
Int. J. Inf. Secur. (2007) 6:85–106
DOI 10.1007/s10207-007-0015-0

SPECIAL ISSUE PAPER

Instruction-level security typing by abstract interpretation

Nicoletta De Francesco · Luca Martini

Published online: 13 February 2007
© Springer-Verlag 2007

Abstract We present a method based on abstract
interpretation to check secure information flow in pro-
grams with dynamic structures where input and output
channels are associated with security levels. In the con-
crete operational semantics each value is annotated by a
security level dynamically taking into account both the
explicit and the implicit information flows. We define a
collecting semantics which associates with each program
point the set of concrete states of the machine when
the point is reached. The abstract domains are obtained
from the concrete ones by keeping the security levels
and forgetting the actual values. Using this framework,
we define an abstract semantics, called instruction-level
security typing, that allows us to certify a larger set of
programs with respect to the typing approaches to check
secure information flow. An efficient implementation is
shown, operating a fixpoint iteration similar to that of
the Java bytecode verification.

Keywords Abstract interpretation · Information
flow · Language based security

This work was partially supported by the Italian COFIN 2004
project “AIDA: Abstract Interpretation Design and
Application”.

N. De Francesco · L. Martini (B)
Dipartimento di Ingegneria dell’Informazione,
Università di Pisa, Via Diotisalvi, 2, 52126 Pisa, Italy
e-mail: luca.martini@iet.unipi.it

N. De Francesco
e-mail: nico@iet.unipi.it

1 Introduction

Protecting confidential information has ever been an
issue on computer systems. One of the most widespread
methods to ensure confidentiality is using some
Discretionary Access Control (DAC) mechanisms, both
to prevent unauthorized access and to permit authorized
access to information, for a given policy of authorization.
As reported by [35], a DAC is defined as follows:

“A means of restricting access to objects based
on the identity of subjects and/or groups to which
they belong. The controls are ‘discretionary in the
sense that a subject with a certain access permis-
sion is capable of passing that permission (per-
haps indirectly) on to any other subject.”

Unfortunately, the DAC mechanism can be in some
cases inadequate. In fact, although it checks informa-
tion release, it does not control its propagation. The
secure information flow within programs in multilevel
secure systems requires that information at a given secu-
rity level does not flow to lower levels [18,19]. Analyz-
ing secure information flow allows a finer inspection of
confidentiality than that obtained by using DAC mech-
anisms. In fact, checking information flows makes it
possible to control, once given an access right, whether
the accessed information is properly used, according
to some confidentiality policy. Assume that x and y
are variables. Examples of information flows are the
instructions x:=y; and if (y=0) then x:=0;
else x:=1;. In the first case there is an explicit infor-
mation flow from y to x, while, in the second case, there
is an implicit information flow: in both cases, checking
the final value of x reveals information on the value of y.

86 N. De Francesco, L. Martini

We consider sequential programs communicating
with the external environment by means of input and
output channels. The program defines also a security
policy by assigning a security level to each channel.
A program has secure information flow if the obser-
vation of a channel having some security level does
not reveal any information about the values input from
channels associated with higher security levels. The lan-
guage includes dynamic structures and pointers.

We give a framework for analyzing secure informa-
tion flow based on Abstract Interpretation (AI). AI
[13–15] is a method for analyzing programs in order to
collect approximate information about their run-time
behavior. It is based on a non-standard semantics, that
is a semantic definition in which a simpler (abstract)
domain replaces the standard (concrete) one, and the
operations are interpreted on the new domain. Using
this approach different analyses can be systematically
defined. Moreover, the proof of the correctness of the
analysis can be done in a standard way.

In the paper we define a concrete instrumented oper-
ational semantics which handles, in addition to execu-
tion aspects, the level of the information flows of the
program. The basis of the approach is that each value
is annotated by a security level, representing the lub of
the levels of the implicit and explicit flows on which the
value depends. Also each channel is associated with a
security level, representing the lub of the levels of the
data present in the channel. The level of the input data
is assumed to be that specified for the corresponding
channel by the security policy. The level of data flow-
ing through the variables and structures of the program
is calculated dynamically taking into account the infor-
mation flows. We define a collecting semantics which
associates with each program point (instruction) the set
of concrete states in which the machine can be when the
point is reached.

We remark that the secure information flow property
is defined in terms of independence of values produced
for channels with a given security level from values taken
from channels with higher security levels. A main result
of the paper is the soundness of the concrete semantics.
We prove that the program is secure if in all states of the
collecting semantics the level of each channel is lower
than or equal to that specified by the policy defined by
the program. This theorem justifies the concrete seman-
tics by relating it with the noninterference property. It
shows that the concrete semantics correctly manipulates
security annotations of data, that is data are associated
with the security level on which they actually depend.

The abstract domains are obtained from the concrete
ones by keeping the security levels and forgetting the
actual values. A main point is the abstract domain of

references. A reference in the concrete domain holds
the creation point (that is the new instruction) of the
structure it refers to. This enables the analysis to dis-
tinguish between structures created at different instruc-
tions. In the abstract semantics, each new instruction
represents a different abstract object, and, to perform
aliasing control, each abstract reference holds the set of
the all possible abstract objects it can refer to.

Starting from the concrete semantics, different
abstractions can be performed to statically analyze infor-
mation flow. Higher is the abstraction, higher is the effi-
ciency of the analysis, but lower is the level of accuracy.
The most popular approach to static secure information
flow is based on security typing: each variables has a
security annotation which can be seen as a part of its
type and secure information flow is checked by means
of type-inference: see, for example [1,8,22,28,33,40,41],
while a recent survey is [39]. The advantage of these
approaches is efficiency, since algorithms based on type
inference can be used. Security typing can be modeled in
our framework as the highest abstraction of the concrete
semantics. In the paper we show a different abstrac-
tion, which is more precise than standard security typing,
since it produces a more refined information. In fact, it
is able to certify a larger class of programs with respect
to typing approaches to security. A state of the abstract
semantics is a table having a row for each instruction.
Each row is the abstraction of all concrete states in which
the machine can be when executing the corresponding
instruction. The program is safe if in all rows of the
abstract semantics the level of each channel is lower than
or equal to that specified by the policy defined by the
program. A main difference between this approach and
security typing is that we do not assign a security level to
each variable, but to each pair variable-instruction. The
security type computed by the abstract semantics for a
variable x and instruction t is the least upper bound of
the secrecy levels of the information flows on which x
depends when t is executed in any possible computation.
Hence, we allow a register to hold data with a different
secrecy level for different instructions of the program,
while in security typing a same security type is computed
for each variable and must hold for the whole program.
We can call our approach instruction-level security typ-
ing, in that it infers for each variable a security type
for each instruction of the program. Instruction-level
security typing is inspired by bytecode verification [31],
applied to Java bytecode, which is the intermediate code
produced by Java compilers. The bytecode verifier, in
order to accomplish safety checks on the code, performs
an instruction-level typing algorithm: for each instruc-
tion it infers a type for every register and stack element.
The instruction-level security typing can be performed

Instruction-level security typing 87

by an efficient fixpoint iteration algorithm, similar to
that used by bytecode verification. In the paper we also
present a tool implementing the method. The instruc-
tion-level security typing was firstly sketched in [3,16].

Section 2 describes some scenarios related to infor-
mation flow checking, Sect. 3 introduces the languages
and the definition of secure information flow. Section 4
defines the concrete semantics. Section 5 describes the
abstract domains, while Sect. 6 defines the abstract
semantics. In Sect. 7a prototype tool that implements the
proposed analysis is shown, together with some exam-
ples. Finally, Sect. 8 discusses related work and con-
cludes.

2 Motivations

In this section we describe some scenarios to better clar-
ify how tracing information flows can be essential to
preserve confidentiality.

Example 1 (Trojan horse) Most commercial operating
systems implement DAC mechanisms to ensure confi-
dentiality. Users are arranged in groups, processes runs
on behalf of the users and can access the resources
depending on a set of permissions. There can be differ-
ent ways of accessing resources (for instance read, write,
execute). In UNIX-like systems, the permissions for the
files can be viewed through the ls command. Suppose
for instance that in a directory there are two files, one
called secring.gpg and owned by the administrator
(root user) and the other called myfile, owned by
the unprivileged user john. The former file can be read
only by its owner and contains confidential information,
while the latter can be read and written by every user.

root@myhost[mydir]# ls -l
total 8192
-rw-rw-rw- 2 john users 4096 2005-09-14 11:43 myfile
-rw------- 2 root wheel 4096 2005-11-25 12:01 secring.gpg

Now, the administrator can redirect the content of
the secret file into the public file, for instance using the
well-known command cat, thus allowing unprivileged
users to access the confidential information:1

root@myhost[mydir]# cat secring.gpg >>
myfile

One may argue that this is a too naive example,
because: (i) the administrator should be able to down-
grade the privacy level of data (ii) the administrator exe-
cutes the cat command of his own will and explicitly.
Although there is sense in these objections, the problem

1 The cat process is able to read the secring.gpg file because
runs on behalf of the user root.

Fig. 1 A Java Card that hosts three applets. The applet B can
disclose some A’s data to applet B, without violating the firewall
policy

is that the administrator could disclose the information
without knowing it, because this action is “buried” into
a program that he considers useful and harmless. This
program could be either erroneous or malicious (in this
latter case the term trojan horse is used). The administra-
tor should be conscious that a program can downgrade
information before executing it, to properly decide if
this downgrading is acceptable or not.

Example 2 (Java Card Firewall) A Java Card [12] is a
smart card running a Java Virtual Machine, the Java
Card Virtual Machine (JCVM), and it is becoming a
secure token in various fields, such as banking and pub-
lic administration. The Java Card system was designed to
speed up the development of applications (applets) and
to increase portability. The JCVM is single-threaded,
but more than one applet can coexist on the same card.
Applets are normally isolated through the Java Card
Firewall mechanism. This firewall allows an applet to
access external objects only through an object sharing
mechanism, called shareable interface. The firewall is
based on an access control policy and therefore does
not control information propagation.

Consider now a card that hosts three applets, say A,
B, and C, each issued by a different commercial entity
(see Fig. 1). Suppose that some partnership exists such
that A must share some data with B and likewise B
with C in order to be able to cooperate. Therefore the
applets must be programmed to inform the firewall of
this cooperation. Even if the applet A does not want that
its confidential data would be propagated to C, it cannot
rely on the firewall to control the behavior of B. Instead,
before initiating cooperation with B, it must trust B’s
code.

Example 3 (A tax calculation) This example is similar to
the previous, but belongs to a different context. Imagine
that an user would write out his/her tax return electron-
ically, using a computer application. This application is

88 N. De Francesco, L. Martini

Fig. 2 An application that calculates electronically tax returns.
How the user can be sure that his confidential data are not dis-
closed to third parties?

a server that holds users data, and, upon the requests of
the user, provides them the tax rate they have to apply to
their income. The application must contact the Internet
to know the current income thresholds and the current
tax rates, as illustrated in Fig. 2.

The question is: how can the user trust that the pro-
gram do not leak any information about his/her income
to the party that provides the thresholds and the rates?
An access control mechanism could only either block
the entire communication or allow the data to flow with-
out any checking. Thus, a more fine-grained control is
necessary.

3 The model

We consider the simple language illustrated in Fig. 3.
Besides basic data, the language handles dynamic struc-
tures. We indicate with k a literal value and with s, f , x, a,
respectively, generic structure, field, variable and chan-
nel name. E represents the expressions and C the com-
mands. Each instruction is labeled by a label t ∈ B =
{0, 1, . . . , n− 1} , where n is the number of instructions
in the program. We denote by New the subset of the new
instructions in B.

Every program P can retrieve data from a set of input
channels and can send data to a set of output channels.
If a is an input channel, the input command a?x takes an
item from a and assign it to variable x. The output com-
mand a!e sends the value of expression e over the output
channel a, provided that e is an expression returning a
basic type (int). Given an input channel a, execution of
an input command on a produces an input action (k, a)

Fig. 3 Language grammar

where k is the value taken from a. Analogously, the
execution of an output command on an output channel
a produces an output action (k, a) where k is the value
inserted into a. In the following, we denote as NamesI
(respectively, NamesO) the set of input (output) chan-
nels used by a program; moreover Names=NamesI ∪
NamesO and NamesI ∩ NamesO = ∅.

We assume that programs are type correct, that is:

– in any expression x.f, the variable x is a reference
to structure with a field of name f,

– in any expression E1 Op E2, E1 and E2 are of the
same type,

– in any assignment x=E, the expression E is of the
same type of the variable x,

– in any assignment x.f=E, the variable x is a ref-
erence to structure with a field of name f, and the
expression E is of the same type of the field f,

– in any output statement a!E, the expression E is of
type int,

– in any input statement a?x, the variable x is of type
int.

These constraints can be easily checked by standard type
checking algorithms.

The input and output channels represent the external
environment in which the program is executed, that is
all the interactions of the program occur by means of the
channels. An external server is not able to inspect the
internal state of the program, but can only send/receive
messages to/from the program by means of the input/
output channels. A security policy assigns to each input
and output channel a security level, representing a fixed
degree of secrecy. The security policy is expressed by
the declaration of the channels. A channel a is declared
by using the keyword in (out) to indicate that is an
input (output) channel and by indicating also its secu-
rity level. Security levels are defined as a finite lattice
(L,�L), ranged over by σ , τ , . . . and partially ordered by
�L. In the following we indicate by S : Names→ L the
security policy specified by the channels declarations.

Definition 1 (secure information flow) Let P be a pro-
gram and S a security policy for P. Given σ ∈ L, let
us denote by Names�σ = {a ∈ Names | S(a) � σ }
the set of channels with security level lower than or
equal to σ . Given a computation C of the program, let
actions(C, σ) denote the sequence of input and output
actions involving the channels in Names�σ performed
by C . We say that P has σ -secure information flow
(is σ -secure) under S if, assuming that the external
environment sends to the program the same sequence
of values on each input channel in Names�σ , for any

Instruction-level security typing 89

Fig. 4 Some examples

two computations C1 and C2 of the program, it holds
actions(C1, σ) = actions(C2, σ).

We say that P has secure information flow (is secure)
if it is σ -secure for each σ ∈ L.

If a program is secure, an external attacker having
secrecy level σ cannot infer information that is more
secret than σ from a σ -secure program since he can
inspect only input and output channels with levels that
are lower than or equal to σ .

Similar properties are also referred in literature as
noninterference properties.

The above definition considers computations that
may or may not terminate, and therefore the property is
termination-sensitive [40]. A weaker termination-insen-
sitive property could consider only finite computations.

Note that, in general an attacker could gather secure
information by observing the so-called covert channels
[29], e.g. the time occurring between the input/output
operations, or the power consumption. We do not con-
sider this kind of noninterference.

Let us show some examples of programs. Consider
the programs in Fig. 4 and suppose that a and d are
input channels and b is an output channel. Moreover
assume S(a) = H, S(b) = S(d) = L, with L � H. Since
in this example there are only two security levels, we can
say that channels b and d are public, while channel a is
private.

Program P1 shows an explicit insecure information
flow, since the value output on channel b depends on the
value input from a: private information is made available
to a public observer. Program P2 is insecure because it
is possible to know if the private input is zero by observ-
ing the value present on the public output channel. In
program P3 the private value affects the contents of
input channel d, from which an item is taken only if

the input is zero. Note that we consider observable both
the input and the output channels. In program P4 the
number of the values output on channel b depends on
the input value. In program P5 the first iteration of the
while is driven by a low value, while the following iter-
ations depend on high level information. Also program
P6 may have an illicit information flow, even though the
value output on channel b is always the same: it is pos-
sible that, due to an infinite loop, no value is output on
channel b. Program P7 is secure, since the output value,
which is constant, does not depend on the input: even
though y is written with a high value, afterward it is
assigned a constant value, and this one is given as an
output. Consider program P8 and suppose that S is an
user-defined structure with two int fields f and g, and
that s1, s2, s3 are references of type S. Please notice
that, depending on the value taken from the high level
input channel a, instruction 7 updates field f of two
different objects (created at the first two instructions).
Now consider the two cases in which instruction 7 is fol-
lowed by: (i) 8:b!s1.g; (ii) 8:b!s1.f;. In case (i)
the program is secure because field g of object created
at instruction 1 is the same in any computation. On the
contrary, in case (ii), the value of the field s1.f depends
on the input: by aliasing, the assignment in instruction 7
could have modified it.

4 Concrete semantics

In this section we define the concrete semantics of the
language. To take into account the security level of data,
we annotate each value v flowing through the variables
and the structure fields with a security level, repre-
senting the least upper bound of the security levels of
the explicit and implicit information flows on which v

depends. A value is a pair (ve, σ), where ve is an exe-
cution value and σ a security level. The domains of the
concrete semantics are shown in Fig. 5. An execution
value may be an integer k ∈ Z or a reference to an user-
defined structure. A reference is in turn a pair (�, t),
where � ∈ Ae is a heap address and t ∈ New is the
label of the instruction which created the correspond-
ing structure. This tag will be useful in the abstraction
to coalesce into a same abstract structure all structures
created at the same instruction. The memory is repre-
sented by means of two functions: one denoted by µ, that

Fig. 5 Domains of the concrete semantics

90 N. De Francesco, L. Martini

Fig. 6 Concrete semantics of expressions

associates every variable with its value, and the other,
denoted by ξ , that associates the addresses (references)
with the respective structure instances. Every structure
in the heap can be represented by a memory whose vari-
ables are the fields. Valid fields names are in the domain
F . We denote by MS the domain of memories having
the fields of structure S as variables, and by Mstruct

the set: Mstruct = ⋃ {MS|S used in P}. The state of
input and output channels c ∈ C is a mapping from the
names of the channels to pairs (s, σ), where s ∈ Z

� is a
finite sequence of values and σ a security level. We use ·
to denote sequence concatenation, and λ to denote the
empty sequence. Initially, the security level of each input
channel a is set to S(a), that is the security level defined
for a by the security specification. As a consequence,
each value taken from an input channel a is annotated
with S(a). The security level of the output channels is
initially set to the minimum level ⊥L. The security level
of the channels can be modified by the computation,
when the channel is accessed.

The concrete semantics is defined by means of a set
of rules: the rules for expressions are shown in Fig. 6 and
the rules for instructions in Fig. 7. Let us consider the

rules for expressions, defining a relation
E−→ ⊆ (expr ×

M × �) × V . Rule Const assigns the bottom security
level to any constant value. Rule Op calculates the secu-
rity level of the result of an operation as the least upper
bound (from now on, lub) of the security levels of the
operands. Rule Valuex returns the value of the variable
in the memory. Rule Valuex.f annotates the resulting
value with the lub of the security levels of the reference
and of the value stored in the field.

The rules for instructions (Fig. 7) define a relation
−→ ⊆ Q × Q between the states of the computation.
The set of concrete states is Q = B×Env×M×�× C,
where Env = B → L. Each state q ∈ Q is a tuple
〈t, ρ, µ, ξ , c〉 describing the configuration of the machine
when executing the command t: µ and ξ define the val-
ues of variables and structures fields, while c represent
the status of the channels. We also keep in each state
a security environment ρ ∈ Env. The environment ρ

assigns to every program point a security level repre-
senting the level of the implicit flow under which the
corresponding command is executed. In the following,
given an instruction label t and a set Q of states, we use
the notation Q(t) to denote the set of states in Q cor-
responding to instruction t. A value (ve, τ) evaluated,
assigned or tested while the execution is under a security
environment σ , changes its security level into σ � τ . The

Fig. 7 Concrete semantics
of commands

Instruction-level security typing 91

environment, initially set to ⊥L for all commands, can
be updated by the conditional and repetitive commands.
With succ(t) we indicate the successive instruction to
be executed. All commands have only one successor,
except the conditional and repetitive commands that
have two successors, depending on the value of the
guard; they are denoted by succtrue(t) and succfalse(t).
We assume that the first instruction of the program has
label t0 and that for the last instruction is succ(t) = end.

Rule Assignt:x=e annotates the security level of the
value to be assigned with the lub of the security level
resulted by the evaluation of the expression and
the environment of the instruction t. The notation
µ

[
x← (ve, σ)

]
stands for the memory obtained by µ

by updating the contents for the variable x with the
value (ve, σ). Rule Assignt:x.f=e annotates the value to
be assigned with the lub of (1) the security level resulted
by the evaluation of the expression, (2) the security level
of the reference, and (3) the environment of t. In the
rule, the notation ξ

[
(�, t).f ← v

]
indicates the heap ξ ′

obtained from ξ by updating the field f of the structure
located at address � (and created at instruction t) with
the value v.

Rule New contains the notation ξ [(�, t)← µS⊥],
meaning that, during the execution of instruction t, in
the heap ξ a new structure of type S is created at address
�, its fields containing the default value. We assume the
default value is the pair (0,⊥L). In the premise of the
rule the function fresh : � → Ae is used to find a free
location in the heap to store the new structure.

Rule Input takes a value from the specified input
channel and assigns it to the destination variable, anno-
tated with the lub of the level σ of the channel and the
environment of t. Also the level of the channel is updated
in the same way. As a consequence, if ρ(t) is higher than
σ , the level of the channel is upgraded, to record the
fact that the manipulation of the channel depends on an
information flow with level σ �L ρ(t). Analogously, in
the Output rule, the level of the specified output chan-
nel can be upgraded taking into account the level of the
value and that of the environment of the instruction.

The If and While rules, whatever branch is chosen,
affect the environment of all the instructions belong-
ing to the scope of the command, taking into account
the level of the condition. The set scope(t) contains all
the instructions that can be executed or not depending
on the condition. In the If case, scope(t) includes all

the instructions belonging to only one branch starting
from the if. For the while command, scope(t) includes
the instructions belonging to the loop (the true part
of the while) and also all instructions after the loop
until the end of the program (the false part). The inclu-
sion of these instructions takes into account the pos-
sibility of an infinite loop: in this case, the commands
following the loop will never be executed.

The function scope : B→ ℘(B) is defined as follows:

scope(t) =
⎧
⎨

⎩

⋃ {scope(t′)|t′ ∈ C1 ∪ C2} if t:if(E){C1} else {C2}⋃ {scope(t′)|t′ ∈ C1 ∪ C2} if t:while(E){C1}C2
{t} otherwise

where C1 and C2 are sequences of instructions. Note that
we adopt a termination-sensitive noninterference prop-
erty. A weaker termination-insensitive property, which
is defined only for terminating executions, can be ana-
lyzed by using a different definition of scope(t), obtained
by modifying the second clause of the above definition.
The clause becomes

⋃ {scope(t′)|t′ ∈ C}if t:while(E)
{C}. In this way we consider as scope of a while
command only the body of the command and not the
continuation of the program. Hence, the level of data
manipulated after the while is not affected by the level
of the condition.

Updating the environment is necessary to trace
implicit flow: the value of the condition (with its secu-
rity level) drives the execution of the instructions in
scope(t). The table shows only the rule to be applied
when the condition is true. The rule to be applied when
the condition is false (not shown) is equal except that
has succfalse instead of succtrue.

Definition 2 (initial state) Given an initial configura-
tion i0 : NamesI → Z

� of the input channels, the ini-
tial state is defined as q(i0) = 〈t0, ρ⊥, µ0, ξλ, c0〉, where
∀t ∈ B, ρ⊥(t) = ⊥L , and ∀x ∈ X, µ0(x) = (0,⊥L),
and ξλ is the heap with empty domain (i.e. the every-
where undefined function). The state c0 is such that
for all a ∈ NamesI , c0(a) = (i0(a), S(a)) and for all
a ∈ NamesO, c0(a) = (λ,⊥L).

We now define a collecting semantics, which associates
with each instruction the set of states in which the
instruction can be executed in any computation.

First we define an alignment operation align(Q)

which, given a set of states Q, aligns all the states corre-
sponding to the same instruction. align(Q) increments
Q with some extra states for each instruction t: for each
state q ∈ Q(t), a state q′ is added to Q having the same
execution values occurring in q, but where the security
levels of the environment, memory variables, fields of

92 N. De Francesco, L. Martini

Fig. 8 Auxiliary functions
for merging

Fig. 9 The align function

structures and channels are upgraded to the lub in L of
the levels occurring in the states in Q(t) for the same
items.

In Fig. 8 some auxiliary functions used in the align-
ment process are shown. Let Q be a set of states: then
maxM(Q, x) is the lub of the security levels of x in the
memories occurring in the states of Q. For each t ∈ B,
maxE(Q, t) is the lub of the values of ρ(t) in the envi-
ronment occurring in the states of Q. For each field
f of each structure created at instruction (�, t) ∈ A,
max�(Q, �, t, f) is the lub of the values held by the field f
in the heap occurring in the states of Q. For each channel
a ∈ Names, maxC(Q, a) is the lub of the security levels
held by the channel a in the states of Q.

The definition of align is shown in Fig. 9. Given a value
v = (ve, τ), with ve ∈ (Z ∪A), up(v, σ) = (ve, τ �L σ) is
the value obtained by maintaining the execution part of
the value and upgrading the annotation of v.

For example, consider to have a memory µ with only
one variable x and only a channel a and consider the
states:

q1 = 〈2, ρ, µ(x) = (2, L), ξ , c(a) = (1 · 2, H)〉
q2 = 〈2, ρ, µ(x) = (3, H), ξ , c(a) = (2 · 3, L)〉
q3 = 〈3, ρ, µ(x) = (4, L), ξ , c(a) = (3, L)〉
We have that:

align({q1, q2, q3}) = {q1, q2, q3, q4, q5}
where:

q4 = 〈2, ρ, µ(x) = (2, H), ξ , c(a) = (1 · 2, H)〉 and

q5 = 〈2, ρ, µ(x) = (3, H), ξ , c(a) = (2 · 3, H)〉
State q4 is equal to q1 with respect to numeric values,
but variable x contains an high value, which is the maxi-
mum value of x in the set of states with program counter
2. Analogously, state q5 has the same values of q2 but
aligns the level of channel a to H. State q3 is the only
one with program counter 3 and thus no new state needs
to be added.

Definition 3 (concrete next operator next) Given a set
of concrete states Q ⊆ Q, the application of the next
operator yields the aligned set of states that are either in
Q, or reached in one step of computation starting from
a state in Q.

next(Q) = align(Q ∪ {
q′|∃q ∈ Q : q−→q′

}
)

Proposition 1 (monotonicity of next) next is monotone
in (℘ (Q),⊆).

The concrete collecting semantics sem ∈ ℘(Q) is the
set of all aligned concrete states belonging to all execu-
tions.

Definition 4 (collecting semantics) The concrete collect-
ing semantics sem ∈ ℘(Q) is the lub of the following
increasing chain, defined for all n ∈ N:

sem0 = {q(i0)| ∀i0 ∈ (NamesI → Z
�)}

semn+1 = next(semn)

Performing align at each step of semn aligns the secu-
rity annotations of the states corresponding to the join
point of different branches of a conditional instruction,
in order to properly manage implicit flows. This function
is necessary for the soundness of the concrete semantics,
proved by Theorem 1. Consider, for example, program
P2 of Fig. 4. If we consider an execution in which the
input value is 0, the branch true of the if command is exe-
cuted, and at instruction 6 the state is q = 〈6, ρ, µ, ξλ, c〉,
with ρ(4) = ρ(5) = H, µ(y) = (0, H) and where the
annotation H of 0 records the implicit flow of level H
under which the assignment to y has been performed. On
the other hand, if the input value is different from 0, var-
iable x is not affected in the conditional command and
the state q′ = 〈

6, ρ, µ′, ξλ, c′
〉

is reached, where µ′(y) =
(1,⊥L). This state does not represent the implicit flow,
since the level of the value held by y is low. Instead, the
contents of y has been affected also in this case by the
implicit flow of level H. Since the alignment operation
is applied to the chain semn, there exists at least one
j such that semj contains a state

〈
6, ρ, µ′′, ξλ, c′

〉
where

µ′′(y) = (1, H). This state derives from the alignment of

Instruction-level security typing 93

q to the levels occurring in q′ and represents the effect
of the implicit flow on y in the case in which the false
branch has been chosen.

The security annotations used by the concrete seman-
tics can be tied to the secure information flow property
via a soundness theorem. To prove such theorem we
need to define an equivalence relation between states.

Definition 5 (σ -equivalence) Let σ ∈ L.

– Given two heaps ξ1, ξ2 ∈ �, we define a relation
=ξ1,ξ2

σ ⊆ V × V as the greatest relation satisfying:
v1 =ξ1,ξ2

σ v2 if and only if one of the following cases
holds:

σ1 ��L σ and σ2 ��L σ

σ1 �L σ , σ2 �L σ , v1 = (k, σ1), v2 = (k, σ2)

σ1 �L σ , σ2 �L σ , v1 = (l1, t1, σ1), v2 = (l2, t2σ2)

and ∀f ∈ F : ξ1(l1).f =ξ1,ξ2
σ ξ2(l2).f

– Two environments ρ1 and ρ2 are σ -equivalent (ρ1 =E
σ

ρ2) iff
∀t ∈ B : either ρ1(t) �L σ and ρ2(t) �L σ or ρ1(t) ��L
σ and ρ2 ��L σ .

– Two concrete pairs memory-heap (µ1, ξ1) and (µ2, ξ2)

are σ -equivalent ((µ1, ξ1) =M,�
σ (µ2, ξ2)) iff ∀x :

µ1(x) =ξ1,ξ2
σ µ2(x).

– Two concrete channels a1 = (δ1, σ1) and a2 = (δ2, σ2)

are σ -equivalent
(a1 =C

σ a2) if one of the following cases hold:
σ1 �L σ , σ2 �L σ and δ1 = δ2
σ1 ��L σ and σ2 ��L σ

– Two concrete states q1 = 〈t1, ρ1, µ1, ξ1, c1〉 and q2 =
〈t2, ρ2, µ2, ξ2, c2〉 are σ -equivalent (q1 =Q

σ q2) iff

t1 = t2 ρ1 =E
σ ρ2 (µ1, ξ1) =M,�

σ (µ2, ξ2)

∀a ∈ Names : c1(a) =C
σ c2(a)

The relation =Q
σ ∈ Q×Q is an equivalence relation.

Lemma 1 Let be µ1, µ2 ∈ M and ξ1, ξ2 ∈ �, such that
(µ1, ξ1) =M,�

σ (µ2, ξ2) and an expression E ∈ Expr. If

〈E, µ1, ξ1〉 E−→ v1, and

〈E, µ2, ξ2〉 E−→ v2,

then,

v1 =ξ1,ξ2
σ v2

Proof By induction on the structure of expressions. ��
The following lemma states that a) the execution of

a non-conditional instruction preserves σ -equivalence;
and b) σ -equivalence is also preserved with a condi-
tional instruction, provided that the tested condition is
less secret than σ .

Lemma 2 Let be q1 = 〈t, ρ1, µ1, ξ1, c1〉 =Q
σ q2 = 〈t, ρ2,

µ2, ξ2, c2〉. If q1−→q′1 =
〈
t′1, ρ′1, µ′1, ξ ′1, c′1

〉
and q2−→

q′2 =
〈
t′2, ρ′2, µ′2, ξ ′2, c′2

〉
, then

ρ′1 = E
σ ρ′2 (µ1, ξ1) =M,�

σ (µ2, ξ2) ∀a ∈ Names :

c′1(a) = C
σ c′2(a)

Moreover, if

– t is neither an if nor a while instruction; or
– t is either an if or a while instruction and the guard

E is such that

〈E, µ1, ξ1〉 E−→(ve
1, σ ′1) with σ ′1 �L σ

then it is also true that t′1 = t′2 (and therefore q′1 =Q
σ q′2)

Proof By examining all possible kinds of instruction.

(
Assignt:x=e

)
The rule affects only the memory. By

Lemma 1, we have that the expression E, once eval-
uated, returns two σ -equivalent values, let say v1 =
(ve

1, σ1) and v2 = (ve
2, σ2) (we suppose for simplicity

that v1 and v2 are simple values and not references).
Moreover, suppose ρ1(t) = τ1 and ρ2(t) = τ2. The
memories µ′1 and µ′2 differ from µ1 and µ2 only for
the values µ′1(x) and µ′2(x) that are updated with
v′1 = (ve

1, σ1 �L τ1) and v′2 = (ve
2, σ2 �L τ2), respec-

tively. Now, we have two cases:
• σ1 �L σ and σ2 �L σ , τ1 �L σ and τ2 �L σ

Since v1 =ξ1,ξ2
σ v2 and (σ1 �L τ1) �L σ and

(σ2 �L τ2) �L σ . Therefore, also v′1 =ξ1,ξ2
σ v′2.

• (σ1 and σ2 ��L σ) or (τ1 and τ2 ��L σ) Then
(σ1 �L τ1) ��L σ and (σ2 �L τ2) ��L σ . Therefore,
v′1 =ξ1,ξ2

σ v′2.

Then, it holds that (µ′1, ξ1) =M,�
σ (µ′2, ξ2).(

Assignt:x.f=e
)

This rule affects only the heap. Again,
since by Lemma 1 the expression E returns two σ -
equivalent values and ρ1 =E

σ ρ2, we can make a rea-
soning similar to the previous case.

(Newt:x=new S) Here, both the memory and the heap
change. Suppose that fresh(ξ1) = �1 and fresh(ξ2) =
�2. It holds that ∀y ∈ Var, y �= x, µ′1(y) = µ1(y) =ξ1,ξ2

σ

µ2(y) = µ′2(y). Then µ′1(y) =ξ1,ξ2
σ = µ′2(y). Since

the function fresh returns two clean addresses, it

holds also that µ′1(y) =ξ ′1,ξ ′2
σ µ′2(y). Moreover µ′1(x) =

(�1, t, ρ1(t)) =ξ1,ξ2
σ µ′2(y) = (�2, t, ρ2(t)) since the two

new instances are equal and ρ1 =E
σ ρ2.(

Inputt:a?x

)
This rule modifies the channel a and the

variable x. However, the thesis trivially derives from
the σ -equivalence of memories, environments and
channels before the input operation.

94 N. De Francesco, L. Martini

(
Outputt:b?E

)
When applying this rule, only the chan-

nel b is modified. Again, the thesis holds from the
σ -equivalence of the environments and of the two
results of the expression E (by Lemma 1)

(If, While) Here, only the program counter and the

environment can change. Let 〈E, µ1, ξ1〉 E−→(k1, σ ′1)
and 〈E, µ2, ξ2〉 E−→(k2, σ ′2) be the two transitions that
happen when evaluating the guards. By Lemma 1,
only two cases may apply:
σ ′1 �L σ and σ ′2 �L σ Then, it holds that the execu-

tion values of the guards are the same (k1 = k2)
and therefore t′1 = t′2. Moreover the value of the
environment for instructions in the scope may be
updated, in both cases, with a level �L σ , thus
preserving σ -equivalence.

σ ′1 ��L σ and σ ′2 ��L σ The value of the environment
for instructions in the scope is upgraded, in both
cases, with a level ��L σ , thus preserving σ -equiv-
alence. ��

The following theorem states the soundness of the
collecting semantics. It proves that the management of
data performed by the concrete semantics correctly rep-
resent the level of the information flows of the program.

Theorem 1 (soundness of the concrete semantics) A
program P has secure information flow under a secu-
rity policy S if for each concrete state 〈t, ρ, µ, ξ , c〉 ∈ sem,
for each channel a, if c(a) = (δ, σ), δ ∈ Z

�, then σ � S(a).

Proof (sketch) The proof is made by proving σ -secu-
rity for a generic σ . Consider two concrete executions
starting from the same configurations of the input chan-
nels belonging to Names�σ . Until a conditional or iter-
ative instruction has not been reached with a high con-
ditional expression (i.e. with level �� σ), by Lemma 2
the two executions perform the same instructions and
reach at each step σ -equivalent states. If an input or
output instruction is executed on a channel a such that
S(a) �L σ , by the hypothesis the level of the channel
is not upgraded to a level �⊆L σ and thus the output
values are σ -equivalent and have equal numeric part. If
no if or while with high guard is reached, the property is
satisfied. If, instead, an if or while command is reached,
say t, with a high guard, then the two executions can
be made up of different sequences of instructions. Let
q1 = 〈t, ρ1, µ1, ξ1, c1〉 and q2 = 〈t, ρ2, µ2, ξ2, c2〉 the states
reached by the two computations respectively before

the execution of t and let q1
1 =

〈
t11, ρ1

1 , µ1, ξ1, c1

〉
and

q1
2 =

〈
t12, ρ1

2 , µ2, ξ2, c2

〉
, respectively, the states after the

execution of the rule If or While with label t. By Lemma
2 it holds that ρ1

1 =E
σ ρ1

2 . As a consequence, by the If and

While rules, for each instruction t′ ∈ scope(t), it holds
ρ1

1(t′) ��L σ and ρ1
2(t′) ��L σ . While instructions that

belong to scope(t) are executed, since the annotation of
values is upgraded to the level of the environment of
the instructions, it holds: i) if a variable or a field of a
structure is updated, then the stored value has annota-
tion ��L σ in both executions; and ii) no input or output
channel a with S(a) �L σ is affected, otherwise sem
would not respect the condition imposed by the theo-
rem (since the environment of the instruction is ��L σ ,
if a channel is updated, the annotation of the channel
would rise to a level ��L σ). Two cases are possible:

Case 1 At least one subsequent instruction of the pro-
gram does not belong to scope(t) (there is not a loop).
Let t̄ be the first instruction not belonging to scope(t),
that is t̄ is the join point of the two branches. Both com-
putations reach t̄. Let q̄1 =

〈
t̄, ρ̄1, µ̄1, ξ̄1, c̄1

〉
and q̄2 =〈

t̄, ρ̄2, µ̄2, ξ̄2, c̄2
〉
, respectively, the corresponding states.

Note that, since the definition of rule If and While
upgrades the environment of all instructions in scope(t),
it holds ρ̄1 =E

σ ρ11 =E
σ ρ̄2 =E

σ ρ21. Let i and j be the min-
imum indexes of the chain semn such that q̄1 ∈ semi and
q̄2 ∈ semj. Due to the align operation applied by next,

there are two states in semmax(i,j)(t̄), q̂1 =
〈
t̄, ρ̂1, µ̂1, ξ̂1, ĉ1

〉

and q̂2 =
〈
t̄, ρ̂2, µ̂2, ξ̂2, ĉ2

〉
, corresponding resp. to the

alignment of q̄1 and q̄2, i.e. with the same execution
values resp. of q̄1 and q̄2, but with the security levels
upgraded to the lub of all the states in semmax(i,j)(t̄). We
have that (µ̂1, ξ̂1) =M,�

σ (µ̂2, ξ̂2) since (µ1, ξ1) =M,�
σ

(µ2, ξ2) and a variable or a structure field in q̂1, q̂2 has
level �L σ after align only if has not been affected by
either of the two computations. A similar reasoning can
be made for channels. Thus it holds that q̂1 =Q

σ q̂2. The
above reasoning can be iterated following the two com-
putations from resp. q̂1 and q̂2.

Case 2 All subsequent instructions of the program
belong to scope(t) (there is a loop). By hypothesis, chan-
nels with security level �L σ cannot be affected from
this point on by either of the two computations and thus
the property is satisfied. ��

5 Abstract domains

In this section we define the abstract domains of the
abstract interpretation and we prove that they are con-
nected to the concrete domains by means of a correct-
ness condition. Let us recall the definition of Galois
Insertion.

Definition 6 (Galois Insertion) Let (C,⊆) and (A,�)

be two complete lattices. Two functions α : C �→ A and

Instruction-level security typing 95

Fig. 10 Lattice of abstract
values

γ : A �→ C form a Galois insertion between (C,⊆) and
(A,�), iff all the following conditions hold:

– α-Monotonicity: ∀y, y′ ∈ C. y ⊆ y′ ⇒ α(y) � α(y′)
– γ -Monotonicity: ∀a, a′ ∈ A. a � a′ ⇒ γ (a) ⊆ γ (a′)
– Galois: ∀y ∈ C. y ⊆ γ (α(y))

– Insertion: ∀a ∈ A. α(γ (a)) = a

Showing that the concrete and the abstract domains
are connected by a Galois Insertion will be necessary
for proving that the abstract flow equations converge to
a fixpoint [25]. The abstract domains are obtained by
eliminating from the concrete values both the execution
values and execution addresses. Every value maintains
instead its security annotation. Simple values (int) are
no longer held and are represented with a • symbol.
In order to make the heap finite we abstract onto the
same element different structures created at the same
label. Moreover, an abstract address �
 is composed of
a set of labels in New. In this way �
 records all the pos-
sible creation points of the structures pointed to by it
during the computation. The operations defined on the
lattice of abstract values (V
,�

V ,�

V ,�

V ,⊥

V ,�

V) are
reported in Fig. 10. The abstraction of a set of simple
values is the lub of their security levels. We assume that
αV returns the bottom element of V
 if applied to the the
empty set. Dually for the concretization function. The
same for the other abstraction functions. The abstraction
of a set of concrete references is an abstract reference
that contains both the lub of their security levels and
a set T of instruction points. T contains all the instruc-
tions at which the structure referenced is created. For
example, if v1 = ((�1, t1), σ1) and v2 = ((�2, t2), σ2), then
v
 = αV ({v1, v2}) = ({t1, t2}, σ1 �L σ2).

An abstract memory µ
 ∈ M

X = X → V
 maps
every variable in the set X to an abstract value (see
Fig. 11). Two abstract memories can be compared only

Fig. 11 Lattice of abstract memories

Fig. 12 Lattice of abstract heaps

if their domains are the same. When X = Var we omit
the subscript and indicate the domain with M
.

An abstract heap ξ
 ∈ �
 = New → M

struct is a

map from structure creation points to abstract memo-
ries representing fields contents. Two heaps ξ

1, ξ

2 can be

compared only if each abstract address points to struc-
tures of the same type, i.e. ∀t ∈ New, ξ

1(t) and ξ

2(t) are

comparable memories (see Fig. 12).
Input and output channels are represented in the

abstract domain C
 = Names → L with tuples of secu-
rity levels, one for each channel (see Fig. 13).

Proposition 2 αV and γV form a Galois Insertion.

Proof (α-Monotonicity) Let y, y′ ∈ ℘(V). Since
αV (y) =

⊔

V
vi∈y

α1
V (vi) and y ⊆ y′, we can write

96 N. De Francesco, L. Martini

Fig. 13 Lattice of abstract channels

αV (y′) = αV (y) �V
⊔

V
vi∈y\y′

α1
V (vi). The properties of the

lub �V assure therefore that αV (y) �A αV (y′).

(γ -Monotonicity) Let v

1, v

2 ∈ V
. If v

1 �V v

2 then

either both v

1 and v

2 are addresses or both are sim-

ple values. Let us consider the former case, in which
v

1 = (T1, σ1) and v

2 = (T2, σ2). We will prove γV (v

1) ⊆
γV (v

2) showing that every v = (�, t, σ) ∈ γV (v

1) belongs

also to γV (v

2). t ∈ T ∧ σ �L σ1 since v ∈ γV (v1). On the

other hand, T1 ⊆ T2 ∧ σ1 �L σ2, since v

1 �V v

2. Then,

t ∈ T1 ⊆ T2 ⇒ t ∈ T2 and σ �L σ1 �L σ2 ⇒ σ �L σ2,
thus proving that v ∈ γV (v

2). If v

1 and v

2 are simple

values, the proof is similar.

(Galois) Let y ∈ ℘(V) and v ∈ y. We will show that
v ∈ γV (αV (y)) to prove the thesis.

v ∈ y⇒ {v} ⊆ y⇒ (by monotonicity of αV)

⇒ αV ({v}) �V αV (y)

⇒ (by monotonicity of γV)

⇒ γV (αV ({v})) ⊆ γV (αV (y)).

Thus, it suffices to prove that v∈γV (αV ({v}))=γV (α1
V (v))

Suppose that y contains only addresses: then α1
V (v) =

α1
V ((�, t, σ)) = v
 = (t, σ). It is straightforward, by defi-

nition of γV , that v ∈ γV (v
). Analogously for the case
in which y contains only simple values. If y contains
both addresses and simple values, αV (y) = �V and
γV (�V) = ℘(V) that is the top element of the lattice
(V ,⊆).

(Insertion) Let v ∈ V
, v = (T, σ), y = γV (v). Then,
by definition of abstraction and concretization functions,

αV (y) =
⊔

V
vi∈y

αV (vi) =
⊔

V
t∈Tσ ′�Lσ

αV ((�, t), σ ′)

=
⊔

V
t∈Tσ ′�Lσ

({t}, σ ′) = (T, σ)

Similarly for a v = (•, σ). ��

Proposition 3 αM and γM form a Galois Insertion.

Proof (α-Monotonicity) Let y, y′ ∈ ℘(MX) and x ∈ X.

y ⊆ y′ ⇒ {µ(x)|µ ∈ y} ⊆ {µ(x)|µ ∈ y}
⇒ (by monotonicity of αV)

⇒ αV ({µ(x)|µ ∈ y}) �V αV ({µ(x)|µ ∈ y})
⇒ (by definition of αM)

⇒ αM(y)(x) �V αM(y′)(x)

(γ -Monotonicity) Let µ, µ′ ∈M
.

µ �M µ′ ⇔ ∀x ∈ X.µ(x) �V µ′(x)

⇒ (by monotonicity of γV)

⇒ ∀x ∈ X.γV (µ(x)) ⊆ γV (µ′(x))

⇒ (by definition of γM)

⇒ γM(µ) ⊆ γM(µ′).

(Galois) Let y ∈ ℘(MX) and µ ∈ y.

{µ} ⊆ y

⇒ (by monotonicity of αM)

⇒ αM({µ}) �M αM(y)

⇒ (by monotonicity of γM)

⇒ γM(αM({µ})) ⊆ γM(αM(y)).

Thus, it suffices to show that µ ∈ γM(αM({µ})) to prove
the thesis.

(by definition of αM) ∀x ∈ X αM({µ})(x)= αV ({µ(x)})
(by Proposition 2) ∀x∈X {µ(x)}⊆γV (αV ({µ(x)}))⇒
(by definition of γM) ⇒ µ ∈ γM(αM({µ}))

(Insertion) Let µ
 ∈M

X and let x ∈ X.

αM(γM(µ
))(x) = (by definition of αM)

= αV ({µ(x)|µ ∈ γM(µ
)})
= (by definition of γM)

= αV ({µ(x)|µ ∈ {µc′|∀x′ ∈ X.µc′(x′)
∈ γV (µ
(x′))})
= (by set definition)

= αV ({µ(x)|µ(x) ∈ γV (µ
(x))})
= (by set definition)

= αV (γV (µ
(x)))

= (by Proposition 2)

= µ
(x)

��
Proposition 4 α� and γ� form a Galois Insertion.

Proposition 5 αC and γC form a Galois Insertion.

We omit proofs for Propositions 4 and 5 since they
are similar to the previous.

Instruction-level security typing 97

The abstract domain of states is Q
 = B → (L ×
M
 × �
 × C
). It contains all functions associating the
instruction labels B with elements in (L×M
×�
×C
).
Given an abstract state q
 ∈ Q
, and an instruction label
t ∈ B, q
(t) = 〈

σ , µ
, ξ
, c

〉

is a tuple composed of a
security level representing the security environment of t,
an abstract memory, heap and channels. We use q
(t).env

to denote σ . We denote by

dom(q
) =
{

t | q
(t) = 〈
σ , µ
, ξ
, c

〉 ∧ µ
 �= ⊥

M ∧ ξ

�= ⊥

� ∧ c
 �= ⊥

C
}

the instruction addresses to which q
 assigns a defined
value for memory, heap and channels. We have that
(Q
,�Q) is a lattice, where, the operation�Q is defined
as the pointwise application of the corresponding oper-
ation on the fields of the abstract states. Let us now
consider the abstraction and concretization functions
between the concrete and abstract domains of the states.

αQ : ℘(Q)→ Q
 is defined as follows. Let Q be a set
of concrete states in Q = B × Env ×M × � × C. For
each t ∈ B, it is αQ(Q)(t) = 〈

σ , µ
, ξ
, c

〉

where

σ =
⊔

L
{ρ(t)| 〈t′, ρ, µ, ξ , c

〉 ∈ Q},

µ
 = αM({µ| 〈t, ρ, µ, ξ , c〉 ∈ Q}),
ξ
 = α�({ξ | 〈t, ρ, µ, ξ , c〉 ∈ Q}),
c
 = αC({c| 〈t, ρ, µ, ξ , c〉 ∈ Q}).

If an instruction t does not occur in Q, then the
abstraction functions αM, α� and αC will produce bot-
tom values, excluding t from dom(αQ(Q)). Note that the
security environment of an instruction t (whether t is in
dom(αQ(Q)) or not) in the abstract state is the lub of
the security environments assigned to t by all states in
Q, while the abstract memory, heap and channels associ-
ated with t are the lub of the abstractions of the concrete
memories, heaps and channels, respectively, occurring
the states of Q corresponding to the execution of the
instruction with label t. For the concretization function
γQ : Q
→ ℘(Q) we have:

γQ(q
) = {〈t, ρ, µ, ξ , c〉 | t ∈ dom(q
),

∀t′ ∈B, ρ(t′)�q
(t′).env, q
(t) = 〈
σ , µ
, ξ
, c

〉
,

µ = γM(µ
), ξ = γ�(ξ
), c = γC(c
)}
Theorem 2 αQ and γQ form a Galois Insertion.

Proof (α-Monotonicity) We want to prove that, ∀Q,
Q′ ∈ ℘(Q), such that Q ⊆ Q′, αQ(Q) �Q αQ(Q′).
From the definition of αQ it is straightforward to prove
dom(αQ(Q)) ⊆ dom(αQ(Q′)). It remains to prove that,
given t ∈ B with αQ(Q)(t) = 〈

σ , µ
, ξ
, c

〉
, αQ(Q′)(t) =

〈
σ , µ
′, ξ
′, c
′〉, it is: (1) σ �L σ ′, (2) µ
 �M µ
′, (3)
ξ
 �� ξ
′ and (4) c
 �C c
′. The first inequality holds
by definition of αQ and the set inclusion between Q and
Q′. The second, the third and the fourth are proven by
the fact Q ⊆ Q′ ⇒ {〈t, ρ, µ, ξ , c〉 ∈ Q} ⊆ {〈t, ρ, µ, ξ , c〉 ∈
Q′}.

(γ -Monotonicity) To prove this property, we must
show that ∀q

1, q

2 ∈ Q
, q

1 �Q q

2, γQ(q

1) ⊆ γQ(q

2).

Firstly, we note that q

1 �Q q

2 implies dom(q

1)

⊆ dom(q

2). Other consequences of the hypothesis are

that, if q

1(t) =
〈
σ1, µ

1, ξ

1, c

1

〉
and q

2(t) =
〈
σ2, µ

2, ξ

2, c

2

〉
,

then σ1 �L σ2, µ

1 �M µ

2, ξ

1 �� ξ

2 and c

1 �C c

2.

By γ−monotonicity for M, � and C, we have that
γM(µ

1) ⊆ γM(µ

2), γ�(ξ

1) ⊆ γ�(ξ

2) and γC(c

1) ⊆
γC(c

2). All these facts suffice to state that, by construc-
tion of γQ, γQ(q

1) ⊆ γQ(q

2).

(Galois) Let Q ∈ ℘(Q) and q ∈ Q, q = 〈t, ρ, µ, ξ , c〉.
We will show that q ∈ γV (αV (Q)) to prove that Q ⊆
γQ(αQ(Q)).

q ∈ Q⇒ {q} ⊆ Q⇒ (by monotonicity of αQ)

⇒ αQ({q})�Q αQ(Q)⇒(by monotonicity of γQ)

⇒ γQ(αQ({q})) ⊆ γQ(αQ(Q)).

Thus, it suffices to prove that q ∈ γQ(αQ({q})). We have
that αQ({q}) = q
, with dom(q
) = {t} and αQ({q})(t) =
〈ρ(t), αM(µ), α�(ξ), αC(c)〉. We have that q ∈ γQ
(αQ({q})) = {〈t′, ρ′, µ′, ξ ′, c′

〉 |∀t′ ∈ B, ρ′(t) �L ρ(t), µ′ ∈
γM(αM(µ)), ξ ′ ∈ γ�(α�(ξ)), c′ ∈ γC(αC(c))} that, by
Propositions 3, 4 and 5 clearly contains q.

(Insertion) We have to prove that ∀q
 ∈ Q
, αQ(γQ
(q
)) = q
. We will show that the thesis hold analyzing
each field of a generic abstract state for the instruction
t. For the environment we have:

αQ(γQ(q
))(t).env = (by definition of αQ)

=
⊔

L

{
ρ(t)| 〈t′, ρ(t), µ, c

〉 ∈ γQ(q
)
}

= (by definition of γQ)

=
⊔

L

{
ρ(t) �L q
.env

} = q
.env

and for the memory:

αQ(γQ(q
))(t).mem = (by definition of αQ)

= αM
({

µ| 〈t, ρ(t), µ, c〉 ∈ γQ(q
)
})

= (by definition of γQ)

= αM
(
γQ(q
.mem)

)

= (by Proposition 3)

= q
.mem

98 N. De Francesco, L. Martini

where, given q
 ∈ Q
 and t ∈ B with q
(t) = 〈
ρ, µ
, ξ
, c

〉
,

q
(t).mem indicates µ
. The heap and channels parts are
omitted because similar to the memory case. ��

6 Abstract semantics and correctness

In this section we give an abstract semantics of the lan-
guage that allows us to finitely execute the program in
the abstract domain.

Figure 14 describes the abstract semantics of expres-
sions. The rules of the abstract semantics for instruc-
tions are shown in Fig. 15. They define a relation

C
−→
between the abstract states: if the premise of the rule is
true, the rule transforms the state q
 in the way described
by the rule. There is only one rule for if and while:
in both cases, besides propagating the state unchanged
to the successors, the field env of all the instructions
in scope(t) are updated. Rules Valuex.f and Assignx.f=e
need some explanations. In the abstract semantics, the
structure addresses are lost and the references, besides
the security level, contain the set T of possible creation
points. Then, in order to obtain the abstract value x.f
needed by Rule Valuex.f , it is necessary to compute the

lub of ξ
(ti)(f) for all the ti in the set T. Similarly, to exe-
cute Rule Assignx.f=e, an assignment must be performed
for each abstract structure that x might refer to.

Definition 7 (next
 operator) Given an abstract state q
,
the application of the next
 operator yields the state
reached in one step of computation from each instruc-
tion:

next
(q
) =
⊔

Q

{

q̄
|q
 C
−→ q̄

}

Proposition 6 (monotonicity of next
) next
 is mono-
tone in (Q
,�
).

Definition 8 (initial abstract state q

0) For the initial state

q

0 we have dom(q

0)={t0} and q

0(t0)=

〈
⊥L,⊥M,⊥�, c

0

〉
,

where for all a ∈ NamesI , c

0(a) = S(a) and for all

a ∈ NamesO, c

0(a) = ⊥L.

Definition 9 (abstract semantics) The abstract seman-
tics sem
 ∈ Q
 is the least upper bound in (Q
,�
) of the
following increasing chain, defined for all n ∈ N:

sem

0 = q

0

sem

n+1 = next
(semn)

Fig. 14 Abstract expressions
semantics

Fig. 15 Abstract semantics
of commands

Instruction-level security typing 99

Proposition 7 (Expression semantics approximation)

∀ 〈E, µ, ξ 〉 : 〈E, µ, ξ 〉 E−→ v ⇒ 〈E, αM(µ), α�(ξ)〉 E
−→ v

with α1
V (v) �V v

Proof We prove the correspondences between each pair
of rules in concrete and abstract semantics for expres-
sions.

(Const) v
 = α1
V (v) is true since α1

V ((k,⊥L)) = ⊥L.
(Valuex) µ
 = αM(µ) ⇒ µ
(x) = α1

V (µ(x)) ∀x ∈ Var
by definition of αM.(

Valuex.f
)

We want to prove α1
V (ve, σ1�Lσ2)�V (w, σ�L

τ). First of all, since µ
 = αM(µ) then T = {t} and
σ =σ1. Moreover, v=(w, τ)=ξ
(t)(f)=α�(ξ)(t)(f)=⊔

V
(�i,t)∈dom(ξ)

ξ(�i, t)(f) �V ξ(�)(f) = (ve, σ2), by which

the thesis.(
Op

)
The thesis is α1

V (ve
1 op ve

2, σ1 �L σ2) = (•, σ1 �L
σ2) �V (•, τ1 �L τ2). The proof can be conducted by
structural induction. Supposing that α1

V (ve
i , σi) �V

(•, τi), i = 1, 2, then σi �L τi, leading to (σ1�Lσ2) �L
(τ1 �L τ2). ��

Proposition 8 (Command semantics correspondence)

∀q ∈ Q : q−→q′ ⇒ αQ({q}) C
−→q
′ such that

αQ({q′}) �Q q
′.

Proof As in the previous proposition, we will prove that
each abstract rule correctly approximates its correspon-
dent concrete version. From the definition of abstraction
function we have that∀i �= t, αQ({q})(i)= 〈

ρ(i),⊥M
 ,⊥C

〉
.

Please note that the application of an abstract seman-
tics rule upgrades only the part of the abstract state
referring to the successor(s) of t and that, in every case,
the environment is only upgraded. Let us suppose q =
〈t, ρ, µ, ξ , c〉 , q′ = 〈

t′, ρ′, µ′, ξ ′, c′
〉
, q
′(t′)= 〈

σ ′, µ
′, ξ
′, c
′〉

We proceed by cases depending on the type of instruc-
tion with label t.

(
Assignt:x=e

)
Only the memory status is affected by

this rule. Therefore we have to prove that if µ′ =
µ

[
x← (ve, ρ(t)�σ)

]∧µ
=αM(µ), then αM(µ′)�M
µ
 [x← (w, ρ(t) � τ)]. This is true, since by the
premises of the rules and Prop. 7, we can suppose
α1

V ((ve, σ)) �V (w, τ).(
Assignt:x.f=e

)
In this case, only the heap state is

affected, therefore we have to show that α�(ξ ′)
�� ξ
′. Since µ
′ = αM(µ), then T = t1 and τ2 = σ2.
Moreover, by Prop. 7 applied to the premises of the
rules, we have αV (ve, σ1) �V (w, τ1). Then we can
conclude

αV ((ve, σ3)) �V (w, τ3) (*)

α�(ξ ′)(t) = α�(ξ
[
�, f ← (ve, σ3)

]
)(t) = ξ
(t), ∀t ∈

New, t �= t1, since only the memory for an object
created at label t1 is changed by application of the
concrete rule. On the other hand,

α�(ξ ′)(t1) = αM({ξ ′(�j, t1)|�j �= �}) �M αM(ξ ′(�, t1))

= ξ
(t1) �M αM(ξ ′(�, t1))

Therefore, since ξ
′(t1)=ξ
(t1)�Mξ
(t1)
[
f←(w, τ3)

]
,

it remains to prove that:

αM(ξ ′(�, t1)) �M ξ
(t1)
[
f ← (w, τ3)

]
(**)

However, we can note that only the field f is changed
by the application of the rules, then, using (*), it is
easy to show that also (**) and the thesis hold.

(Newt:x=new S) While in the concrete rule both the
memory and the heap change, in the abstract rule the
heap state remains the same. That happens because,
in the concrete rule, we create a new object in a fresh
location, filling its fields with default (bottom) val-
ues. Since in the abstraction ξ
(t) is the lub between
all instances created at label t, the new object does
not give any contribution. It remains to prove that:

αM(µ [x← (�, t, ρ(t))]) �M αM(µ) [x← (t, ρ(t))]

which is straightforward from: αV ((�, t, ρ(t))) =
(t, ρ(t)).(

Inputt:a?x

)
In this case the memory and the input

states change. For the memory it suffices to note
that σ = τ ∧ αV (k, σ �L ρ(t)) = (•, τ �L ρ(t)). For
the input we must show that: αC(c) �C c
′, that is
true since only the a channel is changed and c′(a) =
(s, ρ(t) �L σ) ∧ c
′(a) = ρ(t) �L τ .(

Outputt:b?E

)
From the premises and Proposition 7 we

have that:

αV (k, σ1) �V (•, τ)⇒ σ1 �L τ1

From c
 = αC(c) we have σ2 = τ2. Then αC(c′) �C c
′
is true since only the b channel is changed and c′(b) =
(s, ρ(t) �L σ1 �L σ2) ∧ c
′(b) = ρ(t) �L τ1 �L τ2.

(If, While) We have q′ = 〈
t′, ρ′, µ, ξ , c

〉
with ρ′(t̄) = ρ(t̄)

for t̄ �∈ scope(t), ρ′(t̄) = ρ(t̄) �L τ if t̄ �∈ scope(t)
and the tested condition evaluates to (true, τ) or
(false, τ). Now, since by Prop. 7 the tested condi-
tion in the abstract case must evaluate to τ ′ with
τ �L τ ′ we have that αQ(q′)(t̄).env �L q
′(t̄).env.
The abstract state αQ(q′) will have bottom value for

100 N. De Francesco, L. Martini

memory, heap and channels for the instruction labels
different from t′. If t̄ = t′ then the memory, heap and
channels are unchanged, and αQ(q′) �Q q
′. ��

Proposition 9 The application of align preserves abstrac-
tion. That is, ∀Q ∈ ℘(Q),

αQ(align(Q)) = αQ(Q)

Proof (sketch) Since align(Q) contains all the states in
Q, plus some states for which the security levels are
lifted to the lub of states in Q, these latter states do not
contribute to the lub due to the application of αQ. ��
Proposition 10 (Local correctness) next
 is a safe
approximation of next:

∀Q ∈ ℘(Q) : next(Q) ⊆ γ (next
(αQ(Q)))

Proof It suffices to prove that:

αQ(next(Q)) �Q next
(αQ(Q)) (†)

Indeed, applying γ -monotonicity to (†), we can con-
clude:

next(Q) ⊆ γ (αQ(next(Q))) ⊆ γ (next
(αQ(Q)))

where the first subset operation is given by the Galois
property (Theorem 2). On the other hand, equation (†)
can be derived directly from Proposition 8 and from the
definitions of next and next
 operators.

Using the definition of next
, we can rewrite the right-
hand member of (†) as:

next
(αQ(Q)) = next

⎛

⎝
⊔

Q
q′′∈Q

αQ({q′′})
⎞

⎠

=
⊔

Q
q
→q
′,q
∈αQ(Q)

q
′

On the other hand, we can use the definition of next to
obtain:

αQ(next(Q)) = (by Definition 3)

= αQ(align(Q ∪ {
q′|∃q ∈ Q : q−→q′

}
))

= (by Proposition 9)

= αQ(Q ∪ {
q′|∃q ∈ Q : q−→q′

}
)

�Q (by monotonicity of αQ)

�Q
⊔

Q
q→q′,q∈Q

α({q′})

From these two results we can rewrite (†) as:
⊔

Q
q→q′,q∈Q

α({q′}) �Q
⊔

Q
q
→q
′,q
∈α(Q)

q
′ (††)

Since Proposition 8 holds, each state contributing to the
left-hand lub is surely less or equal of a a state contrib-
uting to the right-hand lub. The lattice properties ensure
that, given a, b, c, d in a lattice (A,�), with a � b∧ c � d,
then (a � c) � (b � d). By applying this property, we can
conclude (††) and therefore the thesis. ��
Theorem 3 (Global correctness) αQ(sem) �Q sem
.

Proof (sketch) The theorem can be proved by induc-
tion on the length of the chains semi and sem

i , observing
that αQ(sem0) = sem

0 (base step) and applying Propo-
sition 10 (induction step). ��
A consequence of the above theorem is the following
corollary. Its meaning is that we can use the abstract as
a means to check secure information flow.

Corollary 1 If, for any t ∈ B, with sem
(t) = 〈
t, µ
, ξ
, c

〉
,

it holds that ∀a ∈ Names, c
(a) �L S(a), then the con-
sidered program has secure information flow.

Proof (sketch) Combining Theorem 3 with Theorem 1.
��

7 A prototype tool

A prototype tool (Iflow)2 that, given a program, con-
structs its abstract semantics sem
, has been developed.
Iflow accepts programs written in the language described
in Sect. 3. The lattice L has been defined as the simplest
two-level chain {L, H}, with L �L H, but the tool can
be easily extended to manage generic lattices. Iflow has
been written in C++, using Flex [36] and Bison [20] as
scanner and parser generators. After having parsed the
input file, Iflow builds the initial abstract state q

0. Then,
starting from q

0, it performs a least fixpoint computation
using the Kildall working list algorithm [27]. Finally, it
dumps sem
. Giving Iflow a “verbose” switch, it is possi-
ble to dump also each step of the fixpoint calculation.

As an example, consider the application of the algo-
rithm to programs P5 and P8 in Fig. 4. In Fig. 16, we sum-
marize the abstract execution, showing the result of the
algorithm (sem
) in the two cases. Let us briefly explain
how the state in Fig. 16a is computed for P5. Initially,
the entry point of the program is inserted in the working
list and abstractly executed. Every instruction brings its
successor into the working list, and until instruction 4
is executed, the states are unchanged from their default
value. Execution of instruction 4 aligns the value of x to

2 Iflow is freely available at the URL: http://www.ing.unipi.
it/ ∼o1103499.

Instruction-level security typing 101

Fig. 16 Abstract semantics
of the programs a P5 and
b P8, calculated using Iflow

(a) (b)

H. Then, when the while instruction is newly executed,
the environment of all the instructions in its scope (3,4)
is upgraded. The new execution of the loop lifts the secu-
rity level of channel b to H (because of the environment,
see Rule Output), thus making the program insecure. In
Fig. 16b we show the abstract semantics for program P8.
We can notice that, before executing instruction 7, s3
may refer either to the object created at 1 or to the object
created at 2. After the abstract execution of instruction
7, the fieldf of both the two abstract objects is upgraded.

7.1 The tax example

Reconsider the tax example described in Sect. 2, and
suppose a program that implements the tax calculation.
User data are stored in a list. Each element of the list
is an instance of User, a structure (see Fig. 17) that
contains three fields: id (the user ID), incomeAmount
(the yearly income of the current user) and next (the
reference to the next element of the list).

The program communicates, through I/O channels,
with the users and with the net, that provides informa-
tion about the current tax rates. In particular:

– the input channel user is used to receive the user
id,

– the input channel request is used to receive the
type of the user request,

Fig. 17 Declarations (tax example)

– the input channel income is used to receive the user
income,

– the input channel from_net is used to receive the
tax rates and the threshold, from the net,

– the output channel to_net is used to request to the
net:
• the income threshold that discriminates between

the application of the low and the high tax rate
(0),

• the low rate (1),
• the high rate (2).

– the output channel tax is used to communicate to
the user the tax rate he/she has to apply.

We set the security level of all the channels to L (low,
public) except for the tax and the income channel,
whose level is H (high, private). The tax channel holds
confidential data since the applied rate depends on the
user income. Recall that, according to our method, there
is no need to assign a security level to the variables used
in the program. The program is an infinite loop that waits
for and serves requests from the users (see Fig. 18). The
variable tmp holds the last value read from the channel
request and contains the request code. Requests can
be of four types:

– registration to the service (code 0),
– modification of the user income (code 1),
– request of the tax rate to be applied to the user

income (code 2),
– un-registration to the service (code 3).

In the first case (Fig. 19) the user is inserted into the list,
with a fictitious income of 0. In the second (see Fig. 20),
the program, after having found the correct user instance
in the list, sets the user income to the value taken from
the confidential channel income. Otherwise, if the user
was not registered, before setting the income, the pro-
gram registers the user by adding a new element to the
list. With the third type of request, an user asks the
server which tax rate he/she must apply to his income
(see Fig. 21). To answer, the program must contact the
net that provides the current threshold and the two rates.

102 N. De Francesco, L. Martini

Fig. 18 Program structure (tax example)

Fig. 19 The user registration (tax example)

Fig. 20 The modification of the income (tax example)

Finally, with the fourth type of request (see Fig. 22), an
user can ask the program to delete his/her data from the
list.

Analyzing the program with Iflow, we can observe
that, in the abstract semantics, all the channel but
to_net respect their specification. In Fig. 23, the chan-
nels status, produced by the tool for the main loop
instruction, is shown. The two security levels shown for
each channel are the level specified by the policy and the
level calculated by the abstract semantics, respectively.
As the extract shows, the security level of to_net has

Fig. 21 The request of the tax rate (tax example)

Fig. 22 The deletion of an user (tax example)

Fig. 23 Extract of the output of the Iflow tool used with the tax
example. The final channels state for the main while instruction
is shown. The last line shows the number of iterations needed to
reach the fixpoint

increased, in the abstract semantics, to the H security
level. This is due to the part of the program that han-
dles the request with code 2. Since the program requests

Instruction-level security typing 103

Fig. 24 The request of the tax rate - safe version (tax example)

the net either the high or the low rate through the pub-
lic channel to_net, an external observer that has read
access to this channel can infer if the user income amount
is below the threshold or not, thus violating the policy.
To overcome this problem, the code in Fig. 21 can be
substituted by the code in Fig. 24. In this case, since the
program requests both the low and the high rate, there is
no way for the attacker to know which rate is communi-
cated to the user, since the channel tax is confidential.
Analyzing the new version of the program with Iflow,
the abstract semantics produced by the tool respects the
policy. Please note that the variable tmp is used both to
temporarily store the value read from the private chan-
nel income and to store the value read from the public
channel request. Therefore, the variable tmp has a
different security type after the instruction marked with
(�) (see Fig. 19) and after instruction (��) (see Fig. 20).
This would not have been possible with a Volpano-like
typing [41], that would have assigned a high security type
to tmp throughout the whole program, thus leading to
deeming the program as insecure. To make this program
typable in a Volpano-like typing, two different variables
could be used in place of tmp: one to store private data,
and another to store public data. In general, it may be
not easy for the programmer to understand which vari-
ables need duplication and this may require a specific
prior analysis. Moreover, if many variables needs dupli-
cation, the overhead may become significant, especially
in embedded systems (e.g. Java Cards [12]) where the
memory space is a concern.

7.2 Complexity

Let us now give a short account of the complexity of
our analysis: for space complexity, it is O(N · log(M) · n)

where N = �(Var)+ �(New) if the maximum number of

fields of each structure is constant, M is the number of
elements in L and n is the number of program points.
The time complexity is theoretically O(N2 ·M ·n): every
application of an abstract rule has a linear complexity in
N due to the lub operation on the abstract memory and
heap, and, in the worst case, the abstract state of every
instruction can assume up to O(N ·M) different values
during the verification process. However, in practice, the
number of abstract executions is much smaller. As sug-
gested in [30] the dataflow analysis can be conducted
at the level of the basic blocks instead of single instruc-
tions, saving only the state for the beginning of each basic
block and calculating the others on the fly. This helps to
reduce the space complexity to O(N · log(M) · B), and
the time complexity to O(N2 · M · B), where B is the
number of basic blocks.

8 Related work and conclusions

A recent survey of works on secure information flow
is [39]. The problem has been coped with mainly by
means of typing. In type-based approaches, each vari-
able is assigned a security level, which is part of the type
of the variable and secure information flow is checked by
means of a type system; see, for example, [1,8,33,41,43].
The work [4] handles secure information flow in object
oriented languages. They extend the syntax of a Java-
like language with security annotations and build a type
system that enforce noninterference. Their language is
richer than ours since it includes classes and methods.
However, the pointer analysis is only syntactical, while
our analysis can distinguish between object instances
created at different instructions. In [37,38] references,
exceptions andlet-polymorphism are treated for a call-
by-value λ-calculus.

As compared with typing, AI can give a finer inspec-
tion of information flows, since it executes the pro-
gram, even though in an abstract way. In order to check
input/output non-interference, it is not necessary to asso-
ciate security levels to variables: a variable, during its
life, can hold data with different security levels with-
out affecting non-interference, provided that the output
channels contain data with levels that are lower than
or equal to the channel’s level. Security typing can be
obtained in our framework by collapsing the rows of
the abstract semantics (corresponding to the instruc-
tions) into a unique row containing the pointwise lub
of the rows. We think that also explicit declassification
(as proposed, for instance, in [34]) can be suitably han-
dled by abstract interpretation. The language could be
extended with a new command a!σ E that sends the
result of the expression E to the channel a forcing the

104 N. De Francesco, L. Martini

security annotation of the expression to be equal to σ .
The concrete semantics rule could be:

Declassification
t:b!σ E

〈E, µ, ξ 〉 E−→(k, τ1), c(b) = (s, τ2), b ∈ NamesO

〈t, ρ, µ, ξ , c〉−→ 〈
succ(t), ρ, µ, ξ , c

[
b← (s · k, σ �L τ2)

]〉

and the non-interference property of Definition 1 has
to be changed in order to exclude the output performed
using this new command.

Other papers based on AI [42,21] takes as abstract
domain the lattice of levels and perform an AI with
almost the same power of typing (in terms of class of
certified programs). Thus they do not exploit all the
power of abstract interpretation. For example, they can
not certify program P7 above. On the other hand, the
focus of [21] is the definition of a framework based on
AI able to represent a parametrized notion of non-
interference. Approaches that are able to cope with
“temporary breaking of security”, similar to that pre-
sented by program P7, are based on theorem proving
[24,26]. AI is also exploited in [2] to annotate programs
with pre and postconditions defining variable dependen-
cies.

An early work for analyzing secure information flow
in high-level languages was presented by Mizuno and
Schmidt [32]. They describe the execution of programs
in a rich language (non-void procedures with local and
global variables are considered) by means of a denota-
tional semantics that handles execution values and secu-
rity levels. The full semantics is then approximated, using
an AI, by an abstract semantics that handles only secu-
rity levels. Though they provide a full proof that this
approximation is correct, they do not prove that the full
semantics enforces the security properties. On the con-
trary, we justify the use of the concrete semantics by
means of Theorem 1.

A recent paper by Hunt and Sands [23] introduces a
security typing system that is flow-sensitive, i.e. it allows
variables to hold different security levels in different
instructions of the program, as our analysis does. Even
though their analysis does not deal neither with channels
nor with dynamic structures, and therefore a straight-
forward comparison is not possible, it seems that they
achieve the same precision of our method. Moreover,
the paper presents an algorithm that transforms a pro-
gram that is typable in their flow-sensitive analysis into
another program that can be also typed in a Volpano-
like typing [41].

Some previous papers of the team to which the
authors belong cope with the definition of abstractions
suitable to check secure information flow, based on the
annotation of data with security levels. The works
[6,7,9,10] handle secure information flow in stack based

machine languages, while the papers [5,17] consider high
level languages, including parallel ones. In these papers

abstract transition systems are used, possibly having a
high number of states: the same instruction may belong
to different states, characterized by different security
environments and memories. This corresponds to per-
form a less approximate abstract interpretation than
instruction level security typing. The number of states
being high, the abstraction is not suitable to be directly
used for a definition of a tool for checking secure infor-
mation flow. In fact there is a need for other techniques
to be combined with this abstraction method: in the
above papers we used model checking to complete the
verification process (a similar combination of abstrac-
tion and model checking is used in [11]). In the present
paper, instead, the abstract semantics is a table com-
posed of a row for each program point and is built by
an efficient fixpoint algorithm using the abstract rules.
Finally, the previous papers of the authors do not cope
with pointers and dynamic structures, here handled by
a suitable abstract domain.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A
core calculus of dependency. In: 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages Proceedings, January 20–22, 1999, San Anto-
nio, pp. 147–160. ACM, New York (1999)

2. Amtoft, T., Banerjee, A.: Information flow analysis in logical
form. In: Giacobazzi, R. (ed.) SAS 2004 (11th Static Anal-
ysis Symposium), Verona, Italy, August 2004, Vol. 3148 of
Lecture Notes in Computer Science, pp. 100–115. Springer,
Berlin (2004)

3. Avvenuti, M., Bernardeschi, C., De Francesco, N.: Java byte-
code verification for secure information flow. ACM SIG-
PLAN Notices 38(12), 20–27 (2003)

4. Banerjee, A., Naumann, D.: Secure information flow and
pointer confinement in a Java-like language. In: 15th IEEE
Security Foundations Workshop (CSFW’02) Proceedings.
IEEE, 2002

5. Barbuti, R., Bernardeschi, C., De Francesco, N.: Abstract
interpretation of operational semantics for secure informa-
tion flow. Inform. Process. Lett. 83(2), 101–108 (2002)

6. Barbuti, R., Bernardeschi, C., De Francesco N.: Checking
security of Java bytecode by abstract interpretation. In: SAC
’02: Proceedings of the 2002 ACM symposium on Applied
computing, March 10–14, 2002, Madrid, Spain, pp. 229–236.
ACM New York (2002)

7. Barbuti, R., Bernardeschi, C., De Francesco, N.: Analyzing
information flow properties in assembly code by abstract
interpretation. Comput. J. 47(1), 25–45 (2004)

Instruction-level security typing 105

8. Barthe, G., Rezk, T.: Non-interference for a JVM-like lan-
guage. In: TLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN international workshop on types in languages design
and implementation, pp. 103–112, New York, NY, USA, 2005.
ACM, New York

9. Bernardeschi, C., De Francesco, N.: Combining abstract inter-
pretation and model checking for analysing security proper-
ties of Java bytecode. In: Cortesi, A. (ed.) Third International
Workshop on Verification, Model Checking and Abstract
Interpretation Proceedings, VMCAI 2002, Venice, January
21–22, 2002, Proceedings, Vol. 2294 of Lecture Notes in Com-
puter Science, pp. 1–15. Springer, Berlin (2002)

10. Bernardeschi, C., De Francesco, N., Lettieri, G.: An abstract
semantics tool for secure information flow of stack-based
assembly programs. Microprocess. Microsyst. 26(8), 391–
398 (2002)

11. Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V., Zanon,
G.: Checking secure interactions of smart card applets. In:
ESORICS 2000 Proceedings (2000)

12. Chen, Z.: Java Card Technology for Smart Cards: Architec-
ture and Programmer’S Guide. Addison-Wesley Longman
Publishing, (2000)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In: 4th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages Proceedings, pp. 238–252, Los Angeles,
(1977)

14. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J.
Logic Comput. 2, 511–547 (1992)

15. Cousot, P., Cousot, R.: Inductive definitions, semantics and
abstract interpretations. In: ACM (ed) Conference Record of
the Nineteenth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’92),
Albuquerque, New Mexico, January 1992, pp. 83–94. ACM,
New York (1992)

16. De Francesco, N., Martini, L.: Abstract interpretation to
check secure information flow in programs with input–output
security annotations. In: Dimitrakos, T., Martinelli, F., Ryan,
P. Y., Schneider, S., (eds) Formal Aspects in Security and
Trust: Third International Workshop, FAST 2005, Newcastle
upon Tyne, UK, July 18–19, 2005, Revised Selected Papers,
Lecture Notes in Computer Science, pp. 63–80. Springer,
Berlin (2006)

17. De Francesco, N., Santone, A., Tesei, L.: Abstract interpre-
tation and model checking for checking secure information
flow in concurrent systems. Fundam. Inf. 54(2–3), 195–211
(2003)

18. Denning, D.E.: A lattice model of secure information flow.
Commun. ACM 19(5), 236–243 (1976)

19. Denning, D.E., Denning, P.J.: Certification of programs
for secure information flow. Commun ACM 20(7), 504–
513 (1977)

20. Donnely, C., Stallman, R.: Bison, the YACC-compatible
parser generator. Free Software Foundation, November
(1995)

21. Giacobazzi, R., Mastroeni, I.: Abstract non-interference:
parameterizing non-interference by abstract interpreta-
tion. In: Jones, N. D., Leroy, X. (eds.) Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, (POPL ’04), Venice,
Italy, January 14–16, 2004, pp. 186–197, ACM, New York
(2004)

22. Heintze, N., Riecke, J. G.: The SLam calculus: programming
with secrecy and integrity. In: Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, January 19–21, 1998, San Diego, CA, USA,
pp. 365–377. ACM, New York (1998)

23. Hunt, S., Sands, D.: On flow-sensitive security types. In: Mor-
risett, J. G., Jones, S. L. P. (eds.) Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2006, Charleston, South Caro-
lina, USA, January 11–13, 2006, pp. 79–90. ACM, New York
(2006)

24. Jacobs, B., Pieters, W., Warnier, M.: Statically checking confi-
dentiality via dynamic labels. In: Workshop on Issues in the
Theory of Security proceedings, Long Beach, CA, United
States, January 20, 2005. ACM, New York (2005)

25. Jones, N. D., Nielson, F.: Abstract interpretation: a seman-
tic based tool for program analysis. In: Abramsky, S., Gab-
bay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in
Computer Science, Vol. 4, 527–636. Oxford University Press,
Oxford (1995)

26. Joshi, R., Leino, K.M.: A semantic approach to secure
information flow. Sci. Comput. Programm. 37(1–3), 113–
138 (2000)

27. Kildall, G.A.: A unified approach to global program optimi-
zation. In: Proceedings of the 1st Annual ACM Symposium
on Principles of Programming Languages, Boston, Massachu-
setts, October 1973, pp. 194–206 (1973)

28. Kobayashi, N., Shirane, K.: Type-based information flow anal-
ysis for low-level languages. In: Informal Proceedings of the
3rd Asian Workshop on Programming Languages and Sys-
tems (APLAS’02) (2002)

29. Lampson, B.W.: A note on the confinement problem. Com-
mun. ACM, 16(10), 613–615 (1973)

30. Leroy, X.: Java bytecode verification: algorithms and formal-
izations. J. Automat. Reason. 30(3–4), 235–269 (2003)

31. Lindholm, T., Yellin, F.: Java Virtual Machine Specification,
2nd edn. Addison-Wesley Longman Publishing (1999)

32. Mizuno, M., Schmidt, D.A.: A security flow control algo-
rithm and its denotational semantics correctness proof. For-
mal Aspects Comput. 4, 727–754 (1992)

33. Myers, A.C.: Jflow: practical mostly-static information flow
control. In: 26th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages Proceedings,
January 20–22, 1999, San Antonio, TX, pp. 228–241. ACM,
New York (1999)

34. Myers, A.C., Liskov, B.: A decentralized model for informa-
tion flow control. In: SOSP ’97: Proceedings of the sixteenth
ACM symposium on Operating systems principles, pp. 129–
142. ACM, New York (1997)

35. A guide to understanding Discretionary Access Control in
trusted systems. Technical Report NCSC-TG-003 Version 1,
National Computer Security Center, 1987

36. Paxson, V.: Flex, a fast scanner generator, version 2.5, March
1995

37. Pottier, F., Conchon, S.: Information flow inference for free.
In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), Mon-
treal, Canada, September 18–21, 2000, SIGPLAN Notices
35(9), pp. 46–57 (2000)

38. Pottier, F., Simonet, V.: Information flow inference for ML.
In 29th ACM Symposium on Principles of Programming Lan-
guages Proceedings, Portland, January 16–18, 2002, pp. 319–
330 (2002)

106 N. De Francesco, L. Martini

39. Sabelfeld, A., Myers, A.C.: Language-based information-flow
security. IEEE J. Select. Areas Commun. 21(1), 5–19 (2003)

40. Smith, G., Volpano, D.: Secure information flow in a multi-
threaded imperative language. In: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, January 19–21, 1998, San Diego, pp.
1–10. ACM, New York (1998)

41. Volpano, D., Smith, G., Irvine, C.: A sound type system for
secure flow analysis. J. Comput. Secur. 4(3), 167–187 (1996)

42. Zanotti, M.: Security typings by abstract interpretation. In:
Static Analysis, 9th International Symposium, SAS 2002,
Madrid, Spain, September 17–20, 2002, Proceedrings, Vol.
2477 of Lecture Notes in Computer Science, pp. 360–375,
Springer, Berlin (2002)

43. Zdancewic, S., Myers, A.C.: Secure information flow via lin-
ear continuations. Higher Order Symbol. Comput. 15(2–3),
209–234, Kluwer, Dordrecht (2002)

	Instruction-level security typing by abstract interpretation
	Abstract
	Introduction
	Motivations
	The model
	Concrete semantics
	Abstract domains
	Abstract semantics and correctness
	A prototype tool
	The tax example
	Complexity
	Related work and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

