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Abstract In Asiacrypt 2003, the concept of universal des-
ignated verifier signature (UDVS) was introduced by
Steinfeld, Bull, Wang and Pieprzyk. In the new paradigm,
any signature holder (not necessarily the signer) can desig-
nate the publicly verifiable signature to any desired desig-
nated verifier (using the verifier’s public key), such that only
the designated verifier can believe that the signature holder
does have a valid publicly verifiable signature, and hence,
believes that the signer has signed the message. Any other
third party cannot believe this fact because this verifier can
use his secret key to create a valid UDVS which is desig-
nated to himself. In ACNS 2005, Zhang, Furukawa and Imai
proposed the first UDVS scheme without random oracles. In
this paper, we give a security analysis to the scheme of Zhang
et al. and propose a novel UDVS scheme without random
oracles based on Waters’ signature scheme, and prove that
our scheme is secure under the Gap Bilinear Diffie Hellman
assumption.
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1 Introduction

Digital signature, as introduced in the pioneering paper of
Diffie and Hellman [7], allows a party with a private key
to sign a message such that anyone who has access to the
corresponding public key can verify the authenticity of the
message. The verifier of a signature can convince any third
party about the fact by presenting a digital signature on a
message. The public verifiability of digital signatures is of
great convenience for many applications, but it is unsuitable
for some other applications where a verifier does not want
to present the publicly verifiable signatures to other parties,
such as those associated with certificates for hospital records,
income summary, etc.

Universal designated verifier signature, as introduced by
Steinfeld et al. [11] in Asiacrypt 2003, is an important tool
to protect the privacy of the signature holder from dissemi-
nation of signatures by verifiers. Given a publicly verifiable
signature from the signer, a signature holder can convert it
to a UDVS which is designated to a verifier, such that only
this designated verifier can believe that the message has been
signed by the signer. However, any other third parties cannot
believe it because this verifier can use his secret key to cre-
ate a valid UDVS which is the same as the one designated
to himself. Thus, one cannot distinguish whether a UDVS
is created by the signature holder or the designated verifier
himself.

When the signature holder and the signer are the same user,
a universal designated signature will form a designated ver-
ifier signature, as introduced by Jakobsson et al. [9]. There-
fore, UDVS can be viewed as an application of general
designated verifier signatures where the signer designates
a non-interactive proof statement to a designated verifier.

FromBLSshort signature [5],Steinfeldetal. [11]proposed
the first UDVS scheme in Asiacrypt 2003. Steinfeld et al.
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also showed how to obtain a UDVS scheme from the Sch-
norr/RSA signature scheme in PKC 2004 [12]. Zhang et al.
[16] extended this notion to the Identity-based setting and
proposed two identity-based UDVS schemes. However, the
security of all the above UDVS schemes are based on the
random oracle model [16]. The first UDVS scheme without
random oracle was proposed by Zhang et al. [15] in ACNS
2005, where a variant of BB’s [4] short signature scheme
without random oracle is used as the building block.

In Asiacrypt 2005, Baek et al. [2] introduced the notion of
universal designated verifier signature proof (UDVSP) which
removes the requirement that the designated verifier must
create a public key using the parameters of signer’s public
key system. Baek et al. also provided two interactive pro-
tocols [2] based on BLS [5] and BB [4] publicly verifiable
signature schemes, respectively.

Our contribution

In this paper, we firstly formalize the security models of
UDVS. Then, we analyze the UDVS scheme without ran-
dom oracle proposed in [15]. The distinguisher D against
this scheme can have non-negligible advantage in the model
of the non-transferability defined in this paper. However, this
problem does not exist in the definition of the model of Zhang
et al. [15]. We also provide a new UDVS scheme without ran-
dom oracle which is secure in our stronger model. The secu-
rity of our scheme is based on the difficulty of Gap Bilinear
Diffie Hellman problem.

Organization

The rest of this paper is organized as follows. In the next
section, we will provide some preliminaries and background
required throughout the paper. In Sect. 3, we introduce the
formal models of the universal designated verifier signature.
We review and analyze the scheme of Zhang et al. [15] in
Sect. 4. We provide our UDVS scheme without random ora-
cle with security analysis in Sect. 5. Finally, Sect. 6 concludes
the paper.

2 Preliminaries

In this section, we will review some fundamental
backgrounds used throughout this paper, namely bilinear
pairings and their complexity assumptions.

2.1 Bilinear pairing

Let G1 and GT be two groups of prime order p and let g be a
generator of G1. The map e : G1×G1 → GT is said to be an

admissible bilinear pairing if the following three conditions
hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ Zp.
– e is non-degenerate, i.e. e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1, GT ) are bilinear groups if there exists a
group GT , e : G1 × G1 → GT as above, and e, and the
group action in G1 and GT can be computed efficiently. See
[5] for more details on the construction of such pairings.

2.2 Complexity assumptions

Definition 1 Bilinear Diffie-Hellman (BDH) Problem in
(G1, GT )

Given g, ga, gb, gc ∈ G1 for some unknown a, b, c ∈ Zp,
compute out w = e(g, g)abc ∈ GT .

Definition 2 Decisional Bilinear Diffie-Hellman (DBDH)
Problem in (G1, GT )

Given g, ga, gb, gc ∈ G1 for some unknown a, b, c ∈ Zp

and w ∈ GT , decide whether w
?= e(g, g)abc.

A DBDH oracle ODB DH is that on input g, ga, gb, gc ∈ G1

and w ∈ GT , outputs 1 if w = e(g, g)abc and 0 otherwise.

Definition 3 Gap Bilinear Diffie-Hellman (GBDH) Problem
in (G1, GT )

Given g, ga, gb, gc ∈ G1 for some unknown a, b, c ∈ Zp,
compute out w = e(g, g)abc ∈ GT with the help of ODB DH .

The probability that a polynomial bounded algorithm A can
solve the GBDH problem is defined as:

SuccG B DH
A,G1,GT

= Pr[e(g, g)abc

← A(G1, GT , g, ga, gb, gc,ODB DH )].
Definition 4 Gap Bilinear Diffie-Hellman (GBDH)
Assumption in (G1, GT )

Given g, ga, gb, gc ∈ G1 for some unknown a, b, c ∈ Zp,
SuccG B DH

A,G1,GT
is negligible.

3 Formal models of UDVS

Our universal designated verifier signature scheme consists
of the following algorithms: UDVS= (CPG, SKG, VKG,
PS, PV, DS, DS, DV, PKR).

– Common Parameter Generation CPG: a probabilistic
algorithm, given a security parameter k, outputs a strong
cp which denotes the common scheme parameters (cp
is shared by all the users in the system). That is: cp ←
CPG(k).
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– Signer Key Generation SKG: a probabilistic algorithm,
on input a common parameter cp, outputs a secret/pub-
lic key-pair (sks, pks) for the Signer . That is: (sks, pks)

← SKG(cp).
– Verifier Key Generation VKG: a probabilistic algorithm,

on input a common parameter cp, outputs a secret/pub-
lic key-pair (skv, pkv) for the V eri f ier . That is (skv,

pkv)← VKG(cp).
– Signing PS: a probabilistic algorithm, on input the

common parameter cp, Signer ′s secret key sks and the
message m, outputs Signer ′s publicly verifiable (PV)
signature σPV. That is: σPV ← PS(cp, sks, m).

– Public Verification PV: a deterministic algorithm, on
input the common parameter cp, Signer ′s public key
pks , the signed message m and the PV signature σPV,
outputs verification decision d ∈ {Acc, Rej}. That is:
{Acc, Rej} ← PV(cp, pks, m, σPV).

– Designation by Signature Holder DS: a probabilistic
algorithm, on input the common parameter cp, Signer ′s
public key pks , V eri f ier ′s public key pkv , the signed
message m and the PV signature σPV, outputs the des-
ignated verifier(DV) signature σDV. That is: σDV ← DS
(cp, pks, pkv, m, σPV).

– Designation by Verifier DS: a probabilistic algorithm,
on input the common parameter cp, Signer ′s public key
pks , V eri f ier ′s secret key skv and the message m out-
puts the designated verifier(DV) signature σDV which is
designated to himself. That is: σDV ← DS(cp, pks,

skv, m).
– Designation Verification DV: a deterministic algorithm,

on input the common parameter cp, Signer ′s public key
pks , V eri f ier ′s secret key skv , the signed message m and
the DV signature σDV, outputs the verification decision
d∈{Acc, Rej}. That is: {Acc, Rej} ← DV(cp, pks, skv,

m, σDV).
– Verifier Key-Registration PKR(KRA,VER): a protocol

between a “Key Registration Authority(KRA)” and a
“Verifier(VER)” who wishes to register a verifier’s pub-
lic key. On common input cp, the algorithm KRA and
VER interact by sending messages alternately from one
to another. At the end of the protocol, KRA outputs a pair
(pkv, Auth), where pkv is the V eri f ier ′s public key, and
Auth ∈ {Acc, Rej} is a key registration authorization
decision. We write PKR(KRA, VER) = (pkv, Auth) to
denote this protocol’s output.
The purpose of the Verifier Key-Registration is to force
the V eri f ier to “know” the secret key corresponding to
his public key, in order to enforce the non-transferability
privacy property which will be defined later [11].

Remark Compared with the models defined in [11,15], we
add an additional algorithm DS to describe directly how a
designated verifier can create a valid UDVS which is desig-

nated to himself. It is also for the convenience to analyze the
non-transferability privacy later.

Consistency:
In addition to the previous algorithms, we also require three
obvious consistency properties of the UDVS schemes.

− PV Consistency: this property requires that the PV sig-
nature produced by the PS algorithm is accepted as valid
by the PV algorithm. That is:

Pr[PV(cp, pks, m, PS(cp, sks, m)) = Acc] = 1.

− DV Consistency of DS: this property requires that the
DV signature produced by the DS algorithm is accepted
as valid by the DV algorithm. That is:

Pr[DV(cp, pks, skv, m,

DS(cp, pks, pkv, m, σPV)) = Acc] = 1.

− DV Consistency of DS: this property requires that the
DV signature produced by the DS algorithm is accepted
as valid by the DV algorithm. That is:

Pr[DV(cp, pks, skv, m,

DS(cp, pks, skv, m)) = Acc] = 1.

3.1 Security properties of UDVS

Unforgeability
Actually, there are two types of unforgeability properties that
can be used [11]. The first property, publicly verifiable signa-
ture unforgeability PV-Unforgeability, is just the usual exis-
tential unforgeability notion under chosen message attacker
[8] for the standard publicly verifiable signature scheme
PS, which states that anyone should not be able to forge
a PV signature of the signer. The second property, desig-
nated verifier signature unforgeability (DV-Unforgeability),
requires that it is difficult for an attacker to forge a DV sig-
nature σ ∗DV by the signer on a new message m∗, such that
the pair (M∗, σ ∗DV ) passes the DV algorithm with respect to
a designated verifier’s public key pk∗v , which states that for
any message, an adversary without the PV signature should
not be able to convince a designated verifier of holding
such a PV signature. DV-Unforgeability always implies the
PV-Unforgeability [11]. Thus, it is enough to consider only
DV-Unforgeability.

Let UDVS= (CPG, SKG, VKG, PS, PV, DS, DS, DV,
PKR) be a UDVS scheme. We define the existential unforge-
ability of the UDVS against adaptive chosen public key and
chosen message attackerAC M A, C P K A

EU F, U DV S . In the defined model,
we allow adversaries to submit SecretKey(SK) queries
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adaptively, thus the adversaries can corrupt some designated
verifiers and adaptively choose the target designated verifier,
which reflects more essence of real world adversaries [15].
We will define it via the following game with the challenger
C:

– Setup: The challenger C runs the CPG algorithm to
obtain the common parameters cp. C also generates
Signer ′s secret/public key-pair (sks, pks) from the SKG.
Additionally, C runs VKG some times to obtain n poten-
tial V eri f ier ′s secret/public key-pairs (skvi , pkvi ). C
then sends the common parameters cp, Signer ′s pub-
lic key pks and all V eri f ier ′s public keys pkvi , i ∈
{1, 2, . . . , n} to the adversary A.

– PS queries: A can ask the publicly verifiable signature
σPV on the message m he chooses. In response, C runs
PS algorithm to obtain the signature σPV. C then returns
σPV to A as the answer.

– DS queries: A can ask the designated verifier signature
σDV on the message m and under the verifier’s public key
pk ∈ {pkv1, pkv2 , . . . , pkvn } he chooses. In response, C
runs PS algorithm firstly to obtain the publicly verifiable
signature σPV if this signature does not exist, then runs
DS algorithm to obtain the designated verifier signature
σPV. C then returns σDV to A as the answer.

– DV queries: A can ask the designation verification result
of the message/signature pair (m, σDV) with the desig-
nated verifier’s public key pk ∈ {pkv1, pkv2 , . . . , pkvn }.
In response, C runs DV algorithm to return the decision
d ∈ {Acc, Rej} to A.

– SK queries: A can request the secret key queries of the
public key pk ∈ {pkv1, pkv2 , . . . , pkvn } he chooses. In
response, C returns the corresponding secret key sk to A.

We say A wins the game if A outputs a forged message/ sig-
nature pair(m∗, σ ∗DV) with a public key pk∗ ∈ {pkv1, pkv2 ,

. . . , pkvn } after all the queries, such that:

1. Acc← DV(cp, pks, sk∗, m∗, σ ∗DV).
2. m∗ has never been submitted as one of the PS queries.
3. (m∗, pk∗) has never been submitted as one of the DS

queries.
4. pk∗ has never been submitted as one of the SK queries.

The success probability of an adaptive chosen message and
public key attacker wins the above game is defined as Succ
AC M A, C P K A

EU F, U DV S .

Definition 5 We say an attacker AC M A, C P K A
EU F, U DV S can (t, qPS,

qDS, qDV, qSK, ε)-breaks the UDVS scheme ifAC M A, C P K A
EU F, U DV S

runs in time at most t , makes at most qPS PS queries,
qDS DS queries, qDV DV queries, qSK SK queries and
Succ AC M A, C P K A

EU F, U DV S is at least ε.

Remark The unforgeability model defined here is not the
strong unforgeability model in the sense of [4,15]. However,
we note that this model is practical and widely used [8].
Moreover, as we shall show in Sect. 4, the strong unforge-
ability model is somehow undesirable in some situation.

Non-transferability privacy
Let UDVS = (CPG, SKG, VKG, PS, PV, DS, DS, DV,

PKR) be a UDVS scheme. We define the non-transferability
of the UDVS against adaptive chosen public key and cho-
sen message distinguisher DC M A, C P K A

T R AN S, U DV S . As explained in
[11], the goal of non-transferability privacy is that the signa-
ture holder provides many designated verifier signature σDV’s
on message m, designated to many verifier public keys of
the attacker’s choice, however, the attacker cannot use these
σDV’s to convince a third party that the signer has signed on
the message m. In order to make the property of non-transfer-
ability privacy clearer, we classify the model into two stages.
In the first stage, the distinguisher D can submit PS, DS,
DS, DV, SecretKey(SK) queries adaptively. At the end of
the first stage, D can submit a challenge message m∗ and the
public key pk∗ to the challenger. In response, the challenger
will choose a random coin ∈ {0, 1}. If coin = 1, C runs
DS algorithm and returns the signature σ ∗DV = σDV to D.

Otherwise, C runs DS algorithm and returns the signature
σ ∗DV = σDV to D. After receiving σ ∗DV, D still can submit

PS, DS, DS, DV, SK queries in the second stage except that
D cannot submit m∗ as one of PS queries or he cannot sub-
mit (m∗, pk∗) as one of the DS queries or DS queries. At
last, D outputs his guess of coin. Compared with the mod-
els defined in [11,15], we allow the distinguisher to obtain
the designated verifier signatures of the challenging message
which is designated to other verifiers except the challenging
verifier.

• Setup: The challenger C runs the CPG algorithm to
obtain the common parameters cp. C also generates
Signer ′s secret/public key-pair (sks, pks) from the SKG.
Additionally, C runs VKG some times to obtain n poten-
tial V eri f ier ′s secret/public key-pairs (skvi , pkvi ). C
then sends the common parameters cp, Signer ′s pub-
lic key pks and all V eri f ier ′s public keys pkvi , i ∈
{1, 2, . . . , n} to the distinguisher D.

• Stage 1
• PS queries: D can ask the publicly verifiable signa-

ture σPV on the message m he chooses. In response, C
runs PS algorithm to obtain the signature σPV. C then
returns σPV to D as the answer.

• DS queries: D can ask the designated verifier signa-
ture σDV on the message m and under the verifier’s
public key pk ∈ {pkv1, pkv2 , . . . , pkvn } he chooses.
In response, C runs PS algorithm firstly to obtain the
publicly verifiable signature σPV if this signature does
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not exist, then runs DS algorithm to obtain the desig-
nated verifier signature σPV. C then returns σDV to D
as the answer.

• DS queries: D can ask the designated verifier signa-
ture σDV on the message m and under the verifier’s
public key pk ∈ {pkv1, pkv2 , . . . , pkvn } he chooses.
In response, C runs DS to obtain the signature σPV
designated by the verifier. C then returns σDV to D as
the answer.

• DV queries: A can ask the designation verification
result of the message/signature pair (m, σDV) with the
designated verifier’s public key pk ∈ {pkv1, pkv2 ,

. . . , pkvn }. In response, C runs DV algorithm to return
the decision d ∈ {Acc, Rej} to A.

• SK queries: A can request the secret key queries of the
public key pk ∈ {pkv1, pkv2 , . . . , pkvn } he chooses.
In response, C returns corresponding secret key sk
to A.

• Challenge: Once D decides that Stage 1 is over, D out-
puts a message m∗ and a Verifier pk∗ such that (m∗, pk∗)
has not been submitted as one of the PS queries, DS
queries or DS queries. Then the challenger C chooses a
random coin ∈ {0, 1}. If coin = 1, C runs the algorithm
DS and returns σDV to D. Otherwise coin = 0, C runs
the algorithm DS and returns σDV to D.

• Stage 2: Upon receiving the challenging message/sig-
nature pair from C, D still can submit PS, DS, DS, DV,
SK queries, except that
1. He cannot submit m∗ as one of PS queries.
2. He cannot submit (m∗, pk∗) as one of the DS queries

or DS queries.
• Guess: Finally, D outputs his guess coin′ of coin. D

wins the game if coin′ = coin.

The advantage of an adaptive chosen message and public
key distinguisher D has in the above game is defined as

Adv DC M A, C P K A
T R AN S, U DV S = |Pr[coin′ = coin] − 1/2|.

Definition 6 We say a UDVS scheme is non-transferable
against a (t, qPS, qDS, qDS, qDV, qSK) adaptive chosen mes-

sage and public key distinguisher DC M A, C P K A
T R AN S, U DV S if Adv

DC M A, C P K A
T R AN S, U DV S is negligible after making at most qPS PS

queries, qDS DS queries, qDS DS queries, qDV DV queries,
qSK SK queries in time t .

4 Analysis of UDVS scheme of Zhang et al. [15] without
random oracle

Recently, Zhang et al. [15] proposed the first construction of
the UDVS scheme without random oracles. In the scheme,
they use BB [4] short signature scheme as the PS algorithm

to obtain the UDVS without random oracle. Zhang et al. also
refined the unforgeability definitions of UDVS such that the
adversaries have more freedom to select target verifiers and
target messages. Moreover, the notion “strong unforgeabili-
ty” in the sense of [1] was firstly introduced to the UDVS. In
this section, we will give a security analysis to the scheme of
Zhang et al.

4.1 Review of UDVS scheme of Zhang et al. [15]

Here, we give a brief review of their scheme, please refer
to [15] for more details. Let σPV = (σ, r) denote BB’s sig-
nature of a message m from a signer whose public key is
pks = (u1, v1). Then the algorithms DS and DS in [15] are:

1. DS: σDV = (σDV1 , σDV2 , σDV3) = (σ, gr , e(u3, v
r
3)),

where u3, v3 is the public key of the designated veri-
fier (Here we let G1 = G2 and the generator of G1(G2)

is g in their scheme for convenience.)
2. DS: The designated verifier himself can output a valid

UDVS signature for himself using his secret key skv =
(x3, y3) ∈ Zp × Zp. For a message m, he chooses s ∈R

Zp and computes:

σDV1=gs, σDV2=g1/su−1
1 v−m

1 , σDV3=e(g, σDV2)
x3 y3 .

Remark Actually, Zhang et al. do not give the definition
of the DS directly; however, we can extract this algo-
rithm from their proof of non-transferability privacy in
the Theorem 3 [15].

3. DV: Given Signer’s public key (u1, v1), V eri f ier ′s
secret key (x3, y3), the signed message m and the DV
signature σDV = (σDV1, σDV2 , σDV3), the verifier checks
whether

e(σDV1, u1σDV2v
m
1 )

?=e(g,g) and σDV3

?=e(g,σDV2)
x3 y3.

If all the two equations hold, he accepts the signature.
Otherwise, rejects it.

4.2 Analysis of unforgeability

The unforgeability of the scheme of Zhang et al. is based on
the Strong Diffie Hellman (SDH) problem [15]. However,
as pointed out by Cheon very recently in [6], SDH-related
assumption has some inherent drawbacks. To ensure the hard-
ness of the SDH problem, Cheon suggested to
increase the key size or use a prime p such that both of p+1
and p − 1 have no small divisor greater than (log p)2 [6].
Unfortunately, the distribution of such primes is unknown.
This is one of the reasons why we do not use BB signature
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as the underlying PS algorithm in our scheme proposed in
this paper.

4.3 Analysis of the non-transferability

In this section, we will analyze the non-transferability of the
scheme of Zhang et al. Our analysis shows that the distin-
guisher D can have non-negligible advantage in the model
of the non-transferability defined in Sect. 3. However, it does
not mean D could have the same advantage in the model
defined in [15].

Suppose that D chooses verifier VA as the target verifier
and gets the challenging signature σ(DV,VA) on message m∗.
Then, as defined in the model, D can also choose another
verifier VB and submit (m∗, pkVB ) as one of DS queries.
Therefore, D will get another signature σ(DV,VB ) which is
output by DS algorithm.

1. If σ(DV,VA) is output by DS algorithm, the first two parts
of these two signatures, σ(DV,VA) and σ(DV,VB ), must be
identical. Namely, σ(DV1,VA) = σ(DV1,VB ) = σ and
σ(DV2,VA) = σ(DV2,VB ) = gr where (σ, r) is BB’s sig-
nature on the message m. Therefore

Pr[σ(DV1,VA) = σ(DV1,VB ) ∧ σ(DV2,VA) = σ(DV2,VB )|
σ(DV,VA)← DS(pks, pkvA , m, σ, r)] = 1.

2. However, ifσ(DV,VA) is output by DS algorithm,σ(DV1,VA)

= gs and σDV2 = g1/su−1
1 v−m

1 where s is randomly cho-
sen in Zp and (u1, v1) is the public key of the signer.
Therefore

Pr[σ(DV1,VA) = σ(DV1,VB ) ∧ σ(DV2,VA) = σ(DV2,VB )

|σ(DV,VA)← DS(pks, skvA , m)] = 1/p,

which is negligible.

Therefore, the distinguisher D is only required to check the
equality of the first two parts and will have non-negligible
advantage in the game defined in the non-transferability
model.

However,D could not have the same advantage in practice.
If D has two signatures: σ(DV,VA) and σ(DV,VB ) of the scheme
of Zhang et al., D cannot be convinced that these two sig-
natures are generated by DS algorithm. The reason is that
these two verifiers, VA and VB , could cooperate and use the
same random number s in DS algorithm to generate σ(DV,VA)

and σ(DV,VB ), such that the first two parts of these two sig-
natures are still identical. The model defined in [15] allows
such a “cooperation” and therefore, the scheme of Zhang
et al. still satisfies the notion of non-transferability defined in
their paper. However, as we have shown, their scheme does

not satisfy the non-transferability defined in this paper, where
the “cooperation” is not allowed. Therefore, it is still worth-
while to construct a UDVS scheme which is also secure in
our model.

In [15], Zhang et al. use BB signature scheme as the PS
algorithm. BB scheme is strong unforgeable which means
given a valid signature σPV of a message m, one cannot output
another signature σ ′PV such that σ ′PV is a valid signature on
the message m while σ ′PV �= σPV. Therefore, the signature
holder must designate the same signature of the message to
different verifiers. This is the reason why the first two parts of
the UDVS in their scheme [15] are identical and thus do not
satisfy the non-transferability privacy property in the game
defined in Sect. 3.

If the PS algorithm is not a strong unforgeable scheme but
is unforgeable against chosen message attack in the sense of
[8], then given a valid signature σPV of the message m, the
signature holder can create many different valid signatures
σ ′PV of the same message m. Therefore, the signature holder
can use different PV signature σPV to create different σDV
on the same message m and designated to a different verifier.
We will show in Sect. 5 how to use this property to overcome
the weakness in the scheme of Zhang et al. [15] to ensure
that the non-transferable privacy of the UDVS is provided.

5 Secure universal designated verifier signature without
random oracle

In this section, we incorporate Waters’ signature scheme [14]
to obtain a concrete secure UDVS scheme without random
oracle. We also provide the formal security analysis of the
proposed scheme. Details of Waters’ signature scheme are
provided in the Appendix.

5.1 The proposed scheme

1. CPG: Let (G1, GT ) be bilinear groups where |G1| =
|GT | = p for some prime p, g is the generator of G1.
e denotes the bilinear pairing G1 × G1 → GT . The
messages m to be signed in this scheme will be rep-
resented as bitstrings of length n, a separate parameter
unrelated to p. Furthermore, picks n+1 random elements
u′, u1, u2, . . . , un ∈R G1 and set u = (u1, u2, . . . , un).
Then the common parameter cp = (G1, GT , p, g, e, n,

u′, u).

2. SKG: The Signer picks two secret values xs, ys ∈R

Z
∗
p and sets the secret key sk = (xs, ys). Then the

signer computes the public key pks = (pksx , pksy) =
(gxs , gys ).

3. VKG: The V eri f ier picks two secret values xv, yv ∈R

Z
∗
p and sets the secret key sk = (xv, yv). Then the
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signer computes the public key pkv = (pkvx , pkvy) =
(gxv , gyv ).

4. PS: Let m be an n-bit message to be signed by the signer,
mi denote the i th bit of m, and M ∈ {1, . . . , n} be
the set of all i for which mi = 1, a signature is gener-
ated as follows. First, a random r ∈ Zp is chosen. Then
the signature is constructed as: σPV = (σPV1, σPV2) =
(gxs ys (u′

∏
i∈M ui )

r , gr ).

5. PV: Suppose we wish to check whether σPV = (σPV1 ,

σPV2) is a signature for a message M . The signature is
accepted if e(σPV1 , g)/e(u′

∏
i∈M ui , σPV2) = e(pksx ,

pksy) holds.
6. DS: Given the designated verifier’s public key (pkv =

(pkvx , pkvy)), the signature holder selects r ′ ∈R Zp and
computes

σDV1 = e

⎛

⎝σPV1 ·
(

u′
∏

i∈M
ui

)r ′

, pkvx

⎞

⎠

= e

⎛

⎝gxs ys ·
(

u′
∏

i∈M
ui

)r+r ′

, pkvx

⎞

⎠

and σDV2 = σPV2 · gr ′ = gr+r ′ . Then, the signature
holder sends σDV = (σDV1 , σDV2) to the designated ver-
ifier.

7. DS: The designated verifier can also produce a valid
signature on any message m′. He only needs to select a
random r ′ ∈ Z p and computes

σDV2 = gr ′ and σDV1 =

e(pksx , pksy)
xv e

(

u′
∏

i∈M′
ui , σDV2

)xv

.

8. DV: Given the signer’s public key pks = (pksx , pksy),
a message m, and a signature (σDV1 , σDV2), verify that
σDV1 = e(pksx , pksy)

xv e(u′
∏

i∈M ui , σDV2)
xv . If the

equality holds, the result is Acc; otherwise the result is
Rej .

Consistence:

1. PV Consistency: If the publicly verifiable signature
σPV = (σPV1 , σPV2) of the message m is generated by
the PS algorithm, then

e(σPV1 , g)

e(u′
∏

i∈M ui , σPV2)
= e(gxs ys (u′

∏
i∈M ui )

r , g)

e(u′
∏

i∈M ui , gr )

= e(gxs ys , g) = e(pksx , pksy).

Therefore Pr[PV(cp, pks, m, PS(cp, sks, m))= Acc]=
1.

2. DV Consistency of DS: If the designated verifier signa-
ture σDV = (σDV1 , σDV2) is generated by the DS algo-
rithm, then

σDV1 = e

⎛

⎝σPV1 ·
(

u
∏

i∈M
ui

)r ′

, pkvx

⎞

⎠

= e

⎛

⎝gxs ys

(

u′
∏

i∈M
ui

)r (

u′
∏

i∈M
ui

)r ′

, gxv

⎞

⎠

= e
(
gxs ys , gxv

)
e

⎛

⎝

(

u′
∏

i∈M
ui

)r+r ′

, gxv

⎞

⎠

= e
(

pksx , pksy
)xv e

(

u′
∏

i∈M
ui , gr+r ′

)xv

= e
(

pksx , pksy
)xv e

(

u′
∏

i∈M
ui , σDV2

)xv

.

Therefore Pr[DV(cp, pks, skv, m, DS(cp, pks, pkv,

m, σ )) = Acc] = 1.
3. DV Consistency of DS: If the designated verifier signa-

ture σDV = (σDV1 , σDV2) is generated by the DS algo-
rithm, then

σDV1 = e(pksx , pksy)
xv e

(

u′
∏

i∈M′
ui , σPV2

)xv

.

Therefore Pr[DV(cp, pks, skv, m, DS(cp, pks, skv, m))

= Acc] = 1.

5.2 Unforgeability

Theorem 1 If there is an adaptively chosen message and
public key attacker AC M A, C P K A

EU F, U DV S who can (t, qPS, qDS,

qDV, qSK, ε) break the proposed UDVS scheme, then there
exists an algorithm B who can solve the GBDH problem in
(G1, GT ) with probability:

SuccG B DH
B,G1,GT

≥
ε

8qSK(n + 1)(qPS + qDS + qDV)

(

1− 1

qSK + 1

)qSK+1

.

in time t ′ ≤ t + 7n(qPS + qDS + qDV)ρG1 + (4qPS +
6qDS)τG1 + (qDV + 1)ρGT + (qDS + 2qDV + 1)� where
ρG1 , ρGT are the time for a multiplication in G1, GT respec-
tively, τG1 is the time for an exponentiation in G1 and � is
the time for pairing in (G1, GT ).

Proof See Appendix.
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5.3 Non-transferability

Theorem 2 The proposed UDVS scheme is non-transfer-
able against a (t, qPS, qDS, qDS, qDV, qSK) adaptive chosen

message and public key distinguisher DC M A, C P K A
T R AN S, U DV S.

Proof See Appendix.

5.4 Delegatability

Non-delegatability is a stronger notion of the designated ver-
ifier signature schemes which is proposed by Lipmaa et al.
[10]. Non-delegatability means that there exists an efficient
knowledge extractor that can extract either the Signer’s secret
key or the designated verifier’s secret key, when given oracle
access to an adversary who can create valid signatures with a
high probability. The proposed UDVS scheme in this paper
does not satisfy this property because anyone who has the
knowledge of the trapdoor: e(pksx , pksy)

skvx can compute a
valid signature designated to a verifier V . Moreover, we note
that to date, there is no known UDVS can satisfy this prop-
erty in the standard model. However, we note that the ring
signature scheme recently proposed in [3] might be used to
construct a non-delegatable UDVS scheme without random
oracles.

6 Conclusion

In this paper, we gave a security analysis to the universal
designated verifier signature scheme without random oracle
proposed in [15]. Then we constructed a new UDVS scheme
without random oracle based on Waters’ signature scheme
proposed in [14]. We showed that a signature scheme which
is unforgeable against chosen message attack in the sense of
[8] but not strong unforgeable in the sense of [4] might be
more suitable to construct a UDVS scheme. The new pro-
posed scheme satisfies the privacy property of the UDVS
and is unforgeable against an adaptively chosen message and
chosen public key attacker based on the Gap Bilinear Diffie
Hellman assumption.

Appendix

Waters’ Signature Scheme [14]

1. CPG: Let (G1, GT ) be bilinear groups where |G1| =
|GT | = p for some prime p, g is the generator of G1.
e denotes the bilinear pairing G1 × G1 → GT . The
messages m to be signed in this scheme will be rep-
resented as bitstrings of length n, a separate parameter
unrelated to p. Furthermore, picks n+1 random elements

u′, u1, u2, . . . , un ∈R G1 and set u = (u1, u2, . . . , un).
Then the common parameter

cp = (G1, GT , p, g, e, n, u′, u).

2. SKG: The Signer picks two secret values xs, ys ∈R

Z
∗
p and sets the secret key sk = (xs, ys). Then the

signer computes the public key pks = (pksx , pksy) =
(gxs , gys ).

3. PS: Let m be an n-bit message to be signed by the orig-
inal signer Alice and mi denote the i th bit of m, and
M ∈ {1, . . . , n} be the set of all i for which mi = 1, a
signature is generated as follows. First, a random r ∈ Zp

is chosen. Then the signature is constructed as:

σPV =
(
σPV1 , σPV2

) =
(

gxs ys

(

u′
∏

i∈M
ui

)r

, gr

)

4. PV: Suppose we wish to check whether σPV = (σPV1 ,

σPV2) is a signature for a message M . The signature is
accepted if

e(σPV1, g)/e

(

u′
∏

i∈M
ui , σPV2

)

= e
(

pksx , pksy
)
.

Given a valid Waters’ signature σPV = (σPV1 , σPV2) =
(gxs ys (u′

∏
i∈M ui )

r , gr ) of the message m, the signature
holder can choose r ′ ∈R Zp and obtain another valid signa-
ture σ ′PV on the same message m.

σ ′PV =
(
σ ′PV1

, σ ′PV2

)

=
⎛

⎝σPV1 ·
(

u′
∏

i∈M
ui

)r ′

, σPV2 · gr ′
⎞

⎠

=
⎛

⎝gxs ys

(

u′
∏

i∈M
ui

)r+r ′

, σPV2 · gr+r ′
⎞

⎠

Proof of Theorem 1 Suppose there exists an attacker A who
can (t, qPS, qDS, qDV, qSK, ε) break our proposed UDVS
scheme. We will construct an algorithm B which will use A
to solve the Gap BDH problem. B will take Gap BDH chal-
lenge (g, ga, gb, gc) of a bilinear group (G1, GT ) whose
orders are both a prime p and output e(g, g)abc with the
help of the oracle ODB DH . B will response A’s queries as
following.

– Setup: B sets an integer � = 4(qPS + qDS + qDV), and
chooses an integer, k, uniformly at random between 0 and
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n. It then chooses a value x ′ and a random n-vector, x =
(xi ) where x ′, xi ∈R Z�. Additionally, B chooses a value
y′ and a random n-vector y = (yi ) where y′, yi ∈R Zp.
B keeps all the values secret.
For a message m, we let M ⊆ {1, 2, . . . , n} be the set
of all i for which mi = 1. To make the notation easy to
follow, we define three functions F(m), J (m) and K (m)

as [14]:
1. F(m) = (p − �k)+ x ′ +�i∈Mxi

2. J (m) = y′ +�i∈Myi

3. K (m) =
{

0, if x ′ +�i∈Mxi ≡ 0 (mod �)

1, otherwise
B sets the public keys of the users and the common param-
eter as:

1. Firstly, B assigns the signer’s public key (pksx ,

pksy) = (ga, gb) where ga, gb are the inputs of the
Gap BDH problem.

2. Then B maintains a list L to record all the secret/pub-
lic key-pairs of the verifiers. To generate the i th ver-
ifier Vi ’s secret/public key pair, B chooses a random
coin ci ∈ {0, 1} such that Pr[ci = 1] = δ(the value
of the δ will be determined later).
– If ci = 0, B chooses two random numbers di , ei ∈

Zp and computes
pkvi = (pkvi x , pkvi y) = (gdi , gei ).

Then B adds (pkvi x , pkvi y, ci , di , ei ) to the List
L .

– Else ci = 1, B chooses two random numbers
di , ei ∈ Zp and computes
pkvi = (pkvi x , pkvi y) = ((gc)di , (gc)ei )

where gc is the input of the Gap BDH problem. B
then adds (pkvi x , pkvi y, ci ,⊥,⊥) to the List L .
Here the notation ⊥ means B does not know the
corresponding value.

3. B then assigns u′ = pk p−k�+x ′
sy gy′ and ui = pkxi

sy gyi

and sets u = (u1, u2, . . . , un)

B returns Signer’s public key pks , all Verifiers’ public
keys pkvi , common parameter cp = (G1, GT , p, g, e,
n, u′, u) to A. From the perspective of the adversary all
the distributions are identical to the real construction.

– PS queries: Suppose A issues an PS queries for the mes-
sage m. If K (m) �= 0(If we have K (m) �= 0 this implies
F(m) �= 0 (mod p), since we can assume p > n� for
any reasonable values of p, n, and � [14]), B can construct
the public verifiable signature by choosing a random r ∈
Zp and compute:

σPV = (σPV1, σPV2)

=
(

pk
−J (m)
F(m)

sx

(

u′
∏

i∈M
ui

)r

, pk
−1

F(m)
sx gr

)

.

Correctness

σPV1 = pk
−J (m)
F(m)

sx

(

u′
∏

i∈M
ui

)r

= pk
−J (m)
F(m)

sx (pk F(m)
sy g J (m))r

= pka
sy(pk F(m)

sy g J (m))
−a

F(m) (pk F(m)
sy g J (m))r

= pka
sy(pk F(m)

sy g J (m))
r− a

F(m)

= pka
sy(pk F(m)

sy g J (m))r̃ = pka
sy

(

u′
∏

i∈M
ui

)r̃

.

Note that: σPV2 = pk
−1

F(m)
sx gr = g

−a
F(m) gr = gr− −a

F(m) =
gr̃ .

Otherwise, K (m) = 0. B terminates the simulation and
reports failure.

– DS queries: Suppose A issues a DS query for a mes-
sage m and the designated verifier pkvi . If K (m) �= 0,
B can obtain the publicly verifiable signature σPV =
(σPV1 , σPV2) as above. Then B chooses a random r ′ ∈ Zp

and computes the designated verifier signature as

σDV1=e

⎛

⎝σPV1

(

u′
∏

i∈M
ui

)r ′

, pkvi x

⎞

⎠ , σDV2=σPV2 gr ′ .

and sends (σDV1 , σDV2) to A as the answer. Otherwise,
K (m) = 0 and B terminates the simulation and reports
failure.

– DV queries: Suppose A issues a DV queries for the mes-
sage/signature pair (m, σDV1 , σDV2) and the designated
verifier whose public key is pkvi = (pkvi x , pkvi y).
1. If K (m) �= 0, B can compute a valid universal desig-

nated verifier signature on this message as he
responses to DS queries. Let (σ ′DV1

, σ ′DV2
) denote the

signature computes by B. Then B submits

(

g, u′
∏

i∈M
ui , pkvi x ,

σDV2

σ ′DV2

,
σDV1

σ ′DV1

)

.

to the DBDH oracle ODB DH . B outputs Acc to A
if the above tuple is a valid BDH tuple, otherwise
outputs Rej .
Correctness:
If (σDV1 , σDV2 = gr ) is a valid signature, then

σDV1 = e(gab, pkvi x )e

(

u′
∏

i∈M
ui , pkvi x

)r

.
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Similarly, since (σ ′DV1
, σ ′DV2

= gr ′) is another valid
signature produced by B, then

σ ′DV1
= e(gab, pkvi x )e

(

u′
∏

i∈M
ui , pkvi x

)r ′

Therefore,

σDV2

σ ′DV2

= gr−r ′ and
σDV1

σ ′DV1

= e

(

u′
∏

i∈M
ui , pkvi x

)r−r ′

.

which denotes that

(

g, u′
∏

i∈M
ui , pkvi x ,

σDV2

σ ′DV2

,
σDV1

σ ′DV1

)

is a valid BDH tuple.
2. Else K (m) = 0 and F(m) = 0, B submits(

g, pksx , pksy, pkvi x ,
σDV1

e(pkvi x , σDV2)
J (m)

)

.

to the DBDH oracle ODB DH . B outputs Acc to A if
the above tuple is a valid BDH tuple, otherwise out-
puts Rej .
Correctness:
If (σDV1 , σDV2 = gr ) is a valid signature, then

σDV1 = e(gab, pkvi x )e

(

u′
∏

i∈M
ui , pkvi x

)r

.

Note that F(m) = 0, which means

u′
∏

i∈M
ui = g J (m).

Therefore,

σDV1 = e(gab, pkvi x )e(σDV2 , pkvi x )
J (m).

which means

(

g, pksx , pksy, pkvi x ,
σDV1

e(σDV2 , pkvi x )J (m)

)

.

is a valid BDH tuple.
3. Otherwise, K (m) = 0 and F(m) �= 0, B terminates

the simulation and reports failure.
– SK queries: Suppose A requests the secret key of the

verifier Vi . In response, B firstly checks the tuple (pkvi x ,

pkvi y, ci , di , ei ) in the List L .
1. If ci = 0, which means pkvi x = gdi , pkvi y = gei , B

returns di , ei to A.
2. Otherwise, B terminates the simulation and reports

failure.

If B does not abort during the simulation, A will output a
valid universal designated verifier signature (σ ∗DV1

, σ ∗DV2
)

under the message m∗ and the designated verifier V ∗ with
success probability ε.

1. If F(m∗) �= 0, B will abort.
2. Else, B checks the (pkv∗x , pkv∗y, c∗, d∗, e∗). If c∗ = 0,

B will abort.
3. Otherwise, F(m∗) = 0 and c∗ = 1 which means pkv∗x=

(gc)d∗ . B computes

(
σ ∗DV1

e(pkv∗x , σ ∗DV2
)J (m∗)

)(d∗)−1

=
(

e(pksx , pksy)
cd∗e(u′

∏
i∈M ui , σPV2)

cd∗

e(pkv∗x , σ ∗DV2
)J (m∗)

)(d∗)−1

=
(
e(pksx , pksy)

cd∗e((gb)F(m∗)g J (m∗), σPV2)
cd∗

e(00(gc)d∗ , σ ∗DV2
)J (m∗)

)(d∗)−1

=
(

e(ga, gb)cd∗e(g J (m∗), σPV2))
cd∗

e(gcd∗, σ ∗DV2
)J (m∗)

)(d∗)−1

= e(g, g)abc.

This completes the description of the simulation. It remains
to analyze the probability of B not aborting. B will not abort
if all the following cases happen:

A : B does not abort during PS, DS and DV queries

B : ci = 0 during SK queries

C : c∗ = 1

D : F(m∗) = 0 (mod p).

The success probability is SuccG B DH
B,G1,GT

=Pr[A∧B∧C∧D]ε.
Clearly, Case B and C are independent with other cases.

Therefore

SuccG B DH
B,G1,GT

= Pr[B ∧ C]Pr[A ∧ D]
= δ(1− δ)qSK Pr[A ∧ D]ε.

We can optimize this equation by setting δ = 1
qSK+1 , then

SuccG B DH
B,G1,GT

= 1

qSK

(

1− 1

qSK + 1

)qSK+1

Pr[A ∧ D]ε.

Let qPS + qDS + qDV = q, then

Pr[A ∧ D] = Pr[A]Pr[D|A]

≥ Pr

[ q∧

i=1

K (mi ) �= 0

]

Pr

[

x +
∑

i∈M∗
xi =�k|A

]

=
(

1− Pr

[ q∨

i=1

K (mi ) = 0

])

Pr

[

x +
∑

i∈M∗
xi = �k|A

]
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≥
(

1− q

�

)
Pr

[

x +
∑

i∈M∗
xi = �k|A

]

= 1

n + 1

(
1− q

�

)
Pr[K (m∗) = 0|A]

= 1

n + 1

(
1− q

�

) Pr[K (m∗) = 0]
Pr[A] Pr[A|K (m∗) = 0]

≥ 1

(n + 1)�

(
1− q

�

)
Pr[A|K (m∗) = 0]

≥ 1

(n + 1)�
(1− q

�
)

(

1−Pr

[ q∨

i=1

K (mi )=0|K (m∗)=0

])

= 1

(n + 1)�

(
1− q

�

)2 ≥ 1

(n + 1)�

(

1− 2q

�

)

.

Therefore,

SuccG B DH
B,G1,GT

≥ 1

qSK

(

1− 1

qSK+1

)qSK+1 1

(n+1)�

(

1− 2q

�

)

ε.

We can optimize it by setting � = 4q = 4(qPS+qDS+qDV),
then

SuccG B DH
B,G1,GT

≥
1

8qSK(n + 1) (qPS + qDS + qDV)

(

1− 1

qSK + 1

)qSK+1

ε.

Proof of Theorem 2

– Setup: C sets the public keys of the users and the common
parameters as:
1. Firstly,C assigns the signer’s public key pks = (pksx ,

pksy) = (gxs , gys ) where xs, ys are randomly chosen
in Zp.

2. Then C maintains a list L to record all the secret/pub-
lic key-pairs of the verifiers. To generate the i th

verifier Vi ’s secret/public key pair, C chooses two
random numbers di , ei ∈ Zp and computes pkvi =
(pkvi x , pkvi y) = (gdi , gei ). Then C adds (pkvi x ,

pkvi y, di , ei ) to the list L .
3. C then chooses u′, ui ∈ G1 and sets u = (u1, u2, . . . ,

un)

C returns Signer ′s public key pks , all V eri f iers′ public
keys pkvi , common parameter cp = (G1, GT , p, g, e,
n, u′, u) to D. From the perspective of the adversary all
the distributions are identical to the real construction.

– Stage 1:
– Since C knows the secret keys of the signers and the

verifiers, he can run PS algorithm, DS algorithm, DS
algorithm and DV algorithm to response PS queries,
DS queries, DS queries and DV queries, respectively.

– SK queries: Suppose D requests the secret key of the
verifier Vi . C firstly checks the list L to find the corre-
sponding tuple (pkvi x , pkvi y, di , ei ) in the list L and
returns the corresponding secret key to D.

– Challenge: At the end of Stage 1, D chooses a message
m∗ such that (m∗, V ∗) has not been submitted as one of
the DS queries or DS. Then the challenger C chooses a
random coin coin ∈ {0, 1}. If coin = 1, C returns DS
and sets σ ∗DV = σDV. Otherwise coin = 0, C runs DS and

set σ ∗DV = DV. Then C returns σ ∗DV to D.
– Stage 2: After receiving the challenging message signa-

ture pair from C, D still can submit PS, DS, DS, DV, SK
queries, except that he cannot submit (m∗, V ∗) as one of
the DS queries or DS queries.

1. Firstly, we show that the distribution of σDV which is
output by DS algorithm is uniform.
In the DS algorithm, given the designated verifier’s pub-
lic key (pkv = (pkvx , pkvy)), the signature holder
chooses r ′ ∈R Zp and computes

σDV1 = e

⎛

⎝σPV1 ·
(

u′
∏

i∈M
ui

)r ′

, pkvx

⎞

⎠

= e

⎛

⎝gxs ys ·
(

u′
∏

i∈M
ui

)r+r ′

, pkvx

⎞

⎠

and σDV2 = σPV2 · gr ′ = gr+r ′ . Therefore the value r ′
randomize the designated verifier σDV = (σDV1, σDV2)

and σDV is independent with other DV signatures which
are designated to other verifiers. The problem that exists
in the scheme of Zhang et al. [15] will not happen in our
scheme.

2. Then, we show that the signature simulated by the algo-
rithm DS is indistinguishable from algorithm DS, i.e.
the following distributions are identical:

σDV = (σDV1 , σDV2) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σDV1 = e(gxs ys (u′
∏

i∈M ui )
r ,

pkvx ), r ∈ Zp

σDV2 = gr , r ∈ Zp

and

σDV = (σDV1 , σDV2) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σDV1 = e(gxs ys (u′
∏

i∈M ui )
r ,

pkvx ), r ∈ Zp

σDV2 = gr , r ∈ Zp
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Therefore

Pr[σDV = σ ∗DV] = Pr

⎡

⎣
σDV1 = σ ∗DV1

σDV2 = σ ∗DV2

⎤

⎦ = Pr[r = r∗]

= 1/p

and

Pr[σDV = σ ∗DV] = Pr

⎡

⎣
σDV1 = σ ∗DV1

σDV2 = σ ∗DV2

⎤

⎦ = Pr[r = r∗]

= 1/p,

which mean both distributions of probabilities are the
same and Adv DC M A, C P K A

T R AN S, U DV S is negligible.
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