
Int J Inf Secur (2004) 3: 86–98 / Digital Object Identifier (DOI) 10.1007/s10207-004-0045-9

The efficiency of solvingmultiple discrete logarithmproblems
and the implications for the security of fixed elliptic curves∗

Yvonne Hitchcock1,∗∗, Paul Montague2, Gary Carter3, Ed Dawson1

1 Information Security Research Centre, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia
e-mail: {y.hitchcock,e.dawson}@qut.edu.au
2Motorola Australia Software Centre, 2 Second Ave, Mawson Lakes, SA 5095, Australia
e-mail: pmontagu@asc.corp.mot.com
3School of Mathematics, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia
e-mail: g.carter@qut.edu.au

Published online: 5 November 2004 –  Springer-Verlag 2004

Abstract. This paper examines the cryptographic secu-
rity of fixed versus random elliptic curves over GF (p). It
assumes a precomputation for use in breaking the elliptic
curve discrete logarithm problem (ecdlp) can be made
for fixed curves. A lower bound for the efficiency of a vari-
ation of Pollard’s rho method for solving multiple ecdlps
is presented, as well as an approximation of the expected
time remaining to solve an ecdlp when a given size of
precomputation is available. We conclude that adding
4 bits to the order of a fixed curve to avoid general soft-
ware attacks plus 6 bits to avoid attacks on curves with
special properties provides equivalent security.

Keywords: Elliptic curve discrete logarithm problem
(ecdlp) – Baby-step giant-step method (bsgs) – Pol-
lard’s rhomethod – Fixed elliptic curve – Precomputation

1 Introduction

Elliptic curves were first proposed as a basis for pub-
lic key cryptography in the mid 1980s independently by
Koblitz and Miller. Elliptic curves provide a discrete-
log-based public key cryptosystem and can use a much
shorter key length than other public key cryptosys-
tems to provide an equivalent level of security. Elliptic
curve cryptosystems (eccs) can also provide a faster
implementation than RSA or discrete log (dl) sys-
tems and use less bandwidth and power [5]. These is-
sues can be crucial in lightweight applications such as
smart cards. In the last few years, eccs have been in-

∗ An abridged version of this paper appeared as “The Secu-
rity of Fixed versus Random Elliptic Curves in Cryptography” in
ACISP 2003 [6].
∗∗ Corresponding author : Address as above, tel.: +61-7-3864-
9570, fax: +61-7-3221-2384

cluded or proposed for inclusion in internationally rec-
ognized standards (specifically IEEE 1363, WAP (Wire-
less Application Protocol), ANSI X9.62, ANSI X9.63 and
ISO CD 14888-3). Thus eccs are set to become an in-
tegral part of lightweight applications in the immediate
future.
One drawback of an ecc is the complexity of generat-

ing a secure elliptic curve. The complexity is high enough
to render it infeasible to generate a randomly chosen but
secure elliptic curve on a mobile device (e.g. telephones,
PDAs and smart cards) due to the time, memory and
code size required to count the points on the curve and en-
sure that other security requirements [1, Section V.7] are
met. For example, the Schoof-Elkies-Atkin (sea) point
counting algorithm is the best known point counting al-
gorithm for a randomly chosen ec over GF (p) and has
complexity O

(
log8 (p)

)
[1]. It has been implemented in

the miracl library in conjunction with Pollard’s lambda
method and takes 2–3 min on a 180-MHz Pentium Pro to
count the points on a 160-bit curve and 3.5–5.5min for
a 192-bit curve [14]. On a smart card platform, it would
take much longer – a 10-MHz smart card could be ex-
pected to take at least 36min to count the points on
a 160-bit curve based on processor speed. However, it is
likely that code size and memory limitations would pre-
clude the algorithm from being programmed onto such
a smart card in the first place.
Even if a mobile device could generate a secure elliptic

curve, there would still be other costs, such as the band-
width required to transmit the curve to other parties. The
cost of transmitting a curve over GF (p) is that of trans-
mitting four numbers modulo p. These numbers are the
two curve constants a and b as well as the base point
and the mobile device’s public key in compressed format.
Added to the bandwidth and time costs, there is also the
cost of a substantially increased code size associated with
generating a curve on the mobile device.



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 87

On the other hand, if a fixed curve is used, we know
that it is feasible to implement an associated ecc on amo-
bile device since various implementations have been re-
ported (for example the implementation in [5]). When
using a fixed curve, the mobile device is only required to
generate a secret key using a random number generator
and to transmit the corresponding public key to the other
parties. The random number generator is needed in any
case by some signature algorithms, and the scalar multi-
plication routine required to generate the public key will
already be available for use in the protocols utilized by
the mobile device. Therefore, any extra code associated
with key selection is minimal when using a fixed curve.
Other advantages of using fixed curves include being able
to choose special parameters to increase the efficiency of
the implementation (Sect. 3.3) and a reduced bandwidth
requirement since only one number modulo p (the mobile
device’s compressed public key) must be transmitted to
other parties. The fact that the fixed curve parameters
are required to be publicly available is not a disadvantage
when comparedwith random curves because the curve pa-
rameters of randomcurvesmustalsobemadepublic before
the curve can be used.While these issuesmay not bemajor
for allmobile devices (e.g. in someapplications the random
curve could be generated by a server and bandwidth usage
might not be a problem), the difficulties associated with
using random curves have caused various standards orga-
nizations to include fixed curves in their standards, such as
thewap curves [19] and the nist curves [11].
Whilst a fixed curve may be an attractive option for

efficiency reasons, it also offers a single target for peo-
ple all over the world to attack. On the other hand, if
random curves are utilized, there are many more curves
in use throughout the world, so that a group of attack-
ers no longer has one target, but many targets to at-
tack. The random curves used may also be constantly
changed, making the number of possible targets to attack
even greater. Furthermore, attacking one curve will not
give the attackers any advantage if they wish to attack
a different curve at a later date. Thus the computational
power deployed to break a fixed curve is likely to be much
greater than that deployed to break a random curve. In
addition to this, if a fixed curve is broken, all users of that
curve are affected. On the other hand, if a random curve
used by a small number of people is broken, the overall
impact is much smaller than if a fixed curve used by many
people all over the world is broken.
Given the above observations, it would appear in-

tuitively obvious that using a random curve provides
a higher level of security than a fixed curve. However, ex-
actly how much extra security a random curve provides
and whether the amount of extra security is significant
is much less clear. To date, there have been no publica-
tions examining whether the decision to use a fixed curve
compromises the security of a cryptosystem or the sig-
nificance of any such compromise. This issue is therefore
investigated here in detail.

The discussion is restricted to curves over the field
GF (p) where p is a large prime. These curves con-
sist of the set of points (x, y) satisfying the equation
y2 ≡ x3+ax+ b (mod p) where a and b are constants
such that 4a3+27b2 �≡ 0 (mod )p. The paper firstly ex-
amines existing methods of software attack and their
impact on fixed-curve security, including a variant of Pol-
lard’s rho method, which can be used to break more than
one ecdlp on the one curve. We then present a lower
bound on the expected number of iterations required to
solve a subsequent ecdlp using this method, as well as
an approximation for the number of remaining iterations
to solve an ecdlp when a given number of iterations have
already been performed. We also investigate threats from
hardware attacks and optimizations for curves with spe-
cial properties. Finally, recommendations are made for
the size increase required for a fixed curve to have an
equivalent security level to a random curve.

2 Existing methods of attack

In this section the efficiencies of different methods avail-
able to attack the ecdlp are examined. Only those at-
tacks applicable to arbitrary elliptic curves are consid-
ered. These attacks are then used in the following section
to analyse the security of fixed curves compared to ran-
dom curves. Attacks such as differential side channel an-
alysis that pose an equal threat to both fixed and random
curves are not discussed.

2.1 Pohlig–Hellman algorithm

The Pohlig–Hellman [12] algorithm breaks the ecdlp
down into several different ecdlps, one in each prime-
order subgroup of the elliptic curve group. Obviously, the
hardest one of these to solve is in the subgroup of largest
prime order, and thus the attack is resisted by requiring
the order of this subgroup to be at least 160 bits [1, p. 98].
We assume for the remainder of this analysis that (if ap-
plicable) the Pohlig–Hellman algorithm has been used to
reduce the ecdlp to an ecdlp in the subgroup of largest
prime order.

2.2 Index calculus and related methods

There are currently no index calculus or related methods
applicable to elliptic curves. Indeed, it is believed to be
unlikely that such attacks will ever be possible [7]. There-
fore, these methods are not considered further here.

2.3 Shanks’s baby-step giant-step method

The baby-step giant-step (bsgs) method of Shanks [16]
has a precomputation for each curve. A balanced version
is often given in the literature (e.g. [1]). We give an un-



88 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

balanced version below which takes advantage of the fact
that the negative of an elliptic curve point can be calcu-
lated “for free”, in a similar manner to Shanks’s original
proposal. Let n,Q, z,m,R and d be defined as follows:

n=The prime order of the base point P

Q=The point whose ecdl is to be found

z =The value of the ecdlp. That is, Q= [z]P

m=Number of points in the precomputation

d=
⌈ n
2m

⌉
R= [d]P

Then the precomputation of giant steps can be calculated
as:

Sα = [α]R for 0≤ α <m

and the ecdlp can be solved by finding the baby steps:

Rβ =Q− [β]P for 0≤ β < d

until anRβ value is found which is the same as Sα or−Sα
for some α. The solution to the ecdlp is then:

z = αd+β if Rβ = Sα

or z = n−αd+β if Rβ =−Sα .

There are approximatelym elliptic curve additions re-
quired in the precomputation and on average d2 further el-
liptic curve additions required to solve the ecdlp. Thus,

on average, approximately 4m
2+n
4m operations are required

to solve one ecdlp. This value is at its minimum of
√
n

operations whenm≈
√
n
2 .

2.4 Pollard’s rho method

Pollard’s rho method [13] is currently the best method
known for solving the general ecdlp [20]. The method
searches for a collision in a pseudo-random walk through
the points on the curve. If the iterating function defin-
ing the pseudo-random walk is independent of the point
whose discrete logarithm is to be found, then the same
calculations can be used to find more than one discrete
logarithm on the one curve. Kuhn and Struik [8] pro-
vide an analysis of the expected running time of such
a method, which is described as follows. Let the defini-
tions in Table 1 be given. The pseudo-random walk func-
tion to solve the kth ecdlp, g(Rk,i), is defined to be as
follows:

g(Rk,i) = [hf(Rk,i)]Rk,i+[cf(Rk,i)]P ,

where hj and cj are constants. Note that the next value in
the pseudo-random walk to solve the kth ecdlp Rk,i+1,
is determined only by P and Rk,i, not P , Qk and Rk,i. In
order to maximize efficiency, hj should be set to 1 for all

Table 1. Definitions for Pollard’s rho method

n=The prime order of the base point P .
Qk=The points whose ecdls are to be found. That is,

Qk = [zk]P , where we wish to find zk for k ≥ 0.
Rk,0=[uk,0]P +[wk,0]Qk, where uk,0 and wk,0 are ran-

domly chosen constants and wk,0 �= 0.
Rk,i=The ith point in the pseudo-random walk to solve

the ecdlp for Qk. Note that
Rk,i = [uk,i]P +[wk,i]Qk.

s=The number of equations defining the pseudo-ran-
dom walk.

f(R)=A function mapping a point R to a number between
1 and s.

g(Rk,i)=A function returning the next value in the pseudo-
random walk, Rk,i+1. It is defined as:
g(Rk,i) = [hf(Rk,i)]Rk,i+[cf(Rk,i)]P , where cj and

hj are constants for 1≤ j ≤ s.
uk,i+1≡hf(Rk,i)uk,i+ cf(Rk,i) (mod n) for 0≤ i .

wk,i+1≡hf(Rk,i)wk,i (mod n) for 0≤ i .

but one of the possible values of j, in which case hj should
be set to 2 and cj should be set to zero. If this is done,
each iteration of the method will require only one elliptic
curve addition. This random walk is similar to a special
case of the “combined walk” proposed by Teske [17]. We
note that currently there is no proof that the above ran-
dom walk is sufficiently random for the theoretical results
(which assume the randomness of the walk) to hold. How-
ever, it differs from the random walk with such a proof
proposed by Teske [17] in approximately 1/s cases where
s is the number of equations defining the pseudo-random
walk and s≈ 20 gives optimal performance [17]. Since the
random walk proposed here differs from Teske’s random
walk in only about 1/20 cases, it is expected to perform
randomly enough.
There are two different types of collisions which can

occur, a collision with a point on the current pseudo-
random walk and a collision with a point on a previous
pseudo-random walk. They can be solved as follows:

If Rk,i =Rk,j

then [uk,i]P +[wk,i]Qk = [uk,j ]P +[wk,j ]Qk

with a solution of Qk =

[
uk,j−uk,i
wk,i−wk,j

]
P .

Otherwise, Rk,i =Rl,j

where Rl,j = [ul,j ]P +[wl,j ]Ql

andQl = [zl]P .

Therefore, [uk,i]P +[wk,i]Qk = [ul,j ]P +[wl,jzl]P

with a solution of Qk =

[
ul,j+wl,jzl−uk,i

wk,i

]
P .

In order to detect collisions, we need to store the
points on the pseudo-random walk Rk,i and compare the
current point on the random walk with previous points.



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 89

However, in order to save storage space, Rk,i, uk,i and
wk,i are stored only if Rk,i is a distinguished point. Dis-
tinguished points are defined as those points with some
easily checkable property (such as having ten leading ze-
ros in the x coordinate).
Because only distinguished points are stored, we will

not always detect a collision as soon as it occurs, but
rather at the next distinguished point on the pseudo-
random walk. Because Rk,i+1 only depends on Rk,i and
P , once a collision occurs between Rk,i and Rl,j we know
thatRk,i+m =Rl,j+m for allm≥ 0. For this reason, a col-
lision is guaranteed to be detected at the next distin-
guished point.
We emphasize that if distinguished points are used,

the random walk definition must be independent of the
values Q1, Q2, . . . in order for the results in this section
to hold. We note that the particular random walk rec-
ommended by Kuhn and Struik in [8] (originally recom-
mended by Teske [17]) to solve a single ecdlp should
not be used to solve multiple ecdlps when using distin-
guished points because it must depend on Qi in order to
be useful. Although Kuhn and Struik provide an analy-
sis of the time required to solve multiple ecdlps, they
do not specify a suitable random walk to use in this situ-
ation. The problem with the random walk depending on
any Qi is that a different random walk must be used for
each ecdlp to be solved. This in turn means that any
collisions of non-distinguished points from different ran-
dom walks are not detected because the random walks
take different paths after the collision. Only collisions of
distinguished points are detected in this case. Of course,
if all points are distinguished then the random walk may
depend on Qi since all collisions are detected. However,
in most practical situations, not all points will be distin-
guished. Figure 1 shows the results of using a different
random walk for each ecdlp compared to using the one
random walk described above. It is easily seen that while
some advantage is gained from the distinguished points
from previous (different) randomwalks, that advantage is
quite small compared to the advantage gained if only one
random walk is used.
We now wish to know how much of an improvement

previous calculations can offer to the speed with which
the solution to a subsequent ecdlp is found.

Let Zi =
The number of iterations needed to solve the
ith ecdlp after the (i−1)th ecdlp’s solution.

Ti =
The total number of iterations to solve the
first i ecdlps.

Note: Ti ≥ i+1 .

Obviously, the expected value of Z1, E(Z1), is the same as
that of the traditional Pollard’s rho method, namely [17]:

E(T1) = E(Z1)≈

√
πn

2
.

We note that Wiener and Zuccherato [20] have been able
to improve this figure by a factor of

√
2 by restricting

Fig. 1. Actual iterations to solve 50 ecdlps on a 25-bit curve
averaged over 200 trials with 1 in 400 points

distinguished and s= 5

the random walk to points with distinct x coordinates.
For simplicity, we have not included this optimization in
the description of Pollard’s rho method in this section.
However, by changing n to n/2 in the following discus-
sion, its effect can be taken into consideration. In Sect. 3
this optimization is taken into account in the calculations
performed.
It is also possible to parallelize Pollard’s rho algo-

rithm [18] to obtain a linear speedup. However, it is not
necessary to include such parallelization directly in the
model since it can be taken into account by increasing
the speed at which calculations can be made. For ex-
ample, a parallelized version running on five computers
each at speed x will complete in the same time as a non-
parallelized version on a single computer running at speed
5x. We therefore account for any increase in speed due
to parallelization by setting the speed at which computa-
tions are performed to an appropriate value.
We now wish to find E(Ti) and E(Zi) for i > 1. Kuhn

and Struik [8] provide an approximation for the expected
value of Zi+1 as:

E(Zi+1)≈

√
πn

2

(
2i
i

)
1

4i
for i� n

1
4 (1)



90 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

and the expected value of Ti+1 as:

E(Ti+1)≈

√
πn

2

i−1∑
t=0

(
2t
t

)
4t

for i� n
1
4 (2)

≈ 2

√
i

π
E(Z1) . (3)

This paper proves a new result which gives a lower
bound on the expected values above. The lower bound
is quite similar to the approximations above but replaces√
πn
2 with E(Z1). This is stated formally in the following

theorem:

Theorem 1. Let Zi and Ti be defined as above. Then the
following inequalities hold:

E(Zi+1)≥

(
2i
i

)
1

4i
E(Z1) for i≥ 1 , (4)

E(Zi+1)≥
1

2i
E(Ti) for i≥ 1 . (5)

Substituting the first few values of i into (4) gives:

E(Z2)≥
1

2
E(Z1) ,

E(Z3)≥
3

4
·
1

2
E(Z1) ,

E(Z4)≥
5

6
·
3

4
·
1

2
E(Z1) .

The proof of Theorem 1 is dependent on the following
lemma, whose proof is provided in Appendix A:

Lemma 1.

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−1∑
kα=1

kα

n

≥
t(t−α)

2αn

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−2∑
kα−1=1

kα−1

n
(6)

It is now possible to prove Theorem 1 as follows:

Proof. In order to find E(Ti) and E(Zi) for i > 1 we start
with the formulae given in [18], whereWi may be Ti or Zi:

Pr(T1 > t) =
t−1∏
j=1

(
1−
j

n

)

E(Wi) =
∞∑
j=1

j ·Pr(Wi = j), (7)

=
∞∑
j=1

j · (Pr (Wi > j−1)−Pr (Wi > j))

=
∞∑
j=0

Pr (Wi > j) . (8)

We now give Pr (Ti = t) and Pr (Ti+1 > t):

Pr (Ti = t)

=
t− i

n

(
t−i−1∏
k=1

(
1−
k

n

)) t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−2∑
ki−1=1

ki−1

n
,

(9)

Pr (Ti+1 > t)

= Pr (Ti > t)+Pr (Ti+1 > t and Ti ≤ t)

= Pr(Ti > t)

+


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−1∑
ki=1

ki

n


 t−i−1∏

k=1

(
1−
k

n

)
. (10)

Using (7) and (9), we derive an expression for E(Ti):

E(Ti)

=
n+i∑
t=i+1

t
t− i

n


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−2∑
ki−1=1

ki−1

n


 ·

t−i−1∏
k=1

(
1−
k

n

)

= (i+1)

(
1

n

)i
+

n+i∑
t=i+2

t
t− i

n


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−2∑
ki−1=1

ki−1

n


 ·

t−i−1∏
k=1

(
1−
k

n

)
(11)

We now derive an expression for E(Ti+1) from (8)
and (10):

E(Ti+1)

=
∞∑
t=0

Pr(Ti+1 > t)

= 2+ i+
n+i∑
t=i+2

Pr(Ti+1 > t)

= 2+ i+
n+i∑
t=i+2

Pr(Ti > t)+

n+i∑
t=i+2


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−1∑
ki=1

ki

n


 t−i−1∏

k=1

(
1−
k

n

)



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 91

E(Ti+1)

= E(Ti)+1−Pr(Ti > i+1)+

n+i∑
t=i+2


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−1∑
ki=1

ki

n


 t−i−1∏

k=1

(
1−
k

n

)

=E(Ti)+

(
1

n

)i
+

n+i∑
t=i+2


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−1∑
ki=1

ki

n


 t−i−1∏

k=1

(
1−
k

n

)
.

(12)

We then substitute into (12) the inequality of Lemma 1,
which is given again in (13):

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−1∑
kα=1

kα

n

≥
t(t−α)

2αn

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−2∑
kα−1=1

kα−1

n
(13)

∴ E(Ti+1)

≥ E(Ti)+

(
1

n

)i
+

n+i∑
t=i+2

t(t− i)

2ni


 t−i∑
k1=1

k1

n

k1∑
k2=1

k2

n
· · ·

ki−2∑
ki−1=1

ki−1

n


 ·

t−i−1∏
k=1

(
1−
k

n

)
(14)

and substituting (11) into (14) gives:

E(Ti+1)≥ E(Ti)+
1

2i
E(Ti) (15)

=
2i+1

2i
E(Ti)

∴ E(Ti+1)≥
i∏
k=1

(
2k+1

2k

)
E(T1) .

Similarly,

E(Ti)≥
i−1∏
k=1

(
2k+1

2k

)
E(T1) (16)

and note that

E(Ti+1) = E(Zi+1)+E(Ti) . (17)

By substituting (17) into (15) and then (16) into (18) we
obtain:

E(Zi+1)+E(Ti)≥ E(Ti)+
1

2i
E(Ti), (18)

E(Zi+1)≥
1

2i
E(Ti), (19)

E(Zi+1)≥
1

2i

i−1∏
k=1

(
2k+1

2k

)
E(T1)

=
i∏
k=1

(
2k−1

2k

)
E(Z1) .

That is, we have:

E(Z2)≥
1

2
E(Z1),

E(Z3)≥
3

4
·
1

2
E(Z1),

E(Z4)≥
5

6
·
3

4
·
1

2
E(Z1),

E(Zi)≥
(2 (i−1))!

22(i−1) ((i−1)!)2
E(Z1) fori≥ 2 , (20)

E(Zi+1)≥

(
2i
i

)
1

4i
E(Z1) for i≥ 1 . (21)

Equations (21) and (19) complete the proof of (4)
and (5) respectively. �

It is easily seen that the left- and right-hand sides of
Lemma 1 and (13) are equal when α = 1, since they give
the formula for the sum of numbers from 1 to t−1 in that
case. Therefore, in the case of i= 1 in the above proof,
the greater than or equal to signs can be replaced with an
equals sign in (14), (15) and (21), giving the results:

E(Z2) =
1

2
E(Z1)

and E(T2) =
3

2
E(Z1) .

In order to study the behaviour of E(Zi) more easily,
(20) can be approximated using Stirling’s formula, which
states [4, p. 373]:

n!≈ (2π)
1
2 nn+

1
2 e−n for large n . (22)

Substituting (22) where possible into (20), we obtain:

E(Zi)≥
1
√
πi
E(Z1) for large i . (23)

The above results lead us to expect that the second
ecdlp can be solved in half the time of the first, the third
ecdlp can be solved in no less than three-eighths the time
of the first, and so on. As stated in [8], (1) and (2) are
good approximations. We provide experimental evidence
of this in Fig. 2, which shows the actual number of itera-
tions to solve 50 ecdlps on a 32-bit curve averaged over
200 trials, as well as the bound in (4). Note that since



92 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

Fig. 2. Actual iterations to solve 50 ecdlps on a 32-bit curve, aver-
aged over 200 trials, with s= 21 and 1 in 800 points distinguished.
The theoretical bound from Eq. (4) is also shown

E(Z1) has been taken to be
√
πn
2 , the bound is the same

as the expected value provided in (1).
We also use E(Zi | r previous iterations) in our analy-

sis in the next section. An approximation is given by
Theorem 2:

Theorem 2. Let Zi and n be defined as above and let r be
the number of iterations previously performed. Then:

E(Zi | r prev. iters.)≈

√
πn

2
e
r2

2n

(
1−Φ

(
r
√
2n

))
(24)

where Φ(x) =
2
√
π

∫ x
0

e−t
2
dt .

Proof. Suppose that during a random walk to solve pre-
vious ecdlps, as defined in Table 1, r iterations have been
performed. Then for Zi, the number of iterations to solve
a new ecdlp,

Pr(Zi > z) =
(
1−
r

n

)(
1−
r+1

n

)
· · ·

(
1−
r+ z−1

n

)
,

and taking logarithms we have:

ln (Pr (Zi > z))

= ln
(
1−
r

n

)
+ln

(
1−
r+1

n

)
+ · · ·

+ln

(
1−
r+ z−1

n

)
. (25)

Now we can expand ln(1+x) using a Maclaurin series as:

ln (1+x) = x−
x2

2
+
x3

3
−
x4

4
+ · · · .

Using this expansion and assuming r, z ≤
√
n, we can ap-

proximate (25) as:

ln (Pr (Zi > z))≈−
r+z−1∑
j=r

j

n
−
1

2

r+z−1∑
j=r

j2

n2
−· · ·

≈ −
z (2r+ z−1)

2n
−O

(
1
√
n

)
∴ Pr (Zi > z)≈ e−

z
2n (z+2r−1) . (26)

Substituting (26) into (8) produces:

E(Zi)

≈
∞∑
z=0

e−
z
2n (z+2r−1)

≈

∫ ∞
0

e−
z
2n (z+2r−1)dz

=

∫ ∞
r− 12

e
− 1
2n

(
y2−(r− 12)

2
)
dy where y = z+ r−

1

2

= e
1
2n (r−

1
2 )
2
∫ ∞
r−12

e−
y2

2n dy

= e
1
2n (r−

1
2 )
2√
2n

∫ ∞
1√
2n
(r−12 )

e−t
2
dt where t=

y
√
2n
.

(27)

Now the error function Φ(x) is defined as [3, p. 938]:

Φ(x) =
2
√
π

∫ x
0

e−t
2
dt

and from [3, p. 354],∫ ∞
0

e−t
2
dt=

√
π

2

∴ 1−Φ(x) = 2
√
π

∫ ∞
x

e−t
2
dt . (28)

Substituting (28) into (27) gives:

E(Zi)≈ e
1
2n (r−

1
2)
2
√
2πn

2

(
1−Φ

(
r− 12√
2n

))

≈ e
r2

2n

√
πn

2

(
1−Φ

(
r
√
2n

))
. (29)

This completes the proof. �



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 93

If we take into account the optimization ofWiener and
Zuccherato [20], (24) becomes:

E(Zi | r prev. iters.)≈

√
πn

2
e
r2

n

(
1−Φ

(
r
√
n

))
(30)

with Φ(x) defined earlier.

3 Security comparison

This section contains a detailed comparison of the se-
curity of fixed versus random curves. Firstly, it exam-
ines “equivalent security” by assuming that a precom-
putation can be made to aid in solving the ecdlp on
a fixed curve. All other attributes of the curves are as-
sumed to be equal for this comparison. Secondly, special
properties of curves which may give a greater amount
of speed to an ecc implementation, and are therefore
likely to be used in fixed curves, are examined in rela-
tion to the ecdlp. Unfortunately, such properties also
make it faster to find an ecdl, and this issue is ad-
dressed. Thirdly, special-purpose hardware is considered,
and finally all of the results are combined into an overall
recommendation.
Throughout this section, we use nF and nR to de-

note the orders of the prime (sub)groups of the fixed and
random curves respectively, where both curves have an
“equivalent” level of security.

3.1 Equivalent Security I

In order to compare the security of fixed and random
curves, we need a definition of equivalence of security. We
give one possible definition below:

Definition 1 (Equivalent Security I). Assume that
there are 2ν users of a fixed curve (for example, 232 users),
and that if these users moved to random curves, there
would be 2ω users per curve, and a total of 2ν−ω random
curves in use. Then we say that the fixed curve has equiva-
lent security I (es-i) to the random curves if it takes the
same expected number of computations to break the ecdlp
for all users of the fixed curve as it does to break the ecdlp
for all users of the random curves.

3.1.1 BSGS and ES-I

In order to apply the es-i definition to attacks using the
bsgsmethod, we assume that there are 2ν users of a fixed
curve and that if random curves were used, each user
would have a different random curve (i.e. ω = 0). In the
case of the fixed curve, the precomputation need be per-
formed only once. Therefore, the total amount of com-
putation to find all ecdls is V ≈mF+2ν

nF
4mF
, wheremF

is the size of the precomputation. We find that V is at
its minimum value of Vmin ≈ 2ν/2

√
nF for any value of nF

whenmF ≈ 2(ν/2)−1
√
nF.

We now set Vmin equal to the minimum time taken to
solve all ecdlps on the random curves (using Pollard’s
rho method with the optimization of Wiener and Zuc-
cherato since it is fastest) and solve for nF:

Vmin = 2
ν/2√nF = 2

ν√πnR/2

nF ≈ 2
νnR .

Therefore, we need to increase the order of a fixed curve
by ν bits to satisfy es-i under the assumption of a bsgs
attack.

3.1.2 Pollard’s rho and ES-I

Using the definition for es-i and the result in (3), if the
fixed and random curves have the same order, then when
(ν−ω) is sufficiently large, it takes approximately 2

ν−ω
2

times as long to solve all of the ecdlps on the random
curves as it does on the fixed curve. Therefore, to decide
how much bigger the fixed curve should be than the ran-
dom curves for an equivalent level of security, we set:

√
πnF

2
= 2

ν−ω
2

√
πnR

2
.

That is, nF = 2
ν−ωnR .

3.1.3 ES-I result

By setting ν = 32 (for the approximate number of people
in the world) and ω = 0 (every user has his/her own ran-
dom curve) we can give a very conservative worst-case es-
timate that about 32 bits should be added to the curve
order of a fixed curve compared to a random curve. This
then ensures that the number of groupoperations required
to solve all ecdlps on the fixed curve is equivalent to the
number required to solve all ecdlps on random curves.

3.2 Equivalent Security II

The analysis using es-i is based on the assumption that
we must break all users’ ecdlps on a fixed curve to break
the cryptosystem. In practice, we actually find it unac-
ceptable for even one ecdlp on the fixed curve to be
broken and therefore present a new definition of “equiva-
lent security”. The definition is based on the observation
that a curve becomes insecure at the same time as the
first ecdlp is able to be solved on that curve. Therefore,
for a fixed curve, assume that a precomputation with the
number of iterations equal to E(Z1)≈

√
πn
2 is possible,

since this is the maximum number of iterations that can
be performed before the curve becomes insecure. A fixed
curve with an equivalent size can then be found using the
following definition.

Definition 2 (Equivalent Security II). The approxi-

mation of E(Z1)≈
√
πn
2 can be taken as the number of

iterations used to create a precomputation after the fixed



94 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

curve has been released. This value can be used to find
how many iterations are expected to remain to solve the
first ecdlp. A calculation can then be made to determine
how many extra bits need to be added to the order of the
fixed curve to ensure that the first ecdlp on the fixed
curve (using a precomputation) is as hard as an ecdlp
on a random curve. We define a fixed curve and a random
curve with curve orders satisfying these conditions to have
equivalent security II (es-ii).

This definition will give a better estimate of the re-
quired increase in curve order than that given by using
the definition of es-i. However, we stress that there is re-
ally no significant improvement in the time to solve the
first ecdlp on a fixed curve compared to a random curve
if the precomputation time is included. This has been
shown by Kuhn and Struik [8], who prove the following
bounds on the time to solve one out of k ecdlps (denoted
as ZDLP(1:k)):

E(Z1)−k ≤ E(ZDLP(1:k))

E(ZDLP(1:k))≤ E(Z1) .

Since k is much less than E(Z1), we can approximate the
value E(ZDLP(1:k)) with E(Z1).
We ignore the precomputation time when calculating

es-ii because there is a greater incentive to break ecdlps
on a fixed curve than a random curve (this is because
more ecdlps may be solved for the same effort). Again,
we note that if it is feasible to solve one ecdlp on a fixed
curve of a particular size, then it is also possible to solve
one ecdlp on a random curve of the same size in the same
manner.
If the bsgs method is used, the number of iterations,

m, in the precomputation is:

m=

√
πn

2
.

For the bsgs method, any ecdl can then be found
using an average of

n

4m
=

n

2
√
πn
=
1

2

√
n

π

iterations. We then set this equivalent to the number of
iterations required to solve an ecdlp on a random curve
with a curve order of unknown size using Pollard’s rho
method (since it is faster than the bsgs method):

1

2

√
n

π
=
√
πnR/2

n

π
= πnR

nR =
n

π2

≈
n

23.3
.

Therefore about four bits1 of security have been lost if
the bsgs method is used to solve the ecdlp on the fixed
curve. Note that while the time for each iteration on the
fixed curve will be slightly different from that required on
the random curve, because the curves are close in size, the
effect is minimal.
For Pollard’s rho method, we substitute the size of the

precomputation (
√
πn
2 ) as r in (30) to find how many it-

erations are expected to remain to solve the first ecdlp
using a precomputation:

E(Z1|precomputation)≈

√
πn

2

(
e
πn
4n

)(
1−Φ

(√
πn

4n

))

=

√
πn

4

(
e
π
2

)(
1−Φ

(√
π

2

))

≈ 0.461

√
πn

2
.

We then ascertain the number of bits in the order of
a random curve which has equivalent security to the fixed
curve (as defined by es-ii) as follows:

0.461

√
πn

2
≈

√
πnR

2
nR ≈ 0.461

2n

≈
n

22.236
.

Therefore, in this case, using Pollard’s rho method, less
than 3 bits of security are lost, as opposed to 4 bits using
the bsgs method. However, because (30) is an approxi-
mation, the Pollard’s rho figure for the loss in security is
also an approximation. However, its correctness is sup-
ported by the fact that when no precomputation is used,
E(Z2)≈

1
2E(Z1)≈

√
πn
4 from (1). Therefore, if the size of

the precomputation was exactly Z (not E(Z)), we would
set
√
πn

4
≈

√
πnR

2

nR ≈
n

4

and find that only 2 bits of security had been lost, which
is close to the 2.236-bit figure above.
Given that Pollard’s rho method is generally accepted

as being more efficient than the bsgs method on aver-
age, it may at first seem surprising that a greater loss of
fixed-curve security occurs due to thebsgsmethod than to
Pollard’s rho method. This apparent contradiction can be
explained by observing that the calculations assume that
the first ecdlp to be solved is not known until after the
calculation of the precomputation. If the first ecdlp had
been known before the precomputation for Pollard’s rho
method began, the precomputation could be directed at

1 A figure of five bits was previously published in [6] by using
a different method of calculation. The discrepancy is probably due
to rounding error introduced in [6] by using figures from the table
in [9].



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 95

solving that particularecdlp, and it would be expected to
be solved at about the same time as the precomputation
finished. This is not surprising since the curve becomes in-
secure at the same time as this occurs. Although the final
result on fixed-curve security hinges on the efficiency of the
bsgsmethod, the new results for Pollard’s rhomethod are
still necessary to the analysis because they enable us to
show that this is in fact the case.
We conclude that, given the above assumptions,

adding about 4 bits to the order of a fixed curve compared
to a random curve will give approximately the same level
of security as defined by es-ii when attacks are performed
using the bsgs or Pollard’s rho method.

3.3 Curves with special properties

Standardized fixed curves often have special properties in
order to increase the speed at which eccs can operate.
For example, the curves overGF (p) specified by nist [11]
use primes for which fast modular reduction algorithms
are available as well as setting the a parameter of the el-
liptic curve to−3 for faster point addition algorithms. On
the other hand, thewap specification [19] sometimes sets
the a parameter to 0 for the same reason. Unfortunately,
these settings mean that attacks on these curves can be
performed at a faster rate also.
Using one of the generalized Mersenne primes speci-

fied by nist as the modulus for the curve can make an
implementation up to 3.7 times as fast, based on figures
from [2]. Even if the modular reduction took no time at
all, this would only lead to an implementation up to 4.5
times as fast. Therefore, based on the relationship be-
tween the curve order and the complexity of the bsgs and
Pollard’s rho methods, adding 2 · log2(4.5) = 4.34 bits to
the curve order would overcome this problem.
Using an a parameter of −3 can reduce the number

of squares and multiplies required for a point addition
from 10 to 8, so that addition is about 1.25 times as fast.
Using an a parameter of 0 can reduce the number of
squares and multiplies to 7 instead of 10, so that addition
is about 1.43 times as fast. Increasing the curve order by
2 · log2(1.43) = 1.03 bits would overcome problems due to
special values for the a parameter.
To avoid having any attacker obtain an advantage

when attacking a fixed curve with a special modulus
or a parameter, we suggest that an increase of 5.4 bits
(1.03+4.34) would provide a more than adequate level of
security.

3.4 Special-purpose hardware

It is possible to build special-purpose hardware to attack
elliptic curve cryptosystems which would be considerably
faster than a software attack using equipment of the same
value. Lenstra and Verheul [9, Section 3.2.5] provide an
analysis of the difference in cost between hardware and
software implementations and conclude that in the el-

liptic curve case, for curves over the field GF (p), soft-
ware is more than 2000≈ 211 times more expensive than
hardware.
As another example, an MPC190 security processor

from Motorola [10] running at 66MHz can perform 1000
Internet key exchanges (ike) on a 155-bit elliptic curve
per second. Therefore, one scalar multiplication on such
a device takes less than 1ms. A Pentium iv 1.8-GHz ma-
chine can compute one scalar multiplication on a 160-bit
curve in 2.66ms, or about 73≈ 26.2 times slower taking
into account the processor speed.
While some would suggest that extra bits should be

added to fixed curves over GF (p) to resist attacks due
to special-purpose hardware, we argue that hardware
availability constitutes an equal threat to both fixed and
random curves. Hardware such as the MPC190 security
processor is able to perform calculations for any ellip-
tic curve, not just a single curve. If attackers are able to
invest in hardware to attack fixed curves, then that hard-
ware can just as easily be used to attack random curves.
While those who see hardware as a greater threat to fixed
curves than random curves may suggest adding some ex-
tra bits to the fixed curve (22 bits based on the estima-
tion of Lenstra and Verheul or 13–15 bits based on the
MPC190 speed), we believe that such an action is unnec-
essary, given the equal susceptibility of fixed and random
curves to hardware attacks.

3.5 Results of analysis and performance effects

By combining the results of the previous subsections we
can determine how many extra bits should be added to
a fixed curve for security equivalent to a random curve.
Very conservative users may wish to add a total of 38 bits
for curves overGF (p) (6 bits for special curve attacks and
32 bits to achieve es-i). However, we believe a more real-
istic approach is to add approximately 10 bits for curves
overGF (p) (being 4 bits to achievees-ii and 6 bits for spe-
cial curve attacks).Of course, if the fixed curve has neither
a special modulus nor a special a parameter, the 6 bits for
special curve attacks need not be added, and in that case
only an extra 4 bits are required for the fixed curve.
While adding extra bits to a fixed curve does increase

the time required to perform elliptic curve operations on
such curves, the increase is still small enough for fixed
curves to be attractive. For comparison, Table 2 shows
timings using the miracl library [15] for a single scalar
multiplication on both a fixed and a random curve. In all
cases, the Comba optimization from the miracl library
has been used which unravels and reorganizes the pro-
gramme loops implicit in the field multiplication and re-
duction processes. The curves recommended by nist [11]
were used as the fixed curves. These curves have an a pa-
rameter of −3 and a generalized Mersenne number as the
modulus, allowing a fast modular reduction algorithm.
The table shows that a fixed curve with these properties
is still faster than a random curve 32 bits smaller than it.



96 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

Table 2. Time in milliseconds of elliptic curve
scalar multiplication using the miracl
library [15] on a Pentium iv 1.8 GHz

Bit size Random curve Fixed curve

160 2.66
192 4.46 2.19
224 6.76 3.34

Therefore, if fixed curves take advantage of the availabil-
ity of special moduli and parameters, the 10 extra bits we
recommend adding to the order of a fixed curve will not
have any serious impact on performance compared to ran-
dom curves. In fact, the fixed curve may be faster than
a random curve implementation not using these special
features but with an equivalent level of security. We note
that in practice 32 (rather than 10) extra bits are likely
to be added to make the modulus size a multiple of the
word size of the processor being used, but that this does
not change our conclusion.

4 Conclusion

We have analysed the ecdlp on a fixed versus a random
curve over GF (p) and found that if the order of the fixed
curve with special properties is 10 bits larger than that
of the random curve, an equivalent level of security is
achieved if previously published attacks are used to solve
the ecdlp.
We have given a lower bound on the expected value

to solve more than one ecdlp on the one curve using
Pollard’s rho method, given an approximation of the ex-
pected time to solve an ecdlp using Pollard’s rho method
on the assumption that a precomputation of a certain size
already exists, and proposed two definitions of “equiva-
lent security”.We have given examples which support the
conclusion that approximately 32 bits should be added to
the order of a fixed curve to have equivalent security to
that of a random curve using the first definition, es-i, but
only 4 bits need to be added using the preferred defin-
ition, es-ii.
Attacks taking advantage of special-purpose hardware

have been considered, but it was concluded that special-
purpose hardware forms an equal threat to both fixed
and random curves, implying that this attack does not re-
quire the order of fixed curves to be increased compared
to random curves. Also, attacks taking advantage of fixed
curves using a special modulus or a parameter have been
investigated and a recommendation made to add 6 bits to
the order of the fixed curve to resist these attacks.
Taking all attacks into consideration, we recommend

adding 10 bits to the order of a fixed curve compared to
a random curve, being 6 bits to resist attacks due to a spe-
cial modulus or a parameter and 4 bits to achieve es-ii.
However, if the fixed curve does not have a special mod-

ulus or a parameter, the addition of only 4 bits to the
curve order is necessary. These results show that there
is no security problem associated with the use of fixed
curves, provided the order of the fixed curve is increased
by a small amount. Such an increase in the size of the
fixed curve has a minimal performance impact, whilst al-
lowing realization of the many benefits associated with
the use of fixed curves.

Acknowledgements. This research is part of an ARC SPIRT project
(C10024103) undertaken jointly by Queensland University of Tech-
nology and Motorola.

References

1. Blake I, Seroussi G, Smart N (1999) Elliptic curves in cryp-
tography. London Mathematical Society Lecture Note Series,
vol 265. Cambridge University Press, Cambridge

2. Brown M, Hankerson D, López J, Menezes A (2001) Software
implementation of the NIST elliptic curves over prime fields.
In: Topics in Cryptology – CT-RSA 2001. Lecture notes in
computer science, vol 2020. Springer, Berlin Heidelberg New
York, pp 250–265

3. Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series,
and products, 5th edn. Academic, San Diego

4. Greenspan HP, Benny DJ (1973) Calculus: an introduction to
applied mathematics. McGraw-Hill Kogakusha, Tokyo, Inter-
national student edition

5. Hasegawa T, Nakajima J, Matsui M (1998) A practical im-
plementation of elliptic curve cryptosystems over GF (p) on a
16-bit microcomputer. In: Practice and Theory in Public Key
Cryptography – PKC ’98. Lecture notes in computer science,
vol 1431. Springer, Berlin Heidelberg New York, pp 182–194

6. Hitchcock Y, Montague P, Carter G, Dawson E (2003) The
security of fixed versus random elliptic curves in cryptogra-
phy. In: Australasian Conference on Information Security and
Privacy – ACISP 2003. Lecture notes in computer science,
vol 2727. Springer, Berlin Heidelberg New York, pp 55–66

7. Huang M-DA, Kueh KL, Tan K-S (2000) Lifting elliptic curves
and solving the elliptic curve discrete logarithm problem. In:
Proceedings of Algorithmic Number Theory: 4th international
symposium – ANTS-IV 2000. Lecture notes in computer sci-
ence, vol 1838. Springer, Berlin Heidelberg New York, pp 377–
384

8. Kuhn F, Struik R (2001) Random walks revisited: extensions
of Pollard’s rho algorithm for computing multiple discrete
logarithms. In: Selected Areas in Cryptography – SAC 2001.
Lecture notes in computer science, vol 2259. Springer, Berlin
Heidelberg New York, pp 212–229

9. Lenstra AK, Verheul ER (2001) Selecting cryptographic key
sizes. J Cryptol 14(4):255–293

10. Motorola Inc (2003) MPC190: Security processor, 1994–2003.
[Online] http://e-www.motorola.com/webapp/sps/site/
prod_summary.jsp?code=MPC190&nodeId=01DFTQ42497721 [ac-
cessed 13/02/2003]

11. NIST (National Institute of Standards and Technology), US
Department of Commerce (2001) FIPS 186-2, digital signature
standard (DSS). Federal Information Processing Standard
(FIPS), January 2000. [Online] http://www.csrc.nist.gov/
publications/fips/ [accessed 07/06/2001]

12. Pohlig SC, Hellman ME (1978) An imporved algortihm for
computing logarithms in GF (p) and its cryptographic signif-
icance. IEEE Trans Inf Theory 24(1):106–111

13. Pollard JM (1978) Monte Carlo methods for index computa-
tion (mod p). Math Comput 32(143):918–924

14. Scott M (1999) Comments in the file sea.cpp which imple-
ments the Schoof-Elkies-Atkin algorithm for the Multipreci-
sion Integer and Rational Arithmetic C/C++ Library (MIR-
ACL). Shamus Software Ltd. [Online] ftp://ftp.computing.
dcu.ie/pub/crypto/sea.cpp [accessed 04/06/2003]



Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs 97

15. Shamus Software Ltd (2000) Multiprecision Integer and
Rational Arithmetic C/C++ Library (MIRACL). [Online]
http://indigo.ie/∼mscott/ [accessed 23/6/2000]

16. Shanks D (1971) Class number: a theory of factorization, and
genera. In: Proceedings of Symposia in Pure Mathematics
1969 Number Theory Institute, vol XX. AMS, Providence, RI,
pp 415–440

17. Teske E (1998) Speeding up pollard’s rho method for comput-
ing discrete logarithms. In: Proceedings of Algorithmic Num-
ber Theory: 3rd international symposium – ANTS-III 1998.
Lecture notes in computer science, vol 1423. Springer, Berlin
Heidelberg New York, pp 541–554

18. van Oorschot PC, Wiener MJ (1999) Parallel collision search
with cryptanalytic applications. J Cryptol 12(1):1–28

19. WAP (Wireless Application Protocol Forum Ltd) (2001)
Wireless application protocol: wireless transport layer se-
curity. [Online] http://www1.wapforum.org/tech/terms.asp?
doc=WAP-261-WTLS-20010406-a.pdf [accessed 31/07/2002]

20. Wiener MJ, Zuccherato RJ (1999) Faster attacks on ellip-
tic curve cryptosystems. In: Selected Areas in Cryptogra-
phy – SAC ’98. Lecture notes in computer science, vol 1556.
Springer, Berlin Heidelberg New York, pp 190–200

AProof of Lemma 1

This appendix provides the proof of Lemma 1:

Lemma 1.

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−1∑
kα=1

kα

n

≥
t(t−α)

2αn

t−α∑
k1=1

k1

n

k1∑
k2=1

k2

n
. . .

kα−2∑
kα−1=1

kα−1

n
(31)

Proof. With a change of variables, (6) can be rewritten
as:

c∑
k1=1

k1∑
k2=1

. . .

kβ−1∑
kβ=1

k1k2 . . . kβ

≥
c(c+β)

2β

c∑
k1=1

k1∑
k2=1

. . .

kβ−2∑
kβ−1=1

k1k2 . . . kβ−1 .

By subtracting
(
c
∑c
k1=1

∑k1
k2=1

. . .
∑kβ−2
kβ−1=1

k1k2 . . .

kβ−1

)
from both sides we obtain:

c−1∑
k1=1

k1∑
k2=1

. . .

kβ−1∑
kβ=1

k1k2 . . . kβ

≥
c(c−β)

2β

c∑
k1=1

k1∑
k2=1

. . .

kβ−2∑
kβ−1=1

k1k2 . . . kβ−1 . (32)

We now proceed to prove (32) by using two nested
proofs by induction. Firstly, we prove by induction on β,
and to complete the proof, we need to use induction on c
for a specific value of β.

Firstly, we prove (32) true for β = 2, c ≥ 1. When
β = 2, we have:

c−1∑
k1=1

k1∑
k2=1

k1k2 =
c−1∑
k1=1

k1
2(k1+1)

2

=
1

2


 c−1∑
k1=1

k1
3+

c−1∑
k1=1

k21




=
1

2

(
c2(c−1)2

4
+
c(c−1)(2c−1)

6

)

=
c(3c−2)(c−1)(c+1)

24

=
c(c− 23 )(c−1)(c+1)

8

≥
c2(c−2)(c+1)

8

=
c(c−2)

4

c∑
k1=1

k1 ,

which completes the proof.
We now assume (32) true for β = α−1 and c≥ 1 and

prove that this implies (32) is true for β = α. In particu-
lar, assume (32) for β = α−1 and c= n+1, as in (33):

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1

≥
(n+1)(n+2−α)

2(α−1)

n+1∑
k1=1

k1∑
k2=1

. . .

kα−3∑
kα−2=1

k1k2 . . . kα−2 .

(33)

That is, when n+2> α we assume:

n+1∑
k1=1

k1∑
k2=1

. . .

kα−3∑
kα−2=1

k1k2 . . . kα−2

≤
2(α−1)

(n+1)(n−α+2)

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1 .

(34)

We are now able to proceed to prove:

c−1∑
k1=1

k1∑
k2=1

. . .

kα−1∑
kα=1

k1k2 . . . kα

≥
c(c−α)

2α

c∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1 , (35)

which is obviously true when α≥ c≥ 1, since the LHS≥ 0
and the RHS ≤ 0. We prove (35) when c > α by induc-
tion. We let the “first” case be c= α−1. This is obviously
true since α≥ c. We now assume that (35) is true for some
value n of c such that n≥ α−1. That is, n+2> α.



98 Y. Hitchcock et al.: Solving multiple DLPs and the security of fixed ECs

Substituting n for c in (35) gives (36), which we as-
sume is true:

n−1∑
k1=1

k1∑
k2=1

. . .

kα−1∑
kα=1

k1k2 . . . kα

≥
n(n−α)

2α

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1, (36)

∴
n∑
k1=1

k1∑
k2=1

. . .

kα−1∑
kα=1

k1k2 . . . kα

≥ n

(
n−α

2α
+1

) n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1

=
n(n+α)

2α

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1 . (37)

We now proceed to prove (35) for c= n+1 given (36).
That is, we proceed to prove:

n∑
k1=1

k1∑
k2=1

. . .

kα−1∑
kα=1

k1k2 . . . kα

≥
(n+1)(n+1−α)

2α

n+1∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1 .

(38)

From (37), (38) is true if:

n(n+α)
n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1

≥ (n+1)(n+1−α)
n+1∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1 .

(39)

Substituting (34) into the (rearranged)RHS of (39) gives:

(n+1)(n+1−α)
n+1∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1

= (n+1)(n+1−α)
n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki

+(n+1)2(n+1−α)
n+1∑
k1=1

k1∑
k2=1

. . .

kα−3∑
kα−2=1

α−2∏
i=1

ki

≤ (n+1)(n+1−α)
n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki

+
2(α−1)(n+1)2(n+1−α)

(n+1)(n−α+2)
·

 n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki




=
(n+1)(n+1−α) (n+α)

n+2−α

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki

def
= Q .

Now LHS of (39) ≥ Q =⇒ LHS of (39) ≥ RHS of (39).
Therefore, in order to prove LHS of (39)≥RHS of (39),
we prove LHS of (39)≥Q, or LHS of (39)−Q≥ 0, from
which the desired result follows immediately:

LHS of (39)−Q

= n(n+α)
n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki

−
(n+1)(n+1−α) (n+α)

n+2−α

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

α−1∏
i=1

ki

=
(n+α)(α−1)

n+2−α

n∑
k1=1

k1∑
k2=1

. . .

kα−2∑
kα−1=1

k1k2 . . . kα−1

def
= R .

Now R ≥ 0 when n+2> α. Thus we have proved that
(39) is true when n+2> α, and hence (38) is true given
n+2> α, (36) and (34).
Since given (34) is true and (35) is true for c= n and

n+2≥ α implies that (35) is true for c= n+1 and since
(35) is obviously true for 1≤ c≤ α, (35) is true for all
c≥ 1 given (34).
Since (32) is true for β = 2 and (32) is true for β−1

implies (32) is true for β, (32) is true for all β ≥ 2. This
completes the proof. �


