
Int J Inf Secur (2002) 1: 143–148 / Digital Object Identifier (DOI) 10.1007/s10207-002-0012-2

Attacking a polynomial-based cryptosystem:PollyCracker

Rainer Steinwandt, Willi Geiselmann, Regine Endsuleit

Institut für Algorithmen und Kognitive Systeme, Arbeitsgruppen Computeralgebra und Systemsicherheit, Prof. Dr. Th. Beth,
Universität Karlsruhe, Am Fasanengarten 5, 76131 Karlsruhe, Germany;
E-mail steinwan@ira.uka.de, Fax: +49-721/608-5022

Published online: 9 April 2002 – Springer-Verlag 2002

Abstract. We describe several attacks on Polly Cracker,
a public key cryptosystem proposed by Fellows and
Koblitz. The first kind of attack shows that variations in
the CPU time needed for evaluating polynomials can leak
significant information about the secret key. This kind of
attack might also be of interest when dealing with other
cryptosystems using polynomial evaluations, like Patar-
in’s hidden fields equations.
Next, we exhibit some “structural” weaknesses in

Polly Cracker’s encryption procedure. In particular, we
demonstrate that with the parameters considered in
a book by Koblitz it is often possible to reveal the private
key easily.

Keywords: Public key cryptography – Multivariate
polynomials – Cryptanalysis

1 Introduction

In [8, 11] Fellows and Koblitz present a public key cryp-
tosystem called Polly Cracker. In this system, the public
key consists of a finite set of multivariate polynomials
with coefficients in some finite field, and the secret key
consists of a common zero of these polynomials. Accord-
ing to [11] two kinds of attacks against Polly Cracker are
known:

– The first (straightforward) one aims at finding a com-
mon zero of the polynomials in the public key – for
a proper choice of the public key this approach should
fail (Fellows and Koblitz suggest an encoding of in-
stances of NP-hard combinatorial problems here).

– The second kind of attack makes use of linear algebra
techniques and aims at the (probabilistic) encryption
procedure of the system. To prevent this approach,

in [11], a fine-tuned version of Polly Cracker is sug-
gested that should not be susceptible to a linear alge-
bra approach.

In this paper we describe several different attacks on Polly
Cracker:

1. First, we show how to use an approach similar to
Kocher’s timing attack [13] for attacking public key
cryptosystems, which are based on the evaluation of
polynomials. It turns out that for some implemen-
tations of Polly Cracker this kind of attack has the
potential for revealing the complete private key or
significant information about it. Similarly, in hidden
fields equations (HFE), information about the Ham-
ming weight of the secret key can be derived.

2. Next, we show how ideas like those applied in [4, 5]
against SPIFI (cf. [2, 3]) and ENROOT (cf. [3, 9]) can
be adapted to the general instance of Polly Cracker.
Using these techniques it is sometimes possible to de-
crypt individual ciphertexts without knowing the se-
cret key.

3. Finally, we demonstrate that with the parameters con-
sidered in [11] for the fine-tuned version, the resulting
cryptosystem is often weak. Namely, we demonstrate
that by means of a computer algebra system it is often
possible to reveal the private key within a fewminutes.

2 Polly Cracker

We denote by Fq the finite field with q elements and
by n ∈ N a fixed natural number. Moreover, we assume
that plaintexts are represented as elements of Fq; cipher-
texts are represented as polynomials in n indeterminates
x1, . . . , xn over Fq. With these conventions the main in-
gredients of Polly Cracker are as follows (see [11] for more
details):

144 R. Steinwandt et al.: Attacking a polynomial-based cryptosystem: Polly Cracker

– Alice’s secret key is a random vector σ ∈ Fnq .
– Her public key is a finite set of polynomials P ⊆
Fq[x1, . . . , xn] such that p(σ) = 0 for all p ∈ P .

– To encrypt a plaintext m ∈ Fq, Bob chooses for each
p ∈ P a polynomial bp ∈ Fq[x1, . . . , xn]. Then the ci-
phertext computes to

c :=m+
∑
p∈P

bp ·p. (1)

– To decrypt a ciphertext c ∈ Fq[x1, . . . , xn] Alice com-
putes

c(σ) =m+
∑
p∈P

bp(σ) ·p(σ) =m.

Of course, the key problem is to choose the public/secret
key in such a way that the system is secure. Moreover, as
explained in [11, Chap. 5, §6] it may also be advisable to
impose some restrictions on Bob’s choice of the polyno-
mials bp. In fact, the attacks described in the next section
demonstrate that it seems to be rather involved to derive
a secure instance of Polly Cracker.

3 Attacking the system

3.1 Timing polynomial evaluations

For decrypting a ciphertext c in the Polly Cracker sys-
tem, Alice evaluates c at her secret key σ. The choice of
the algorithm used here can influence the security of the
resulting system significantly. For example, when evalu-
ating dense polynomials by means of Horner’s rule, the
Hamming weight of the evaluation point influences the
number of additions and multiplications that have to be
performed during the evaluation. So one can expect the
weight of the secret key σ to influence the amount of CPU
time required for evaluating a ciphertext.
Of course, in a practical implementation, the occur-

ring multivariate polynomials are usually not dense, and
alternate evaluation strategies can be used. Moreover, the
complexity of the computations in Fq or caching phenom-
ena might influence the required execution time.
To demonstrate that in a careless implementation a

timing-side channel can indeed leak critical information,
subsequently we give an example based on the evaluation
procedure of the commercial computer algebra system
MAGMA (see [6]). In an experimental example, the timing
information turned out to be sufficient for revealing the
complete secret key.
Now assume that Alice has fixed her secret key σ ∈ Fnq

and a corresponding public key P ⊆ Fq[x1, . . . , xn]. In
a first step we want to identify the Hamming weight of σ,
that is, the number of non-zero entries in σ. For this we
proceed through the following steps:

1. Ideally, in the first (preparative) step we have ac-
cess to the same kind of platform that is used by
Alice for decryption. We produce some ciphertext

polynomial c, and for each possible weight 0 ≤ w ≤
n of a secret key we create several random elem-
ents from Fnq of Hamming weight w and determine
the CPU time required for evaluating c at these
points.

2. Next, for each 0 ≤ w ≤ n we use the timings from
Step 1 to compute an estimation of the average time
tw required for evaluating c at a point of weightw. One
may think of different approaches to derive the esti-
mation tw – in our experiments the following simple
procedure worked quite satisfactory: after computing
the mean value tw and the standard deviation sw of all
timings obtained for messages of weight w, we aban-
don all timings t with |t− tw| > 6sw. Averaging over
the remaining samples yields our estimated encryp-
tion time tw.

3. When Alice decrypts the ciphertext c, we meas-
ure the CPU time t she needs for the evaluation
of c at her secret key σ. Based on t and the ref-
erence timings tw we can derive an estimation for
σ’s Hamming weight. Namely, if there is a unique
weight w with |t− tw| being minimal, we estimate
σ’s weight to be w; if |t− tw| = |t− tw′| for weights
w �= w′ in our experiments we estimated σ’s weight
to be max(w,w′). This crude method worked quite
satisfactory.

In our experiments with MAGMA it turned out that it
is superfluous to perform measurements for each Ham-
ming weight – a much more efficient procedure worked
very well: we encrypt the zero message and messages of
weight n only. This yields two reference timings t0 and tn,
and to interpolate tw for 0<w < n we suppose the map
{0, . . . , n}→R, w �→ tw to be affine.
Of course, the above idea for estimating the weight

of an evaluation point can, in principle, also be applied
to the HFE cryptosystemwheremultivariate polynomials
are evaluated at plaintext messages (m1, . . . ,mn) ∈ Fnq
(cf. [14, 15]). While knowing the weight of an evaluation
point alone might not be critical yet in Polly Cracker we
can do much better. Instead of estimating only σ’s weight
w, we can check whether the kth component of σ is zero or
non-zero:

1. Compute a ciphertext c :=m+
∑
p∈P bp ·p such that

each (non-constant) term1 contains the variable xk
(e.g., select each bp ∈ Fq[xk]\{0} with bp(0) = 0). So
we can expect that Alice’s time for decrypting c de-
pends significantly on whether xk is specialized to zero
or to a non-zero element.

2. Next, we need access to the same kind of platform
Alice uses for decryption, so that we can evaluate c
at several randomly chosen points β = (β1, . . . , βn) ∈
Fnq of weight w with βk = 0 and at several randomly
chosen points γ = (γ1, . . . , γn) ∈ Fnq of weight w with
γk �= 0.

1 We adopt the convention that a term is a monic monomial.

R. Steinwandt et al.: Attacking a polynomial-based cryptosystem: Polly Cracker 145

3. As in Step 2 of the previous algorithm (when estimat-
ing σ’s weight) we can use the obtained timings to
derive an estimation tz and tnz for the CPU time re-
quired on average for evaluating c at a point of weight
w with the kth component being zero and non-zero,
respectively.

4. Finally, we send the ciphertext c to Alice and measure
the CPU time t she requires for evaluating c at her se-
cret key σ. If |t− tz|< |t− tnz| then we assume the kth
component of the secret key to be zero, and in case of
|t− tz|> |t− tnz| we assume the kth component of the
secret key to be non-zero (in case of |t− tz|= |t− tnz|
we do not know).

As knowing both the number w and the positions of
the non-zero entries of σ restrains the number of pos-
sible secret keys from qn to (q−1)w, for q = 2 the above
attack should allow us to derive the secret key σ with-
out further computations. To verify the latter statement
experimentally, we used a SUN SPARCstation-10 with
33MHz and 128MB of RAM andMAGMA V2.5-1’s built-
in Evaluation function for evaluating polynomials. The
secret key σ was chosen from F1282 , and the public key
consisted of 128 polynomials from F2[x1, . . . , x128]. Meas-
uring the required CPU time by means of MAGMA’s
Cputime function, the above attack revealed the complete
secret key σ successfully. For example, for the last bit we
had tz = 2.12 s, tnz = 2.1673 s, and evaluating the cipher-
text at σ took 2.121 s – in accordance with σ’s last bit
being reset.
So for practical implementations of cryptosystems

like Polly Cracker, appropriate care for hiding tim-
ing information should be taken. An obvious way to
avoid our timing attack is to choose σ ∈ Fq \ {0}n, i.e.,
zero entries are not allowed. For obvious reasons the
latter approach cannot be applied over the field F2
which, in other respects, is quite attractive for actual
implementations.
Also, it should be pointed out that the availability of

CPU timings is just one example of a side channel attack,
and the question of protecting polynomial-based schemes
against other “physical” attacks like differential power
analysis (cf. [12]) arises. For example, when using simple
delay loops for masking the “real” CPU time, a simple
power analysis might be sufficient to reveal the delay
loops. The cryptanalytic relevance of differential power
analysis-based attacks for polynomial-based schemes
is illustrated by the attacks in [16] on two signature
schemes.
We do not want to discuss side channel attacks in more

detail here, rather we will continue with more “struc-
tural” problems of Polly Cracker instead.

3.2 Exploiting sparseness for revealing individual
messages

The idea of the linear algebra attacks mentioned in [8, 11]
is to reconstruct the polynomials bp that Bob has used to

derive the given ciphertext (1). However, as the plaintext
m ∈ Fq is a constant, we have

m= c(0)−
∑
p∈P

bp(0) ·p(0), (2)

that is, to reveal the plaintext m it is sufficient to de-
termine the constant terms bp(0) of all those bp’s where
p(0) �= 0. If Bob does not pay enough attention to the
encryption process, these constants can often be derived
very easily from the ciphertext and Alice’s public key.
As there are

(
n+d
d

)
terms of total degree ≤ d in n in-

determinates (e.g., [7, Chap. 9, §2, Lemma 4]), for a rea-
sonable key size we can assume that Alice’s public poly-
nomials P are not dense, and with some luck each p ∈ P
contains a term tp that does not occur in any element
from P \{p} (the situation where no such “characteristic
term” exists will be discussed later). Denote by T(·) the
function that yields the set of terms occurring in a poly-
nomial with non-zero coefficient. Now, if the terms tp and
Bob’s polynomials bp satisfy the condition2

tp �∈
⋃
p′∈P

T(p
′) ·T(bp′ − bp′(0)) (p ∈ P), (3)

then the coefficient of tp in the ciphertext c is just the
coefficient of tp in the public polynomial p multiplied by
bp(0). In other words, we can immediately read off the
desired constant terms bp(0) from the ciphertext and re-
cover the plaintext via equation (2).
Having in mind a somehow realistic encryption pro-

cedure, it seems sensible to assume that Bob’s polyno-
mials bp are sparse. So in particular if the terms of these
polynomials are chosen at random, we have quite a good
chance for condition (3) to hold. A drastic example is the
original version of ENROOT (cf. [9]), which can be re-
garded as a special case of Polly Cracker. Here all polyno-
mials involved are required to be “highly” sparse and the
polynomials used for encryption are chosen at random.
Consequently, the plaintext can often be revealed easily
(cf. [5]). But also the general Polly Cracker cryptosystem
is not immune against this kind of attack.

Example 1. In the Graph 3-Coloring instance of Polly
Cracker (see [8, Example 1] and [11, Chap. 5, §3, Ex-
ample 3.1]) the public polynomials split into two subsets:
the first of these subsets consists of the linear polynomials

pv := xv1+xv2+xv3+1 ∈ F2 [∪v∈V {xv1, xv2, xv3}]

(v ∈ V) (4)

where V is the vertex set of some graph, and the re-
maining public polynomials involve only terms of total
degree two and their constant term is zero. So it is suf-
ficient to recover the constant terms of those of Bob’s

2 As usual, for A,B ⊆ Fq[x1, . . . , xn] we write A ·B for {a · b : a ∈
A, b ∈B}.

146 R. Steinwandt et al.: Attacking a polynomial-based cryptosystem: Polly Cracker

polynomials that are multiplied with a polynomial of the
form (4). For this, each of the variables xv1, xv2, xv3 can
serve as a “characteristic term” of pv. The only way to
“eliminate” these characteristic terms is to include lin-
ear terms in Bob’s polynomials bpv (v ∈ V). In particular,
selecting the terms of the bpv ’s at random results in a ci-
phertext which can immediately be decrypted with the
method described above with very high probability. It
should be mentioned here that this attack does not apply
to Koblitz’s fine-tuned version where the polynomials bpv
are chosen through “directed randomness” (see [11]). We
will address this fine-tuned version in Sect. 3.3.

Now letQ⊆ Fq[x1, . . . , xn] be an arbitrary set of poly-
nomials generating a proper ideal 〈Q〉 � Fq[x1, . . . , xn]
which contains Alice’s public polynomials P , i.e., for all
p ∈ P we have p ∈ 〈Q〉. Then for a given ciphertext (1)
there exist polynomials b̃q̃ ∈ Fq[x1, . . . , xn] such that

c=m+
∑
q̃∈Q

b̃q̃ · q̃.

In other words, if we know the generating set Q and
those b̃q̃(0) with q̃(0) �= 0, we are able to recover the plain-
text message m analogously as in equation (2). Conse-
quently, a “good” encryption procedure for Polly Cracker
has to ensure the following: no “characteristic terms”
in the public key can be used for recovering the plain-
text, and the attacker cannot find a suitable subset Q⊆
Fq[x1, . . . , xn] for mounting such an attack.
In fact, the situation is even more involved: assume

that there is a small set of terms X ⊆ Fq[x1, . . . , xn] (say
less than a few thousand) such that each of Alice’s public
polynomials p is of the form

p= αp0+
∑
xν∈X

αpν ·x
ν (5)

with αpν ∈ Fq. Although we cannot assume to find “char-
acteristic terms” in this situation, it is possible to adapt
the above attack: for this, we assume w.l.o.g. the public
polynomials P to be Fq-linearly independent. If this as-
sumption does not hold, we can pass from P to a maximal
Fq-linearly independent subset of P , as such a subset gen-
erates the same ideal in Fq[x1, . . . , xn] as P does.
Now, if for all of Bob’s polynomials bp the condition

(
T(bp− bp(0)) ·X

)
∩X = ∅ (p ∈ P) (6)

holds, then the coefficient cν of x
ν ∈ X in the cipher-

text computes to
∑
p∈P αpν · bp(0), and we obtain a linear

system of equations for the constant coefficients bp(0).
Namely, for P = {p1, . . . , pr}, X = {xν1 , . . . , xνs} we
have

αp1ν1 . . . αprν1
...

...
αp1νs . . . αprνs

 ·

bp1(0)
...

bpr(0)

=

cν1
...
cνs

 . (7)

The coefficient matrix on the left-hand side of equa-
tion (7) is of rank r = card(P), because by evaluating the
polynomials in P at Alice’s secret key we see from equa-
tion (5) that

αp0 =−
(∑
xν∈X

αpν ·x
ν
)
(σ) (p ∈ P).

Hence, if the columns in the coefficient matrix of equa-
tion (7) were linearly dependent we also had a linear de-
pendence among the public polynomials P – a contradic-
tion. Therefore, applying Gauß’ algorithm to equation (7)
yields a unique solution for the constant terms bp(0), and
we can recover the plaintext via equation (2).
Of course, the question arises what to do if neither

“characteristic terms” exist nor condition (6) holds. For
the special case of the ENROOT system an approach of
this kind has been proposed in [3], but the attacks of Bao
et al. in [4] demonstrate that the “tame collisions” occur-
ring there are not sufficient for saving that system: the
construction used in [3] did not prevent the attacker from
being able to determine a small set of candidates for the
terms occurring in Bob’s polynomials bp. Knowing such
a set, a simple linear algebra-based attack is sufficient to
recover the plaintextm.
To preclude linear algebra-based attacks, one can try

to introduce some “hidden terms” in the encryption pro-
cedure as described in the quote of H. W. Lenstra in [11,
Chap. 5, §6]. However, the “differential” attack from [10]
demonstrates that the use of “hidden terms” still does not
guarantee the security of the resulting system. The latter
attack takes quotients of monomials in Alice’s public key
into account and aims at recovering such hidden terms as
mentioned above. After preprocessing a ciphertext with
such a “differential” attack, a linear algebra-based attack
might become feasible again.
In summary, fixing a public key and a “good” en-

cryption procedure for Polly Cracker seems to be quite
involved. One attempt for deriving a secure instance of
Polly Cracker, including a special encryption procedure,
has been proposed in [11, Chap. 5, §7]. Unfortunately, the
next section demonstrates that for the parameters consid-
ered in this instance, it is often feasible to reveal the secret
key within a few minutes.

3.3 Revealing the secret key

In [11, Chap. 5, §7] Koblitz suggests to base Polly Cracker
on the so-called Graph Perfect Code problem with the
public key being derived from a suitable 3-regular graph.
For this instance of Polly Cracker, Koblitz describes an
accompanying fine-tuned encryption procedure that is
designed to withstand the kind of linear algebra attack
mentioned in the introduction.
Using MAGMA we did some experiments with the

suggested parameter sizes. During these experiments it
turned out that, besides problems concerning efficiency,

R. Steinwandt et al.: Attacking a polynomial-based cryptosystem: Polly Cracker 147

with the specified parameters there are non-negligible
problems in the generation of a secure public key-private
key pair. To explain these problems we shortly recall how
Alice derives a public key-private key pair (for more de-
tails see [11, Chap. 5]):

1. Alice starts with a(n undirected) 3-regular graphG=
(V,E) containing a perfect code. This means there is
a subset Σ⊆ V such that for each v ∈ V there is ex-
actly one u ∈ Σ with v ∈N(u) – here

N(u) := {w ∈ V : w = u or {u,w} ∈E}.

Koblitz suggests the graph to have n≈ 500 vertices (so
Σ contains n/4≈ 125 elements).

2. Now her secret key is σ := (χ(v))v∈V ∈ Fn2 where
χ(v) = 1 if v ∈Σ and χ(v) = 0 otherwise.

3. The public key consists of the following two sets of
polynomials (with common zero σ):

B1 :=
{
1−
∑
u∈N(v)

xu : v ∈ V
}
⊆ F2[{xv :v ∈ V }] , (8)

B2 :=
{
xuxw : u,w ∈N(v), u �= w, v ∈ V

}

⊆ F2[{xv : v ∈ V }] .

The key point in the construction of a public key-private
key pair is the choice of the graph G. Unfortunately,
in [11, Chap. 5, §7] neither a concrete algorithm for doing
so nor an example is given. An obvious and also a de-
sirable method for deriving a key pair is to use a graph
that has been constructed at random by a procedure as
described in [11, answer to Ex. 9 of Chap. 5, §3]. How-
ever, in our experiments it turned out that a random con-
struction does not yield acceptable key pairs. Of course,
this does not show that the Graph Perfect Code problem
is, in general, easy. For example, the NP-hard problem
of actually finding a vertex coloring with three colors of
a graph of chromatic number three also turns out to be
“easy” for random graphs (cf. e.g., [1] and the references
given there). Nevertheless our results give computational
evidence that deriving cryptographically useful (hard) in-
stances of Graph Perfect Code is not as easy as one could
be tempted to hope:
For our experiments we used MAGMA to derive at

random 3-regular (connected) graphs with n = 500 ver-
tices containing a perfect code. In all our examples (some
1000) after computing a reduced lexicographic Gröbner
basis of the ideal 〈B1〉 ⊆ F2[{xv : v ∈ V }] spanned by the
linear polynomials (8) – in other words after computing
a reduced row echelon form – no more than five “free pa-
rameters” were left to be determined. In other words, to
reveal the private key it was sufficient to check through
which of the ≤ 25 = 32 possible specializations of these
free parameters we obtain a common zero of the public
key.
We want to mention a refinement of this astonish-

ingly simple approach: consider the zero-dimensional

ideal 〈B〉 ⊆ F2[{xv : v ∈ V }] generated by B := B2 ∪
{x2v−xv : v ∈ V }∪B3 where B3 contains those elements
of a reduced Gröbner basis of 〈B1〉 which involve no more
than two monomials (necessarily of total degree ≤ 1).
Then applying Buchberger’s algorithm to B produces
only monomials and binomials (sums of two monomials),
because by definition the S(yzygy)-polynomial of binomi-
als can never involve more than two terms (see, e.g., [7,
Chap. 2, §6, Definition 4]).
As also all occurring coefficients are contained in F2,

one can hope to be able to compute a reduced Gröbner
basis of 〈B〉 and to obtain in this way new linear polyno-
mials in the indeterminates xv. Such linear polynomials
can then be added to the already known linear conditions
(8) with the aim of reducing the number of free parame-
ters. As an example, we applied this technique to a graph
where the original linear equations allowed five free pa-
rameters: after adding the additional linear polynomials
only one free parameter was left. For an instance with
three free parameters we could determine the secret key
uniquely.

4 Conclusion

We described attacks against both the general Polly
Cracker cryptosystem and the fine-tuned variant de-
scribed by Koblitz.
The attacks demonstrate that there are non-negligible

problems in deriving secure public keys and encryption
procedures for Polly Cracker; the timing attack might
also be of interest for other cryptosystems that rely on the
evaluation of polynomials, like HFE. For a more detailed
analysis it would be helpful to have a concrete public key
and some ciphertext available, so that the effectiveness
of the proposed attacks can be examined against a con-
crete instance of Polly Cracker. Unfortunately, neither [8]
nor [11] give an example or a specification how to generate
such an example. Therefore it remains unclear whether it
is possible to derive instances of Polly Cracker which are
of practical relevance.

References

1. Alon N, Kahale N (1997) A spectral technique for coloring ran-
dom 3-colorable graphs. SIAM J Comput 26:1733–1748

2. Banks WD, Lieman D, Shparlinski IE (2000) An identification
scheme based on sparse polynomials. In: Imai H, Zheng Y
(eds) Proceedings of Third International Workshop on Prac-
tice and Theory in Public Key Cryptosystems, PKC 2000.
Lecture Notes in Computer Science, vol 1751. Springer, Berlin
Heidelberg New York, pp 68–74

3. Banks WD, Lieman D, Shparlinski IE, To VT (2001) Crypto-
graphic applications of sparse polynomials over finite rings. In:
Won D (ed) Proceedings of Third International Conference on
Information Security and Cryptology – ICISC 2000. Lecture
Notes in Computer Science, vol 2015. Springer, Berlin Heidel-
berg New York, pp 206–220

4. Bao F, Beth T, Deng RH, Geiselmann W, Schnorr C, Stein-
wandt R, Wu H (2000) Cryptanalysis of SPIFI II and EN-
ROOT II. In: Security through Analysis and Verification,

148 R. Steinwandt et al.: Attacking a polynomial-based cryptosystem: Polly Cracker

Dagstuhl Seminar No. 00501, no. 294 in Dagstuhl Seminar Re-
port (abstract), p. 7

5. Bao F, Deng RH, Geiselmann W, Schnorr C, Steinwandt R,
Wu H (2001) Cryptanalysis of two sparse polynomial based
public key cryptosystems. In: Kim K (ed) Proceedings of 4th
International Workshop on Practice and Theory in Public
Key Cryptosystems, PKC 2001. Lecture Notes in Computer
Science, vol. 1992. Springer, Berlin Heidelberg New York,
pp 153–164

6. Bosma W, Cannon J, Playoust C (1997) The Magma algebra
system I: the user language. J Symbolic Comput 24:235–265

7. Cox D, Little J, O’Shea D (1992) Ideals, varieties and algo-
rithms: an introduction to computational algebraic geometry
and commutative algebra. Undergraduate Texts in Mathemat-
ics. Springer, New York Berlin Heidelberg

8. Fellows M, Koblitz N (1994) Combinatorial cryptosystems ga-
lore! In: Mullen GL, Shiue PJ-S (eds) Finite fields: theory,
applications, and algorithms. Contemporary Mathematics,
vol 168. American Mathematical Society, pp 51–61

9. Grant D, Krastev K, Lieman D, Shparlinski I (2000) A public
key cryptosystem based on sparse polynomials. In: Buchmann
J, Høholdt T, Stichtenoth H, Tapia-Recillas H (eds) Cod-
ing theory, cryptography and related areas. Proceedings of
an International Conference, Guanajuato, Mexico, April 1998.
Springer, Berlin Heidelberg New York pp 114–121; at the time
of writing available from
http://www.comp.mq.edu.au/∼igor/GKLS.ps

10. Hofheinz D, Steinwandt R (2001) A “differential” attack on
Polly Cracker. To appear in 2002 IEEE International Sym-
posium on Information Theory, ISIT 2002 Proceedings (ex-
tended abstract), 2002

11. Koblitz N (1998) Algebraic aspects of cryptography. With an
appendix on hyperelliptic curves by Alfred J. Menezes, Yi-
Hong Wu, and Robert J. Zuccherato. Algorithms and Com-
putation in Mathematics, vol 3. Springer, Berlin Heidelberg
New York

12. Kocher P, Jaffe J, Jun B (1999) Differential power analysis.
In: Wiener M (ed) Advances in Cryptology – CRYPTO ’99.
Lecture Notes in Computer Science, vol 1666. Springer, Berlin
Heidelberg New York, pp 388–397

13. Kocher PC (1996) Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz N
(ed) Advances in Cryptology – CRYPTO 1996. Lecture Notes
in Computer Science, vol 1109. Springer, Berlin Heidelberg
New York, pp 104–113

14. Patarin J (1996) Hidden fields equations (HFE) and isomor-
phisms of polynomials (IP): two new families of asymmet-
ric algorithms. In: Maurer U (ed) Advances in Cryptology
– EUROCRYPT 1996. Lecture Notes in Computer Science,
vol 1070. Springer, Berlin Heidelberg New York, pp 33–48; for
an extended version see [15]

15. Patarin J (1996) Hidden fields equations (HFE) and iso-
morphisms of polynomials (IP): two new families of asym-
metric algorithms. At the time of writing available at
http://www.univ-tln.fr/∼courtois/hfe.dvi; extended ver-
sion of [14]

16. Steinwandt R, Geiselmann W, Beth T (2001) A theoretical
DPA-based cryptanalysis of the NESSIE candidates FLASH
and SFLASH. In: Davida GI, Frankel Y (eds) Information Se-
curity, 4th International Conference, ISC 2001 Proceedings.
Lecture Notes in Computer Science, vol 2200. Springer, Berlin
Heidelberg New York, pp 280–293

