
Int. J. Inf. Secur. (2010) 9:209–236
DOI 10.1007/s10207-010-0104-3

REGULAR CONTRIBUTION

A delegation model for extended RBAC

Meriam Ben-Ghorbel-Talbi · Frédéric Cuppens ·
Nora Cuppens-Boulahia · Adel Bouhoula

Published online: 1 May 2010
© Springer-Verlag 2010

Abstract In the field of access control, delegation is an
important aspect that is considered part of the administration
mechanism. Thus, a comprehensive access control model
must provide a flexible administration model to manage
delegation and revocation. Unfortunately, to our best knowl-
edge, there is no complete model for describing all delega-
tion requirements for role-based access control. Therefore,
proposed models are often extended to support new delega-
tion or revocation characteristics, which is a complex task to
manage and requires the redefinition of these models. More-
over, since delegation is modelled separately from adminis-
tration, this requires the specification of a separate security
policy to deal with delegation. In this paper, we describe
a new delegation approach for extended role-based access
control models. We show that our approach is flexible and is
sufficient to deal with administration and delegation require-
ments in a homogeneous unified framework. Moreover, it
provides means to express various delegation and revocation
dimensions in a simple manner.

M. Ben-Ghorbel-Talbi (B) · F. Cuppens · N. Cuppens-Boulahia
Institut TELECOM/TELECOM Bretagne, LUSSI, 2 Rue de la
Châtaigneraie, CS 17607, 35576 Cesson Sévigné, Cedex, France
e-mail: meriam.benghorbel@telecom-bretagne.eu

F. Cuppens
e-mail: frederic.cuppens@telecom-bretagne.eu

N. Cuppens-Boulahia
e-mail: nora.cuppens@telecom-bretagne.eu

A. Bouhoula
Sup’Com Tunis, Digital Security Research Unit,
Route de Raoued Km 3.5, 2083 Ariana, Tunisia
e-mail: bouhoula@planet.tn

Keywords Administration · Delegation · Revocation ·
Role-Based Access Control · OrBAC model

1 Introduction

Delegation is the process whereby a user without any spe-
cific administrative prerogatives obtains the ability to grant
some authorizations. In the field of access control, it is impor-
tant to have a system that allows delegation in order to sim-
plify the administrator task and to manage collaborative work
securely, especially with the increase in shared information
and distributed systems.

The access control system must be secure and flexible.
Secure to guarantee that the security policy is not violated by
delegation, and flexible to support delegation requirements,
such as delegation of rights and obligations, temporary
delegation, multiple and multi-step delegation, transfer,
revocation. Moreover, the delegation process must be sim-
ple to manage, and we argue that it is important to deal with
administration and delegation in a single framework.

In the literature, there are many works related to delega-
tion in access control models. These works show that delega-
tion is a complex problem to solve and is generally modelled
separately from other administration requirements. The rea-
son is that proposed models are generally based on the RBAC
formalism [26] (Role-Based Access Control), which is not
expressive enough to deal with all delegation requirements.
Therefore, it is necessary to extend the RBAC model by add-
ing new components, such as new types of roles, permis-
sions and relationships. This is a complex task to manage,
and to the best of our knowledge, there is no comprehen-
sive model for describing all delegation requirements. Thus,
delegation models themselves are extended to support new
delegation characteristics such as [6] and [11], which are

123

210 M. Ben-Ghorbel-Talbi et al.

proposed to deal with the agent-based delegation and transfer,
respectively.

In our earlier papers [8,9], we have showed that it is pos-
sible to express administration requirements, including del-
egation and revocation requirements, in a single model. In
this paper, we aim at proposing a comprehensive framework
to deal with delegation and revocation in role-based access
control. Our work is based on an extended RBAC model that
takes its inspiration in the OrBAC [1] (Organization-based
Access Control) formalism. This model gives means to spec-
ify multi-granular and contextual authorizations [15], which
facilitate the modelling of delegation and revocation char-
acteristics such as temporary delegation, partial delegation,
multiple and multi-step delegation, propagation, dominance,
grant dependency.

Our model explicitly includes the concept of context
which actually provides our model with high flexibility and
expressiveness. Namely, by contrast to other models, we do
not deal with each delegation and revocation level separately.
Instead, using contextual permissions the administrator and
also users may define complex conditions to deal with dele-
gation and revocation features and to restrict the delegation
scope.

At first, the administrator manages the right to delegate,
transfer and revoke using “classic” privileges (i.e. it Permis-
sion and it Prohibition) and may specify constraints using
contexts. These constraints may concern the grantor (i.e. the
user who delegates the right) or the grantee (i.e. the user to
which the right is delegated) characteristics, such as role,
location, affiliation and previous actions, but also the dele-
gated right (i.e. target, privilege) and the system attributes
like time and circumstance. This kind of conditions is not
supported by other models, since most of them only support
constraints on the grantee’s role. Some works are proposed
to deal with new delegation and revocation constraints such
as the grantee’s attributes and the time. But these models lack
flexibility, since each constraint level is defined separately.

Secondly, since the grantor delegates privileges (i.e.
permissions and roles) just like the administrator assigns
privileges to users, then he/she may also specify contextual
delegation permissions. This feature provides high flexibil-
ity, since we can deal with several delegation features such
as temporary, multiple and multi-step delegation only using
contexts. Moreover, in our model, we consider that tempo-
rary delegation does not only concern time like in existing
models, that associate a timeout to each delegation. We may
also specify conditions on the grantee’s location, actions, cir-
cumstances, etc. Hence, we extend the notion of temporary
delegation to contextual delegation.

In addition, our model is based on an object-oriented
approach, thus we do not manipulate privileges directly (i.e.
it Permission and it Prohibition), but we use objects having a
specific semantic. Each object corresponds to an assignment

or a delegation of a privilege (e.g. a user to a role, a role or
a user to a permission). This is very useful to manage the
revocation of delegation, namely cascade and strong revoca-
tion (i.e. the revocation of the whole delegation chain and the
revocation of all other delegations associated with the same
grantee, respectively). In fact, this provides means to deal
with the delegation chain in a simple manner, and there is no
need to use a history relationship to record delegations.

This paper is organized as follows. In Sect. 2, we start
with basic concepts of our extended RBAC model and its
associated administration model. In Sect. 3, we present our
delegation model. In Sect. 4, we give an overview of how
revocation is managed in our model. We discuss in Sect. 5
the complexity and the decidability of our approach. Then,
discussion and related work are given in Sect. 6. Finally,
concluding remarks are made in Sect. 7.

2 Extended RBAC model

Our model is based on an extended RBAC model that aims to
specify the security policy at the abstract level that is indepen-
dently from the implementation of this policy. Thus, instead
of modelling the policy by using the concrete concepts of
subject, action and object, we suggest reasoning with the
roles that subjects, but also actions and objects play in the
organization. The role of a subject is simply called a role,
whereas the role of an action is called activity, and the role
of an object is called view. Moreover, this model explicitly
includes the concept of context which is viewed as an extra
condition that must be satisfied to activate a given security
rule.

Our model takes its inspiration in the OrBAC formalism
[1]. The central entity in OrBAC is the entity organization.
Intuitively, an organization is any entity that is responsible
for managing a security policy. But, in this paper, we assume
that the policy applies to a single organization, and thus we
omit the Org entity in the following.

Our model is compatible with a stratified Datalog with
negation program [30]. Stratifying a Datalog program con-
sists in ordering rules so that if a rule contains a negative
literal then the rule that defines this literal is computed first.
A stratified Datalog program is computable in polynomial
time (see Sect. 5). To express rules and facts, we shall actu-
ally use a prolog-like notation. Terms starting with a capital
letter, such as Subject , correspond to variables and terms
starting with a lower case letter, such as peter , correspond
to constants. A fact, such as:

Parent (peter, john).

says that peter is a parent of john, and a rule such as:

Grand_parent (X, Z):- Parent (X, Y), Parent (Y, Z).

123

A delegation model for extended RBAC 211

says that X is a grand-parent of Z if there is a subject Y such
that X is a parent of Y and Y is a parent of Z .

Before presenting our delegation model, we briefly recall,
in this section, the main components of our extended RBAC
model.

2.1 Basic predicates

There are seven basic sets of entities: S (a set of subjects),
A (a set of actions), O (a set of objects), R (a set of roles), A
(a set of activities), V (a set of views) and C (a set of contexts).
In the following, we present the basic built-in predicates:

– Empower is a predicate over domains SxR. If s is a sub-
ject and r is a role, then Empower(s, r) means that subject
s is empowered in role r .

– Use is a predicate over domains OxV . If o is an object
and v is a view, then Use(o, v) means that object o is used
in view v.

– Consider is a predicate over domains AxA . If α is an
action and a is an activity, then Consider(α, a) means
that action α implements activity a.

– Hold is a predicate over domains SxAxOxC . If s is a
subject, α is an action, o is an object and c is a context,
then Hold(s, α, o, c) means that context c holds between
subject s, action α and object o.

– Permission and Prohibition are predicates over domains
RsxAaxVoxC , where Rs = R ∪ S, Aa = A ∪ A and
Vo = V ∪ O . More precisely, if g is a role or a subject,
t is a view or an object and p is an activity or an action,
then Permission(g, p, t, c) (resp. Prohibition(g, p, t,c))
means that grantee g is granted permission (resp. prohi-
bition) to perform privilege p on target t in context c.
These predicates enable to specify permissions and pro-
hibitions at the abstract level, which contains roles, activ-
ities and views.

– Is_permitted and Is_prohibited are predicates over
domains SxAxO . If s is a subject, α is an action and
o is an object, then Is_permitted(s, α, o) (resp. Is_prohib-
ited(s, α, o)) means that subject s is permitted (resp. is
prohibited) to perform action α on object o.
These predicates enable to specify permissions and prohi-
bitions at the concrete level, which is based on subjects,
actions and objects. A concrete permission or prohibi-
tion is respectively derived from an abstract permission
or prohibition when the associated context holds.

2.2 Hierarchy and inheritance

In our model, it is suggested to define hierarchies [16] over
roles but also activities and views and to associate permission
inheritance with these different hierarchies. This is modelled
as follows:

– Sub_role, is a partial order relation over domains RxR.
If R1 and R2 are roles, then Sub_role(R1, R2) means that
role R1 is a sub-role (also called senior role) of role R2.
Permissions and prohibitions are inherited through the
role hierarchy. For instance, inheritance of permissions is
modelled by the following rule:
RuleSubR

Permission(R1, A, V, C):-
Permission(R2, A, V, C), Sub_role(R1, R2).

– Sub_view, is a relation over domains V x V . If V1 and
V2 are views, then Sub_view(V1, V2) means that V1 is a
sub-view of V2.
RuleSubV

Permission(R, A, V1, C):-
Permission(R, A, V2, C), Sub_view(V1, V2).

– Sub_activi t y, is a relation over domains A x A. If A1

and A2 are activities, then Sub_activi t y(A1, A2) means
that A1 is a sub-activity of A2.
RuleSubA

Permission(R, A1, V, C):-
Permission(R, A2, V, C), Sub_activi t y(A1, A2).

– Sub_context , is a relation over domains C x C . If C1

and C2 are contexts, then Sub_context (C1, C2) means
that C1 is a sub-context of C2. This means that C1 always
holds between a subject, an action and an object when C2

holds for the same subject, action and object.

How to manage inheritance of privileges through these
different hierarchies is further explained in [16].

2.3 Global constraints

To specify global constraint in our model, we use the built-in
predicate Error :

– Error is a predicate over the null domain, i.e. a predicate
of cardinality zero.

Using the Error predicate, a global constraint corre-
sponds to a logical rule whose conclusion is Error . If it
is actually possible to derive Error from some global con-
straints, then the security policy is not consistent.

To model separation of entity as global constraints, there
are the following built-in predicates:

– Separated_role is a predicate over domains RxR. If R1

and R2 are roles, then Separated_role(R1, R2) means

123

212 M. Ben-Ghorbel-Talbi et al.

that role R1 is separated from role R2. We assume that
Separated_role is an irreflexive and symmetrical rela-
tion between roles.
Using this Separated_role predicate, we can then
express the following global constraint:
RuleCstR

Error():-
Separated_role(R1, R2),

Empower(S, R1), Empower(S, R2).

This constraint says that subject S cannot be empowered
in both roles R1 and R2.
Like permissions and prohibitions, constraints are also
inherited through the role hierarchy. This is modelled by
the following rule:
RuleSubCstR

Separated_role(R1, R3):-
Separated_role(R1, R2), Sub_role(R3, R2).

– Similar predicates Separated_view(V1, V2), Separated_
activity (A1, A2) and Separated_context(C1, C2) are
introduced to specify the separation of views, activities
and contexts, respectively.

2.4 Conflict management

Since in our model it is possible to specify both permissions
and prohibitions, some conflicts may occur. We actually man-
age conflicts at the abstract level and provide sufficient con-
ditions to guarantee that the absence of conflict at the abstract
level also guarantees the absence of conflict at the concrete
level.

Our approach [13] is based on defining conflict resolution
strategy (CRS) that is used to assign priority levels to per-
missions or prohibitions. Then, predicates Permission(g, p,
t, c) and Prohibition(g, p, t, c) are replaced by: Permission(g,
p, t, c, l) and Prohibition (g, p, t, c, l), where l is the priority
level.

Two different situations may arise when using a CRS:
(1) Redundant rules may exist and (2) potential conflict may
arise. Redundant rules management is based on the notion of
exception to a general authorization. This means that if rule
Ri is a strict exception to rule R j , then Ri should be assigned
higher priority than rule R j , else Ri never applies. To pre-
vent redundant rules, we consider that Ri (ri , ai , vi , ci) is a
strict exception to R j (r j , a j , v j , c j) if the following condi-
tion holds:

sub_role(Ri , R j), sub_activi t y(Ai , A j),

sub_view(Vi , Vj), sub_context (Ci , C j),

¬(Ri = R j , Ai = A j , Vi = Vj , Ci = C j).

Our approach to eliminate potential conflict consists in
the detection of unrelated rules, by specifying separation
constraints. For instance, if a separation constraint exists
between roles r1 and r2, then a subject cannot be empow-
ered into both roles r1 and r2. As a consequence, if a given
permission is assigned to role r1 and a given prohibition is
assigned to role r2, then these permission and prohibition
cannot generate a conflict. Similarly, we can specify sep-
aration constraints between views, activities and contexts.
We say that a permission and a prohibition are unrelated
when such a separation constraint exists. It is then suffi-
cient to assign priorities between every pair of permission
and prohibition that are not unrelated to eliminate every
potential conflict in the security policy. In the remainder of
this paper, when there is no ambiguity, we omit the priority
level attribute in the specification of permission or prohibi-
tion.

2.5 The administration model

Our model is self-administrated and unlike ARBAC [17],
the administration model suggested for RBAC, we do not
use specific relationships such as can-assign and can-as-
signp. That is the concepts used to define an administra-
tion policy are similar to the ones presented in the previous
section.

Our administration model is based on an object-oriented
approach, thus we do not manipulate privileges directly
(i.e. Permission and Prohibi tion), but we use objects
having a specific semantic and belonging to specific views,
called administrative views. Inserting an object in these views
will enable to assign permissions, prohibitions or roles to
users.

Before presenting our administration model, we give in
the following the basic concepts of object and view.

The Notion of Object The administration model follows
an object-oriented approach. Thus, every entity corresponds
to an object (see Fig. 1). Each object has an identifier that
uniquely identifies the object and a set of attributes to describe
the object.

Following a logical formalism, attributes are modelled as
binary predicates. For instance, fact Age(s1, 20). says that
the object whose identifier is s1 has an attribute age whose
value is 20. Objects belong to classes. This is modelled using
a binary predicate Class. For instance, the fact Class(s1, stu-
dent). says that s1belongs to the student class.

The Notion of View The concept of View is different from
the concept of Class. A class is a taxonomical concept used
to structure the object description, whereas a view is an orga-
nizational concept used to structure the policy specification.

123

A delegation model for extended RBAC 213

O_Entity-
Assignment

O_Entity-
Hierarchy

Object

O_Entities

O_Licence
Activity

Hierarchy

Context
Hierarchy

Role
Hierarchy

View
Hierarchy

Role
Assignment

Activity
Assignment

Subject

Action

Context Activity

View

Role

User Organization User
Role

Organization
Role

Fig. 1 Administration model

In our model, objets are used into views. This is modelled
by a binary predicate Use. For instance,

Use(c1, course).

says that object c1 is used in view course.
A view may be defined by enumerating facts specifying

which objects are used in this view or by a logical rule called
a view definition. For instance:

Use(C, graduate_course):-
Use(C, course), level(C, graduate).

This rule says that object C is used in view graduate_
course if C is used in view course and the attribute level of
C is equal to graduate.

Thus, a view definition corresponds to a condition which
is used to automatically derive that some objects belong to a
given view.

When a subject creates an object obj, then a view v must
be specified. If the security policy permits that this subject
creates this object in this view, then the following fact is
inserted: Use(obj, v).

Managing administrative privileges

The approach in the administration model [15] is to define
administration functions by considering different adminis-
trative views. Objects belonging to these views have specific
semantics; More precisely, we shall consider in the following
two administrative views called role_assignment and licence
views. They are respectively interpreted as an assignment of
a user to a role in the role_assignment view and a permission
(or a prohibition) to a role or to a user in the licence view.

Intuitively, inserting an object in these views will enable
an authorized user to assign a user to a role, assign a permis-
sion to a role or assign a permission to a user, respectively.
Conversely, deleting an object from these views will enable
a user to perform a revocation. Defining the administration
functions then correspond to specifying which role is per-
mitted to have an access to the administrative views. So that
only valid licences can be created.

Licence view This view is used to specify and manage the
security policy. Objects belonging to the licence view have
the following attributes: Grantee: subject to which the licence
is granted, Privilege: action permitted by the licence, Target:
object to which the licence grants an access and Context:
specific conditions that must be satisfied to use the licence.

The existence of a valid licence is interpreted as a permis-
sion by the following rule:
RuleL A

Permission(Sub, Act, Obj, Context):-
Use(L , licence), Grantee(L , Sub),

Privilege(L , Act), T arget (L , Obj),
Context (L , Context).

In addition, we define the following RuleL A′ for the sub-
views of view licence. This means that objects inserted in the
sub-view of licence are also interpreted as permissions.

RuleL A′

Use(L , licence):-
Use(L , Sub_licence), Sub_view(Sub_licence, licence).

Contextual licence As we have mentioned, the licence
class is associated with an attribute called context. Contexts
are used to specify conditions, for example working hours,
during vacation or urgency.

Conditions that must be satisfied to derive that a context is
active are modelled by a logical rule called context definition.
For instance, let us consider the following rule:

Hold(Sub, Act, Obj, during_vacation):-
I n_vacation(Sub).

This context definition simply says that a subject executes
an action on an object in context during_vacation if this sub-
ject is in vacation.

In [12], five kinds of contexts have been defined:

– the Temporal context that depends on the time at which
the subject is requesting for an access to the system,

– the Spatial context that depends on the subject location,
– the User-declared context that depends on the subject

objective (or purpose),

123

214 M. Ben-Ghorbel-Talbi et al.

– the Prerequisite context that depends on characteristics
that join the subject, the action and the object.

– the Provisional context that depends on previous actions
the subject has performed in the system.

We can also combine these elementary contexts to define
new composed contexts by using conjunction, disjunction
and negation operators: &,⊕ and .̄ This means that if c1

and c2 are two contexts, then c1&c2 is a conjunctive context,
c1 ⊕ c2 is a disjunctive context and c̄1 is a negative context.

In the following, we shall also consider a context called
nominal that is always active for any subject, action and
object.

We need another rule to derive actual permission for some
subject, action and object when the context is active. This is
defined by the following logical rule:

RuleC

I s_permitted(Sub, Act, Obj):-
Permission(Sub, Act, Obj, Context),
Hold(Sub, Act, Obj, Context).

Role_assignment view This view is defined to manage the
assignment of subjects to roles. Objects belonging to this
view are associated with the following attributes: Assignee:
subject to which the role is assigned and Assignment: role
assigned by the role assignment. Following is the rule to
interpret objects of view role_assignment:

RuleR A

Empower(Subject, Role):-
Use(R A, role_assignment), Assignee(R A, Subject),

Assignment (R A, Role).

Similarly to view licence, we define the following rule to
interpret objects of the sub-views of role_assignment.

RuleR A′

Use(R A, role_assignment):-
Use(R A, Sub_role_assignment),

Sub_view(Sub_role_assignment, role_assignment).

Multi-granular licence The attribute grantee of a licence
can be a subject or a role, the attribute privilege can be an
action or an activity, and the attribute target can be an object
or a view. If the grantee is a role, we need an additional rule
to derive that a given permission is granted to a subject, when
a permission is granted to a role and this subject is assigned
to this role:

Delegation views

Administration views

Licence
Role

Assignment

Licence
Delegation

Licence
Transfer

Grant
Option

Role Delegation

Role Transfer

Fig. 2 Delegation views

RuleMg

Permission(Subj, Act, Obj, Context):-
Permission(R, Act, Obj, Context),
Use(R, role), Empower(Sub, R).

There are two other similar rules to interpret licences when
the attribute privilege is an activity and the attribute target is
a view, respectively.

3 The delegation model

3.1 Introduction

We present in this section our delegation model. Our main
contribution is to propose a self-administrated model that is
flexible enough to manage different delegation characteris-
tics and simple to use and to administrate.

Our model is an extension of the administration model
defined in Sect. 2.5. Note that we do not define new com-
ponents, we have simply to consider new administrative
views, which we call delegation views (see Fig. 2). To
manage the delegation of rights (permissions or roles),
we define sub-views of licence and role_assignment views
called licence_delegation and role_delegation, respectively.
To manage the transfer of rights (i.e. to delegate permissions
or roles and the grantor loses the delegated permissions or
roles during the delegation), we define sub-views of licence_
delegation and role_delegation called licence_transfer and
role_transfer, respectively. Finally, to manage the delega-
tion of the delegation rights (i.e. to delegate the right to
delegate permissions or roles), we define a sub-view of
licence_delegation called grant_option. We discuss hereaf-
ter some assumptions before presenting the structure of these
delegation views.

123

A delegation model for extended RBAC 215

We consider that delegation can be classified as the delega-
tion of right or the delegation of obligation. Right delegation
allows a user, called the grantor, to delegate his/her permis-
sions (partial delegation) or roles (total delegation) to another
user called the grantee. So the grantee, which is either a sub-
ject or a role, is allowed to perform the delegated permissions
or roles on behalf of the grantor.

The delegation of obligation allows a grantor to delegate
his/her obligations to a grantee with his/her agreement, in the
case of bilateral agreement delegation, or without [10]. So,
the grantee must perform the delegated obligations on behalf
of the grantor. In the remainder of this paper, we only focus
on the delegation of right, further works will be dedicated to
the delegation of obligations.

The grantor or some specific authorized users must have
the possibility to revoke the delegation. This revocation
can be performed manually or automatically, with simple
or cascade propagation and with strong or weak domi-
nance. In this paper, we give an overview on how we man-
age the right to revoke the delegation and how we deal
with revocation schemes such as propagation and domi-
nance.

When revocation is handled automatically, the delegation
is called temporary. In this case, the grantor specifies the
context in which this delegation applies.

The delegation can also be redelegated: the grantee can
be allowed to redelegate a given delegation to another user
(in the case of multi-step delegation). In this situation, the
grantor must have the possibility to control the chain of del-
egation by specifying the depth of this chain.

The delegation action can be performed either by the
grantor (self-acted) or by a third party (agent acted), this
means that the grantor delegates the administration of
his/her right to another user. So, this user can delegate
the right of the grantor (a permission or a role) on his/her
behalf. We consider this situation as a particular case of
multi-step delegation when the delegation depth is equal
to 1.

Upon delegation, the grantor can maintain the permission
or the role he/she has delegated, or loses it for the dura-
tion of the delegation. This kind of delegation is called non-
monotonic or also transfer.

We consider that it is important to give the possibility to
the administrator to manage the delegation policy with a sim-
ple manner. Since, one of the main delegation objectives is
to simplify the administrator task.

Managing the delegation policy consists in specifying
which principal (role or subject) is permitted to dele-
gate his/her rights (permissions or roles) and in which
context. The context is an important aspect to consider,
because it allows the definition of many different condi-
tions useful in delegation, such as temporal or prerequisite
conditions.

3.2 Motivating example

We give in this section a motivating example to be used
throughout the paper to illustrate the various aspects of our
approach.

Let us consider an organization such as TELECOM Bre-
tagne with the following entities and security rules:

Roles and subjects

– Director: Bob,
– Head of department: Alex,
– Professor: Paul and Mary,
– Assistant: Bill.

Views

– Stud_mark: contains student’s marks files,
– Courses_files: contains courses files,
– Timetable: contains the timetable database.

Security rules

Permission(prof essor, manage, stud_mark, own_students).

Permission(prof essor, manage, courses_ f iles, own_courses).

Permission(head_dep, manage, t imetable, nominal).

where contexts own_students and own_courses are pro-
visional contexts meaning that professors are only allowed
to manage the marks and the courses of students that they
teach, respectively.

In this organization, users may need to delegate some of
their authorities to other users. For instance, a professor may
need the help of an assistant to achieve a given work on
his/her behalf or to perform a collaborative work. The head
of department may need the help of a professor to replace
him/her during his/her absence. We consider in the follow-
ing some delegation situations:

1. A professor can delegate or transfer the proof-reading
of his/her student’s examinations to his/her assistant.

2. A professor can delegate or transfer his/her teaching
task to an assistant.

3. The head of department can delegate or transfer his/her
role to another professor during his/her absence.

4. The director can delegate on behalf of the head of
department his/her role (or some head_dep’s permis-
sions) to a professor (e.g. when the head of department
is absent).

5. If a professor empowered in role head_dep by del-
egation is no longer able to perform this task, then
he/she can delegate, in his/her turn, this role to another
professor.

123

216 M. Ben-Ghorbel-Talbi et al.

We also consider some delegation constraints to control
these delegation situations:

6. A professor is allowed to delegate the proof-reading of
his/her student’s examinations only to (a) his/her assis-
tant and (b) to one assistant at a given time.

7. The head of department is allowed to delegate his/her
role only (a) to a professor and (b) to one professor at
a given time.

8. A professor delegates the proof-reading of his/her
student’s examinations only during the examination
period.

9. A professor allows an assistant to proof-read his/her
student’s examinations only in his/her office.

10. Alex may delegate his role and permissions only to
Mary.
Similarly, users may revoke their delegated permissions
or roles according to their needs, and the administrator
must be able to specify revocation constraints to control
the right to revoke. We give hereafter some revocation
constraints:

11. Users are allowed to revoke their own delegations.
12. The head of department can revoke professors empow-

ered in his/her role by delegation, even if he/she is not
the grantor of this delegation (e.g the grantor is the
director or another professor).

13. The director is allowed to revoke users from their del-
egated roles.

14. The director is allowed to revoke role transfer only if
the grantor of this transfer is not in vacation.

These different situations and conditions will be used in
the following sections to further explain our approach and
to show how we are dealing with delegation requirements in
our model.

3.3 Delegation views

In this section, we present the structure of the delegation
views and further analyze the administration functions asso-
ciated with the management of these views.

3.3.1 The view licence_delegation

We define a delegation view called licence_delegation to
manage the delegation of permissions. As shown in Fig. 2,
this is a sub-view of view licence, thus objects belonging to
it inherit the attributes and the semantic of licence objects.

These objects have also an additional attribute called
Grantor: subject who is delegating the licence. This attri-
bute is important to revoke the delegation and to recover the
grantor privileges when the transfer is revoked.

As we have mentioned earlier, the grantee can be a subject
or a role, the privilege can be an action or an activity, and the

target can be an object or a view. This is an important aspect
of our model which gives means to specify multi-granular
privileges. So, the grantor can delegate his/her permission to
a grantee which is either a subject or a role. This means that
our model supports User-to-User (U2U) and User-to-Role
(U2R) delegation.

According to RuleL A′ , inserting an object in the licence_
delegation view will enable an authorized grantor to delegate
a permission to a grantee. This means that this view allows
partial delegation.

Example 1 Collaboration of work Let us consider the first
delegation situation of our example, when professor Paul
needs the help of his assistant Bill to proof-read his stu-
dent’s examination. The role assistant is generally not per-
mitted to have an access to the student’s marks. Then, Paul
should delegate to Bill a permission to access his students
marks. For this purpose, Paul should create the following
object:

Grantor: Paul,
Grantee: Bill,
Target: Paul_stud_mark,
Privilege: Access,
Context: Nominal.

Then, he should insert this object in the licence_ delega-
tion view. According to RuleL A′ , the following permission
is created:

Permission(bill, access, paul_stud_mark, nominal).

We assume that paul_stud_mark is a sub-view of stud_
mark containing Paul’s student files.

Obviously, Paul must have a permission to delegate to
Bill the right to access his student’s marks. This kind of per-
missions is specified by the administrator in the delegation
policy. We present in the following how to manage the partial
delegation.

Managing partial delegation To manage the delegation
policy, the administrator must define which grantor Gr (role
or subject) has an access to the licence_delegation view and
in which context C . This is defined by facts having the fol-
lowing form:

Permission(Gr, delegate, licence_delegation, C). (1)

Permission(Gr, delegate, sub_licence_delegation, C).

(2)

where sub_licence_delegation is a sub-view of licence_ del-
egation defined as follows:

123

A delegation model for extended RBAC 217

Use(L , sub_licence_delegation):-
Use(L , licence_delegation),

Licence_Condition.

Licence_Condition corresponds to a set of conditions on the
licence attributes, i.e. the grantor, the grantee, the target, the
privilege and/or the context.

Fact (1) means that a grantor Gr is allowed to insert an
object in the view licence_delegation when context C holds.

Fact (2) means that a grantor Gr is allowed to insert an
object in the view sub_licence_delegation when context C
holds and only if this object corresponds to the definition of
this view: the inserted object L must satisfy Licence_ Con-
dition (an example will be given hereafter).

Note that thanks to the use of views the administrator can
express a large number of conditions useful in delegation.
These conditions consist in prerequisite conditions regard-
ing the grantor, the grantee, the target, the privilege or/and
the context. This provides higher expressivity than other del-
egation models, where the prerequisite conditions only con-
cern the role of the grantee (such as in RBDM [4], PBDM
[33], RDM2000 [32]), or his/her attributes (such as in ABDM
[31]).

Besides these conditions, the administrator can express
extra conditions thanks to the use of contexts. Indeed,
OrBAC provides different types of contexts such as tem-
poral, spatial, prerequisite and provisional. More details will
be given in Sect. 3.4.

Example 2 To illustrate the management of the licence_dele-
gation view, let us consider a situation where the adminis-
trator wants to allow all users to delegate their permissions.
This is defined using the permission:

Permission(de f ault_Role, delegate, licence_delegation,

valid_licence_grantor).

where default_Role is a role in which all authorized users are
empowered and context valid_licence_grantor is defined as
follows:

Hold(U, delegate, L , valid_licence_grantor):-
Use(L , licence_delegation), T arget (L , O),

Privilege(L , A), Context (L , C),

Permission(U, A, O, C).

This context means that any user is allowed to delegate a
permission if this user has this permission.

The administrator can also express prerequisite conditions
using views. For instance, in Example 1, we have said that
Paul must have a permission to delegate a right to Bill. For
this purpose, the administrator should give a permission to
role Professor to delegate an access to his student’s marks.
He may specify a prerequisite condition like the following
rule:

Permission(prof essor, delegate, stud_mark_deleg,

valid_licence_grantor).

where sub-view stud_mark_deleg is defined as follows:

Use(L , stud_mark_deleg):-
Use(L , licence_delegation), Grantee(L , G R),

T arget (L , V), Empower(G R, teacher),

Use(V, stud_mark).

This means that role Professor is allowed to insert an
object in view stud_mark_deleg, and this object must sat-
isfy the definition of this view: the grantee must be a teacher
and the target must be a student’s marks file. This permission
is activated only if the context valid_licence_grantor holds,
thus a professor is only allowed to delegate access to his/her
student’s marks.

As discussed in this section, view licence_delegation and
its sub-views are dedicated to the partial delegation (i.e. per-
mission delegation). In the following Sect. 3.3.2, we present
another view to deal with total delegation.

3.3.2 The view role_delegation

This is a sub-view of role_assignment, thus objects belong-
ing to this view inherits the semantic and the attributes of
view role_assignment. But also have an additional attribute
called Grantor: the subject who is delegating the role.

According to RuleR A′ inserting an object in this view will
enable an authorized grantor to delegate a role to a grantee.

Example 3 Backup of role Let us consider the third situation
of our example and assume that Alex the head of department
will be absent for several days, and he wants to delegate his
role during his absence to professor Mary. For this purpose,
he should create the following object:

Grantor: Alex,
Assignee: Mary,
Assignment: Head_dep.

Then, he should insert this object in the role_delegation
view. According to RuleR A′ , the following fact is created:

Empower(mary, head_dep).

Managing total delegation

Similar to the partial delegation, to manage total delega-
tion the administrator must define which grantor Gr (role
or subject) has an access, in this case, to the role_delegation
view and in which conditions. This is defined by facts having

123

218 M. Ben-Ghorbel-Talbi et al.

the following forms:

Permission(Gr, delegate, role_delegation, C). (1)

Permission(Gr, delegate, sub_role_delegation, C).

(2)

where sub_role_delegation is a sub-view of role_delegation
defined as follows:

Use(RD, sub_role_delegation):-
Use(RD, role_delegation), Role_Condition.

Role_Condition corresponds to a set of conditions on the
object attributes, i.e. the grantor, the assignee and/or the
assignment.

Fact (1) means that a grantor Gr is allowed to insert an
object in the role_delegation view when context C holds.

Fact (2) means that a grantor Gr is allowed to insert an
object in the sub_role_delegation view when context C holds
and only if this object satisfies Role_Condition.

Example 4 To explain the management of the role_dele-
gation view, let us consider that the administrator wants to
allow all users to delegate their roles. This can be defined
using the prerequisite context valid_role_grantor as follows:

Permission(de f ault_Role, delegate, role_delegation,

valid_role_grantor).

where context valid_role_grantor is defined as follows:

Hold(U, delegate, RD, valid_role_grantor):-
Use(RD, role_delegation), Grantor(RD, U),

Assignment (RD, R), Empower(U, R).

This context means that any user empowered in a role R
is allowed to delegate R.

As explained in the management of the partial delegation,
the administrator can also specify conditions thanks to the
use of sub-views. For instance, to specify the delegation con-
straint 7-a described in our example, the administrator must
give the role Head of department the permission to delegate
his/her role as follows:

Permission(head_dep, delegate, head_dep_deleg, nominal).

Use(RD, head_dep_deleg):-
Use(RD, role_delegation), Assignee(RD, Gr),

Assignment (RD, head_dep),

Empower(Gr, prof essor).

This means that role Head of department is allowed to
delegate his/her role only to a professor.

The two views described up to now are used in the mono-
tonic delegation case, this means that upon delegation the
grantor maintains the permission or the role he/she has

delegated. In the following, we define two delegation views
to deal with non-monotonic delegation, i.e. the transfer of
rights (permissions and roles).

3.3.3 The view licence_transfer

We define the delegation view called licence_transfer to
transfer a permission to a user. This view is a sub-view of the
licence_delegation view. Thus, inserting an object in licence_
transfer will create a new permission to the grantee according
to RuleL A′ , similar to view licence_delegation.

In addition, the grantor will lose the permission he/she
has delegated during the delegation. In our approach, this
permission is not physically removed. Instead, the trans-
fer will activate a prohibition to the grantor, according to
RuleLT r . As suggested is Sect. 2.4, a priority level is used
to solve conflict that occurs between the activated prohibi-
tion and the other permissions. Since this prohibition must
always override the other conflicting permissions, this prohi-
bition is associated with the highest priority level which we
call high_priority.

RuleLT r

Prohibi tion(Sub, Act, Obj, C, high_priori t y):-
Use(L , licence_trans f er), Grantor(L , Sub),

Privilege(L , Act), T arget (L , Obj), Context (L , C).

Note that the context of the prohibition and the delegated
permission is the same one. So the grantor will lose this per-
mission only for the time of the delegation.

Example 5 Permission transfer. We consider the second sit-
uation of our example, and we assume that professor Paul
wants to grant the teaching task of the computer science
course to his assistant Bill. In this case, Paul is no longer
responsible of this course, so he should transfer to Bill the
access to this course files. For this purpose, Paul must create
and insert the following object in the licence_transfer view:

Grantor: Paul,
Grantee: Bill,
Privilege: Access,
Target: Comp_files,
Context: Nominal.

where comp_files is a sub-view of courses_files containing
the computer science course files.

According to RuleL A′ , the following permission is created
for Bill:

Permission(bill, access, comp_ f iles, nominal).

123

A delegation model for extended RBAC 219

And according to RuleLT r , the following prohibition is
created for Paul:

Prohibi tion(paul, access, comp_ f iles, nominal,
high_priori t y).

Managing partial transfer To manage non-monotonic del-
egation (or transfer), the administrator must specify which
users have an access to view licence_transfer. This is defined
as follows:

Permission(Gr, trans f er, licence_trans f er, C).

Permission(Gr, trans f er, sub_licence_trans f er, C).

where sub_licence_transfer is a sub-view of licence_trans-
fer defined as follows:

Use(L , sub_licence_trans f er):-
Use(L , licence_trans f er), Licence_Condition.

Managing this view is completely similar to the manage-
ment of the licence_delegation view, so we do not give more
details here. But we give hereafter another example of pre-
requisite context to illustrate how much the notion of context
is useful to deal with delegation.

Example 6 Let us assume that the administrator wants to
allow the role Professor to transfer his/her rights but only to
his/her assistant (delegation constraint 6-a). This is defined
by the following facts:

Permission(prof essor, trans f er, licence_trans f er,
valid_licence_grantor & assistant).

where the context assistant is defined as follows:

Hold(U, trans f er, L , assistant):-
Use(L , licence_trans f er), Grantor(L , U),

Grantee(L , U ′), I s_assistant (U ′, U).

We assume that I s_assistant (S1, S2) is an application-
dependent predicate meaning that S1 is an assistant of S2.

3.3.4 The view role_transfer

This view is used to manage role transfer. It is a sub-view of
the role_delegation view, so inserting an object in it will
create an assignment of a grantee to a role, according to
RuleR A′ . To revoke the grantor from the transferred role,
we have to modify the role_Assignment rule (RuleR A) as
follows:

RuleR A

Empower(Gr, R):-
Use(R A, role_assignment), Assignee(R A, Gr),

Assignment (R A, R),

¬(Use(RD, role_trans f er), Grantor(RD, Gr),

Assignment (RD, R)).

This rule means that a user is empowered in a role only
if this user does not transferred his/her role. Thus, when the
grantor Gr transfers his/her role R then, he/she will no longer
be empowered in R. This user will be empowered again in
role R when object RD is removed from the role_transfer
view, i.e. when the role transfer ends.

Example 7 Role transfer Let us turn back to Example 3 and
suppose that the head of department Alex will take a sabbat-
ical year. So, he must transfer his role to another user since,
during this year, he is no longer responsible for this role. For
this purpose, he must insert the same object, created in Exam-
ple 3, in view role_transfer, in this case. This will create the
same fact as previously:

Empower(mary, head_dep)

But, according to RuleR A, Alex is no longer empowered
in role Head_dep, because it is transferred to Mary.

Managing role transfer In the same way as previous views,
to manage role transfer the administrator must specify users
having access to view role_transfer. This is defined as fol-
lows:

Permission(Gr, trans f er, role_trans f er, C).

Permission(Gr, trans f er, sub_role_trans f er, C).

where sub_role_transfer is a sub-view of role_transfer
defined as follows:

Use(RD, sub_role_trans f er):-
Use(RD, role_trans f er), Role_Condition.

Since managing this view is similar to the management of
view role_delegation, we do not give here more explicative
details.

3.3.5 The view grant_option

We deal in this section with the delegation of delegation
rights. This means that the grantor allows the grantee to
redelegate a given delegation (a licence or a role) to another
user. The redelegation is controlled by specifying the depth
of the delegation chain. If the depth is equal to 1 the grantee
is only allowed to redelegate the right, and if it is greater the

123

220 M. Ben-Ghorbel-Talbi et al.

grantee is also allowed to give another user the permission
to redelegate the right. The grant_option view is defined to
deal with this delegation aspect.

Like licence_transfer, grant_option is a sub-view of the
licence_delegation view. Thus, objects belonging to this view
have the same attributes and semantic as the licence_delega-
tion view, but also have an additional attribute called Step:
the depth of the delegation chain. Note that the privilege and
the target of these objects concern delegation activities and
delegation views, respectively.

According to RuleL A′ , inserting an object in the grant_
option view allows the grantee to delegate or transfer a licence
or a role depending on whether the target is a sub-view
of licence_delegation, role_delegation, licence_transfer or
role_transfer.

The attribute step is used to control the propagation of the
right to delegate. When the step is greater than 1, the grantee
is allowed to propagate the delegation right (i.e. the right to
delegate a licence or a role) to another user. This is defined
by the following rule:

RuleGop

Permission(G R, delegate, grant_option, C&
valid_redelegation(LG)):-

Use(LG, grant_option), Grantee(LG, G R),

Context (LG, C), Step(LG, N), N > 1.

The context valid_redelegation is defined as follows:

Hold(U, delegate, LG, valid_redelegation(LG ′)):-
Use(LG, grant_option),

Sub_Licence(LG, LG ′),
Step(LG, N), Step(LG ′, N ′),
N < N ′.

The prerequisite context valid_redelegation is very impor-
tant since it controls the delegation chain. The grantee is
allowed to delegate only the right or a sub-right of the right
he/she was received and with a lower step. So, we can be
sure that the redelegated right will never be a super-right that
grants more privileges and/or with a longer delegation chains
than the original right delegated by the first grantor.

For instance, if we assume that user A delegates a right R
to user B with a step equals to N, and B redelegates this right
to user C with a step equals to N′, then we are sure that the
right received by C is at most comparable to right R and step
N′ is lower than N. The delegation chain is stopped when the
step is equal to 0.

The predicate Sub_Licence is defined as follows:

Sub_Licence(L , L ′):-
Use(L , licence), Use(L ′, licence),

T arget (L , T), T arget (L ′, T ′),
Sub_T arget (T, T ′),
Privilege(L , P), Privilege(L ′, P ′),
Sub_Privilege(P, P ′),
Context (L , C), Context (L ′, C ′),
Sub_Context (C, C ′).

We consider O is a Sub_Target of O’ if they are two views
and O is a Sub_View of O’, or if O is an object used in the
view O’, or if they are equal. Notice that the operator ‘;’
corresponds to a disjunction.

Sub_T arget (O, O ′):-
Sub_V iew(O, O ′); Use(O, O ′); O = O ′.

Similarly, we define the predicate Sub_Privilege. Predi-
cate Sub_context was already defined in Sect. 2.2.

Example 8 Agent-acted delegation We consider situation 4
of our example, and we assume that the head of department
Alex wants to give to director Bob the permission to delegate
his role on his behalf when he is absent. But he specifies that
this role must be delegated only to professor Mary (accord-
ing to delegation constraint 10). For this purpose, he must
create and insert the following licence alex_to_bob in the
view grant_option:

Grantor: Alex,
Grantee: Bob,
Privilege: Delegate,
Target: Rd_view,
Context: Absent(Alex),
Step: 1.

where target rd_view is a sub-view of role_delegation defined
as follows:

Use(RD, rd_view):-
Use(RD, role_delegation), Assignee(RD, mary),

Assignment (RD, head_dep).

The following permission is created according to RuleL A′ :

Permission(bob, delegate, rd_view, absent (alex)).

We can also consider the case where Alex allows Bob
to delegate an individual permission to Mary during his
absence, for instance the access to timetable database. For
this purpose, he must create the same object as previously
with another target ld_view defined as follows:

Use(L , ld_view):-
Use(L , licence_delegation), Grantee(L , mary),

Privilege(L , access), T arget (L , t imetable).

In the same way, the following permission is created:

Permission(bob, delegate, ld_view, absent (alex)).

123

A delegation model for extended RBAC 221

Note that Alex can also allow Bob to transfer his
permissions or roles. For this purpose, he must proceed as
previously described but he must specify privilege “trans-
fer” instead of “delegate”.

Example 9 Multi-step delegation Let us assume that Alex
gives to Bob the permission to delegate his role to another user
and also to allow this user to redelegate this role (according
to situation 5 of our example). Alex specifies the following
conditions: the redelegation applies only during his vacation,
the user must be a professor, and the depth of the delegation
chain is limited to 3 steps. For this purpose, he must create
the following licence alex_to_bob2:

Grantor: Alex,
Grantee: Bob,
Privilege: Delegate,
Target: Head_view,
Context: Vacation(Alex),
Step: 3.

where target head_view is defined as follows:

Use(RD, head_view):-
Use(RD, role_delegation),

Assignee(RD, G R),

Empower(G R, prof essor),

Assignment (RD, head_dep).

Inserting this object in the view grant_option will cre-
ate the following permissions (the first permission is derived
from RuleL A′ , the second one is derived from RuleGop):

Permission(bob, delegate, head_view, vacation(alex)).

Permission(bob, delegate, grant_option, vacation(alex)

&valid_redelegation(alex_to_bob2)).

So, Bob is allowed to delegate role Head of department
to any professor during Alex vacation. And he can also allow
the assignee to delegate role Head of department when Alex
is absent.

To illustrate this, we assume that Alex is absent, so Bob
wants to delegate to professor Paul the role Head of depart-
ment, and he wants to allow Paul to redelegate this role. But
he also specifies that Paul is allowed to redelegate the role
Head of department only if he is in vacation.

First, to delegate the role Head of department to Paul,
Bob must proceed similarly as in Example 3. He inserts in
the view role_assignment the following object:

Grantor: Bob,
Assignee: Paul,
Assignment: Head_dep.

According to RuleR A, the following fact is created:

Empower(paul, head_dep)

Then, to give Paul the permission to redelegate this role,
Bob must create and insert the following licence bob_to_paul
in the view grant_option:

Grantor: Bob,
Grantee: Paul,
Privilege: Delegate,
Target: Head_view,
Context: Vacation(Alex) & Vacation(Paul),
Step: 2.

Note that Bob is not allowed to insert a licence in the view
grant_option that does not satisfy the context valid_ redele-
gation(alex_to_bob2). Thus, he must consider the following
conditions:

– the privilege must be a delegation action (not a transfer
action),

– the target must satisfy the definition of view head_view,
– the context vacation(alex) must be included in the context

of the inserted object.
– the step must be lower than 3.

According to RuleL A′ and RuleGop2 , these permissions
are created respectively:

Permission(paul, delegate, head_view, vacation(alex)

&vacation(paul)).
Permission(paul, delegate, grant_option,

vacation(alex) & vacation(paul)

& valid_redelegation(bob_to_paul)).

As we have shown in this section, thanks to the grant_
option view, we made a distinction between the delegation
of a simple right R and the delegation of the right to delegate
R. So, we can deal with multi-step and agent-based dele-
gation simply and securely. This is not the case of the With
Grant Option in relational database systems [18], which is
used only with the Grant command. Thus, one cannot dele-
gate the right to delegate R without delegating R, and there-
fore the agent-acted delegation is not supported. Moreover,
using the With Grant Option, one cannot specify contextual
permissions or delegation constraints as in our model. For
instance, it is not possible to specify conditions to limit the
scope of delegation, such as the delegation step, the grantee
(i.e. users-list to which delegation is allowed), or the context
of the delegation (e.g. vacation).

Managing the delegation of delegation right

Managing this view is completely similar to the manag-
ing of the licence_delegation view, this is defined by facts
having the following form:

123

222 M. Ben-Ghorbel-Talbi et al.

Permission(Gr, delegate, grant_option, C).

Permission(Gr, delegate, sub_grant_option, C).

where sub_grant_option is a sub-view of grant_option
defined as follows:

Use(LG, sub_grant_option):-
Use(LG, grant_option), Licence_Condition.

This means that the administrator can specify different
types of conditions concerning all the licence attributes,
namely the grantor, the grantee, the privilege, the target,
the context and/or the step of delegation. Moreover, as we
have explained in Sect. 3.3.1, he can specify extra con-
ditions thanks to contexts. In the following section, we
explain how to use contexts to manage delegation require-
ments.

3.4 Contextual delegation

As we have mentioned earlier, there are 5 kinds of con-
texts defined in OrBAC [12]. Temporal: depends on the sys-
tem clock; Spatial: depends on subject location; Provisional:
requires that some previous actions must be executed; Prereq-
uisite: depends on specific information stored in a database;
and User-declared: the activation of this context is decided
by some authorized user.

These contexts are very useful in delegation, since we can
express complex conditions to specify delegation constraints.
As we have shown in previous sections, these conditions can
either be specified by the administrator to manage the dele-
gation policy like in examples 2, 4 and 6, or by the grantor to
limit the scope of delegated rights like in examples 8 and 9.
We give here more examples to deal with delegation require-
ments, namely multiple delegation and temporary delega-
tion.

Example 10 Multiple delegation This characteristic refers
to the number of grantees to whom a grantor can delegate
the same right (permission or role) at any given time. This
number, which we call Nm , is fixed by the administrator
by using a provisional context. We can specify the con-
text multiple_Licence_Deleg to compare Nm with the del-
egation number concerning the same grantor and the same
permission:

Hold(S, A, L , multiple_Licence_Deleg(Nm)):-
Use(L , licence_delegation),

Count (L ′, (Use(L ′, licence_delegation),

Equiv_Licences(L , L ′)), N ′
m), N ′

m <= Nm .

We assume that Count(V, p(V),N) is a predicate that count
the set of instances of variable V that satisfies predicate p(V).
N represents the result of the count predicate.

Note that we consider licences L and L’ are equivalent if
they are delegated by the same grantor and concern the same
right:

Equiv_Licences(L , L ′):-
Grantor(L , U), Grantor(L ′, U),

(Sub_Licence(L , L ′); Sub_Licence(L ′, L)).

To explain this, let us consider the delegation constraint
6-b of our example. If we assume that Paul delegates the
access to his student’s marks to his assistant Bill, then he does
not have the permission to delegate this right to another user.
For instance, he cannot delegate the permission to access to
his master student’s marks, since this right is a sub-licence
of the first one.

Notice that when the multiple_Licence_Deleg context is
not used, the number of permissions a subject can delegate is
not restricted. So this subject can delegate as many licences
he/she wants.

Similarly, we can define another provisional context to
limit the number of grantees to whom a grantor can delegate
the same role at any given time:

Hold(S, A, RD, multiple_Role_Deleg(Nm)):-
Use(RD, role_delegation),

Count (RD′, (Use(RD′, role_delegation),

Equiv_RD(RD, RD′)), N ′
m),

N ′
m <= Nm .

Equiv_RD(RD, RD′):-
Grantor(RD, U), Grantor(RD′, U),

Assignment (RD, Role),
Assignment (RD′, Role).

This context is useful to express the delegation constraint
7-b of our example, where role chef_dep must be delegated
to only one professor at a given time.

Example 11 Temporary delegation Thanks to the use of
the temporal context, we can easily deal with this character-
istic. The grantor can specify that the delegated permission is
authorized only at a given time, after or before a given time,
or during a given time interval. The temporal conditions may
correspond to a day of the week, or to a time of the day,
etc.

As we have described in examples 8 and 9, the grantor
can include a temporal condition in the context of the del-
egated licence, for instance during his/her vacation. Thus,
the delegated permission applies only if the context holds.
If the temporal context is not used, the delegation is perma-
nent.

Let us consider constraint 8 of our example and assume
that Paul delegates to his assistant Bill a temporary permis-
sion to proof-read his examinations that only applies during
the examination period:

123

A delegation model for extended RBAC 223

Grantor: Paul,
Grantee: Bill,
Privilege: Access,
Target: Paul_stud_mark,
Context: Exam_period.

where the temporal context exam_period is defined as fol-
lows:

Hold(U, A, O, exam_period):-
Hold(U, A, O, a f ter_date(19/03/2008)&

be f ore_date(19/04/2008).

We consider that temporary delegation is not restricted to
temporal contexts. It may also be modelled using the other
types of contexts, since the delegation only applies temporar-
ily, i.e. when the context is active. For instance, if we consider
constraint 9 of our example then Paul can specify that the
delegation is valid only if Bill is located in his office. This
is a spatial context, and the delegation applies temporarily
according to the physical location of the grantee:

Grantor: Paul,
Grantee: Bill,
Privilege: Access,
Target: Paul_stud_mark,
Context: Location(paul_office).

where the spatial context location is defined as follows:

Hold(S, α, O, location(So)):-
I s_located(S, So).

where Is_located (S, So) is an application-dependent predi-
cate meaning that the subject S is located in the area of spatial
object So.

Note that this kind of conditions is not supported by other
models that only support temporal constraints. In fact, the
grantor can specify constraints to the delegated permissions
using contexts. These constraints concern the grantee’s char-
acteristics (e.g. role, location, affiliation, actions, status) or
also the time, the circumstance, etc. Hence, in our model,
we extend the notion of temporary delegations to the more
general notion of contextual delegations.

3.5 Managing delegation privileges

As we have shown in previous sections, our delegation
model is completely homogeneous with the remainder of the
extended RBAC model. The approach we suggest is to define
delegation views that are similar to administrative views.

Thanks to this approach, we have proposed a delegation
model without adding new types of roles, permissions or
relationships to deal with delegation requirements. Delega-
tion privileges, namely permissions and roles are assigned to

users just like administrative privileges. This is not the case in
existing models such as RBDM [4], PBDM [33], RDM2000
[32], which distinguish between regular and delegated rights
(roles or permissions). For instance, in [23], authors define six
different layers of roles and seven partitions of permissions
to deal with partial delegation, permission level delegation
and restricted inheritance.

This is a complex task to manage, since there are many dif-
ferent types of roles and permissions. Moreover, this implies
that it is necessary to define new policies to manage hier-
archies and separation of entities for these additional roles
and permissions, like in [20,23]. More details about existing
models will be given in Sect. 7.

In our model, the delegation of rights by a grantor, either
permission or role, will create, respectively, a Permission or
an Empower just like the assignment of rights by the admin-
istrator. This is very useful to simplify the administrator task.
Indeed, managing delegation privileges does not necessitate
the specification of a separate security policy dedicated to
them, since there is no distinction between the regular roles
and the delegation roles, and there is no specific permissions
for the delegation tasks such as can_delegate and can_revoke
in RBAC-based delegation models. Notice that the can_del-
egate relationship actually combines two different concepts,
namely a permission and an action of delegation. As sug-
gested in this paper, we claim that it is more appropriate to
separately model these two concepts. This provides higher
flexibility, and it is also easier to extend the model by con-
sidering new types of delegation. The concept of context
also provides higher expressivity and finer grained delega-
tion than other already defined delegation models.

3.5.1 Delegation hierarchy and inheritance

Inheritance rules presented in Sect. 2.2 apply also to dele-
gation privileges, since there is no distinction between the
regular roles/permissions and the delegation roles/permis-
sions. This means that, according to RuleSubR , if a grantee
is empowered by delegation (or by transfer) to a given role,
then he/she inherits automatically the permissions of his/her
sub-roles. Moreover, in the case of transfer, the grantor loses
his/her role and permissions of his/her sub-roles as well, since
he/she is no longer empowered in the transferred role.

Note that if the grantor wants to delegate (or transfer) a
role without sub-role inheritance, he/she may delegate (or
transfer) all the role permissions instead of delegating the
role. Hence, in the case of transfer, the grantor loses only the
permissions of the role that he/she transferred, but not the
permissions of his/her sub-roles.

RuleSubV and RuleSubA specify inheritance over views
and activities. This simplifies the delegation task since the
grantor can delegate in one time a set of permissions. For
instance, when professor Paul delegates to his assistant

123

224 M. Ben-Ghorbel-Talbi et al.

Bill the access to his student’s marks, this means that
Bill is allowed to perform the activity access on the view
paul_stud_marks, but also he is allowed to perform sub-
activities, namely read, write, delete, on all files or direc-
tories containing the student’s marks of Paul.

This also simplifies the administrator task, since if he/she
gives a permission to a grantor to delegate (or transfer) a given
right, then the grantor is allowed to delegate (or transfer) also
its sub-rights.

However, this is not the case for role delegation (or trans-
fer). This means that if the grantor is allowed to delegate a
role, then he/she is not automatically allowed to delegate its
sub-roles. For this purpose, the administrator must specify
explicitly this permission. For instance, if he/she wants to
give role Head_dep the permission to delegate its role and
its sub-roles in some context C , then the administrator must
specify this condition as follows:

Permission(head_dep, delegate,
sub_role_deleg(head_dep), C).

where sub-view sub_role_deleg is defined as follows:

Use(RD, sub_role_deleg(R)):
Use(RD, role_delegation),

Assignment (RD, R′),
Sub_role(R, R′).

3.5.2 Global constraints

In our model, global constraints specified by the administra-
tor in the security policy apply automatically to delegation
privileges. For instance, if we have the following separation
of entities:

Separated_role(prof essor, secretary).

And we assume that professor Bob delegates his role to
Mary, the secretary. We will have the following facts:

Empower(mary, secretary).

Empower(mary, prof essor).

According to RuleCstR , the global constraint is violated.
Hence, the delegation is rejected.

Although, in our model, there is no distinction between
administrative and delegation privileges, there is no confu-
sion between these two privilege types. This is possible since
administrative privileges are derived from objects belonging
to administrative views, whereas delegation privileges are
derived from objects belonging to delegation views.

For instance, we assume that the administrator and a given
grantor Gr assign the same permission P to the same user
U. When Gr revokes the permission he/she has delegated to
U, only the object belonging to the delegation view licence_
delegation is deleted. But the permission assigned by the
administrator is not revoked.

3.5.3 Conflict management

In our model, the delegation concerns only positive priv-
ileges, since we consider it is not meaningful to delegate
prohibitions. Hence, during delegation process, there is no
creation of new prohibitions by users. Except in the case of
licence transfer, when a prohibition is automatically created
for the grantor. This prohibition is associated with the high-
est priority level. Hence, the conflict that may occur with the
other permissions is solved.

Conflict may occur only between the delegated permis-
sions and the prohibitions specified by the administrator.
Since delegation is considered as an exception to the security
policy, in our model delegated permissions are associated
with higher priority than general rules (see Sect. 2.4). For
instance, let us assume that the administrator specifies that
role Assistant is prohibited to access the student’s marks:

Prohibi tion(assistant, access, stud_mark, nominal).

(R1)

And let us assume that professor Paul delegates the fol-
lowing permission to his assistant Bill:

Permission(bill, access, paul_stud_mark, nominal).

(R2)

In our model, rule R2 will be assigned higher priority than
R1, since R2 is an exception of R1. Hence, the delegation will
take precedence.

4 Revocation

In our model, revocation can be performed automatically
when the delegation context is no longer active, or manually
by an authorized user. User revocation is performed by delet-
ing objects from the delegation views. The effect of the revo-
cation on the other delegations depends on the revoker needs.
He/she can choose, for instance, to revoke the whole delega-
tion chain (cascade revocation) or to revoke all other delega-
tions associated with the same grantee (strong revocation). To
deal with these features, we give in the following a sketch of
our approach to manage revocation(see [9] for more details).

4.1 Notations and definitions

We denote L , R and LG three delegation objects as follows:
L ∈ licence_delegation, R ∈ role_delegation and LG ∈
grant_option.

Let OSD be the set of simple delegations SD (L or R),
OLG the set of delegation licences LG and OD = OSD ∪
OLG the set of all delegations D.

123

A delegation model for extended RBAC 225

LG1

LG2

LG4

L5

L3

*

LG1

LG2

LG4

L5

L3

a b

Fig. 3 a Delegation chain DC(LG1). b Delegation chain DC*(LG1)

Definition 1 Derivation relation
We distinguish between two derivation relations accord-

ing to whether the type of derived delegation is a simple or a
delegation licence.

– ∀LG, LG ′ ∈ OLG, LG is derived from LG ′, if:

– the grantor of the licence LG is the grantee of the
licence LG ′,

– the licence LG is a sub-licence of LG ′,
– the delegation step of LG is lower than the delegation

step of LG ′.

– ∀SD ∈ OSD, LG ∈ OLG, SD is derived from LG, if:

– the grantor of the delegation SD is the grantee of the
licence LG,

– The delegation SD corresponds to the target defini-
tion of LG (i.e. Use(SD, Target(LG))).

Definition 2 Delegation chain

– For each delegation licence LG ∈ OLG we can generate
a delegation chain, which we call DC(LG). A delegation
chain is represented by a directed graph (see Fig. 3a). The
nodes contain delegations D ∈ OD , and we denote N (D)

the node containing delegation D. There is an arc from
node N (D1) to node N (D2), if D2 is derived from D1.
A node containing a simple delegation SD ∈ OSD is
always a leaf of the graph.

– A node is rooted if it contains a delegation that cannot be
derived from any other licences. A delegation chain of a
delegation D is rooted if D is rooted.

– When a node Ni is deleted (i.e. the delegation contained
in this node is revoked), a special arc labelled with a * is
used to connect nodes Ni−1 to Ni+1 (see Fig. 3b). In addi-
tion, we denote DC * (D) the delegation chain DC(D)

that includes labelled arcs.

Note that the delegation chain DC* is used to ensure that
every delegation has a path that links it to the licences from
which it is indirectly derived, even if some licences belonging
to the delegation chain are removed. For instance, if we con-
sider the delegation chain given in Fig. 3b, then DC(LG1)=
{LG2, L3} and DC * (LG1) ={LG2, L3, L5}.

Definition 3 Dependency
A delegation D depends exclusively on a user U if there

is no rooted delegation chain DC such that D ∈ DC and
∀D′ ∈ DC, Grantor(D′) �= U .

We assume that Dependent(D, U) is a predicate meaning
that delegation D depends exclusively on user U .

Definition 4 Simple revocation
This is the simplest revocation scheme. The revocation

involves deleting objects from the delegation view and does
not affect the other delegations. We define the request to
revoke a delegation as follows:

Request(U, revoke, D) then
forall (Di ∈ Derived_deleg(D) and
D j ∈ Parent_deleg(D)) do
Add a labeled arc from N(D j) to N(Di),
Remove(D).

end

We assume that Derived_deleg(D) is the set of all delegations
D′ such that there is an arc (labelled or not labelled) from
node N (D) to node N (D′) and Parent_deleg(D) is the set
of delegations D′′ such that there is an arc (labelled or not
labelled) from node N (D′′) to node N (D).

Definition 5 Cascade revocation
This involves the revocation of all the delegations belong-

ing to the delegation chain. But this revocation should not
affect the ones belonging to other delegation chains (DC).
The reason is that if the grantor of delegation, D has received
the permission to delegate it from two or more different del-
egations, then if one of these delegations is revoked, the
grantor still has the right to delegate D (an illustrative exam-
ple is given below). In our model, cascade revocation is
defined as follows:

Request(U, Cascade_revoke, D) then
Request(U, revoke, D),
forall Di ∈ Derived_deleg(D) do

if Di /∈ DC(LG), LG ∈ OLG then
Request(U, Cascade_revoke, Di).

end
end

Example 12 We consider the example shown in Fig. 4, and
we assume that LG1 is revoked with the cascade option. On
the first pass, licence LG1 is removed. On the second pass,

123

226 M. Ben-Ghorbel-Talbi et al.

LG1

LG3

LG4

L6

LG5

LG0

*

*

LG2

LG1

LG3

LG4

L6

LG5

LG0

*

LG2

Fig. 4 Cascade revocation

LG2 and LG3 are revoked, and a labelled arc is added to con-
nect node LG0 to LG4. Note that LG3 is revoked because
it belongs to DC * (LG0) and not to DC(LG0). Finally, the
cascade revocation process is stopped because LG4 belongs
to DC(LG5).

The revocation described so far is a weak revocation. This
means that the revocation of a delegation D will only affect D
(in the case of simple revocation) or the delegations belong-
ing to its delegation chain (in the case of cascade revocation).
By contrast, a strong revocation will affect the other delega-
tions associated with the same grantee.

Definition 6 Strong revocation
The strong revocation of delegation D means that all the

delegations equal to D (or are a sub-right of D) that depend
on the revoker and associated with the same grantee must be
revoked. This is defined as follows:

Request(U, Strong_revoke, D) then
Request(U, revoke, D),
forall Di ∈ OD do

if (Grantee(Di) = Grantee(D) and Sub_right(Di ,D)
and Dependent(Di ,U)) then

Request(U, revoke, Di).
end

end

We assume that the predicate Sub_right(D, D’) is defined
as follows, according to whether the type of right is a licence
delegation or a role delegation:

Sub_right (D, D′):-
Use(D, licence_delegation),

Use(D′, licence_delegation),

Sub_licence(D, D′).

LG1
(A,B)

LG1
(A,B)

LG3
(B,C)

LG4
(C,D)

L6
(D,E)

LG5
(A,C)

LG0
(X,Y)

*

LG3
(B,C)

LG4
(C,D)

L6
(D,E)

LG5
(A,C)

LG0
(X,Y)

LG7
(G,D)

LG7
(G,D)

*

Fig. 5 Strong-cascade revocation

Sub_right (D, D′):-
Use(D, role_delegation),

Use(D′, role_delegation),

Assignment (D, R), Assignment (D′, R′),
Sub_role(R, R′).

Definition 7 Strong-Cascade revocation
We consider the strong-cascade revocation of a delegation

D as a strong revocation of all delegations belonging to the
delegation chain of D. This is defined as follows:

Request(U, Strong_Cascade_revoke, D) then
Request(U, Strong_revoke, D)
forall Di ∈ derived_deleg(D) do

if Di /∈ DC(LG), LG ∈ OLG then
Request(U, Strong_Cascade_revoke, Di)

end
end

Example 13 We consider the example shown in Fig. 5, where
we represent in each node the delegated licence, the grantor
and the grantee of this licence. We assume that licence LG5

is a sub-licence of LG3 and LG7 is a sub-licence of LG4.
If A the grantor of licence LG1 revokes this licence with

the strong-cascade option, then the whole delegation chain of
LG1 will be revoked with the strong cascade option as well.
On the first pass, licence LG1 is revoked by A. On the second
pass, licence LG3 is revoked and also licence LG5 since it
is a sub_licence of LG3 and it depends on A. On the third
pass, LG4 is revoked but not LG7 because it is independent
of A. L6 is not revoked because it belongs to DC(LG7).

4.2 Managing revocation

To perform a revocation, users must have the permission to
delete objects from the delegation views. This permission
may be specified by the administrator just like delegation.

123

A delegation model for extended RBAC 227

He/she must specify which user is permitted to revoke objects
in the delegation views. For this purpose, we do not use
specific functions to define the right to revoke such as
can_revoke, can_revokeGD, can_revokeGI and can_u2u_
revokeGD like in [5,21,32]. We have simply to specify rev-
ocation constraints using contexts. In the following, we give
some examples to illustrate how to use them to specify rev-
ocation constraints.

Example 14 Grant Dependent In the case of Grant-
Dependent revocation (GD), only the grantor is allowed to
revoke the delegated licence or role. To deal with this aspect,
we define the prerequisite contexts G DL and G DR for the
GD licence revocation and the GD role, respectively:

Hold(U, revoke, L , G DL):-
Use(L , licence_delegation), Grantor(L , U).

Hold(U, revoke, RD, G DR):-
Use(RD, role_delegation), Grantor(RD, U).

For instance, if we consider the revocation constraints 11
of our example, then the administrator can specify that all
users are authorized to revoke their licence delegation or role
delegation as follows:

Permission(de f ault_Role, revoke, licence_delegation, G DL).

Permission(de f ault_Role, revoke, role_delegation, G DR).

Similarly, we can associate contexts with the Grant-
Dependent revocation of licence and role transfer.

Example 15 Grant Independent We can specify different
contexts to deal with this aspect according to the administra-
tor needs. For instance, we consider the revocation constraint
12 of our example, where role professor is allowed to revoke
role delegation that depends on him. To specify this con-
straint, we may specify context Ancestor Dependent adR as
follows:

Hold(U, revoke, RD, adR):-
Use(RD, role_delegation), Dependent (RD, U).

Similarly, we may specify context adL to allow users to
revoke permission delegation that depends on them:

Hold(Org, U, revoke, L , adL):-
(Use(Org, L , licence_delegation);
Use(Org, L , grant_option)), Dependent (L , U).

We may also consider different revocation constraints,
such as:

– Users are permitted to revoke delegated roles if they are
empowered in a role that is hierarchically superior:

Hold(U, revoke, R D, G ISub):-
Use(R D, role_delegation), Assignment (R D, R),

Empower(U, R′), Sub_role(R′, R).

This context can be used to specify constraint 13 of our
example, where the director is allowed to revoke role del-
egation of the other users:

Permission(director, revoke, role_delegation, G ISub).

– Users are permitted to revoke a privilege (permission or
role) if they are assigned to this privilege. For this pur-
pose, we may define the following contexts:

Hold(U, revoke, RD, G IR):-
Use(RD, role_delegation),

Assignment (RD, R), Empower(U, R).

Hold(U, revoke, L , G IL):-
Use(L , licence_delegation),

Privilege(L , P), T arget (L , T), Context (L , C),

Permission(U, P, T, C).

– Users are permitted to revoke a privilege if they are per-
mitted to delegate it:

Hold(U, revoke, RD, G IDR):-

Use(RD, role_delegation),

I s_Permitted(U, delegate, RD).

Hold(U, revoke, L , G IDL):

Use(L , licence_delegation),

I s_Permitted(U, delegate, L).

Moreover, we can define other conditions that may con-
cern the characteristics of the grantor or the grantee, the pre-
vious actions, the delegated right (i.e. the role, the target, the
privilege), the time, the circumstances (e.g. urgency), etc.
For instance, we consider the revocation constraint 14 of
our example, and we specify that role Director is allowed to
revoke transferred roles only if the grantor of this transfer is
not in vacation:

Hold(U, revoke, RD, G IT r):-
Use(RD, role_trans f er), grantor(RD, Gr),

¬I n_vacation(Gr).

Permission(director, revoke, role_trans f er, G IT r).

We can also define that a user U1 can revoke a grantee U2

if U2 has performed a given action A on a given object O . We
may also specify that U1 is authorized to revoke U2, if U2 is
the assistant of U1, or is associated with the same department
as U1. This kind of conditions is not supported by the existing
models since they only specify revocation constraints on the
role membership of the grantor or the grantee.

123

228 M. Ben-Ghorbel-Talbi et al.

5 Decidability and complexity

Our model is based on the OrBAC formalism which is com-
patible with first-order logic and more precisely with Datalog
[30]. Datalog ensures a decidable and tractable theory.

Datalog programs must only include both defined and safe
rules. A rule is defined if every variable that appears in the
conclusion also appears in the premise. A rule is safe if it
only provides means to derive a finite set of new facts. In
a pure Datalog program, rules do not contain any negative
literal. Pure Datalog guarantees that any access control policy
will be decidable in polynomial time. However, pure Datalog
expressivity is very restricted.

In Datalog¬, the negation restriction is relaxed. Negative
literals are allowed but rules must be stratified [30]. A strat-
ified Datalog¬ program is computable in polynomial time.

The definition of security policies using the OrBAC model
obeys the Datalog¬ restriction except the definition of con-
texts through the hold predicate. More precisely, the security
rules correspond to ground close facts specified using the
permission, prohibition predicates. Specifications of predi-
cates empower, use and consider correspond also to facts or
rules that respect the Datalog¬ restriction.

By contrast, the definition of contexts does not correspond
to Datalog¬ restriction for the following reasons:

– These rules are not always safe. For instance, temporal
context definitions such as after-time(t) may derive an
infinite set of new facts when time t is not fixed.

– These rules are not always defined. For instance, in tem-
poral context definitions, subjects, actions and objects are
respectively universally quantified over the set S, A and
O but are not further constrained in the premises of the
rule. This may lead to evaluate large Cartesian products
which is not efficient.

To solve these problems, it is proposed firstly to restrict
the theory so that only relevant contexts are evaluated. A
context is relevant if it appears in the definition of a security
rule. Secondly, a relevant context is always fully instanti-
ated. Finally, it is proposed to pre-compute the evaluation
of the Empower, Use and Consider predicates using a bot-
tom-up strategy. Then, the evaluation of queries is completed
using the top-down strategy as defined in the SGL algo-
rithm [29]. This hybrid strategy guarantees the decidability
of query evaluation in the OrBAC model and its termination
in polynomial time.

We can now prove the following theorems:

Theorem 1 The delegation chains are computable in poly-
nomial time.

Proof The delegation chain is based on the OrBAC model
and its self-administration model. As we mentioned, policies

associated with both of them can be expressed as recursive
rules corresponding to a stratified Datalog program; the del-
egation chains are then obtained by computing a fixed point
which is tractable in polynomial time. �	

Theorem 2 The revocation requests are computable in poly-
nomial time.

Proof A request to revoke a licence requires a recursive
search in the delegation chain of this licence; therefore, using
Theorem 1, it is computable in polynomial time. �	

6 The MotOrBAC tool

MotOrBAC is a tool developed in Telecom Bretagne to
implement the OrBAC model and its administration model
Ad-OrBAC. It provides a user-friendly interface to specify
and manage the security policy. We have integrated our pro-
posed model into MotOrBAC to manage delegation and rev-
ocation features. More details about this tool are given in
[22], and it is available in the MotOrBAC web site [28].

MotOrBAC architecture is given in Fig. 6.
The OrBAC application programming interface (API) is

used to manage the policies displayed in the graphical user
interface (GUI). The API uses the Jena Java library [19] to
represent an OrBAC policy as an RDF graph. It can be used to
load MotOrBAC RDF policies and interpret them. Jena fea-
tures an inference engine which is used by the OrBAC API
to infer the concrete policies. When an OrBAC RDF policy
is loaded by the API, the concrete policy can be inferred and
stored in memory. An instance of the OrbacPolicy Java
class which encapsulates an OrBAC policy uses a cache of
concrete security rules to enhance the performances when
the policy is queried. Contexts are evaluated upon a query.
This feature is actually used in the MotOrBAC simulation
tool to show the contexts state. The contexts implementation
can be easily extended in order to interface the API with other
applications and add new types of contexts.

Moreover, it is possible to integrate the OrBAC Java API
into a Java application without modifying the application
source code. This is done using Aspect Oriented Program-
ming (AOP) to separate security requirements from other
concerns related to the application. Using AspectJ the secu-
rity requirements are weaved with the OrBAC API into
the application code. The API can also be used to create
OrBAC policies, it can be for instance integrated into a web
server to communicate with a web browser which could run
a web interface to create and/or administrate OrBAC poli-
cies. We give in the following the basic functions supported
by this tool, namely administration functions performed by
the administrator(s) to manage the security policy (using the
MotOrBAC GUI), and delegation functions performed by

123

A delegation model for extended RBAC 229

Fig. 6 The MotOrBAC
architecture

OrBAC API

Jena API

Jena Inference Engine

MotOrBAC GUI

cation
cation

Concrete Policy Inference
Simulation
Save/Load Policy in RDF

MotOrBAC Delegation GUI

ict management

Policy Update

Save/Load Policy in RDF
Policy Consistency

Fig. 7 MotOrBAC GUI

regular users to delegate or revoke their rights (using the
MotOrBAC Delegation GUI).

Administration functions

– Edit policies: the administrator can create the abstract
entities he/she needs, namely, organizations (see part 1
in Fig. 7), roles, activities, views (part 2, Fig. 7) and the
relationships between these entities, namely hierarchies.
He/she can also specify contexts using part 4 of Fig. 7.
Then the administrator can specify the abstract security
policies for these abstract entities (i.e. permissions and
prohibitions using part 5 of Fig. 7). Given entities hierar-
chies the tool applies automatically the inheritance rules,
presented in Sect. 2.2, using the Jena engine.

– Conflict management: MotOrBAC helps to detect abstract
conflicts using the conflict management strategy dis-
cussed in Sect. 2.4. The detected abstract conflicts are
listed in the GUI and separation constraints as well as
rule priorities can easily be added through a contextual
menu to resolve these conflicts (see Fig. 8).

– Policy simulation: after having specified concrete enti-
ties, subjects, actions and objects (part 3, Fig. 7), the

concrete policy can be inferred using the Jena engine
(i.e. actual permissions and prohibitions). Figure 9 shows
the simulation window which lists the concrete secu-
rity rules (a different color is used for each rule type).
Light-colored entries shows concrete security rules for
which the associated context is inactive. Note that con-
crete conflicts can also be displayed in MotOrBAC, but
the administrator is not allowed to solve them at the con-
crete level.

– Administrative rights management: the administrative
rights of a subject or a role can be specified in order
to decentralize the policy administration. Therefore,
when the AdOrBAC function is activated in MotOr-
BAC (part 6 in Fig. 7), after the user has authenti-
cated himself/herself, he/she can edit the OrBAC security
policy accordingly to the AdOrBAC policy. If an unau-
thorized operation is attempted, the policy is not modi-
fied and the user is informed. Since the OrBAC model
is self-administrated, a MotOrBAC policy file contains
both the OrBAC policy and its associated AdOrBAC pol-
icy.

– Delegation rights management: similarly to the admin-
istrative rights management, MotOrBAC allows the

123

230 M. Ben-Ghorbel-Talbi et al.

Fig. 8 Abstract conflict tab

Fig. 9 Concrete policy simulation window

administrator to specify the delegation policy. There-
fore, authorized users can delegate or revoke their
rights using the dedicated Delegation GUI given in
Fig. 10.

Delegation functions The Delegation GUI (see Fig. 10) is
quite similar to the MotOrBAC GUI and is based on the same
OrBAC API to manage delegation and revocation. But in
the Delegation GUI, some features are removed, namely not
allowed administration features such as the creation of new
entities or conflict management, and other features specific to
delegation are added, such as transfer, multi-step delegation
or revocation features. More details about Delegation GUI
are given in [7].

According to the delegation policy, the Delegation GUI
allows authorized users:

– to edit the security policy related to them: permissions and
roles that they delegated to other users and also those they
have been assigned through delegation (part 2, Fig. 10),

– to delegate and to revoke their rights using delegation and
revocation features that they are authorized to perform

such as transfer, delegation with grant-option, revocation
with cascade or strong option. (parts 1 and 1’, Fig. 10),

– to specify delegation contexts (part 4, Fig. 10),
– to request other users to delegate to them a given right or

to revoke an existing delegation (part 3, Fig. 10). As we
proposed in [7], a delegation protocol can be used to man-
age users communication and to negotiate the delegation
or the revocation of rights. We plan to further investigate
this aspect in future work.

7 Discussion and related work

During the last years, several papers have been published
dealing with delegation in Role-Based Access Control
models. These works distinguish between administration and
delegation process and propose to extend the RBAC model
by adding separate components, such as new types of roles,
permissions, relationships. Hence, proposed models are not
flexible enough, since for each delegation requirement sev-
eral components are added. This will complicate the admin-
istration task given the fact that there are many roles and

123

A delegation model for extended RBAC 231

Fig. 10 The delegation MotOrBAC GUI

permissions to manage; moreover, this requires the specifi-
cation of a separate security policy dedicated to delegation
components.

For instance, in the RBDM0 model proposed by [4],
authors extend the RBAC0 model to define role-based del-
egation. They define a relationship can_delegate ⊆ RxR
to control role delegation and add new components such as:
Users_O and Users_D to differentiate between original
and delegated members, U AO and U AD to specify original
member assignment and delegate member assignment rela-
tionships. (x, y) ∈ can_delegate means that a grantor who
is an original member of role x can delegate role x to any
grantee who is an original member of role y. The right to
revoke is defined implicitly: any user empowered in role r is
allowed to revoke r .

They also propose some extensions to RBDM0 to address
more delegation characteristics. This requires additional
components. For instance, to model partial role delegation
they add new types of permissions: delegable (P D) and
non delegable permissions (P N) and divide the P A rela-
tionship (permission-role assignment) into P D A and P N A
(Delegable and Non-Delegable Permission Assignment).
Similarly, to deal with the two step delegation, they divide
the U A relationship (user-role assignment) and Users set
into 3 layers. RBDM1 [5] is an extension of RBDM0 that is
proposed to deal with the hierarchical roles. The relationship
can_revoke ⊆ RxR is defined to control revocation.

More recently, authors extend the RBDM model to deal
with agent-based delegation (ABRDM [6]). They add a new
type of role AR (Agent Role) and a new relationship U AA
(agent member to role assignment). To control delegation
they define the relationship can_delegate ⊆ RxARxR.
They also extend their model to deal with agent-based dele-
gation in hierarchical roles (ARBDMH) and introduce the

notion of prerequisite conditions C R. To control delega-
tion the following relationship is used: can_delegate ⊆
ARxC RxR. Note that C R is a set of conditions on the
grantee’s role.

RDM2000 [32] is also a delegation model based on
RBDM0. This model introduces new components to deal
with multi-step delegation and constraints, such as DT
(Delegation Tree), Path (delegation path), Depth (delega-
tion depth) and the relationship can_delegate ⊆ RxC RxN ,
where N is the max delegation depth. The delegation rela-
tion DLGT is also added to address the relationship between
different components involved in a delegation. This relation-
ship is divided into O L DGT and DDLGT (Original and
Delegated user delegation). To control Grant-Independent
and Grant-Dependent revocation two relationships are added:
can_ revokeGI ⊆ R and can_revokeG D ⊆ R.

Other works [21,2] have proposed to extend the RDM
2000 model. The first model adds several new components
to deal with role-to-role delegation and partial delegation,
and the second introduces a constraint specification to deal
with the separation of duty.

PBDM [33] is another delegation model based on RBAC.
This model adds new types of roles and permissions
to address permission level delegation requirements.
In PBDM0 roles are partitioned into regular roles (RR) and
delegation roles (DTR). This partition induces a parallel par-
tition of the two RBAC components: UA (user-role assign-
ment) and PA (permission-role assignment). Like in RBDM,
UA is separated into UAR (user-regular role assignment)
and U AD (user-delegation role assignment). PA is simi-
larly separated into PAR (permission-regular role assign-
ment) and PAD (permission-delegation role assignment).
Although this model supports permission delegation, one
must use roles to perform a partial delegation: the grantor

123

232 M. Ben-Ghorbel-Talbi et al.

must create a temporary delegation role (DTR), assigns per-
mission to this role and finally assigns the grantee to this role.
To control delegation the can_delegate relationship is defined
as follows: can_delegate ⊆ R RxPre_conxP_rangexM ,
where Pre_con: prerequisite condition, P_range: delega-
tion range and M : maximum delegation depth. The right to
revoke is implicitly defined: a delegation role is revoked only
by owner.

PBDM1 is an extension to PBDM0 which allows the
administrator to restrict the delegation. This model adds new
components such as delegatable roles (DBR), user-delega-
table role assignment (UAB) and permission-delegatable role
assignment (PAB). Only permissions assigned to delegatable
roles can be delegated. PBDM2 is another extension which
addresses role-to-role delegation. This model divides roles
into four layers and adds new types of permissions.

In [23], authors propose to extend the PBDM model to
deal with the separation of duty and roles inheritance. This
model defines six different layers of roles and this parti-
tion induces a parallel partition of P A which is separated
into seven partitions. It also defines a set of components to
describe the static and the dynamic separation of duty con-
straints (mutex_roles_set, mutex_permissions_set, dynamic_
mutex_roles_ set and dynamic_mutex_permissions_set).

The ABDM model [31] is an attribute-based delegation
model, which extends PBDM model to address delega-
tion constraints. This model defines two types of con-
straints: DAE (Delegation Attribute Expression) and CR
(prerequisite conditions). DAE indicates the grantee’s
qualifications and abilities, and CR indicates prerequisite
conditions. There are two types of delegation: decided-
delegatees (specified by the grantor) and undecided-
delegatees (a qualified grantee candidates generated
automatically by the system). The relationship U A is divided
into U R A (user to regular role assignment), U D A (decided-
delegatee to temporary role assignment) and U E A (unde-
cided-delegatee to temporary role assignment). To restrict
decided delegation the following relationship is defined:
can_delegateD ⊆ RxC RxD AExT DR. Similarly the rela-
tionship can_delegateU is used to restrict undecided dele-
gation.

The ABDM model is also extended to ABDMx to deal
with temporal delegation. For this purpose, several com-
ponents are added. For instance, the set of permissions is
divided into two types: M P (Monotonous Permission) that
can be temporarily or permanently delegated to a qualified
user and N M P (Non-Monotonous Permission) that can only
be temporarily delegated to a low level grantee. Moreover, to
control delegation five relationships are defined: can_dele-
gateM , can_delegateT N , can_delegateP N , can_dele-
gateMU and can_delegatePU .

URDM [24] is a delegation model based on ABDM
and RDM2000. It deals with multiple delegation and intro-

duces new types of constraints. A new delegation relation-
ship called Simultaneous Delegation Relation (SDR) is
proposed in this model. This relationship contains two
sets of components: original user assignments U AO , and
delegated user assignments U AD. Five types of con-
straints are addressed in the relationship can_delegate ⊆
RxPCxDW xDDxD AExDT , where PC : delegation pre-
requisite conditions, D AE : delegation attribute expressions,
DW : delegation width, DD: delegation depth (only single
delegation is supported, so DD = 1) and DT : delegation
time. PC and D AE are used to identify which grantee satis-
fies the delegation requirements. The DW constraint is used
to deal with multiple delegation, DD to deal with multi-step
delegation and DT is the constraint that refers to temporary
delegation limited by time. The revocation is controlled by
the following relation: can_revoke ⊆ RxCUxR AExDT ,
where CU is a set of current users and R AE is a set of attri-
bute expressions for revocation requirements. This model
defines more delegation and revocation constraints than the
others. But each constraint is defined separately using a spe-
cific delegation relation, such as DW, DD and DT . By con-
trast, in our model we deal with all these constraints using
contexts. Hence, to express new constraints we do not specify
new relationships but simply new contexts.

Another delegation model is proposed by Crampton and
Khambhammettu [11]. It extends RBAC by adding new com-
ponents to specify delegation characteristics like transfer.
It introduces two relationships: can_delegate ⊆ RxR and
can_receive ⊆ RxC , where C ⊆ R, to specify whether
the grantor is authorized to delegate a role and whether
the grantee is authorized to receive a role delegation,
respectively. The two relationships can_delegatep ⊆ RxP
and can_receivep ⊆ PxC are defined to specify whether
the grantor and the grantee are authorized to delegate
and receive a permission delegation, respectively. Also, it
defines specific actions to perform delegation and transfer,
like grant R1(u, v, r), grant P1(u, v, p), x f er P1(u, v, p),

x f er Rstrong(u, v, r), x f er Rstatic(u, v, r) and x f er
Rdynamic(u, v, r), where u is the grantor, v is the grantee,
r is the delegated role and p is the delegated permission.
x f er Rstrong and x f er Rstatic are used, respectively, to
transfer a role with and without sub-role inheritance. In our
model, we only support role transfer (and delegation) with
sub-role inheritance and we consider that if the grantor wants
to transfer (or delegate) a role without sub-role inheritance,
he/she may transfer (or delegate) all the role permissions
instead of the role. This model also uses a delegation his-
tory relationship (DH) to record all delegations that have
been made and the two relationships tempUA and tempPA
to record temporary user-role and user-permission delega-
tions. Note that in our model we do not need to use such
relationships and operations to perform and control delega-
tion, transfer and revocation. The delegation is performed

123

A delegation model for extended RBAC 233

just like the administration, i.e using objects having specific
semantics.

In [25], authors propose to extend the RBAC model to
deal with delegation in pervasive computing, where dynamic
access control is required. In this work only temporal and
spatial conditions are supported and the right to delegate is
implicitly defined, this means that users are allowed to del-
egate their own roles and permissions. Moreover and again,
like in the other models, specific relationships are defined for
each level of delegation. For instance, predicates Delegate
U2U_Pu(u, v, Perm), DelegateU2U_Pt (u, v, Perm, d),

DelegateU2U_Pl(u, v, Perm, l) and DelegateU2U_Ptl

(u, v, Perm, d, l) are used to allow user u to delegate per-
mission Perm to user v without restrictions, for the duration
d, in the location l and for the duration d in the location
l, respectively. These relationships are defined for user-user
permission delegation. Other relationships are also defined
for the user–user role delegation, role–role permission dele-
gation and finally role–role delegation.

Compared to these works, our model is more flexible, sim-
pler to manage and more comprehensive. There is no strict
distinction between administration and delegation, since
there is no specific roles, permissions or relationships for the
delegation tasks like in other models. Our delegation model
is completely homogeneous with the administration model,
hence, we deal with the administration and delegation in a
homogeneous unified framework. This is very useful to sim-
plify the administrator task. Indeed, managing delegation do
not necessitate the specification of a separate security policy.
This is made possible thanks to our extended RBAC model
which offers facilities to deal with delegation requirements
without requiring additional components. Namely, our model
is based on multi-granular and contextual licences, which
provides means to define many delegation and revocation
requirements as we have shown in this paper.

Moreover, the delegation process in our model is more
flexible than in other proposed models. For instance, to del-
egate a permission the grantor (if he/she is authorized to do
so) must simply insert an object with the corresponding del-
egation attributes in the view licence_delegation, and he/she
can specify complex conditions to restrict the delegated
permissions using contexts. Whereas in other models such
as PBDM, ABDM and URDM, the grantor must create a
Delegation Role (DTR), assign the delegated permission(s)
to this role and finally assign this role to the grantee and the
only conditions that he/she can specify concerns the timeout
or the delegation depth in the case of multi-step delegation.
As we have mentioned previously, this approach is complex
to manage since during the delegation process new roles are
created and this requires the specification of a separate secu-
rity policy to deal with delegation and revocation authoriza-
tions, hierarchical relationships and global constraints like in
[20,23].

To sum up, we give in Table 1 a comparison between our
model and some of the aforementioned models. We show
how to manage the right to delegate, transfer and revoke
permissions and roles. In our model, these rights are man-
aged using “classic” permissions and prohibitions, but other
models use specific relationships.

We also show how the administrator can restrict the right to
delegate using constraints. In our mode,l these constraints are
defined using contexts. Hence, we may define various condi-
tions concerning the delegated privileges, grantor/grantee’s
characteristics (e.g. roles, attributes), actions (e.g. previous
delegation), locations and also concerning the system attri-
butes such as time and circumstance. These conditions can
also be specified by users to restrict the scope of their del-
egated rights and to control the propagation of the delega-
tion. RBAC-based delegation models support only some of
these conditions, and they use specific relationships for each
constraint level (e.g. time, role, delegation depth). This is
not a well-suited approach since the specification of new
features is a fastidious task and requires the design of new
models. Moreover, models such as DAC do not support
such conditions since the grant command does not restrict
the usage of information once delegated. Thus, it does not
provide accurate information on the permissions propaga-
tion, and there is a risk of losing control over delegation
[27].

Finally, we present the different delegation features sup-
ported by our model. We show that our model is more flexi-
ble and comprehensive than other models. It supports a large
spectrum of different delegation, transfer and revocation fea-
tures and can be easily extended to include other features.
One may notice that temporary role delegation and transfer
are not considered in our model. In fact, in our approach, a
context is actually not attached to the role but to the security
rules. We argue that the notion of contextual role that was
suggested in several models generally corresponds to artifi-
cial roles and sometimes to misleading roles (see [12] for a
discussion).

8 Conclusion and future work

In this paper, we have proposed a new delegation approach for
role-based access control. We have showed that it is possible
to specify delegation requirements using a formalism based
on the OrBAC model. This model is self-administrated and
provides facilities, such as multi-granular licence, contextual
licence and use of views, which give means to specify delega-
tion characteristics just like the administration. Therefore our
approach is more flexible, simpler to manage and more com-
prehensive than previous works based on the RBAC model.

Our model supports several delegation features such as
totality, permanence, multiple and multi-step delegation,

123

234 M. Ben-Ghorbel-Talbi et al.

Ta
bl

e
1

M
an

ag
in

g
de

le
ga

tio
n

C
ha

ra
ct

er
is

tic
O

ur
m

od
el

R
B

D
M

R
D

M
20

00
PB

D
M

A
B

D
M

U
R

D
M

C
ra

m
pt

on
et

al
.

R
ol

e
D

el
eg

at
io

n
(
R

D
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
D

ca
n_

de
le

ga
te

U
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
ca

n_
re

ce
iv

e

C
on

st
ra

in
ts

C
on

te
xt

s
R

ol
e

R
ol

e
+

D
el

eg
.d

ep
th

R
ol

e
+

D
el

eg
.d

ep
th

R
ol

e
+

A
tt

ri
bu

te
s

R
ol

e+
Ti

m
e

A
tt

ri
bu

te
s+

D
el

eg
.

de
pt

h+
D

el
eg

.
w

id
th

R
ol

e

P
er

m
is

si
on

D
el

eg
at

io
n

(
P

D
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
D

ca
n_

de
le

ga
te

U
ca

n_
de

le
ga

te
ca

n_
de

le
ga

te
p

ca
n_

re
ce

iv
ep

C
on

st
ra

in
ts

C
on

te
xt

s
R

ol
e

+
Pe

rm
is

si
on

+
D

el
eg

.d
ep

th
R

ol
e

+
A

tt
ri

bu
te

s
R

ol
e+

Ti
m

e
A

tt
ri

bu
te

s+
D

el
eg

.
de

pt
h+

D
el

eg
.

w
id

th

R
ol

e
+

Pe
rm

is
si

on

R
ol

e
T

ra
ns

fe
r

(
R

T r
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
x

x
x

ca
n_

de
le

ga
te

/c
an

_r
ec

ei
ve

C
on

st
ra

in
ts

C
on

te
xt

s
R

ol
e

P
er

m
is

si
on

T
ra

ns
fe

r
(
P

T r
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
x

x
x

ca
n_

de
le

ga
te

p
ca

n_
re

ce
iv

ep

C
on

st
ra

in
ts

C
on

te
xt

s
R

ol
e

+
Pe

rm
is

si
on

R
ol

e
R

ev
oc

at
io

n
(
R

R
v
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
ca

n_
re

vo
ke

ca
n_

re
vo

ke
G

D
ca

n_
re

vo
ke

G
I

im
pl

ic
it

im
pl

ic
it

ca
n_

re
vo

ke
im

pl
ic

it

C
on

st
ra

in
ts

C
on

te
xt

s
R

ol
e

R
ol

e
x

x
R

ol
e

+
Ti

m
e

+
A

tt
ri

bu
te

s
x

P
er

m
is

si
on

R
ev

oc
at

io
n

(
P

R
v
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
im

pl
ic

it
im

pl
ic

it
ca

n_
re

vo
ke

im
pl

ic
it

C
on

st
ra

in
ts

C
on

te
xt

s
x

x
R

ol
e

+
Ti

m
e

+
A

tt
ri

bu
te

s
x

R
ol

e
T

ra
ns

fe
r

R
ev

-
oc

at
io

n
(
R

T
R

v
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
x

x
x

im
pl

ic
it

C
on

st
ra

in
ts

C
on

te
xt

s
x

P
er

m
.T

ra
ns

fe
r

R
ev

oc
at

io
n

(
P

T
R

v
)

Pe
rm

is
si

on
/P

ro
hi

bi
tio

n
x

x
x

x
x

im
pl

ic
it

C
on

st
ra

in
ts

C
on

te
xt

s
x

Su
pp

or
te

d
F

ea
tu

re
s

Si
m

pl
e/

M
ul

tip
le

R
D

/
R

T r
/

P
D

/
P

T r

Si
m

pl
e

R
D

Si
m

pl
e

R
D

Si
m

pl
e

R
D

/
P

D
Si

m
pl

e
R

D
/

P
D

Si
m

pl
e/

M
ul

tip
le

R
D

/
P

D
Si

m
pl

eR
D

/
P

D
/

R
T r

/
P

T r

Si
ng

le
/M

ul
ti-

st
ep

R
D

/
R

T r
/

P
D

/
P

T r

Si
ng

le
/T

w
o-

st
ep

R
D

Si
ng

le
/M

ul
ti-

st
ep

R
D

Si
ng

le
/M

ul
ti-

st
ep

R
D

/
P

D
Si

ng
le

-s
te

p
R

D
/

P
D

Si
ng

le
-s

te
p

R
D

/
P

D
Si

ng
le

-s
te

p
R

D
/

P
D

/

R
T r

/
P

T r

Se
lf

/A
ge

nt
-a

ct
ed

R
D

/
R

T r
/

P
D

/
P

T r

Se
lf

-a
ct

ed
R

D
Se

lf
-a

ct
ed

R
D

Se
lf

-a
ct

ed
R

D
/

P
D

Se
lf

-a
ct

ed
R

D
/

P
D

Se
lf

-a
ct

ed
R

D
/

P
D

Se
lf

-a
ct

ed
R

D
/

P
D

/
R

T r
/

P
T r

Te
m

po
ra

ry
P

D
/

P
T r

Te
m

po
ra

ry
R

D
Te

m
po

ra
ry

R
D

x
Te

m
po

ra
ry

R
D

/
P

D
x

Te
m

po
ra

ry
R

D
/

P
D

/
R

T r
/

P
T r

G
D

/G
I

R
R

v
/

P
R

v
/

R
T

R
v
/

P
T

R
v

G
D

/G
I

R
R

v
G

D
/G

I
R

R
v

G
D

R
R

v
/

P
R

v
G

D
R

R
v
/

P
R

v
G

D
R

R
v
/

P
R

v
G

D
R

R
v
/

P
R

v
/

R
T

R
v
/

P
T

R
v

123

A delegation model for extended RBAC 235

transfer and agent-acted delegation. These features are
managed in a simple manner using contexts. We gave some
examples to show how we deal with these aspects and how
we can enrich our model to support other delegation require-
ments. We have also showed that we can deal with several
revocation schemes such as dominance, propagation and
dependency. More details about revocation mechanism are
given in [9].

The OrBAC model being self-administrated, specifying
the administration and the delegation policy is done using
the same concepts involved in the specification of the secu-
rity policy, which does not require the administrator to learn
a separate administration and delegation models. Hence, we
have proposed a single tool called MotOrBAC to manage
all these aspects. Although this tool is based on a unique
API and uses the same formalism to manage administration
and delegation, there is no confusion between these two con-
cepts. Administrative privileges are managed using admin-
istrative views, whereas delegation privileges are managed
using delegation views. Therefore, in the MotOrBAC tool
there is two different GUI to distinguish between the design
time when administrators specify and manage the security
policy and the run time when users delegate and revoke their
rights.

Many more features still remain to be studied in our model.
First, a potential work includes the application of our delega-
tion model to specific access control areas, such as workflow
systems. Indeed, in [3] authors have proposed a Workflow
Management Systems (WFMS) associated with a security
policy expressed using the OrBAC formalism. They have
shown that OrBAC provides useful notions, such as organi-
zation and contexts, and therefore is well suited to manage
workflow systems requirements. Therefore, it is possible to
apply our approach to WFMS to manage delegation in such
systems.

Second, we have only investigated the issue of delega-
tion within a single organization. It is possible to explore
delegation requirements when organizations want to inter-
operate. This means that to allow users to delegate their priv-
ileges or responsibilities to external users (i.e. from other
organizations) with respect to the interoperability policy. Our
work can be extended by the O2O concept (for Organization
to Organization) defined in [14], to deal with such require-
ments.

Delegation of obligations is another issue to address. We
have proposed a first model in [10] to manage obligation
delegation requirements such as the bilateral agreement del-
egation and the delegation with responsibility. We plan to
further develop this point in future work.

Acknowledgments This work is partially supported by the ANR pro-
ject Polux. For this work, Meriam Ben-Ghorbel-Talbi is funded by the
IFC, the French Institute for Cooperation in Tunisia.

References

1. Abou-El-Kalam, A., Benferhat, S., Miège, A., Baida, R.E.,
Cuppens, F., Saurel, C., Balbiani, P., Deswarte, Y., Trouessin, G.:
Organization based access control. In: Proceedings of the 4th IEEE
International Workshop on Policies for Distributed Systems and
Networks (POLICY 2003). IEEE Computer Society (2003)

2. Ahn, G.J., Mohan, B., Hong, S.P.: Towards secure information shar-
ing using role-based delegation. J. Netw. Comput. Appl. 30(1),
42–59 (2007)

3. Ayed, S., Cuppens-Boulahia, N., Cuppens, F.: Deploying security
policy in intra and inter workflows management systems. In: Pro-
ceedings of 3rd International Conference on Availability, Reliabil-
ity and Security (ARES 2009). IEEE Computer Society, Fukuoka
(2009)

4. Barka, E., Sandhu, R.: A role-based delegation model and some
extensions. In: Proceedings of the 23rd National Information Sys-
tems Security Conference (NISSC 2000). Baltimore, MD (2000)

5. Barka, E., Sandhu, R.: Role-based delegation model/hierarchi-
cal roles (RBDM1). In: Proceedings of the 20th Annual Com-
puter Security Applications Conference (ACSAC 2004). Tucson,
Arizona (2004)

6. Barka, E., Sandhu, R.: Framework for agent-based role delegation.
In: Proceedings of the IEEE International Conference on Commu-
nications (ICC 2007). (2007)

7. Ben-Ghorbel-Talbi, M.: Decentralized administration of secu-
rity policies. Ph.D. Thesis, TELECOM Bretagne-Sup’Com Tunis
(2009)

8. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.,
Bouhoula, A.: Managing delegation in access control models.
In: Proceedings of the 15th International Conference on Advanced
Computing and Communications (ADCOM 2007), pp. 744–751.
IEEE Computer Society, Guwahati, Inde (2007)

9. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.,
Bouhoula, A.: Revocations schemes for delegation licences.
In: Proceedings of the 10th International Conference on Informa-
tion and Communications Security (ICICS 2008). Springer, Bir-
mingham (2008)

10. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.,
Bouhoula, A.: An extended role-based access control model for del-
egating obligations. In: Proceedings of the 6th International Con-
ference on Trust, Privacy & Security in Digital Business (TrustBus
2009). LNCS Springer, Linz, Austria (2009)

11. Crampton, J., Khambhammettu, H.: Delegation in role-based
access control. Int. J. Inf. Secur. (2008)

12. Cuppens, F., Cuppens-Boulahia., N.: Modeling contextual security
policies. Int. J. Inf. Secur. (2008)

13. Cuppens, F., Cuppens-Boulahia, N., Ben-Ghorbel, M.: High
level conflict management strategies in advanced access con-
trol models. Electron. Notes Theor. Comput. Sci. (ENTCS) 186,
3–26 (2007)

14. Cuppens, F., Cuppens-Boulahia, N., Coma, C.: O2O: Virtual
private organizations to manage security policy interoperability.
In: Proceedings of the 2nd International Conference on Informa-
tion Systems Security (ICISS 2006), India (2006)

15. Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Multi-granular
licences to decentralize security administration. In: Proceedings
of the First International Workshop on Reliability, Availability and
Security (SSS/WRAS 2007). Paris, France (2007)

16. Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance
hierarchies in the Or-BAC model and application in a network
environment. In: Proceedings of the 3rd Workshop on Foundations
of Computer Security (FCS04). Turku, Finland (2004)

17. Cuppens, F., Miège, A.: Administration model for Or-BAC. Int. J.
Comput. Syst. Sci. Eng. (CSSE) 19(3) (2004)

123

236 M. Ben-Ghorbel-Talbi et al.

18. Griffiths, P.P., Wade, B.W.: An authorization mechanism for a rela-
tional database system. ACM Trans. Database Syst. 1(3) (1976)

19. Jena: A Semantic Web Framework for Java. http://jena.
sourceforge.net/

20. Kong, G., Li, J.: Research on RBAC-based separation of duty con-
straints. J. Inf. Comput. Sci. 2(3), 235–240 (2007)

21. Lee, Y., Park, J., Lee, H., Noh, B.: A rule-based delegation model
for restricted permission inheritance RBAC. In: Proceedings of
the 2nd International Conference (ACNS 2004). Yellow Mountain
(2004)

22. Motorbac: http://motorbac.sourceforge.net/
23. Park, D.G., Lee, Y.R.: A flexible role-based delegation model using

characteristics of permissions. In: Proceedings of the 16th Interna-
tional Conference on Database and Expert Systems Applications
(DEXA 2005). Copenhagen, Denmark (2005)

24. Qiu, W., Adams, C.: Exploring user-to-role delegation in role-based
access control. In: Proceedings of the 8th World Congress on the
Management of eBusiness (WCMeB 2007). IEEE Computer Soci-
ety, Toronto, ON (2007)

25. Ray, I., Toahchoodee, M.: A spatio-temporal access control
model supporting delegation for pervasive computing applications.
In: Proceedings of the 5th International Conference on Trust,
Privacy & Security in Digital Business (TrustBus’08). LNCS
Springer, Turin (2008)

26. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based
access control models. IEEE Comput. 29(2), 38–47 (1996)

27. Sandhu, R.S., Samarati, P.: Access control: principles and practice.
lEEE Commun. Mag. (1994)

28. The Motorbac Tool: http://motorbac.sourceforge.net/
29. Toman, D.: Memoing evaluation for constraint extensions of dat-

alog. Constraints 2(3/4), 337–359 (1997)
30. Ullman, J.D.: Principles of Database and Knowledge-Base Sys-

tems: Volume II: The New Technologies. W.H. Freeman & Co, New
York, NY (1990)

31. Ye, C., Wu, Z., Fu, Y.: An attribute-based delegation model and its
extension. J. Res. Pract. Inf. Technol. 38(1) (2006)

32. Zhang, L., Ahn, G.J., Chu, B.T.: A rule-based framework for role-
based delegation and revocation. ACM Trans. Inf. Syst. Secur.
(TISSEC) 6, 404–441 (2003)

33. Zhang, X., Oh, S., Sandhu, R.: Pbdm: a flexible delegation model
in RBAC. In: Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT 2003). ACM Press,
Como (2003)

Author biographies

Meriam Ben-Ghorbel-Talbi is currently a postdoc at the TELE-
COM Bretagne. She received her Ph.D in computer science, in
2009, co-supervised with TELECOM Bretagne and Sup’Com the
Engineering School of Telecommunications in Tunisia. She holds
a Master degree, in 2005, in computer science from ENSI the
National School of Computer Science in Tunisia and an Engi-
neering degree, in 2003, in network and computer science from
INSAT the National Institute of Applied Sciences and Technol-
ogies in Tunisia. Her research interests include access control
policies and intrusion detection systems.

Frédéric Cuppens is a full professor at TELECOM Bretagne. He holds
an engineering degree in computer science, a Ph.D and an HDR. He has
been working for more than 15 years on various topics of computer secu-
rity including definition of formal models of security policies, access
control to network and information systems, intrusion detection and for-
mal techniques to refine security policies and prove security properties.
He has published more than 100 technical papers in refereed journals
and conference proceedings. He served on several international confer-
ence programme committees and was the Programme Committee Chair
of ESORICS 2000, IFIP SEC 2004 and SAR2006.

Nora Cuppens-Boulahia is a teacher/researcher at TELECOM
Bretagne. She holds an engineering degree in computer science and
a Ph.D from ENSAE and an HDR. Her research interest includes for-
malization of security policies and security properties, cryptographic
protocol analysis and formal validation of security properties. She
has published more than 50 technical papers in refereed journals and
conference proceedings. She has been member of several international
program committees in information security system domain and the
Programme Committee Chair of Setop 2008 and SAR-SSI 2008. She is
member of the editorial board of “Computer & Security” journal, she is
the French representative of IFIP TC11 “Information Security,” and she
is co-responsible of the information system security pole of SEE-TIC.

Adel Bouhoula received in 1990 the Diploma degree in computer engi-
neering with Distinction from the University of Tunis (Tunisia). In 1991,
he received a Masters degree, in 1994 a Ph.D degree with Distinction
and in 1998 the Habilitation degree all in computer science from Henri
Poincare University in Nancy (France). Adel Bouhoula is currently a
full Professor at the Sup’Com Engineering School of Telecommunica-
tions in Tunisia. He is also the Head of the “Digital Security” Research
Unit and the President of the Tunisian Association of Digital Security.
His research interests include Automated Reasoning, Network Security,
Cryptography and Validation of cryptographic protocols.

123

http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://motorbac.sourceforge.net/
http://motorbac.sourceforge.net/

	A delegation model for extended RBAC
	Abstract
	1 Introduction
	2 Extended RBAC model
	2.1 Basic predicates
	2.2 Hierarchy and inheritance
	2.3 Global constraints
	2.4 Conflict management
	2.5 The administration model

	3 The delegation model
	3.1 Introduction
	3.2 Motivating example
	3.3 Delegation views
	3.3.1 The view licence_delegation
	3.3.2 The view role_delegation
	3.3.3 The view licence_transfer
	3.3.4 The view role_transfer
	3.3.5 The view grant_option

	3.4 Contextual delegation
	3.5 Managing delegation privileges
	3.5.1 Delegation hierarchy and inheritance
	3.5.2 Global constraints
	3.5.3 Conflict management

	4 Revocation
	4.1 Notations and definitions
	4.2 Managing revocation

	5 Decidability and complexity
	6 The MotOrBAC tool
	7 Discussion and related work
	8 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

