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Abstract Since side channel analysis was introduced as
a method to recover secret information from an otherwise
secure cryptosystem, many countermeasures have been pro-
posed to prevent leakage from secure devices. Among these
countermeasures is side channel atomicity that makes oper-
ations indistinguishable using side channel analysis. In this
paper, we present practical results of an attack on RSA sig-
nature generation, protected in this manner, based on the
expected difference in Hamming weight between the result of
a multiplication and a squaring operation. This work presents
the first attack that we are aware of where template analysis
can be used without requiring an open device to character-
ize an implementation of a given cryptographic algorithm.
Moreover, an attacker does not need to know the plaintexts
being operated on and, therefore, blinding and padding coun-
termeasures applied to the plaintext do not hinder the attack
in anyway.
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1 Introduction

Side channel analysis of cryptographic devices can poten-
tially allow the recovery of secret information by an attacker,
even when the underlying algorithms are mathematically
secure. An attacker would seek to identify a suitable side
channel, such as timing [21], power [22], and electromagnetic
[14] leakage. Many attacks using these side channels have
been described in the literature such as differential [7,22] and
template [9] attacks, as well as countermeasures [10,12,20]
intended to thwart them.

In [2], a method of distinguishing between multiplication
and squaring operations using acquired traces of power con-
sumption or electromagnetic emanations was demonstrated.
In this paper, we extend that work by using template attacks
to distinguish between these operations to propose a practical
attack. The attack functions with no knowledge of the input
to the algorithm, other than that it is random and uniformly
distributed. Therefore, the attack is unaffected by padding
and/or blinding applied to the input message.

Typically, generating templates to attack a device requires
an open device where cryptographic keys are known or can
be controlled. The device is then characterized and templates
are generated. These templates are then used to derive a cryp-
tographic key on an identical device with very few traces. In
this paper, we present an attack where a device with a known
key can be used to generate templates. Where a verification
function is available that uses the same subfunctions as a
signature generation function, this function could be used to
generate templates under the assumption that the public key
is known.

Previous work applying templates to public key prim-
itives, such as that described in [18,24], has targeted
the precise Hamming weight of intermediate values. The
work described in this paper targets the distribution of the
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Hamming weight of intermediate values but differs in that the
value itself is unknown even when generating the templates.
The templates are generated so as to be able to distinguish
whether an operation is a squaring operation or multiplica-
tion, rather than directly recovering an intermediate value.

The paper is organized as follows: in Sect. 2, the side
channel atomic RSA algorithm is described as the target of
this work. Further implementation details are given with a
description of the Montgomery multiplication algorithm. An
overview of template attacks is also given in this section.
In Sect. 2.4, the previous work dealing with the the Ham-
ming weight difference between multiplications and squaring
operations is revisited. Both simulated and practical results of
our attack using templates are provided in Sect. 3. In Sect. 4,
we discuss how the attack would change given a device that
leaks information corresponding to the Hamming distance
model and demonstrate that the power consumption of the
ARM7 used in Sect. 3.2 shows an example of both models.
The potential application of our attack to implementations
secured with various other countermeasures is described in
Sect. 5. Finally, we draw our conclusions in Sect. 6.

2 Preliminaries

2.1 RSA

The principal operation of the RSA [32] signature scheme
is a modular exponentiation in (Z/NZ)∗. That is, a signa-
ture s is generated from a message m by computing s =
μ(m)d mod N , where d is the private key, N is the product
of two large primes, and μ is an appropriate padding function.
This signature can be verified by checking whether μ(m) is
equal to sv mod n. We define d ≡ v−1 (mod φ(N )) where
φ is Euler’s Totient function.

One of the most widely known algorithms for implement-
ing an exponentiation is the square-and-multiply algorithm,
where an exponent e is read from left-to-right bit-by-bit.
Starting with an accumulator set to one, a squaring opera-
tion is performed if a bit is equal to zero, and a squaring
operation followed by a multiplication (with the value being
raised to e) if a bit is equal to one.

It has been shown that bit values of an exponent can be
distinguished by observing a suitable side channel, such as
the execution time [21], power consumption [22], or electro-
magnetic emanations [14,30]. This is because an attacker can
potentially derive the difference between a multiplication and
a squaring operation if, for example, a different number of
registers in a hardware implementation is used (which would
lead to the operations having different power signatures), or
they require a different amount of time to compute.

The simplest countermeasure is to always perform the
multiplication and squaring operations [12]; however, this

incurs a significant performance penalty. Another option is
to remove the difference between a squaring operation and a
multiplication. This means that, to square a value x , the cal-
culation of x2 mod N is replaced with x ·x mod N . This idea
is put forward in [10], where two instructions are defined as
side channel equivalent if they are indistinguishable through
side channel analysis, and algorithms are termed side channel
atomic if the algorithm can be broken down into indistin-
guishable blocks. This principle, applied to the square-and-
multiply algorithm, is demonstrated in Algorithm 1.

Algorithm 1: Side channel atomic square and multiply
algorithm

Input: m, x < m, e ≥ 1, � the binary length of e (i.e.,
2�−1 ≤ e < 2�)

Output: A0 = xe mod m

A0 ← 1; A1 ← x ; i ← �− 2; k ← 01
while i ≥ 0 do2

A0 ← A0 · Ak mod m3
k ← k ⊕ bit(e, i)4
i ← i −¬k5

end6

return A07

This algorithm would prevent an attacker from being able
to distinguish a multiplication from a squaring operation by
simply observing the difference in a side channel, since an
optimized squaring operation is not used.

2.2 Montgomery multiplication

When implementing a modular exponentiation, a commonly
used multiplication algorithm is Montgomery multiplication
[26], since the modular reduction is interleaved with the mul-
tiplication. The result of a modular multiplication using this
algorithm is not the product of x and y modulo m. The algo-
rithm actually returns x y R−1 mod m, where R−1 mod m
is introduced by the algorithm (R = bn , where the modu-
lus consists of n words of size b), shown in Algorithm 2.
In order to use Montgomery multiplication, x and y need to
be converted to their Montgomery representation, i.e., x̃ ←
x R mod m and ỹ ← y R mod m. Then, when x̃ and ỹ are
multiplied together using Montgomery multiplication, the
result is x y R mod m. This algorithm requires 2n (n + 1)

single-precision multiplications [25].
Algorithm 2 has been demonstrated to be vulnerable to

side channel because of the final conditional subtraction that
takes place if A ≥ M . This conditional subtraction affects
the entire execution time of an exponentiation leading to an
attack based on total time taken to compute an exponentia-
tion [37]. It has also been shown that individual subtractions
will be visible in the power consumption, or electromagnetic
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Algorithm 2: Montgomery multiplication
Input: m = (mn−1, . . . , m1, m0)b, x = (xn−1, . . . , x1, x0)b,

y = (yn−1, . . . , y1, y0)b with
0 ≤ x, y < m, R = bn, gcd(m, b) = 1 and
m′ = −m−1 mod b.

Output: A← x y R−1 mod m.

A← 01
for i = 0 to n − 1 do2

ui ← (a0 + xi y0)m′ mod b3
A← (A + xi y + ui m)/b4

end5

if A ≥ m then A← A − m6

return A7

emanations, leading to more efficient attacks [35,36]. The
simplest countermeasure would be to always conduct the
subtraction and take the result as required. However, this
approach is problematic since the bit that is used to make
this choice may be visible in a side channel. Moreover, this
could potentially be attacked by a fault attack, where a fault
in a subtraction that does not affect the result of an exponen-
tiation identifies a dummy subtraction [39]. More effective
countermeasures involve increasing the number of iterations
of the main loop so that the final subtraction becomes unnec-
essary [17,34]. However, these attacks and countermeasures
do not have any impact on the attack described below and
can be considered beyond the scope of this paper.

2.3 Template attacks

Template attacks, introduced by Chari et al. [9], are a power-
ful form of side channel attack that allow secret information
to be extracted from a device with very few power traces.
They work on the premise that an attacker has an identical
device to that which is being attacked under his control, such
that he can choose, or knows, all the inputs to the device (this
includes any cryptographic keys). This allows an attacker to
characterize the power consumption of the device prior to an
attack. A template attack is, therefore, a two stage attack, as
outlined in [13]. The first stage is template generation, where
a device under the attacker’s control is used to characterize
the power consumption. This is followed by template clas-
sification where, using the templates generated previously,
information is extracted from the device under attack.

In the attack presented in this paper, we can consider a
more relaxed model than that proposed by Chari et al. since
we do not require a device where cryptographic keys need
be modified to generate templates. An attacker merely needs
to be able to execute a multiplication or squaring operation
where the input is known to be random. Assuming that an
attacker wishes to recover a RSA private key, this can be
achieved by using an identical device where the private key

is known. Another approach would be to use the verification
function in the same device assuming that the public key is
known.

2.3.1 Template generation

Templates consist of estimates for the mean vector mi and
noise covariance matrix Ci , as defined in Eqs. 1 and 2 where
i ∈ {1, . . . , n} and n signifies the number of different possi-
ble values or operations that an attacker wishes to analyze.
These values are each constructed from a large number of
traces, t j where j ∈ {1, . . . , k}, and k is typically in the
region of 1,000. However, the actual value of k will vary
from one device to another and is also dependent on the size
of the bus in the device under attack, as well as the operation
being performed.

mi = 1

k

k
∑

j=1

ti, j (1)

Here ti, j represents the j th acquisition of the i th possible
value.

Ci = 1

k − 1

k
∑

j=1

(

ti, j −mi
) (

ti, j −mi
)T (2)

When recording power traces, a high sampling rate is often
used, to capture small fluctuations in power consumption.
This leads to the length of a trace being very large (e.g., for the
1,024-bit modular multiplication traces on the ARM7 used
in Sect. 3.2, a sampling rate of 100 MS/s led to a trace length
of over a million points). It is computationally unfeasible
to construct templates including all of these points. Meth-
ods are available to reduce redundant information in a trace,
such as integration within a clock cycle or extracting the max-
imum value per clock cycle [23]. These methods significantly
reduce processing time by removing redundancy within the
trace without a significant loss in the information that leaks
from the trace. However, for the construction of templates,
further reduction is required to extract the features that the
templates will be based on. One option is to sum the abso-
lute differences of the mean traces and select the required
number of highest points, as described in [31]. It is typically
only necessary to retain one point per clock cycle since the
inclusion of other points does not add any further informa-
tion. Note that certain trace reduction methods already have
this effect.

2.3.2 Template classification

To extract key information, an attack trace t is required, which
is a power trace of the operation that is being targeted. The
trace must first be reduced in size and features selected, i.e.,
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extracting the same information that was used when generat-
ing templates. For each of the n templates, the probability of
the trace corresponding to a given template can be calculated
using Eq. 3:

Pr (t | mi , Ci ) = 1
√

(2π)n |Ci |
e−

1
2 (t−mi )C

−1
i (t−mi )

T
(3)

The probability of each of the n possible templates can
then be calculated using Bayes’ theorem, which is given in
Eq. 4:

Pr
(

k j | t
) = Pr

(

t | k j
)

Pr
(

k j
)

∑K
l=1 Pr (t | kl) Pr (kl)

(4)

The success of the attack is increased if a set of D power
traces, T, for a constant secret key is available. In this sce-
nario, Bayes’ theorem applied iteratively can be used, thereby
increasing the power of the attack, as shown in [29]. Numer-
ical errors during the classification due to the exponentia-
tion in Eq. 3 can be avoided by taking the logarithm of the
probability template as described in [23].

2.4 The difference in hamming weight

It was observed in [2] that the expected Hamming weight
of the result of a multiplication is different than the result
of a squaring operation. The power consumption, and
electromagnetic emanations, of a microprocessor is often
proportional to the Hamming weight of the values being
manipulated [7,14]. The difference in the expected Ham-
ming weight of the result of a multiplication and a squaring
operation can be observed by measuring these side channels
[2]. We can note that this observation applies to a single-
word operation and that this difference will be present in any
word-by-word multiplication algorithm.

This observation assumes that the power consumption,
or electromagnetic emanations, of the device being attacked
is proportional to the Hamming weight of the values being
manipulated, referred to as the Hamming weight model.
However, many devices also conform to the Hamming dis-
tance model [7], i.e., the power consumption, or electromag-
netic emanations, of the device being attacked is proportional
to the number of bits that change at a given point in time. This
is of particular relevance to CMOS logic since a gate will
consume little power unless it changes state. However, other
features in a microprocessor can correspond to the Hamming
weight model. In this paper, we assume that the target device
corresponds to the Hamming weight model (we discuss this
topic in more depth in Sect. 4).

If we assume that a multiplication takes place between
two random uniformly distributed κ-bit values, the probabil-
ity of a given bit being equal to zero, or one, can be computed
by observing the distribution of each bit over all the possi-
ble multiplicands. If κ = 16, for example, this can readily be
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Fig. 1 The probability that each bit of the result of a multiplication and
a squaring operation is equal to one with random 16-bit multiplicands
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Fig. 2 Difference between mean traces for multiplication and squaring
operations

computed, as is shown in Fig. 1. A significant difference in
the probability of the bits of the least significant byte being
set to one can be observed. This difference will be present in
each of the single-precision multiplications that are required
to compute a Montgomery multiplication.

In order to demonstrate this difference, simulated traces
of a 1,024-bit Montgomery multiplication were generated.
Algorithm 2 was implemented with a radix value, b, of
32-bits, leading the number of words, n, required also being
32. Therefore, 2n (n + 1) = 2,112 single-precision multi-
plications were present for each trace. The Hamming weight
of each intermediate multiplication value was then recorded
to generate the simulated power values. Figure 2 shows the
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difference in the mean power consumption for 1,000 multipli-
cation and squaring operations. There are 33 distinct peaks
clearly visible in this trace. Comparing with Algorithm 2,
these peaks correspond to the single-precision multiplica-
tions xi y j , where i = j . There are 33 distinct peaks since
there are two such multiplications when i = 0. It can also
be seen where mean power traces for the same operation are
subtracted and no peaks are present. There are also a number
of smaller peaks present at the beginning when computing
u0m since u0 =

(

x0 y0m′
)

mod b.
This property leads to the attack outlined in [2], where if

many traces for a constant exponent are available, bits can
be recovered by subtracting the mean of adjacent operations.
However, attacks based on this observation require a large
number of acquisitions in order to be able to observe this
difference to extract key bits and are not practicable.

3 Application of templates

In this section, we demonstrate that the expected Hamming
weight can be used to create templates to distinguish between
a multiplication and a squaring operation with a high proba-
bility using a single trace. We further discuss how this could
be applied to a side channel atomic exponentiation algorithm
to determine an RSA private key. This is demonstrated using
simulated traces, and then its practical relevance is shown
using traces acquired by measuring the instantaneous power
consumption of an ARM7 microprocessor.

As stated previously, we assume that the power consump-
tion is proportional to the proportional to the Hamming
weight of the values being manipulated at a given point
in time.

3.1 Attack using simulated traces

To illustrate our attack, we generated simulated traces for 20
thousand 1,024-bit Montgomery multiplication operations in
the same manner as used for Fig. 2. Two sets of 10 thousand
traces were acquired, representing multiplications and squar-
ing operations using uniformly distributed random inputs.
The first 5 thousand traces of each set were designated the
template generation traces, and the last 5 thousand were des-
ignated attack traces. Using the peaks present in the differ-
ence of means trace, as illustrated in Fig. 2, templates were
built for the two operations. The peaks are chosen as the
points of interest to build the templates from as they indicate
the points where the expected Hamming weight of a multi-
plication and squaring operation differ and affect the power
consumption.

To determine whether an operation is a multiplication or
squaring, each trace was classified using both multiplication
and squaring templates. Since we are considering a binary

classification system, a threshold was determined where any
probability greater than the threshold indicates the template
for the correct operation has been used. Conversely, this
means that anything less than the threshold is the other oper-
ation. Classification for both templates must still be com-
puted to allow the application of Bayes theorem as outlined
in Sect. 2.3.2. To calculate the threshold, each trace used to
generate the templates was classified individually and the
midpoint between the mean of the resultant probabilities
selected.

Figure 3 shows the classification success rate of 1,000
attack traces as a function of the number of traces used to gen-
erate the templates, i.e., the percentage of individual traces
that were successfully classified. It can be seen that as the
number of traces used to generate the templates increases,
the attack traces are more accurately classified, giving an
expected success rate of 82% for a given trace when 5,000
traces are used to generate the templates. This is due to a more
accurate estimation for the mean and covariance matrix of the
templates.

If an exponent is constant, as would be the case with a
naïve implementation of RSA, multiple traces with differ-
ent inputs can be used in an amplified template attack, as
described in [29]. By multiplying the probabilities for con-
secutive traces, the correct operation can be identified with
a high probability after very few traces, as illustrated in the
example in Fig. 4. In this example, using templates built from
5,000 traces, 1,000 sets of five traces are classified, and the
success rate for each set is plotted taking consecutive traces
into account (as opposed to the success rate for each indi-
vidual trace in the last example). The success rate increases
as more traces are taken into account, correctly classifying
the operation 94% of the time if five traces from the same
exponent are available.
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Fig. 3 Success rate of template attack—1,024-bit simulated traces
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Fig. 4 Success rate of amplified template attack—1,024-bit simulated
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Fig. 5 Success rate of template attack—4,096-bit simulated traces

We can note that there will be more information to exploit
as the bit length of the targeted operations increases, since
there will be more single-precision multiplications required
to compute each operation. This observation was also uti-
lized in the attack presented in [35]. In the case of a 4,096-bit
multiplication operation, there are four times as many infor-
mation bearing single-precision multiplications to compute
than in a 1,024-bit operation. This allows us to more accu-
rately classify an operation using a single trace. To verify
this, we generated simulated traces as before, except for with
4,096-bit inputs. Figure 5 shows us that the success rate has
increased from 82 to 95%. Therefore, for example, in the case
of a blinded implementation of the RSA signature scheme
with a key length equal to (or greater than) 4,096-bits, one
can deduce the operations from a single trace using templates
with a high probability of success.

3.2 Attack using acquired traces

To verify the practical implications of our attack, we also
implemented a 1,024-bit Montgomery Mulitplication on an
ARM7 microprocessor [3], which has a 32-bit architecture
leading to the same number of single-precision multiplica-
tions that leak useful information as the simulated case. For
simplicity, the Montgomery multiplication algorithm was
implemented with a redundant subtraction since this oper-
ation will have no effect on the analysis described in this
section. The traces were acquired with a sampling rate of
100 Ms/s, while the ARM7 microprocessor was clocked with
a 7.37 MHz clock. To reduce the effect of noise, the traces
were filtered using a 10 MHz lowpass filter. To reduce the
computational complexity of the resultant attack, the maxi-
mum point within each clock cycle was extracted to shorten
the trace length, as described in [23]. This also has the effect
of synchronizing the traces where the offset is less than the
width of a clock cycle. Using the same inputs as before,
10,000 traces for each operation were acquired and split
evenly into generation and attack traces.

Figure 6 shows the difference of means trace between
the operations, the crosses indicating the points retained to
generate the templates. Here, two points per multiplication
are retained per single-precision multiplication. The lower
plot shows the detail of a single peak from the upper plot.
We can see that there are two peaks where the power differ-
ence between a multiplication and squaring operation can be
observed. Therefore more points are available to build our
templates with than in the simulated case.

The effect of the extra peaks available to generate the
templates can be seen in Fig. 7, where the success rate is
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higher with actual power traces than in the simulated case.
The attacker is also not limited to retaining a single point for
each peak. In this scenario, the highest success rate of over
90% comes when four points per single-precision multiplica-
tion are used to build templates. Retaining further points leads
to the templates modeling the generation set of traces more
accurately, but not the general output of the multiplication
operation as a whole, which is what is required to success-
fully classify the attack traces. The success rate of an ampli-
fied template attack also shows a corresponding increase with
the ARM7 traces, giving a success rate of 97% when tem-
plates are generated with 5,000 traces for each operation, and
five traces are available with a constant exponent.

4 Power consumption model

In Sect. 3, we assume that the power consumption is propor-
tional to the Hamming weight of the data being manipulated
at a given point in time, referred to as the Hamming weight
model. In this section, we show that this is the case for an
ARM7 microprocessor and demonstrate that some instruc-
tions leak information consistent with the Hamming weight
model and other instructions leak information consistent with
the Hamming distance model. That is, the power consump-
tion is proportional to the number of bits that change state
from clock cycle to another. We then describe how the attack
described above would be affected if all of the information
available was consistent with the Hamming distance model.

4.1 Side channel leakage on an ARM7 microprocessor

The multiplier on an ARM7 microprocessor is typically
implemented so that it computes the multiplication of two

32-bit words in 2–5 clock cycles. The number of clock cycles
required depends on the bit length of one of the multiplicands,
that is the multiplication will terminate early if a number of
the most significant bytes of one multiplicand are set to zero.
The precise algorithm is defined in Algorithm 3.

Algorithm 3: A functional description of ARM7TDMI
multiplication

Input: The 32-bit integers x and y.
Output: The 64-bit result t = x · y.

t0 ← 01
for i = 0 up to 3 step 1 do2

t1 ← x · y7...03
t0 ← t0 + (t1 
 8i)4
y ← y � 85
if y = 0 then return t06

end7

Several attacks are described in [16] that demonstrate
that naïvely using this multiplier to implement cryptographic
algorithms will provide an attacker with an exploitable vul-
nerability. That is, the number of clock cycles taken by each
multiplication can be seen in the power consumption and
used to deduce information on the values being operated on.

This means that the multiplier on an ARM7 microproces-
sor has to be used such that it will perform a multiplication
in a constant amount of time irrespective of the bit length of
the multiplicands. An example of such an algorithm is shown
in Algorithm 4 [16]. For the implementation of our attack,
described in Sect. 3.2, this algorithm was used to provide an
implementation with a minimum level of security. That is,
an implementation that is not vulnerable to attack by simply
inspecting a small number of power traces.

Algorithm 4: A constant-time algorithm to replace
ARM7 multiplication

Input: The 32-bit integers x and y.
Output: The 64-bit result r = x · y.

γ ← (y ∧ 00FFFFFF(16))+ 01000000(16)1
τ ← (y ∧ FF000000(16))� 242
r ← x · γ3
r ← r + ((x · τ)
 24)4
r ← r − (x 
 24)5
return r6

The side channel leakage that enables the attack described
in Sect. 3 can be characterized by observing the correlation
between a series of traces of the Hamming weight of the
result of a multiplication and the power consumption. This
was proposed as an attack but also will validate a hypothe-
sized model [7,22]. This is illustrated in Fig. 8 that shows a
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Fig. 8 The lower trace shows the power consumption over time in
millivolts. A multiplication is visible as a significant dip in the power
consumption towards the beginning of the trace. The upper middle
(resp. top) trace shows the correlation with the Hamming weight of the

least (resp. most) significant word of the output of a multiplication at
each point in time. The lower middle trace shows the difference in mean
power consumption caused by computing a multiplication or a squaring
operation

series of traces to demonstrate that the expected difference in
the power consumption, observed in Sect. 3.2, is caused by
the power consumption being consistent with the Hamming
weight model.

In Fig. 8, the bottom trace shows the power consumption
during and after the computation of a multiplication. In this
case, the multiplication is the computation of r ← x · γ in
line 3 of Algorithm 4 and is visible as a significant dip in the
power consumption toward the beginning of the trace. The
upper middle (respectively, top) trace shows the correlation
with the Hamming weight of the least (respectively, most)
significant word of the output of a multiplication at each
point in time. The lower middle trace shows the difference
of two mean traces, as shown in Fig. 6, one of which is the
power consumption trace when the multiplication computed
is a squaring operation and the other is a multiplication.

Two peaks are visible in the difference of means that cor-
respond to the correlation with the least significant word of
the result of the multiplication. We can note that no differ-
ence is visible during the computation of the multiplication
or the subsequent manipulation of the most significant word
of the result of the multiplication. The observed difference
is therefore present in the manipulation of the least signifi-
cant word after the multiplication has taken place, rather than
during the computation of the multiplication.

A similar attack, also based on the difference between
mean power consumption traces for multiplication and

squaring operations but caused by a different effect, is
described by Akishita and Takagi [1], who analyzed the
switching in a hardware multiplier unit implemented in
CMOS circuitry. These units are typically used as a hardware
coprocessor for performing group exponentiation algorithms
in resource constrained devices such as smart cards. As noted
in Sect. 2.4, data dependent power consumption in CMOS
circuits occurs when logic gates switch state. Looking at a
hardware multiplier, the overall transition probabilities for
the gates are different depending on whether the input val-
ues are equal or not. As in the attack described in [2], this is
caused by the difference in the probability distribution of the
output of the multiplication. In this paper, we target the dif-
ference in power consumption caused by the distribution of
the output directly. The attack in [1] targets the difference in
power consumption while calculating this output. Hardware
co-processors in CMOS logic often follow the Hamming dis-
tance model so the power consumption at the output register
might not be directly related to the expected distribution.
We discuss this further below.

4.2 Defining an attack using the hamming distance model

As described above, the ARM7 microprocessor used in the
implementation of our attack has side channel leakage that is
consistent with the Hamming weight model. However, hard-
ware implementations and some microprocessor functions
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are consistent with the Hamming distance model. That is,
the number of transitions that occur at a given point in time
from some previous state. When considering the Hamming
distance model, there are two different scenarios that we can
consider, these are:

4.2.1 Constant previous state

If the previous state is a constant value, the probability of a
bit changing state because of the result of a multiplication
will be modified. The probabilities shown in Fig. 1 can be
considered to represent the probabilities for the Hamming
distance model where the previous state is equal to zero. If
some bits of a previous state are set to one, then the proba-
bilities corresponding to that bit are inverted. A difference in
Hamming weight will remain that should be exploitable by
the attack described in this paper. However, the size of the
difference will depend on the value of the previous state and
will have an effect on the success rate of the attack.

4.2.2 Variable previous state

If the previous state is unpredictable, the attack becomes
more problematic. An attacker will have to determine the dis-
tribution of the Hamming weight of the previous state. Then
an attacker would need to determine the difference between
this distribution and the distribution of the Hamming weight
of the result of a multiplication and squaring operation.

If the previous state has a definite distribution, an attack
may be possible if the expected difference is large enough.
However, an evaluation of this topic is beyond the scope of
this paper and is left as open problem.

5 Application to secure implementations

When implementing a cryptographic algorithm on a device
that is potentially vulnerable to side channel analysis,
one would typically include specific countermeasures, in
conjunction with side channel atomicity, to prevent an
attacker being able to derive information on cryptographic
keys. When implementing RSA, this would typically mean
implementing the blinding countermeasures described by
Coron [12].

These countermeasures modify the exponentiation algo-
rithm such that the values being operated on at a given point
in time cannot be predicted by an attacker. Given that both
the side channel leakage models discussed above are based
on the number of bits being manipulated at a given point in
time, these countermeasures randomize the bitwise represen-
tation of all the variables being manipulated. For instance,
to implement a function to compute a RSA signature s =
μ(m)d mod N , as defined in Sect. 2.1, each variable would

be modified with a random value as shown in Algorithm 5.
This is referred to as blinding since an attacker is unable
to determine the values being manipulated at a given point
in time.

Algorithm 5: Blinded exponentiation
Input: m, d, N , μ a padding function, φ Euler’s Totient function

and non-zero random values ri , for i ∈ {1, 2, 3}.
Output: s = μ(m)d mod N .

m′ ← μ(m)+ r1 N1
N ′ ← r2 N2
d ′ ← r3 φ(N )+ d3

s′ ← μ(m)d ′ mod N ′4

return s′ mod N5

The addition of r1 N to μ(m) provides a redundant rep-
resentation of μ(m) modulo N and is referred to a message
blinding. Given that μ(m) + r1 N ≡ μ(m) (mod N ) and
this will remain true for all the intermediate states during
the execution of the algorithm, the computation should not
take place in (Z/NZ)∗ since the blinding would be removed.
The bit length of the modulus is therefore increased by mul-
tiplying it by a random value so that the computation takes
place in (Z/r2 NZ)∗. The values held in memory at a given
point during the computation of the exponentiation cannot be
predicted without knowing these random values. However,
the values held in memory at a given point in time would
represent the same value in (Z/NZ)∗ for a fixed exponent.

The bitwise representation of the exponent is also mod-
ified by replacing the exponent d with r3 φ(N ) + d, where
φ is Euler’s Totient function and is referred to as exponent
blinding. Any value raised to a multiple of φ(N ) will be equal
to itself in (Z/NZ)∗, i.e., it is an identity function. Adding a
multiple of φ(N ) to the exponent changes the bitwise repre-
sentation of the exponent without changing the result of its
use in (Z/NZ)∗.

One would typically choose the values of ri , for i ∈
{1, 2, 3}, to be at least 32 bits. As noted in [33], one would
also want the bit length of r2 to be longer than the longest run
of zeros in the bitwise representation of φ(N ) so that all the
bits of d are blinded. Furthermore, some side channel attacks
could potentially derive an exponent if the bit length of these
random values is too small [11]. The discussion of this topic
is beyond the scope of this paper, and we will assume that
each random value has the same bit length as one word of
the processor computing the algorithm.

5.1 Effect on the attack

When implementing the attack described in Sect. 3, the use
of exponent blinding changes the required strategy, while the
use of message blinding aids an attacker.
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The use of message blinding randomizes the bitwise rep-
resentation of the values being operated on by the exponent.
This aids an attacker since the values being operated on will
be random and uniformly distributed and any values set to a
constant will be randomized, e.g., the X509 and PKCS pad-
ding schemes set large parts of their output bytes to fixed
values. The increase in the bit length of the modulus will
also mean that it will require an extra word in memory. This
also means that the Montgomery multiplication (see Algo-
rithm 2) will require one more iteration of the main loop, pro-
viding one more single-precision multiplication that could be
analyzed by an attacker (i.e., one more single-precision mul-
tiplication that will either be a multiplication or a squar-
ing operation). This will provide another point in the traces
that can be included in the template attack. As illustrated in
Sect. 3, the more single-precision multiplications available
to build templates with, the higher the success rate of the
attack.

The use of exponent blinding randomizes the bit wise
representation of the exponent and therefore randomizes the
sequence of multiplication and squaring operations that are
computed. An attacker would be unable to take several acqui-
sitions to improve the quality of classification since the oper-
ation being computed at a given point in time during the
execution of the algorithm will vary from instantiation to
another. This means that an attacker has to determine whether
an operation is a multiplication or a squaring operation from
one acquisition. Moreover, an attacker also needs to acquire
a single trace that includes the power consumption during
an entire exponentiation to attempt to derive the exponent
used, and therefore a value equivalent to the exponent d in
(Z/NZ)∗. Deriving partial information from two traces will
provide partial information on two values that are equivalent
to the exponent d in (Z/NZ)∗, which will not be sufficient
to derive d.

The results from Sect. 3 are directly applicable to a secure
implementation, but only if we add the constraint that an
attacker can use one target trace. In Sect. 3.2 an attacker
could expect to correctly identify 90% of the bits of an expo-
nent used in an ARM implementation of Algorithm 5.

The incorrect classification of operations can be corrected
to a certain extent, since the Hamming weight of the entire
exponent can be computed by observing the total number of
operations, and that a multiplication will always be preceded,
and followed by, a squaring operation (see Algorithm 1). One
approach to conducting this analysis was proposed by Green
et al. [15] using hidden Markov models.

6 Conclusion

In this paper, we demonstrate that the principle of side chan-
nel atomicity is not valid simply because the same code is

executed for a given function for all possible inputs. This
was done by characterizing the difference in expected Ham-
ming weight of the result of a multiplication and squar-
ing operation given random uniformly distributed inputs to
generate templates, based on previous descriptions of this
difference [2]. These templates are generated by considering
single-precision multiplications rather than multiplications
between multi-precision values.

These templates can be used to characterize multiplica-
tions and squaring operations to determine a private expo-
nent when an RSA signature is generated using Algorithm 1.
Previous work in this area has concentrated on building tem-
plates on intermediate values (e.g., such as observing where
the input value is reused in a left-to-right exponentiation algo-
rithm) rather than the expected distribution of the result of a
given function [18,24].

The advantage of this work over previous work based on
the model originally proposed by Chari et al. [9] is that an
attacker does not need an open identical device to conduct the
attack. That is, an attacker does not need a device where all
the input and cryptographic keys can be changed to arbitrary
values. An attacker can use an identical device with a known
key, or a verification functions that uses the same operations.
Furthermore, the values being operated on do not need to
be known, an attacker just needs to know that the values are
random.

The proposed attack can be used to derive the private key
used in RSA, where one needs to obtain the least significant
quarter of an exponent to be able to derive the entire exponent
[6]. This naturally extends to the computation of a RSA sig-
nature using the Chinese remainder theorem (CRT). Again,
one needs to obtain a quarter of the least significant bits of
the private key modulo one of the two prime factors of the
modulus N (i.e., one of the two exponents used in this algo-
rithm) [5]. The proposed method can also be used to derive a
blinded exponent with a certain probability; however, there
are currently no results detailing how many bits one would
need to identify (i.e., how efficient an attack would be).

The work presented in this paper also applies to elliptic
curve scalar multiplication over large prime fields. If strongly
unified formulae (e.g., these have been defined for Edward’s
curves [4] and Weierstraß curves [8]) are used then an algo-
rithm equivalent to Algorithm 1 can be defined. An attacker
could potentially distinguish an addition from a doubling
operation using the attack described above. While the bit
length of the prime field using in elliptic curve cryptogra-
phy is significantly smaller than the bit length of an RSA
modulus, there are numerous operations in the prime field
for each operation, i.e., the addition and doubling operation,
that could be exploited.

As noted in [24], this type of attack naturally extends
to attacking implementations of the digital signature algo-
rithm (DSA), and its elliptic curve equivalent (ECDSA) [38].
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In each case, a known value is raised to the power of a ran-
dom value as part of the signature generation. If some bits
of the random value can be determined in one, or several,
instantiations of the signature scheme the private key can
be derived [27,28]. The work described in this paper should
allow an attacker to derive sufficient bits of this random value
to break a naïve implementation of these algorithms with a
reasonable probability.

The template attack described in this paper will, counter-
intuitively, become more effective with longer key lengths
due to the extra single-precision multiplications required, as
previously noted in [35] for similar reasons. This gives a
strong argument for using regular exponentiation algorithms
(see [19] for a summary of this topic) rather than side channel
atomic algorithms.
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