
Int J Inf Secur (2005) 4: 87–104 / Digital Object Identifier (DOI) 10.1007/s10207-004-0049-5

Static use-based object confinement

Christian Skalka1, Scott Smith2

1The University of Vermont, Burlington, VT 05405, USA e-mail: skalka@cs.uvm.edu
2The Johns Hopkins University, Baltimore, MD 21218, USA e-mail: scott@cs.jhu.edu

Published online: 2 November 2004 – Springer-Verlag 2004

Abstract. The confinement of object references is a sig-
nificant security concern for modern programming lan-
guages. We define a language that serves as a uniform
model for a variety of confined object reference systems.
A use-based approach to confinement is adopted, which
we argue is more expressive than previous communication-
based approaches.We then develop a readable, expressive
type system for static analysis of the language, along
with a type safety result demonstrating that run-time
checks can be eliminated. The language and type system
thus serve as a reliable, declarative, and efficient founda-
tion for secure capability-based programming and object
confinement.

Keywords: Programming languages – Security – Con-
finement – Type systems

1 Introduction

The confinement of object references is a significant se-
curity concern in languages such as Java. Aliasing and
other features of OO languages can make this a difficult
task; recent work [1, 5, 8, 9, 29] has focused on the devel-
opment of type systems for enforcing various containment
policies in the presence of these features. This paper de-
scribes a new language and type system that implements
an object confinement model that is more general than
previous systems and that is based on a different notion of
security enforcement.
Object confinement is closely related to capability-

based security, utilized in several operating systems such
as EROS [24] and also in programming language (PL)
architectures such as J-Kernel [12], E [10], and Secure
Network Objects [28]. A capability can be defined as a ref-
erence to a data segment, along with a set of access rights

to the segment [14]. An important property of capabili-
ties is that they are unforgeable: they cannot be faked or
reconstructed from partial information. In Java, object
references are likewise unforgeable, a property enforced
by the type system; thus, Java can be considered a stat-
ically enforced capability system.
So-called pure capability systems rely on their high-

level design for safety, without any additional system-
level mechanisms for enforcing security. Other systems
harden the pure model by layering other mechanisms over
pure capabilities to provide stronger system-level enforce-
ment of security; the private and protected modifiers
in Java are examples of this. Types improve the hardening
mechanisms of capability systems by providing a declar-
ative statement of security policies, as well as improv-
ing run-time efficiency through static, rather than dy-
namic, enforcement of security. Our language model and
static type analysis focuses on capability hardening, with
enough generality to be applicable to a variety of systems,
and serves as a foundation for studying object protection
in OO languages.
Our approach is similar to [5], which establishes the-

oretical foundations for statically enforcing a fixed set
of access rights on capabilities at the programming lan-
guage level by proving a type safety result that demon-
strates that run-time access checks are unnecessary in an
idealized semantics. However, our notion of access rights
is much more general, being applicable to any object
method, rather than just a fixed set, and can be modu-
lated so that different access rights may be assigned to
the same capability in different domains of usage. In this
respect our approach is similar to the access control sys-
tem for process calculi presented in [13], where location
names embody capabilities for mobile agents, and known
channels at those locations may be modulated for varying
degrees of resource authorization. As in [5], we adopt the
traditional spirit of access control for capabilities, which

88 C. Skalka, S. Smith: Static use-based object confinement

essentially comprises a lightweight access check of the in-
terface associated with a capability at the point of usage.
This distinguishes the object access control in this setting
from the resource access control mechanisms available
with, e.g., security automata [30], or stack-inspection-
style access control [11, 20].
Since our work is intended as the foundation for a dis-

tinct use-based view of access control (Sect. 2.1), we focus
on the theoretical underpinnings of a relevant static an-
alysis. Thus, we do not treat more advanced language
features such as inheritance and concurrency, but rather
a core object-based calculus. Also, while the literature
on object containment has included analyses for global
properties such as disjointness of effects [8], noninterfer-
ence [3], and safety guarantees in the presence of modu-
larity [1, 2, 15, 16], we concentrate on the enforcement of
the system of local checks that are basic components of
the language. In short, our aim is to study, from first prin-
ciples, static object confinement from a general use-based
perspective – to characterize this perspective via formal-
ization, to establish the basis for a relevant, practical type
system by defining the type language, proof, and infer-
ence systems, and to prove these systems sound.

Outline of the presentation. The high-level organization
of this paper is as follows. In Sect. 2 we describe the fun-
damental ideas and basic usage of our language, called
pop. In Sect. 3 we give the formal syntactic and seman-
tic definition of pop. In Sect. 4 we show how pop can be
simulated, via transformation of terms, in another lan-
guage. This transformation serves as the foundation for
the development of a type discipline for pop in Sect. 5. In
Sect. 6 we give some detailed examples of programming
in pop that highlight the usefulness of its type discipline.
We conclude with some remarks about related and future
work in Sect. 7.

2 Overview of the pop system

In this section we informally describe some of the ideas
and features of our language, called pop (an acronym for
“programming with object protection”) and show how
they improve upon previous systems. As will be demon-
strated in Sect. 6, pop is sufficient to implement various
OO language features, e.g., classes with methods and
instance variables, but with stricter and more reliable
security.

2.1 Use-based vs. communication-based security

Our approach to object confinement is related to previ-
ous work on containment mechanisms for object-oriented
languages [4, 9, 29], but with a different basis. These pre-
vious containment mechanisms rely on a communication-
based approach to security; some form of barriers be-
tween objects, or domain boundaries, are specified, and

security is concerned with communication of objects (or
object references) across those boundaries. In our use-
based approach, we also specify domain boundaries, but
security is concerned with how objects are used within
these boundaries. Practically speaking, this means that
security checks on an object are performed when it is
used (selected) rather than communicated. A similar use-
based perspective has been exploited previously in a pro-
cess calculi setting [13], where types specify the particular
channels available for authorized use at a known location.
The main advantage of the use-based approach is

that security specifications may be more fine-grained; in
a communication-based approach, we are restricted to
a whole-object “what-goes-where” security model, while
with a use-based approach we may be more precise in
specifying what methods of an object may be used within
various domains. This is particularly relevant to access
control. Use-based security also more closely corresponds
to traditional capability-based security models in prac-
tice, where capabilities are not just references but are
references plus an interface specifying access rights.
In addition, our use-based security model allows “tun-

neling” of objects: a capability may pass through a do-
main where its use is disallowed, provided it is not used
in that domain. This supports the multitude of protocols
that rely on an intermediary that is not fully trusted. In
a communication-based model capabilities are prevented
from passing through unauthorized domains, so tunnel-
ing is impossible.

2.2 Static protection domains

The pop language is an object-based calculus, where ob-
jects are defined as collections of method definitions. For
example, substituting the notation . . . for the syntactic
details, the definition of a file object with read and write
methods would appear as follows:

[read() = . . . ,write(x) = . . .] · . . . · . . .

Additionally, every object definition statically asserts
membership in a specific protection domain d, so that
expanding on the above we could have:

[read() = . . . ,write(x) = . . .] ·d · . . .

While the system requires that all objects be annotated
with a domain, the meaning of these domains is flexi-
ble and open to interpretation. Our system, considered in
a pure form, is a core analysis that may be specialized for
particular applications. For example, domains may be in-
terpreted as code owners, or they may be interpreted as
denoting regions of static scope, e.g., package scope.
Along with domain labels, the language provides

a method for specifying a security policy, dictating how
domains may interact, via user interface definitions ϕ.
Each object is annotated with a user interface, so that,

C. Skalka, S. Smith: Static use-based object confinement 89

letting ϕ be an appropriately defined user interface and
again expanding on the above, we could have:

[read() = . . . ,write(x) = . . .] ·d ·ϕ .

We describe user interfaces more precisely below and il-
lustrate and discuss relevant examples in Sect. 6. For now,
we note that the flexibility in the interpretation of do-
mains implies a flexibility in the style of policies that may
be enforced: e.g., if domains are interpreted as code-owner
labels, then the policy is access control, while if domains
are interpreted as static scope, then the policy is a use-
based access modifier mechanism.

2.3 Object interfaces

Other secure capability-based language systems have
been developed [10, 12, 28] that include a notion of an
access-rights interface, in the form of object types. Our
system provides a more fine-grained mechanism: for any
given object, its user-interface definition ϕ may be de-
fined so that different domains are given more or less
restrictive views of the same object, and these views are
statically enforced. Note that the use-based, rather than
communication-based, approach to security is an advan-
tage here, since the former allows us to more precisely
modulate how an object may be used by different do-
mains, via object method interfaces.
For example, we can imagine that any object in do-

main d is a “friend” and should be given free reign over
other objects in d, whereas objects in domain d′ are some-
what trusted but potentially hostile, so that we might
wish such objects to read data in d but not be able to alter
it. Thus, returning to our previous example, an appropri-
ate definition of ϕ in the file object definition, given these
security preconceptions, would be:

{d �→ {read,write} , d′ �→ {read}} .

User interfaces may additionally contain mappings for
a default user ∂, which allows the programmer to specify
interfaces for domains that may not be known at com-
pile time. Thus, the system allows for a degree of “open-
endedness” in its design. Again returning to the previous
example, if our policy was to allow any domain read ac-
cess to files in domain d, we could define ϕ as:

{d �→ {read,write} , ∂ �→ {read}} .

The notation ∂ matches any domain. As is the case for
normal interface specifications, the access rights associ-
ated with default interfaces are statically enforced.
The user interface is a mapping from domains to ac-

cess rights – that is, to sets of methods in the associated
object that each domain is authorized to use. This looks
something like an ACL-based security model; however,
ACLs are defined to map principals to privileges. Do-
mains, on the other hand, are fixed boundaries in the

code that may have nothing to do with principals. The
practical usefulness of a mechanism with this sort of flexi-
bility has been described in [6], in application to mobile
programs. Other applications and more detailed exam-
ples are discussed in Sect. 6, including an encoding of
private and protected method and instance variable
modifiers.

2.4 Casting

We also provide a casting mechanism that allows removal
of access rights from particular views of an object, al-
lowing a greater attenuation of security when necessary.
Again, this casting discipline is statically enforced. For
example, letting o be the pop object defined immediately
above, if some circumstance suggests that we should no
longer allow objects in domain d′ read access to files in d,
then we may make the following cast:

o�(d′,∅) .

This removes all of d′ access privileges on o by setting the
set of d′’s accessible methods to ∅. Significantly, we al-
low only “upcasts”, so that privileges can be removed but
never added.
Type systems already have a built-in notion of in-

terface and of restriction of interfaces, via subtyping
and subsumption. Our system is inspired by and sits on
a foundation of subtyping, but it is significantly more
general. Most importantly, privileges can be restricted
by subtyping in standard systems, but this is only with
respect to two implicit domains: the local one and ev-
erything else. With our explicit domains and fine-grained
user interface definitions, casting restrictions may be sig-
nificantly more fine-grained.

2.5 Weakening

Capability weakening [24] is a sort of “deep-casting” cast-
ing mechanism that applies a cast to an object and any
objects subsequently returned by that object. It can be
used to enforce, e.g., “transitive read-only” security prop-
erties in confined systems [24]. We generalize weak capa-
bilities in the system presented here and statically enforce
weakening properties via types. For example, if o is a di-
rectory object and delete is a directory object method
that allows deletion of entities in a directory, then the ex-
pression

weak{delete}(o)

denotes a weakening of o such that deletion within that
directory is disallowed, and furthermore, if m �= delete is
an accessible method of o that returns another directory
object o′, then o′ will be similarly weakened to disallow
deletion. The type system statically enforces this mechan-
ism in a flexible manner.

90 C. Skalka, S. Smith: Static use-based object confinement

2.6 Rights amplification

Capability-based security systems support various forms
of rights amplification, which is the temporary and disci-
plined amplification of rights in certain program contexts.
One such form is effected by indirection. For example, let-
ting o be the file object as defined immediately above, and
recalling that d was the only domain allowed write access
to o, we may allow another object in domain d to func-
tion as a write-access “proxy” to o, as in the following
definition:

[proxywrite(x) = o.write(x)] ·d · {∂ �→ {proxywrite}} .

Any object in any domain may use this object to gain
write-access to o, though direct write-access to o is re-
stricted. This example is extreme and not a recommended
programming style, but a limited use “by proxy” of capa-
bilities not directly held is a common idiom in capability-
based programming. This must also be kept in mind when
a capability is doled out – the doler must be aware of both
direct and indirect actions allowed by it.

3 The pop language definition

We now formally define the syntax and operational se-
mantics of pop, an object-based language with state and
capability-based security features, described informally
in the previous sections.

3.1 Syntax

The grammar for pop is defined in Fig. 1. It includes
a countably infinite set of identifiers D that we refer to as
protection domains. The definition also includes the fol-
lowing notation for method lists �:

(mi(x) = ei
0<i≤n

)� (m1(x) = e1, . . . ,mn(x) = en) .

Fig. 1. Grammar for pop

Henceforth we will use a similar vector abbreviation no-
tation for all language forms, with obvious meaning. We
write (m(x) = e) ∈ � iff � is of the form (. . . ,m(x) =
e, . . .). Read-write cells are defined as primitives, with
a cell constructor refϕv that generates a read-write cell
containing v, with user interface ϕ. The object-weakening
mechanism described in the previous section is included
asweakι(o).
Object definitions are of the form [�] ·d ·ϕ\ι, where ι

carries any methods removed by weakening. For conve-
nience, and to retrieve the notation presented in the pre-
vious section, we define the syntactic sugar (co ·ϕ)� (co ·
ϕ\∅). Self objects [�] are run-time entities, the dynamic
implementation of self, and are disallowed in top-level
programs.
User interfaces ϕ are total mappings from domain

identifiers to sets of method names. Since they are user
defined in programs, the following syntactic sugar is pro-
vided, allowing a finite specification of interfaces by im-
plicitly mapping unspecified domains to ∅:{
di �→ ιi

0<i≤n
}
�
{
di �→ ιi

0<i≤n, di+1 �→∅, . . .
}
.

We require that, for any ϕ and d, the method names ϕ(d)
be a subset of the method names in the associated object.
Note that object method definitions may contain the dis-
tinguished identifier s, which denotes self and which is
bound in object definitions; objects always have full ac-
cess to themselves via the identifier s. We require that self
never appear “bare” – that is, the variable s must always
appear in the context of a method selection s.m(e). This
restriction ensures that s cannot escape its own scope, un-
intentionally providing a “back door” to the object. Self,
and associated semantics, is discussed more thoroughly
below.
For the purposes of bookkeeping in the stack-based se-

mantics presented in the next section, we also have framed
expressions ·e·, denoting a region of code associated with
a particular stack frame. Objects with framed subexpres-

C. Skalka, S. Smith: Static use-based object confinement 91

sions are disallowed. We define some convenient language
for discussing framed expressions.

Definition 1. The frame depth of an evaluation context
is inductively defined as follows: the frame depth of [] is 0,
the frame depth of ·E· is 1 plus the frame depth of E, and
the frame depth of any other context form E is the frame
depth of E’s subcontext.

3.2 Operational semantics

The small-step operational semantics for pop is defined
in Fig. 2 as the relation→ on configurations δ, e, σ, where
stores σ are partial mappings from locations l to values v,
and δ is a nonempty domain stack, the top element ofwhich
is called the current domain, representing the resident do-
main of the current activation. The use of a stack is neces-
sary for bookkeeping during nested calls; for example, if
objects o and o′ are assigned to domains d and d′ respec-
tively and o.m calls o′.m′ during execution, while o′.m′

executes, the current domainwill bed′, butwhen o′.m′ ter-
minates and returns control to o.m, dmust be retrieved as
the current domain.Notation and language relevant to do-
main stacks in this presentation are defined follows:

Definition 2. Domain stacks are inductively defined as:

δ::=nil | d :: δ domain stacks .

The length of a domain stack (d1 :: · · · :: dn :: nil) is n. The
domain stack reversal function rev is defined as:

rev(d1 :: · · · :: dn :: nil)� (dn :: · · · :: d1 :: nil) .

Fig. 2. Operational semantics for pop

The notation f [x �→ v] denotes the function that maps
x to v and otherwise is equivalent to f . If x �∈ dom(f),
f [x �→ v] denotes the function that extends f , mapping
x to v. We define ϕ(d, d′) � ϕ(d)∪ϕ(d′). Substitution is
defined as one may expect, with the following caveat:

Definition 3. The “self” identifier s is bound by object
definitions, so in particular o[[�]/s] = o; otherwise, substi-
tution is defined as usual.

Additionally, we require that → be defined only on well-
formed configurations, which we elaborate as follows:

Definition 4. A configuration d :: δ, e, σ is well-formed
iff e is closed and there exists E and unframed e′ such that
e=E[e′] and the frame depth of E equals the length of δ.

Corollary 1. If d :: δ, e, σ is well-formed and e = E[e′]
with e′ unframed, then the frame depth of E equals the
length of δ.

Hereafter we consider only well-formed configurations. It
is easy to see that these well-formedness requirements are
sensible via the following lemma, the proof of which fol-
lows by a straightforward case analysis:

Lemma 1. If a well-formed configuration d :: δ, e, σ is
stuck, then e=E[e′], where e′ is of the following form:

1. (co ·ϕ\ι).m(v), wherem ∈ ι orm �∈ ϕ(d, ∂)
2. [�].m(v) and (m(x) = e) �∈ �
3. (l ·ϕ\ι).m(v) andm �∈ {set, get}
4. (co ·ϕ\ι)�(d′, ι′) where ι′ �⊆ ϕ(d′, ∂)

92 C. Skalka, S. Smith: Static use-based object confinement

5. (l ·ϕ\ι).get() where l �∈ dom(σ)
6. (l ·ϕ\ι).set(v) where l �∈ dom(σ)

The reflexive, transitive closure of → is denoted →�.
Other language relevant to properties of evaluation is de-
fined as follows.

Definition 5. The domain d1 is the top-level domain.
An expression e is top-level if it contains no subex-
pressions of the form ·e′· or [�].m(e′) or l ·ϕ\ι. If d1 ::
nil , e,∅→� d1 :: nil , v, σ for top-level e, we say that e eval-
uates to v. If there does not exist v such that e evaluates
to v, then e diverges, and if d1 :: nil , e,∅→� d1 :: nil , e′, σ
and d1 :: nil , e

′, σ is stuck, then e goes wrong.

An important feature of the pop semantics is that it
grants every domain at least the default access rights to
any object. Also, in the send rule, we always require a test
to ensure that the active protection domain is authorized
for the specified use of the object: this detail is the essence
of our use-based, as opposed to communication-based, se-
curity model, in the sense that authorization for object
access is checked when the object is used, not when it
is communicated via message send or assignment. The
weakmechanism semantics ensures that any return value
from a message send to a weakened object is similarly
weakened, and that the message send itself is allowable
with respect to the weakening. The cast rule requires that
any cast restrict access rights to a capability, so that in-
creasing rights beyond the initial policy specification is
disallowed. As we will see in Sect. 5, the pop type system
statically enforces all of these checks, so that the autho-
rization checks associated with casting, weakening, and
message sends may be safely removed from the run-time
system.

3.2.1 The self variable and self objects

In order for objects to always have complete access to
themselves, the semantics specifies a rule for the use of self
objects that imposes no run-time authorization checks;
indeed, self objects have no interface or weakenings. The
restriction that the variable s cannot appear unselected –
that is, if s occurs in a program it must always be in an ex-
pression of the form s.m(e) – ensures that s cannot escape
its own scope. This implies that giving s “full strength”
is safe since it cannot provide a “back door” to the ob-
ject by being communicated outside. Rights amplification
via self, discussed in Sect. 2.6, is still possible, but this
is a feature of capability-based security, not a flaw of the
model.

4 Simulating pop

In this section we show how pop may be simulated in
another language by a semantics-preserving transform-
ation. The target language of this transformation comes

preequipped with a sound let-polymorphic type system,
so the transformation will later serve as the foundation
for a pop type analysis (Sect. 5). This approach has dis-
tinct technical benefits: since the transformation is com-
putable and easy to prove correct, a sound indirect type
system for pop can immediately be obtained as the com-
position of the transformation and type judgements in
the target language, eliminating the overhead of a type
soundess proof entirely. The transformation also eases de-
velopment of a direct pop type system – that is, where
pop expressions are treated directly, rather than through
transformation. This is because safety in a direct system
can be demonstrated by a simple proof of correspondance
between the direct and indirect type systems, rather than
through the usual (and complicated) route of subject re-
duction. This technique has been used to good effect in
previous static treatments of languages supporting stack-
inspection security [20], information flow security [19],
and elsewhere [23].

4.1 The target language: pmlB

The target language of our transformation is pmlB [25,
27], a calculus of extensible records based on Rémy’s Pro-
jective ML [21] and equipped with references, sets, and
set operations. The language pmlB allows definition of
records with default values {v}, where for every label a
we have {v}.a= v. Records r may be modified with the
syntax r{a = v} such that (r{a = v}).a = v and (r{a =
v}).a′ = r.a′ for all other a′.
The language also allows definition of finite sets B of

atomic identifiers b chosen from a countably infinite set
Lb, and cosets B̄, denoting Lb\B. The language addition-
ally contains set operations �, ∨, ∧, and
, which are
membership check, union, intersection and difference op-
erations, respectively.
The formal syntax for pmlB is defined in Fig. 3. The

semantics of pmlB is defined in Fig. 4. Note that the one-
step reduction relation → is defined on configurations
(e, σ), where σ is a store. As for pop, the relation →�

on pmlB configurations is the reflexive, transitive closure
of→.

4.2 The pop-to-pmlB transformation

We begin by defining a transformation of pop user in-
terfaces into pmlB records with default values, denoted
ϕ̂, in Fig. 5. In words, interface definitions are encoded
as rows with fields indexed by domain names, including
the default domain. Also, for brevity, in the transform-
ation definition we also define various syntactic sugar-
ings in Fig. 5. The pop-to-pmlB transformation is then
defined in Fig. 6. The translation is effected by trans-
forming pop objects into rows with obj fields containing
method transformations, ifc fields containing interface
transformations, and strong fields containing sets denot-
ing methods on which the object is not weak.

C. Skalka, S. Smith: Static use-based object confinement 93

Fig. 3. Grammar for pmlB

Fig. 4. Operational semantics for pmlB

Fig. 5. pop-to-pmlB transformation auxiliary definitions

Of technical interest is the use of pmlB lambda ab-
stractions with recursive binding to encode the self vari-
able s in the transformation. Also of technical note is the
manner in which weakenings are encoded. In a pop weak-
ened objectweakι(o), the set ι denotes the methods that
are inaccessible via weakening. In the encoding these sets
are turned “inside out”, so that the strong field in objects
denotes the fields that are accessible; in an unweakened
object definition, this field contains ∅̄. Accordingly, in the
translation of message sends, any resulting composition
of weakenings is encoded as an intersection of the com-
posed strong fields, rather than a union. We define the
translation in this manner to allow a simple definition of
set subtyping, as well as typings of set operations in the
pmlB type system, which translate into a simpler direct
type system for pop. See Sect. 5 for details.
The principal result of this section is the proof of cor-

rectness of the pop-to-pmlB transformation, in the sense
that the transformation preserves program semantics. It

is a simulation result which, aside from providing confi-
dence in the faithfulness of the transformation, will allow
us to immediately obtain an indirect type soundness re-
sult for pop based on soundness of the pmlB type system
and will make direct type soundness for pop easier to
prove as well. The desired property is stated as follows,
and proved below:

Theorem 1 (pop-to-pmlB transformation correct-
ness). If e evaluates to v, then JeKd1 evaluates to JvKd1 . If
e diverges, then so does JeKd1 . If e goes wrong, then JeKd1
goes wrong.

4.3 Properties

Our proof of Theorem 1 will follow by induction on arbi-
trary computations in pop. However, to state the induc-
tion properly, it is necessary to extend the pop-to-pmlB
transformation to run-time entities, as in Fig. 7. Note in

94 C. Skalka, S. Smith: Static use-based object confinement

Fig. 6. The pop-to-pmlB term transformation

this definition, the transformation of values in stores may
be parameterized by arbitrary domain labels d; the fol-
lowing lemma demonstrates that this is reasonable since
the transformation of values JvKd does not depend on d:

Lemma 2. For all d and d′, if JvKd is defined, then
JvKd = JvKd′ .

Proof. Immediate by definition of the transformation
since for any case of v the identifier d does not appear in
the RHS of the definition of JvKd. ��

Next, we define two substitution lemmas relevant to the
transformation:

Lemma 3. If JeKd is defined then JeKd[JvKd′/x] =
Je[v/x]Kd.

Proof. By structural induction on e. In the basis we have
e= x′, where by definition JxKd = x

′. If x′ �= x, then:

JeKd[JvKd′/x] = Je[v/x]Kd = x
′ .

Otherwise we have JxKd[JvKd′/x] = JvKd′ ; but JvKd′ = JvKd
by Lemma 2, and Jx[v/x]Kd = JvKd, so this case holds. The
other cases follow in a straightforward manner by the in-
duction hypothesis. ��

Lemma 4. Let:

s= [mi(x) = ei
0<i≤n

]

v = fix s.λ .{mi = λx.JeiKd
0<i≤n} .

Then if JeKd is defined, JeKd[v/s] = Je[s/s]Kd.

Proof. By structural induction on e. In the basis we have
e = x such that x �= s, since JsKd is undefined, so that
x[s/s] = x and JxKd = x by definition, therefore:

JeKd[v/s] = Je[s/s]Kd = x .

The induction step proceeds by case analysis on e. In case
e= s.m(e′), we have that:

e[s/s] = [mi(x) = ei
0<i≤n

].m(e′[s/s])

by definition of self substitution, and:

J[mi(x) = ei
0<i≤n].m(e′)Kd
=

((fix s.λ .{mi = λx.JeiKd
0<i≤n}){}.m)Je′[s/s]Kd

by definition of the transformation. But:

Js.m(e′)Kd = (s{}.m)Je
′Kd

so that:

((s{}.m)Je′Kd)[v/s]
=

((fix s.λ .{mi = λx.JeiKd
0<i≤n}){}.m)(Je′Kd[v/s])

and Je′[s/s]Kd = Je′Kd[v/s] by the induction hypothesis, so
this case holds. The other cases follow in a straightfor-
ward manner by the induction hypothesis. ��

We may now prove the core of our simulation result
by showing that one-step reductions ↪→may be simulated
via the transformation.

C. Skalka, S. Smith: Static use-based object confinement 95

Fig. 7. The pop-to-pmlB evaluation context and run-time term transformations

Lemma 5. The following assertions hold:

1. If d :: δ, e1, σ ↪→ d′ :: d :: δ, ·e2·, σ by send, then
Je1Kd, JσK→� Je2Kd′ , JσK.

2. If d′ :: d :: δ, ·v·, σ ↪→ d :: δ, v, σ by pop, then JvKd, JσK→�

JvKd′ , JσK.
3. If d :: δ, e1, σ1 ↪→ d :: δ, e2, σ2 by some rule besides send
or pop, then Je1Kd, Jσ1K→� Je2Kd, Jσ2K.

Proof. Each assertion is treated individually:
1. In this case by definition of send we have e1 = ([�] ·

d′ ·ϕ\ι).m(v), where �= (mi(x) = ei
0<i≤n

) and (m(x) =
e) ∈ �, and we also have e2 = weakι(e[[�]/s][v/x]) and
m ∈ (ϕ(d, ∂)\ι); therefore m �∈ ι and m ∈ ϕ(d, ∂). But by
definition of the transformation we have:

J[�] ·d′ ·ϕ\ιKd = {obj = fix s.λ .{mi = λx.JeiKd′
0<i≤n},

ifc = ϕ̂,
strong = ῑ}

therefore, letting v′ = fix s.λ .{mi = λx.JeiKd′
0<i≤n} we

have:

J[�] ·d′ ·ϕ\ιKd.ifc, JσK→ ϕ̂, JσK

J[�] ·d′ ·ϕ\ιKd.strong, JσK→ ῑ, JσK

(J[�] ·d′ ·ϕ\ιKd.obj){}, JσK→
�

{mi = λx.JeiKd′ [v
′/s]

0<i≤n
}, JσK .

Further, since m �∈ ι and m ∈ ϕ(d, ∂), it is the case that
m ∈ (ϕ̂.d∪ ϕ̂.∂) and m ∈ ῑ, i.e., m ∈ ((ϕ̂.d∪ ϕ̂.∂)∩ ῑ).
Therefore we have that JeKd, JσK→� e′′, JσK in this case,
where:

e′′ = let o3 = JeKd′ [v
′/s][JvKd/x] in

(o3{strong = (ῑ∧o3.strong)})

by definition of the transformation and pmlB reduction.
But by Lemmas 3 and 4 we have that:

(JeKd′ [v
′/s][JvKd/x]) = Je[[�]/s][v/x]Kd′

so:

e′′ = let o3 = Je[[�]/s][v/x]Kd′ in
(o3{strong = (ῑ∧o3.strong)})

and e′′ is equivalent to Jweakι(e[[�]/s][v/x])Kd′ , that is, to
Je2Kd′ , so the assertion holds.

96 C. Skalka, S. Smith: Static use-based object confinement

2. This assertion holds immediately by Lemma 2 and
reflexivity of→.
3. This assertion follows by case analysis on the re-

maining reduction rules.
Case self . In this case σ1 = σ2 and e1 = [�].m(v),

where � = (mi(x) = ei
0<i≤n

) and (m(x) = e) ∈ �, and
e2 = e[[�]/s][v/x]. Let:

v′ = fix s.λ .{mi = λx.JeKd
0<i≤n} .

Then by definition of the transformation we have Je1Kd =
(v′{}.m)JvKd, therefore:

Je1Kd, Jσ1K→
� JeKd[v

′/s][JvKd/x], Jσ2K .

But by Lemmas 3 and 4 we have:

JeKd[v
′/s][JvKd/x] = Je[[�]/s][v/x]Kd = Je2Kd

so this case holds.
Case cast . In this case σ1 = σ2 and e1 = (co ·ϕ\ι) �

(d′, ι′) and e2 = (co · (ϕ[d′ �→ ι′])\ι), with ι′ ⊆ ϕ(d′, ∂). Let
e= (co ·ϕ\ι); then there exists e′ such that:

JeKd = {obj = e
′, ifc = ϕ̂, strong = ῑ} ,

Je2Kd = {obj = e
′, ifc = ̂ϕ[d′ �→ ι′], strong = ῑ}

by definition of the transformation. Further:

Je1Kd = let o1 = JeKd in
(o1.ifc.d

′∨o1.ifc.∂)⊇ ι′;
o1{ifc = ((o1.ifc){d′ = ι′})} .

Let o1 = JeKd. Since ι
′ ⊆ ϕ(d′, ∂), therefore ι⊆ (o1.ifc.d′∪

o1.ifc.∂), and since o1.ifc, Jσ2K→� ϕ̂, Jσ2K, we have:

(o1.ifc){d
′ = ι′}, Jσ2K→

� ̂(ϕ[d′ �→ ι′]), Jσ2K

etc.; therefore Je1Kd, Jσ1K→� Je2Kd, Jσ2K in this case by
definition of→�.
Case weaken . In this case σ1 = σ2, e1 = weakι(co ·

ϕ\ι′) and e2 = co ·ϕ\(ι∪ι′). Let e= co ·ϕ\ι′; then by defin-
ition of the transformation there exists e′ such that:

JeKd = {obj = e
′, ifc = ϕ̂, strong = ῑ}

Je2Kd = {obj = e
′, ifc = ϕ̂, strong = ῑ′∩ ῑ}

and:

Je1Kd = let o1 = JeKd in o1{strong = (ῑ′∧o1.strong)}

so clearly Je1Kd, Jσ1K→ Je2Kd, Jσ2K in this case.
Case newcell . In this case e1 = refϕv, e2 = l ·ϕ\∅, and

σ2 = σ1[l �→ v], where l �∈ dom(σ1). By definition of the
transformation we have:

Je1Kd = letx= ref JvKd in
let o= λ .{get = λy.!x, set = λy.x := y} in
{obj = o, ifc = ϕ̂, strong = ∅̄}

Je2Kd = {obj = λ .{get = λy.!l,

set = λy.l := y},

ifc = ϕ̂, strong = ∅̄}

Now, since l �∈ dom(σ), therefore l �∈ dom(JσK), so by
definition of pmlB →

�:

Je1Kd, Jσ1K→
� Je2Kd, Jσ1K[l �→ JvKd]

But Jσ1K[l �→ JvKd] = Jσ1[l �→ v]K by definition and Lem-
ma 2, so this case holds.
Case set . In this case e1 = (l ·ϕ\ι).set(v), where l ∈

dom(σ) and set ∈ (ϕ(d, ∂)\ι), e2 = weakι(v) and σ2 =
σ1[l �→ v]. Then by definition of the transformation we
have:

Jl ·ϕ\ιKd = { obj = λ .{get = λy.!l, set = λy.l := y},

ifc = ϕ̂,

strong = ῑ}

so by definition of→� we have:

Jl ·ϕ\ιKd.ifc, JσK→ ϕ̂, JσK
Jl ·ϕ\ιKd.strong, JσK→ ῑ, JσK
(Jl ·ϕ\ιKd.obj){}, JσK→�

{get = λy.!l, set = λy.l := y}, JσK

Further, since set∈ (ϕ(d, ∂)\ι), therefore set �∈ ι and set∈
ϕ(d, ∂), so it is the case that set ∈ (ϕ̂.d∪ ϕ̂.∂) and set ∈ ῑ,
i.e., set ∈ ((ϕ̂.d∪ ϕ̂.∂)∩ ῑ). Therefore we have that:

Je1Kd, Jσ1K→
� e′′, Jσ1K[l �→ JvKd]

in this case, where:

e′′ = let o3 = JvKd in (o3{strong = (ῑ∧o3.strong)})

by definition of the transformation and pmlB reduction.
But e′′ is equivalent to Je2Kd, and Jσ1K[l �→ JvKd] = Jσ1[l �→
v]Kd by definition, so this case holds.
Case get . In this case e1 = (l ·ϕ\ι).get(), where get ∈

(ϕ(d, ∂)\ι), σ1 = σ2 and e2 = weakι(σ2(l)). Then by
definition of the transformation we have:

Jl ·ϕ\ιKd = { obj = λ .{get = λy.!l, set = λy.l := y},

ifc = ϕ̂,

strong = ῑ}

so by definition of→� we have:

Jl ·ϕ\ιKd.ifc, JσK→ ϕ̂, JσK
Jl ·ϕ\ιKd.strong, JσK→ ῑ, JσK
(Jl ·ϕ\ιKd.obj){}, JσK→�

{get = λy.!l, set = λy.l := y}, JσK

Further, since get ∈ (ϕ(d, ∂)\ι), therefore get �∈ ι and
get ∈ ϕ(d, ∂), so it is the case that get ∈ (ϕ̂.d∪ ϕ̂.∂) and
get∈ ῑ, i.e., get∈ ((ϕ̂.d∪ ϕ̂.∂)∩ ῑ). Therefore we have that
Je1Kd, Jσ1K→� e′′, Jσ2K in this case, where:

e′′ = let o3 = Jσ2K(l) in (o3{strong = (ῑ∧o3.strong)})

by definition of the transformation and pmlB reduc-
tion. Let v = σ2(l); then Jσ2K(l) = JvKd by definition and

C. Skalka, S. Smith: Static use-based object confinement 97

Lemma 2, so e′′ is equivalent to Je2Kd by definition; there-
fore this case holds.
Case let follows trivially by Lemma 3. ��

Before turning to arbitrary-length computations, we
state another result relevant to the transformation of
values. The proof is immediate by definition of the trans-
formation.

Lemma 6. For all v, if v is a closed value and JvKd is
defined, then JvKd is a value.

Note that the only value form on which the transform-
ation is undefined is [�]; since unselected self is disallowed
in programs, it is not necessary to treat this case.
Now we consider arbitrary-length computations with

respect to→�. To perform the necessary analysis, we ex-
tend the pop-to-pmlB transformation to evaluation con-
texts in a straightforward manner. The context trans-
formation is defined in Fig. 7; anticipating our technique,
we will apply transformations to contexts along with the
reverse of domain stacks in a configuration, since the old-
est stack frames will apply to the outermost variables in
contexts. We note that the current transformation is in-
deed a transformation from contexts to contexts:

Lemma 7. For all closed E, any defined JEKδ is a well-
formed evaluation context.

Proof. Immediate by definition of the context transform-
ation; the only mildly interesting case is E = v.m(E), but
in this case JEKδ is well-formed by Lemma 6. ��

We then state some relevant properties of the context
transformation. The proof of these properties follows by
a straightforward induction on evalution contexts; it is
omitted here since it is lengthy and uninteresting, but it
is given in [25]:

Lemma 8. The following properties hold:

1. If JE[e]Kd is defined, then the frame depth of E is 0.
2. If JE[e]Kd is defined, then JE[e]Kd = JEKd::nil [JeKd].
3. If E = E1[E2] where the frame depth of E1 equals the
length of δ, and JEKrev(d::δ) is defined, then JEKrev(d::δ)
= JE1Krev(d::δ)[JE2Kd::nil] .

Next, we define a simulation relation between pop and
pmlB based on the expression and context transform-
ations:

Definition 6. For all d :: δ, pop expressions e, and pmlB
expressions e′, the relation (d :: δ, e)�e′ holds iff there ex-
ists E1 and e1 such that e=E1[e1], the frame depth of E1
equals the length of δ, and e′ = JE1Krev(d::δ)[Je1Kd].

We then prove that this relation is a mapping:

Lemma 9. If (δ, e)� e′ and (δ, e)� e′′, then e′ = e′′.

Proof. Let δ = (d :: δ′), and let E1, E
′
1, e1, and e

′
1 be such

that E1[e1] =E
′
1[e
′
1] = e, with the frame depths ofE1 and

E′1 equal to the length of δ
′ and JE1Krev(d::δ′)[Je1Kd] = e

′

and JE′1Krev(d::δ′)[Je
′
1Kd] = e

′′. Assume w.l.o.g. that e1 =
E[e′1] for some E, so that E

′
1 = E1[E]. Since Je1Kd is de-

fined, therefore the frame depth of E is 0 by Lemma 8,
so also by Lemma 8 we have that Je1Kd = JEKd::nil [Je

′
1Kd].

Further, since the frame depth of E1 equals the length
of δ′, therefore JE′1Krev(d::δ′) = JE1Krev(d::δ′)[JEKd::nil] by
Lemma 8. But then JE′1Krev(d::δ′)[Je

′
1Kd] = JE1Krev(d::δ′)

[JEKd::nil [Je1Kd]] = JE1Krev(d::δ′)[Je1Kd], therefore e
′ = e′′.

��

The following result shows that the simulation rela-
tion is preserved by one step of pop reduction:

Lemma 10. If δ1, e1, σ1 → δ2, e2, σ2 and (δ1, e1)� e′1,
then e′1, Jσ1K→

� e′2, Jσ2K such that (δ2, e2)� e
′
2.

Proof. By context we have that e1 =E[e] and e2 = E[e
′]

with δ1, e, σ1 ↪→ δ2, e′, σ2. The proof then proceeds by
cases corresponding to those treated in the assertions
enumerated in Lemma 5:
Case 1. In this case δ1 = (d :: δ), δ2 = (d

′ :: d :: δ),
σ1 = σ2 and e

′ is of the form ·e′′· with JeKd, Jσ1K
→� Je′′Kd′ , Jσ2K. Let e

′
1 = JEKrev(δ1)[JeKd] and e

′
2 =

JE[·[]·]Krev(δ2)[Je
′′Kd′]. The frame depth of E equals the

length of δ by Corollary 1, so also the frame depth of
E[·[]·] equals the length of d :: δ; therefore we have that
(δ1, e1)� e

′
1 and (δ2, e2)� e

′
2 by definition. But clearly

JE[·[]·]Krev(δ2) = JEKrev(δ1), so e
′
1, Jσ1K→

� e′2, Jσ2K in this
case by multiple applications of context .
Case 2. In this case δ1 = (d

′ :: d :: δ), δ2 = (d :: δ),
σ1 = σ2, and e is of the form ·v· and e′ = v. Let e′1 =
JE[·[]·]Krev(δ1)[JvKd′] and e

′
2 = JEKrev(δ2)[JvKd]. The frame

depth of E[·[]·] equals the length of δ2 by well-formedness
of configurations, so also the frame depth of E equals
the length of δ; therefore we have that (δ1, e1)� e

′
1, and

(δ2, e2)� e
′
2 by definition. But clearly JE[·[]·]Krev(δ1) =

JEKrev(δ2), and JvKd′ = JvKd by Lemma 2, hence e
′
1 = e

′
2, so

e′1, Jσ1K→
� e′2, Jσ2K in this case by reflexivity of→

�.
Case 3. In this case δ1 = δ2 = d :: δ, with JeKd, Jσ1K→�

Je′Kd, Jσ2K by Lemma 5. Let e
′
1 = JEKrev(δ1)[JeKd] and e

′
2 =

JEKrev(δ2)[Je
′Kd]. By definition of ↪→ both e and e′ are un-

framed, so the frame depth of E in this case is equal to
the length of δ by Corollary 1, hence (δ1, e1)� e

′
1, and

(δ2, e2)� e
′
2 by definition. Furthermore, since δ1 = δ2 we

have that JEKrev(δ1) = JEKrev(δ2), so e
′
1, Jσ1K→

� e′2, Jσ2K
in this case by multiple applications of context . ��

The previous result then generalizes easily to arbitrary
computations since the simulation relation is a mapping:

Lemma 11. If δ1, e1, σ1→� δ2, e2, σ2 and (δ1, e1)� e′1,
then e′1, Jσ1K→

� e′2, Jσ2K, where (δ2, e2)� e
′
2.

Proof. Straightforward by Lemma 10 and induction on
the length of the reduction δ1, e1, σ1→� δ2, e2, σ2. ��

Before proving the main result we make one final ob-
servation, that relevant dynamic properties of configura-
tions are preserved by transformation:

98 C. Skalka, S. Smith: Static use-based object confinement

Lemma 12. If δ, e, σ is stuck and (δ, e)� e′, then e′, JσK
goes wrong. If (δ, v)�e′, then e′ is a value. If (δ, e)�e′ and
e′ is not a value nor of the form ·v·, then e′ is not a value.

Proof. Suppose δ, e, σ is stuck; then e = E[e′], where e′

is one of the forms specified in Lemma 1. For each form,
it is easy to see that the transformation Je′Kd, JσK will go
wrong, and here we only sketch the relevant case analy-
sis: if e is stuck because e′ is a method select on m that
is unauthorized to the active domain or that has been
disallowed by weakening, then the transformation imple-
ments a check that will also fail. If e is stuck because e′

is a method select onm that does not exist in the object,
then an m field will not exist in Je′Kd, so a projection of
that field will fail. If e is stuck because e′ is a set or a get on
a cell object with location l such that l �∈ σ, then l �∈ JσK,
so the transformation of these actions will also fail, as the
transformation preserves store locations.
Suppose that (δ, v)�e′; then e′ = JvKd, where δ = d :: δ

by definition of �, and JvKd is a value by Lemma 6.
Finally, suppose e is not a value nor of the form ·v·.

Let δ = d :: δ; since (δ, e)� e′, there exists E and e′′ such
that e=E[e′′] and e′ = JEKrev(δ)Je

′′Kd by definition. Sup-
pose that E = []; then e′′ is not a value, and clearly Je′′Kd
is not a value by definition of the transformation. Suppose
E is composite; then clearly JEKrev(δ)Je

′′Kd is not a value
by definition of the transformation, since E is not of the
form ·[]· by assumption, and for any e′′′, JEKrev(δ)[e

′′′] is
not a value in this case. ��

We can now restate and prove the principal result of
this section, that is, the correctness of the pop-to-pmlB
transformation, as follows:

Theorem 1 (pop-to-pmlB transformation correct-
ness). If e evaluates to v, then JeKd1 evaluates to JvKd. If
e diverges, then so does JeKd1 . If e goes wrong, then JeKd1
goes wrong.

Proof. Suppose for top-level e we have d1 :: nil , e,∅→�

d1 :: nil , v, σ. Then (d1 :: nil , e)� JeKd1 and (d1 :: nil , v)�
JvKd1 by definition, and JeKd1 ,∅→

� JvKd1 , JσK by Lem-
mas 11 and 9, and JvKd1 is a value by Lemma 12.
Suppose for top-level e we have that d1 :: nil , e,∅ does

not terminate, and suppose on the contrary that there
exists σ and v such that JeKd1 ,∅→

� v, σ. Since (d1 ::
nil , e)� JeKd1 by definition, by Lemma 11 there must exist
e′, σ′, and δ such that (δ, e′)� v and σ = Jσ′K and d1 ::
nil , e,∅→� δ, e′, σ′, where e’ is not a value nor of the form
·v′· by assumption, since in the latter case δ, e′, σ′ would
evaluate to v′ by definition of→� and well-formedness of
configurations. But then v is not a value by Lemma 12,
which is a contradiction.
Finally, suppose for top-level e we have d1 :: nil , e,

∅→� δ, e′, σ and δ, e′, σ is stuck. Since (d1 :: nil , e)�
JeKd1 by definition, therefore JeKd1 ,∅→

� e′′, JσK such

that (δ, e′)� e′′ by Lemma 11, and e′′, JσK goes wrong by
Lemma 12. ��

5 Types for pop

In this section we develop a static type analysis for pop
on the foundation of the pop-to-pmlB transformation and
the pmlB type system.We will define an indirect type sys-
tem for pop based entirely on the pmlB type system. We
will also develop a direct type system for pop by defining
a new set of type judgement rules expressly for pop terms
and proving type safety in this system. As will become
clear, even the direct type analysis will benefit from the
pop-to-pmlB transformation, thanks to a proof technique
that renders an ab initio demonstration of subject reduc-
tion unneccesary to obtain type safety. Principal benefits
of the pop type analysis are the optimizations that may
be effected as a result of type safety, which we also discuss.
While we focus on the logical type system in this pre-

sentation, we will briefly describe how the transforma-
tional approach has benefits for type inference, allow-
ing an algorithm to be developed using existing, efficient
methods.

5.1 Indirect types

For a thorough treatment of the definition and sound-
ness proof of the pmlB type system, the reader is directed
to [25, 27].Here,we give a succinct overview.A soundpoly-
morphic type system for pmlB is obtained in a straight-
forward manner as an instantiation of HM(X) [17, 26],
a constraint-based polymorphic type framework. Type
judgements inHM(X) are of the formC,Γ � e : σ, whereC
is a type constraint set, Γ is a typing environment, and σ is
a polymorphic type scheme. The instantiation consists of
a type language including row types [21] and a specialized
languageof set types, defined inFig. 8. To ensure that only
meaningful types can be built, we immediately equip this
type language with kinding rules, defined in Fig. 9, and
hereafter consider only well-kinded types. Note in particu-
lar that these kinding rules disallow duplication of record
field and set element labels.
Set types behave in a manner similar to row types but

have an abbreviated form more appropriate for applica-
tion to sets. In fact, set types have a direct interpretation as
a particular form of row types [27]. The field constructors
+ and − denote whether a set element is present or ab-
sent, respectively. The set types∅ and ω behave similarly

Fig. 8. pmlB type grammar

C. Skalka, S. Smith: Static use-based object confinement 99

Fig. 9. Kinding rules for pmlB types

to the uniform row constructor ∂τ ; the type ∅ (resp. ω)
specifies that all other elements not explicitly mentioned
in the set type are absent (resp. present). For example,
the set {b1, b2} has type {b1+, b2+,∅}, while

{
b1, b2

}
has

type {b1−, b2−, ω}. The use of element and set variables γ
and β allows for fine-grainedpolymorphismover set types.
An atomic subtype ordering is also established, where
a basic relation + ≤ − is extended pointwise and covari-
antly over row and set types, so that, e.g., {b1+, b2+,∅} ≤
{b1+, b2−,∅}, and contravariantly (resp. covariantly) in
the domain (resp. range) type of functions. The subtyping
relationmainly allows any setB to be used as a setB′ ⊆B
at points where at least B′ is expected; record modifica-
tion is dealt with (indeed, is the intended purpose of) row
polymorphism, rather than subtyping.
Syntactic type safety for pmlB is easily established in

the HM(X) framework [26]. By virtue of this property
and Theorem 1, a sound, indirect static analysis for pop
is immediately obtained by composition of the pop–to–
pmlB transformation and pmlB type judgements:

Theorem 2 (Indirect type safety). If e is a closed
pop expression andC,Γ � JeKd1 : σ is valid, then e does not
go wrong.

The HM(X) framework provides the full general-
ity of a constraint-based type system, which allows
a unification-based approach to typing as a special case.
In terms of logical type judgements, this entails taking C
to always be the trivial true constraint. To take advan-
tage of the readability of our type terms, we will hence-
forth consider a constraint-free approach, and let Γ � e : τ
denote true,Γ � e : τ , keeping in mind that atomic sub-
typing is still available.

5.2 Direct types and subtyping

While the indirect type system described above is a sound
static analysis for pop, it is desirable to define a direct
static analysis for pop. The term transformation required
for the indirect analysis is an unwanted complication for
compilation, the indirect type system is not a clear dec-
laration of program properties for the programmer, and
type error reporting would be extremely troublesome.
Thus, we define a direct type system for pop, the develop-
ment of which significantly benefits from the transforma-
tional approach. In particular, type safety for the direct

system may be demonstrated by a simple appeal to safety
in the indirect system, rather than ab initio.
The direct type language for pop is defined in Fig. 10.

We again ensure the construction of onlymeaningful types
via kinding rules, defined in Fig. 11, hereafter considering
only well-kinded pop types. The most novel feature of the
pop type language is the formof object types [τ]

{τ1}
{τ2}
, where

τ2 is the type of any weakening set imposed on the object
and τ1 is the type of its interface. Types of sets are essen-
tially the sets themselves, modulo polymorphic features;
we abbreviate a type of the form τ ; ε or τ, ε as τ .
The close correlation between the direct and indirect

type system begins with the type language: types for pop
have a straightforward interpretation as pmlB types, de-
fined in Fig. 12. This interpretation is extended to con-
straints and typing environments in the obvious manner.
In this interpretation, we turn weakening sets “inside-
out”, in keeping with the manner in which weakening
sets are turned inside-out in the pop-to-pmlB term trans-
formation. The benefit of this approach is with regard
to subtyping: weakening sets can be safely strengthened,
and user interfaces safely weakened, in a uniform manner
via pop subtyping, where we define τ ≤ τ ′ iff L τ M≤ L τ ′ M
in the pmlB type system. Recalling that in pmlB, subtyp-
ing mainly allows any set B to be used as a set B′ ⊆ B
at points where at leastB′ is expected, our interpretation
ensures that any object can be interpreted as one with
less interface authorizations, e.g:

[m1 : τ1;m2 : τ2]
{d:{m1,m2}}
{ε} ≤ [m1 : τ1;m2 : τ2]

{d:{m1}}
{ε} .

Whereas since weakening sets are turned “inside-out” in
the interpretation, subtyping allows any object to be in-
terpreted as one with greater weaknesses:

[m1 : τ1;m2 : τ2]
{d:{m1,m2}}
{ε}

≤

[m1 : τ1;m2 : τ2]
{d:{m1,m2}}
{m2}

.

Note that since weakening is naturally expressed via sub-
typing, the type rule relevant to weakening (Weak) need

Fig. 10. Direct pop type grammar

100 C. Skalka, S. Smith: Static use-based object confinement

Fig. 11. Direct pop type kinding rules

Fig. 12. The pop-to-pmlB type transformation

only force the appropriate subtyping coercion in deriva-
tions. An important feature of subtyping is that it al-
lows only more constrained object usage, never increased
authorizations.
The direct type judgement system for pop, the rules

for which are derived from pmlB type judgements for
transformed terms, is defined in Fig. 13. The following
definition simplifies the statement of the Send rule:

Definition 7. The relationm �∈ τw holds iff ¬∃β.(L τw M+
≤ Lm,β M+), where β �∈ fv(τw).

The easily proven, tight correlation between the indirect
and direct pop type systems is clearly demonstrated via
the following lemma; the proof is straightforward, since
the direct type judgements can be viewed simply as syn-
tactic sugar for pmlB type judgements:

Lemma 13. d,Γ � e : τ is valid iff LΓ M � JeKd : L τ M is
valid.

And in fact, along with Theorem 1, this correlation is suf-
ficient to establish direct type safety for pop:

Theorem 3 (Direct type safety). If e is a closed pop
expression and d,Γ � e : τ is valid, then e does not go
wrong.

This result demonstrates the advantages of the trans-
formational method, which has allowed us to define a dir-
ect, expressive static analysis for pop with a minimum of
proof effort.

5.3 Optimizations

Another benefit of our static analysis for pop is that
security checks in well-typed programs may be elimi-
nated at run time, since well-typed programs are guar-
anteed to be safe. The optimizations that can be ef-
fected are quite substantial, as illustrated by an opti-
mized semantics for pop defined in Fig. 14. Since well-
typing rules out programs that go wrong, due to secu-
rity errors or otherwise, run-time security checks and
manipulation of interfaces are eliminated in the opti-
mized semantics. (Note that weakening amd casting be-
come no-ops.) Domain stacks are also safely eliminated,
as is the associated expression framing. For well-typed ex-
pressions, this optimized semantics is equivalent to the
nonoptimized semantics of Sect. 3.2, modulo security an-
notations on objects. That is, letting � be the same as
syntactic equivalence for pop expression forms except
for objects, where (co ·ϕ\ι) � (co ·ϕ′\ι′), we easily ob-
tain the following result by definitions of →, �, and
Theorem 3:

C. Skalka, S. Smith: Static use-based object confinement 101

Fig. 13. Direct type judgements for pop

Corollary 2. If e is a well-typed top-level pop expres-
sion, then e evaluates to v in the nonoptimized semantics
iff e evaluates to v′ in the optimized semantics such that
v � v′.

Conceivably, the semantics can be optimized even fur-
ther; since all run-time security checks can be elim-
inated, weakening and casting operations, as well as
weakening, interface, and domain annotations on ob-
jects, can be erased from the source code after typ-
ing. Here we have only suggested the possible extent
of optimizations and shown how such optimizations are
easily shown to be safe for evaluation of well-typed
expressions.

Fig. 14. Optimized operational semantics for pop

5.4 Type inference

The transformational method allows a similarly sim-
plified approach to the development of type inference.
The HM(X) framework comes equipped with a type
inference algorithm modulo a constraint normalization
procedure (constraint normalization is the same as con-
straint satisfaction, e.g., unification is a normalization
procedure for equality constraints). Furthermore, ef-
ficient constraint normalization procedures have been
developed for row types [18, 22], and even though set
types are novel, their interpretation as row types [27]
allows a uniform implementation. This yields a type in-
ference algorithm for pmlB in the HM(X) framework.
An indirect inference analysis for pop may then be im-

102 C. Skalka, S. Smith: Static use-based object confinement

mediately obtained as the composition of the pop-to-
pmlB transformation and pmlB type inference. This an-
alysis is potentially constraint free; simply disallowing
recursive constraints and interpreting constraint nor-
malization as satisfaction yields an inference algorithm
that implements the constraint-free logical type system
for pmlB.
Beyond this, a direct type inference algorithm can

be derived from the indirect algorithm, just as direct
type judgements can be derived from indirect judge-
ments. Only the pop syntactic cases need be adopted
since constraint satisfaction procedures for row types may
be reused in this context. (Recall that the direct pop type
language has a simple interpretation in the pmlB type
language.)

6 Using pop

In this section we provide several examples that demon-
strate the usage and flexibility of the pop system, includ-
ing a scheme for embedding the ownership types of [9]
in pop in a type-safe manner, as well as a scheme for
encoding class definitions with public, private, and
protected instance modifiers.

6.1 Basic typing examples

Here is a brief example illustrating the features of pop and
the expressiveness of its direct type system. We may cre-
ate a cell c that is read-write in domain d but read-only
elsewhere, containing a value v, as follows:

c= ref{d �→{get,set},∂ �→{get}}(v) .

Then supposing v : τ , the cell c has the following type:

c : [get : unit→ τ, set : τ → τ]{d:{get,set},∂:{get}}{} .

Note how the interface is expressed in the type and how
no weakenings show up in the type. However, if we read-
weaken c, this information is expressed in the type:

weak{set}(c) : [get : unit→τ, set : τ→τ]
{d:{get,set},∂:{get}}
{set} .

Given the requirements of the Send rule, attempting to
use the set method of this weakened capability will not
be well-typed in any context, nor will an attempted set
of v returned by reading the weakened capability. This
is true even assuming that v is a cell, since weaken-
ing information is propagated to τ by the type system,
just as weakening is propagated to v by the operational
semantics:

(weak{set}(c)).set(e) not well-typed

let c′ = (weak{set}(c)).get() in c
′.set(e) not well-typed .

6.2 Ownership types

A language model for alias analysis, together with an
“ownership type” analysis, is proposed in [7–9]. At the
heart of this work is the so-called containment relation
and invariant, which mediates references between objects
in a principled manner. Here we show how this basic con-
tainment relation and invariant can be captured in pop by
choosing anappropriate naming scheme (albeitwith a use-
based security model rather than the communication-
basedmodel of [7–9]).We note that there are extensions of
the ownership types system introduced in [7, 8] that can-
not be captured in pop, e.g., “owner polymorphism”, but
this encoding does model the basic calculus [9].
Assume the following object definition in the language

of [9], with the containment relation p1 ≺: p2 ≺: p3:

[m(x) = e]p2p1 .

A similar specification can be defined and statically en-
forced in pop with the following object definition:

[m(x) = e] ·p1 · {p1 �→ {m} , p2 �→ {m} , p3 �→ {m}} .

In general, given any set of contexts C, partial ordering
(C,≺:), and object opq , we can transform the object into
the form o · q ·ϕ, where dom(ϕ) = {p′ | p′ ≺: p} and for
all p ∈ dom(ϕ), ϕ(p) is all of o’s methods, and carry the
transformation recursively through any objects defined in
o’s methods. In this context, well-typing is analogous to
the static enforcement of the containment invariant.

6.3 Classes, private and protected

By choosing different naming schemes, a variety of secu-
rity paradigms can be effectively and reliably expressed in
pop. One such scheme enforces a strengthenedmeaning of
the private and protectedmodifiers in class definitions,
a focus of other communication-based capability type
analyses [9, 29]. As demonstrated in [29], a private field
can leak by being returned by reference from a public
method. Here we show how this problem can be addressed
in a use-based model. Assume the following Java-like
pseudocode package p, containing class definitions c1, c2,
and possibly others, where c2 specifies a method m that
leaks a private instance variable:

package p begin

class c1 {
public :
f(x) = x
private :
g(x) = x
protected :
h(x) = x

}

class c2 {
public :
m(x) = b
a= new c1
private :
b= new c1
protected :
c= new c1

}

· · ·

end

C. Skalka, S. Smith: Static use-based object confinement 103

We can implement this definition as follows. Interpret-
ing domains as class names in pop, let c1, . . . , cn be
the names of classes in package p. Then, the appropri-
ate interface for objects in the encoding of class c1 is as
follows:

ϕ1 � {c1 �→ {f, g, h} , c2 �→ {f, h} , . . . , cn �→ {f, h} ,
∂ �→ {f}} .

The class c1 can then be encoded as an object factory,
an object with only one publicly available method that
returns new objects in the class, and some arbitrary la-
bel d:

o1 � [f(x) = x, g(x) = x, h(x) = x] · c1 ·ϕ1
fctryc1 � [new(x) = o1] ·d · {∂ �→ {new}} .

To encode c2, we again begin with the obvious interface
definition for objects in the encoding of class c2, letting
ι= {m, a, c}:

ϕ2 � {c2 �→ {m, a, b, c} , c1 �→ ι, c3 �→ ι, . . . , cn �→ ι,
∂ �→ {m, a}} .

However, we must now encode instance variables, in add-
ition to methods. In general, this is accomplished by en-
coding instance variables a containing objects as methods
a() that return references to objects. Then, any selection
of a is encoded as a().get(), and any update with v is en-
coded a().set(v). By properly constraining the interfaces
on these references, a “Java level” of modifier enforce-
ment can be achieved; but casting the interfaces of stored
objects extends the security by making objects unusable
outside the intended domain. Let e �({d1, . . . , dn} , ι) be
sugar for e �(d1, ι) �· · · �(dn, ι). Using fctryc1 , we may cre-
ate a public version of an object equivalent to o1, with-
out any additional constraints on its confinement, as fol-
lows:

oa � fctryc1 .new() .

Letting p′ = p−{c2}, we may create a version of an ob-
ject equivalent to o that is private with respect to the
encoding of class c2, using casts as follows:

ob � (fctryc1 .new())�(∂,∅)�(p
′,∅) .

We may create a version of an object equivalent to o that
is protected with respect to the encoding of package p,
as follows:

oc � (fctryc1 .new())�(∂,∅) .

Let o2 be defined as follows:

o2 � let ra = ref{∂ �→{set,get}}oa in
let rb = ref{c1 �→{set,get}}ob in
let rc = ref{c1 �→{set,get},p�→{set,get}}oc in

[m(x) = s.b().get(),
a(x) = ra,
b(x) = rb,
c(x) = rc] · c2 ·ϕ2 .

Then fctryc2 is encoded, similarly to fctryc1 , as:

fctryc2 � [new(x) = o2] ·d · {∂ �→ {new}} .

Given this encoding, if an object stored in b is leaked
by a nonlocal use of m, it is unusable. This is the case
because, even though a nonlocal use of m will return
b, in the encoding this return value explicitly states
it cannot be used outside the confines of c2; as a re-
sult of the definition of ϕ1 and casting, the avatar
ob of b in the encoding has an interface equivalent
to:

{c2 �→ {f, h} , p
′ �→∅, ∂ �→∅} .

While the communication-based approach accom-
plishes a similar strengthening of modifier security, the
benefits of greater flexibility may be enjoyed via the use-
based approach. For example, a protected reference can
be safely passed outside of a package and then back in, as
long as a use of it is not attempted outside the package.
Also for example are the fine-grained interface specifi-
cations allowed by this approach, enabling greater mod-
ifier expressivity, e.g., publicly read-only but privately
read/write instance variables.

7 Conclusion

As shown in [2], object confinement is an essential as-
pect of securing OO programming languages. Related
work on this topic includes the confinement types of [29],
which have been implemented as an extension to Java [6].
The mechanism is simple: classes marked confined must
not have references escape their defining package. Most
closely related are the ownership types of [9], discussed in
Sect. 6.2. However, as discussed in Sect. 2, these previous
type approaches treat a communication-based mechan-
ism, while one of the main points of this paper is the
importance of studying the use-based approach as an al-
ternative. Furthermore, our type system is polymorphic,
with inference methods readily available due to its basis
in row types.
Topics for future work include an extension of the lan-

guage to capture inheritance, an important OO feature
that presents challenges for type analysis. Also, we hope
to study capability revocation.
In summary, contributions of this work include a fo-

cus on the more expressive use-based security model, the
first type-based characterization of weak capabilities, and
a general mechanism for fine-grained, use-based security
specifications that includes flexible domain naming, pre-
cise object interface definitions, and domain-specific in-
terface casting. Furthermore, we have defined a static

104 C. Skalka, S. Smith: Static use-based object confinement

analysis that enforces the security model, with features
including flexibility due to polymorphism and subtyping,
declarative benefits due to readability, and ease of proof
due to the use of transformational techniques.

References

1. Aldrich J, Kostadinov V, Chambers C (2002) Alias annota-
tions for program understanding. In: Proceedings of the 17th
ACM conference on object-oriented programming, systems,
languages, and applications. ACMPress,NewYork, pp 311–330

2. Banerjee A, Naumann D (2002) Representation independence,
confinement and access control. In: Conference Record of
POPL02: The 29TH ACM SIGPLAN-SIGACT symposium on
principles of programming languages, Portland, OR, January
2002, pp 166–177

3. Banerjee A, Naumann D (2003) Using access control for se-
cure information flow in a java-like language. In: Proceedings
of the 16th IEEE Computer Security Foundations Workshop
(CSFW03)

4. Bokowski B, Vitek J (1999) Confined types. In: Proceedings
of the 14th annual ACM SIGPLAN conference on object-
oriented programming systems, languages, and applications
(OOPSLA), November 1999

5. Boyland J, Noble J, Retert W (2001) Capabilities for aliasing:
a generalisation of uniqueness and read-only. In: ECOOP’01
– Object-oriented programming, 15th European conference.
Lecture notes in computer science, vol 2072. Springer, Berlin
Heidelberg New York

6. Bryce C, Vitek J (1999) The JavaSeal mobile agent kernel.
In: 1st international symposium on agent systems and applica-
tions (ASA’99)/3rd international symposium on mobile agents
(MA’99), Palm Springs, CA

7. Clarke D (2001) An object calculus with ownership and con-
tainment. In: FOOL8 – the 8th international workshop on
foundations of object-oriented languages

8. Clarke D, Drossopoulou S (2002) Ownership, encapsulation
and the disjointness of type and effect. In: Conference on
object-oriented programming systems, languages and applica-
tions (OOPSLA)

9. Clarke D, Noble J, Potter J (2001) Simple ownership types for
object containment. In: ECOOP’01–Object-oriented program-
ming, 15th European conference. Lecture notes in computer sci-
ence, vol 2072. Springer, Berlin, Heidelberg, New York

10. Miller M, et al The E programming language.
http://www.erights.org

11. Fournet C, Gordon AD (2002) Stack inspection: theory and
variants. In: Proceedings of the 29th symposium on principles
of programming languages (POPL’02), January 2002

12. Hawblitzel C, Chang C-C, Czajkowski G, Hu D, von Eicken T
(1998) Implementing multiple protection domains in Java.
In: 1998 USENIX annual technical conference, New Orleans,
pp 259–270

13. Hennessy M, Riely J (2002) Resource access control in systems
of mobile agents. Inf Comput 173:83–120

14. Kain RY, Landwehr CE (1987) On access checking in
capability-based systems. IEEE Trans Softw Eng 13(2):
202–207

15. Leino KRM, Nelson G (2002) Data abstraction and infor-
mation hiding. ACM Trans Programm Lang Syst 24(5):
491–553

16. Müller P, Poetzsch-Heffter A (1999) Universes: a type system
for controlling representation exposure. In: Poetzsch-Heffter
A, Meyer J (eds) Programming languages and fundamentals
of programming, Technical Report, vol 263. Fernuniversität
Hagen

17. Odersky M, Sulzmann M, Wehr M (1999) Type inference with
constrained types. Theory Practice Object Syst 5(1):35–55

18. Pottier F (2000) A versatile constraint-based type inference
system. Nordic J Comput 7(4):312–347

19. Pottier F, Conchon S (2000) Information flow inference for
free. In: Proceedings of the the 5th ACM SIGPLAN inter-
national conference on functional programming (ICFP’00),
September 2000, pp 46–57

20. Pottier F, Skalka C, Smith S (2001) A systematic approach
to static access control. In: Sands D (ed) Proceedings of the
10th European symposium on programming (ESOP’01), April
2001. Lecture notes in computer science, vol 2028. Springer,
Berlin Heidelberg New York, pp 30–45

21. Rémy D (1992) Projective ML. In: 1992 ACM conference on
Lisp and functional programming, New York. ACM Press,
New York, pp 66–75

22. Rémy D (1993) Syntactic theories and the algebra of record
terms. Research Report 1869, INRIA

23. Rémy D (1993) Typing record concatenation for free. In:
Gunter CA, Mitchell JC (eds) Theoretical aspects of object-
oriented programming: types, semantics and language design.
MIT Press, Cambridge, MA

24. Shapiro J, Weber S (2000) Verifying the EROS confinement
mechanism. In: 21st IEEE symposium on research in security
and privacy

25. Skalka C (2002) Types for programming language-based se-
curity. PhD thesis, Johns Hopkins University, Baltimore,
MD

26. Skalka C, Pottier F (2003) Syntactic type soundness for
HM(X). Electronic notes in theoretical computer science,
vol 75

27. Skalka C, Smith S (2003) Set types and applications. Elec-
tronic notes in theoretical computer science, vol 75

28. van Doorn L, Abadi M, Burrows M, Wobber E (1996) Secure
network objects. In: IEEE symposium on security and privacy,
May 1996

29. Vitek J, Bokowski B (2001) Confined types in java. Softw
Practice Exper 31(6):507–532

30. Walker D (2000) A type system for expressive security poli-
cies. In: Conference record of POPL’00: The 27th ACM
SIGPLAN-SIGACT symposium on principles of programming
languages, Boston, MA, January 2000, pp 254–267

