains no
path labeled by M1 · · ·Mk , and moreover M �∈ dom(VL),
in both games the oracle L1 had never been queried on
M . Now, in game 2, L2 passes the query through to L1,
which will generate its answer uniformly at random from
Z

n
2 (line 201). In game 3, the for-loop of line 402 will

force the right oracle to grow the path IV
M1−→ · · · Mk−→ vk

to some node vk . By Lem. 1 and as M is not determined

by VR , at least the last edge vk−1
Mk−→ vk will be newly

added to the tree. By construction, the oracle R3 will gen-
erate the query answer via the else-clause of line 025. It
will query a new value to L1, which samples the value

h
$← Z

n
2. The oracle R3 will represent this value h in

an obfuscated way in a list of l values (P1, . . . , Pl) and
answer all future queries from L3 such that this oracle
will exactly extract the same values (P1, . . . , Pl). Conse-
quently, the value h outputted by L3 in line 409 exactly
equals the one randomly sampled;

M is determined by VR . By construction, the path

IV
M1−→ · · · vk−1

Mk−→ vk

is in the tree, for some vk−1, vk . But by Lem. 1, the
tree is only increased with one edge at a time, and as
a consequence, the edge (vk−1, vk) labeled by Mk must
have been added to the tree after M1 · · ·Mk−1 are known.
Additionally, the tree is never increased in inverse queries
(Lem. 1), and a determinatable path is never created in
queries for x ∈ � (Lem. 2). In other words, this specific
edge had been added in a forward query via the else-clause
of line 025. In particular, the oracle R1 already gener-
ated (P1, . . . , Pl) such that fin(P1, . . . , Pl) = L1(M).
(by Lem. 1, there are no collisions in the tree, and thus
the oracle indeed queried L1 on M). He additionally
defined the node vk as the next state in the extraction
phase corresponding to the above-described path. Addi-
tionally, he saved (vk; 1, P2, . . . , Pl) in �. By construc-
tion, this value vk satisfies Lex(vk) = P1. In particular,
VR and � jointly deterministically define (P1, . . . , Pl),
and therewith L1(M). However, the distinguisher does
not know �. Let i∗ ∈ {0, . . . , l − 1} be the maximal in-
dex such that vk, . . . , vk+i∗−1 ∈ dom(VR). Recall that
we have Pi = Lex(vk+i−1) and vk+i = Sim-π(vk+i−1),
for i = 1, . . . , l. Then, using this equation, the distin-
guisher can deterministically determine P1, . . . , Pi∗ from
VR . As Sim-π(vk+i∗) is unknown to the distinguisher,
and all other values in (VL ,VR) are unrelated,4 the distin-
guisher is oblivious to the values Pi∗+1, . . . , Pl such that
fin(P1, . . . , Pl) = L1(M). This analysis holds for both
games: in game 2, the oracle L2 will output this predeter-
mined h. In game 3, by construction of the if-clause of line
002, the oracle L3 will output the same predetermined h.

��

4 It may be the case that vk+i ∈ dom(VR) for some i > i∗, but this
only happens with negligible probability. Moreover, from the view of
the distinguisher, this edge is equally likely to be a part of the tail as
any other edge.

123



162 E. Andreeva et al.

Proposition 2 As long as bad is not set in any of the games 5
and 6 (Fig. 9), both games are statistically indistinguishable.
Formally, we have:
∣∣ Pr

(
DG5 = 1

∣∣ DG5 sets ¬bad
)

−Pr
(
DG6 = 1

∣∣ DG6 sets ¬bad
) ∣

∣∣∣≤
2r2

2s
.

Proof For the purpose of the proof, we construct two new
games 5a and 6a. Game 5a differs from game 5 in the sense
that line 028 is replaced by:

028a vnxt
$← L−1

ex (P1)

028b if vnxt ∈ dom(Sim-π) ∪ {x} ∪� :
028c bad′ ← true; GOTO 028a

and similar for line 004 of game 5. D does not see the dif-
ference, and hence Pr

(DG5 = 1
) = Pr

(DG5a = 1
)
. Game

6a differs from game 6 in the sense that line 027 is replaced
by:

027a vnxt
$← Z

s
2

027b if vnxt ∈ dom(Sim-π) ∪ {x} ∪� :
027c bad′ ← true; GOTO 027a

and similar for line 003 of game 6. Similarly as before,
Pr

(DG6 = 1
) = Pr

(DG6a = 1
)
, and the problem reduces to

bounding
∣
∣Pr

(DG5a = 1
)− Pr

(DG6a = 1
)∣∣. By the proper-

ties of Lex, both games distribute the (Pi , vnxt)’s identically
as long as bad and bad′ are not set. As a consequence, we
obtain:
∣∣ Pr

(
DG5a = 1

∣∣ DG5a sets ¬bad
)

−Pr
(
DG6a = 1

∣
∣ DG6a sets ¬bad

) ∣
∣

≤ Pr
(
DG5a sets bad′

)
+ Pr

(
DG6a sets bad′

)
.

Consider game 5a and assume DG5a did not set bad. Suppose
the right oracle has been queried j − 1 times and consider
the j th query x to the right oracle. As the simulator will
either execute line 004 or 028 (not both) and will set bad′
with a higher probability in 028c, it suffices to consider this
line only. Notice that we have |dom(Sim-π) ∪ {x} ∪ �| ≤
2 j − 1 (by Lem. 1). The probability that bad′ is set in 028c
equals the probability that a value vnxt, randomly sampled
from a set of size 2s (recall that line 028 is preceded by

P1
$← Z

p
2 and that Lex is balanced), hits a value in a set of

size at most 2 j − 1. As a consequence, bad′ is set in the
j th query with probability at most 2 j−1

2s . Summed over j ,

we obtain Pr
(DG5a sets bad′

) ≤ r2

2s . Similarly, we obtain

Pr
(DG6a sets bad′

) ≤ r2

2s . ��

Proposition 3 As long as bad is not set in any of the games
6 and 7 (Figs. 9 and 10), both games are statistically indis-
tinguishable. Formally, we have:
∣∣∣ Pr

(
DG6 = 1

∣∣ DG6 sets ¬bad
)

−Pr
(
DG7 = 1

∣∣ DG7 sets ¬bad
)∣∣∣ ≤ 2r2

2s
.

Proof The proof is similar to the one of Prop. 2, and we only
highlight the details. We adjust game 6 as in the proof of
Prop. 2. In game 7, we expand lines 003 and 026 similarly.
As long as bad and bad′ are not set in both games, the values
(y, vnxt) are generated identically, and no distinguisher can
see the difference. As a consequence, it remains to bound the
probability that bad′ is set in any of the two games. Straight-
forward computations now result in the required bound. ��
Lemma 1 For games Gi (i = 1, . . . , 8), the following holds.
Let (V, E) be the graph generated during the execution of
the games, and let (τ (V ), τ (E)) be the subgraph spanned
by the nodes in τ(V ). Let (τ (V ) j , τ (E) j ) be the subgraph
of (τ (V ), τ (E)) after the j th query. Let � j denote the set �

right after the j th query. Under the condition that in the exe-
cution of the game, bad is not set, the following properties
are satisfied for any j ≥ 0.

(i) We have |C(x) ∩ τ(V ) j | ≤ 1 for any x ∈ Z
s
2;

(ii) We have |τ(V ) j | ≤ j + 1 and |τ(E) j | ≤ j . In partic-
ular, τ(V ) is a tree in (V, E);

(iii) We have |� j | ≤ j .

Proof (only for game 7) First of all, (iii) is satisfied as any
query to the R5 adds at most one element to �. The proof
of the other properties is done by mathematical induction.
Before the first query to R5 is made, we have |τ(V )0| = 1
and |τ(E)0| = 0 and the claims are naturally satisfied. Now,
assume the claims hold after j − 1 queries and consider the
j th query. We distinguish between forward and inverse que-
ries.

Inverse query. On input of y, the simulator outputs some
value x . This query adds at most 2p+d edges to the graph,
leaving from the vertices in C(x). As the simulator did not
set bad in line 104, we have |C(x)∩ τ(V ) j−1| = 0, and as a
consequence, the size of the tree is not increased. The claims
now follow by the induction hypothesis.

Forward query. On input of x , the simulator outputs some
value y, and this is the only query pair added to Sim-π . This
query adds at most 2p+d edges to the graph, leaving from
the vertices in C(x). If |C(x)∩ τ(V ) j−1| = 0, the same hap-
pens as for inverse queries, and all properties are satisfied by
induction. Suppose C(x) ∩ τ(V ) j−1 �= ∅. By the induction
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hypothesis for (i), there is exactly one value v in this intersec-
tion, which by the properties of Lin uniquely defines M such

that an edge v
M−→ w to w = Lout(y, v, M) will be added.

Thus, this (x, y)-pair defines exactly one new edge in the tree
starting from a node in τ(V ) j−1. In terms of Fig. 10, either
the if-clause of line 008 or the else-clause of 018 will be
executed. In both cases, as bad is not set, y is generated in the
same manner, and for simplicity, we will analyze the run of
the if-clause of line 008 only. As bad is not set via line 010,
the end node w is no element of Vout ∪ C(x). In other words,
w has no outgoing edge in the updated graph. As a conse-
quence, τ(E) j = τ(E) j−1 ∪ {(v,w)}. Also as bad is not set
via line 011, the end node w is not yet in the tree τ(V ) j−1

and will henceforth be newly added. These two observations
prove property (ii). Remains to prove that the first property
is satisfied. To the contrary, suppose |C ∩ τ(V ) j | = 2 for
some capacity set C. This implies that v′, w ∈ C for some
v′ ∈ τ(V ) j−1, which contradicts with the fact that bad is not
set via line 011. ��

Lemma 2 Consider games 2 and 3 (Fig. 8) and assume that
bad is not set. A query R1(x), with x ∈ �, never increases
τ̄ (V ).

Proof First of all, if l = 1, lines 015 and 036 never increase
�, and the claim is naturally satisfied as � = ∅ throughout.
Otherwise, by virtue of the condition in Sect. 4.4, the last
block of a padded message always satisfies (2). We will show
that, if a query R1(x) for x ∈ � adds an edge to the tree, the
message block M that labels this path satisfies Lin(x, M) = x
or Lin(Lout(x, v′, M ′), M) = x for some (v′, M ′), therewith
proving the claim.

Inverse queries never increase the tree (Lem. 1), and we
will ignore them for simplicity. For readability, we will add a
subscripts to the values x and the tree. Denote by τ(V ) j the
tree in (V, E) after the j th query, for j = 1, . . . , r . Suppose
x j is the j th query to the right oracle, and suppose x j ∈ �

(notice that x j occurs exactly once in �, due to lines003 and
028). The node x j had been added to � in either line 015
or 036, in one of the previous queries, say the i th query, for
i < j . By lines 004 and 029, x j had been generated such
that C(x j )∩τ(V )i−1 = ∅. Due to the statement “

⋃
x∈� C(x)”

in lines 010, 022 and 033, it is assured that any new node
added to the tree in the (i+1)th up to the ( j−1)th query is not
in C(x j ). Formally, we have C(x j )∩

(
τ(V ) j−1\τ(V )i

) = ∅.
As moreover C(x j )∩τ(V )i−1 = ∅, this means that the query
x j to R1 increases τ(V ) only if Lout(yi , v

′, M ′) ∈ C(x j ) for
some v′, M ′ (coming from the i th execution). By the prop-
erties of Lin, these values uniquely define the message block
M that labels the new edge created by the query x j , namely:
M satisfies Lin(Lout(yi , v

′, M ′), M) = x j . However, by con-
struction (lines 006 or 031), we either have yi = x j or
yi = L−1

out[v′, M ′](x j ). Consequently, the message block vio-

lates the (2). Therefore, M cannot be the last block of any
padded message, and in particular τ̄ (V ) is not increased. ��

7 Concluding remarks

We now present some comments on the parazoa hash func-
tion design.

Ambiguity. The design as described in Sect. 4 allows for
ambiguous interpretations. In particular, it is straightforward
to construct schemes that can be described as a parazoa func-
tion in different ways:

– Let P be any s-bit permutation. For any parazoa design
with l = 1, the same design is described if Lin, Lout and
Lex are replaced by L′in = Lin ◦P−1, L′out = P ◦Lout and
L′ex = Lex ◦P−1 and with the initial chaining value rede-
fined as IV′ = P(IV). Although this modification does
not harm the security of the described parazoa design, the
obtained indifferentiability bound may differ. In particu-
lar, this modification may affect the value d (cf. Sect. 5);

– Consider a parazoa design where Lex(v) = chops−p(v),
and fin(P1, . . . , Pl) = P1‖ · · · ‖Pl . Then, the same de-
sign is described if these functions are replaced by
L′ex(v) = v and fin′(P1, . . . , Pl) = chops−p(P1)

‖ · · · ‖chops−p(Pl). However, our proof fails for the sec-
ond description, whereas this need not be the case for
the first description. This paradoxical ambiguity is be-
cause the parazoa design allows for any type of final-
ization function, and therefore, we cannot base security
of the parazoa function on specific properties of the
finalization. For instance, our scheme does not make
any distinction between fin′ and fin′′(P1, . . . , Pl) =
chopsl−pl(P1‖ · · · ‖Pl).

In general, different descriptions of a parazoa design may
result in different bound, and the best bound naturally applies.

Generalization of g. It is possible to consider the para-
zoa hash function design with a more complicated func-
tion g, namely to define it as g(vk+i−1) = (vk+i , Pi ),
where (x, Pi ) ← Min(vk+i−1), y ← π(x) and vk+i ←
Mout(y, vk+i−1) (see Fig. 11). It is straightforward to gen-
eralize the simulator and the proof to this case. The sim-
ulator of Fig. 7 is modified mainly in the lines 003 and
028 (one randomly generates xnxt as input to the next per-
mutation and generates vnxt randomly from M−1

in (xnxt, Pi+1)

rather than L−1
ex (Pi+1)) and in line006 (one deterministically

finds the previous state value vprev and computes y such that
vnxt = Mout(y, vprev)). The proof results in the same bound.
For this proof, we would require both Min and Mout to be

123



164 E. Andreeva et al.

Fig. 11 A generalized variant of the extraction function g

bijections on the state, and additionally that, restricted to the
extract Pi , the function Min is balanced.

Generalization to (multiple) different ideal primitives.
The description of the parazoa design is based on one per-
mutation π , which is utilized by both f and g. We notice
that in the design and the proof, π can easily be replaced by
a random function. Also, it is straightforward to consider two
different permutations π1, π2 (e.g., f is build on π1 and g
on π2). We notice that, in some cases, the usage of different
permutations may improve the indifferentiability bound. For
instance, if l = 1, and the last execution of f is defined to use
a different permutation, the variable d (cf. Sect. 5) becomes
superfluous.

Remarks on the applications. In Sect. 1.1, we sketched
several applications of parazoa functions, and we will briefly
elaborate on this. The original Sponge follows the para-
zoa design with m = p; if we relax this requirement to
allow for p �= m, the indifferentiability bound results in
O((K q)2/2s−max{p,m}) (d = max{m − p, 0}), where s is
the state size of the sponge. The indifferentiability bounds
for the lightweight hash functions Quark, PHOTON and
SPONGENT follow directly. The Grindahl hash function
(simplified, with zero final blank rounds) satisfies the par-
azoa function design with d = m, which is caused by the
fact that Lin inserts the message in the leftmost part, while
Lex outputs the rightmost part of the state. With respect to
NIST’s SHA-3 hash function competition, we can consider
the following second round candidates. CubeHash consists
of a permutation P executed 16 times iteratively, and the
result holds if P16 is assumed to be a random permutation.
In its final transformation, one bit in the chaining is swapped,
which results in d = 1. Hamsi [26] employs two different
permutations, one of which is exclusively used in the last
compression function. We note that, even though the permu-
tation and compression function input sizes of Hamsi differ,
the design can be described as a parazoa function: instead
of chopping half of the state at the end of a compression
function evaluation f and concatenating the remaining state
with the expanded message in the subsequent call to f , one
can just as well leave the state unchopped and overwrite the
redundant part of the state with the expanded message in the

next evaluation of f . A simplified version of Hamsi, where
each compression function employs one single permutation,
would be insecure as the attack of Sect. 3 would apply. How-
ever, it is fair to believe that for the original Hamsi, a better
bound can be obtained (see previous paragraph). The Fugue
design can be considered to have a final compression func-
tion execution based on a permutation π ′ differing from the
permutation π used in the iteration (for instance, for Fugue-
256, we have π = (SMIX ◦ CMIX ◦ ROR3)2 and π ′ = G
[19]). Still, the parazoa design can handle Fugue, and the re-
sults carry over. The Luffa compression function consists of
a linear function operating on the state, and multiple smaller
permutations executed in parallel. The results hold under the
assumption that this parallel execution behaves like one ran-
dom permutation.5 For both Fugue and Luffa, our result has
been confirmed by Bhattacharyya and Mandal [27].
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