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Abstract. The mean-variance hedging approach for pricing and hedging
claims in incomplete markets was originally introduced for risky assets.
The aim of this paper is to apply this approach to interest rate models in
the presence of stochastic volatility, seen as a consequence of incomplete
information. We fix a finite number of bonds such that the volatility matrix
is invertible and provide an explicit formula for the density of the variance-
optimal measure which is independent of the chosen times of maturity.
Finally, we compute the mean-variance hedging strategy for a caplet and
compare it with the optimal stategy according to the local risk minimizing
approach.
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1. Introduction

The mean-variance hedging approach for pricing and hedging claims in
incomplete markets was originally introduced for risky assets by several
authors. Schweizer (2001) presents a general overview of the main results
of mean-variance hedging theory and a complete bibliography.

A typical example of market incompleteness is given by stochastic volatil-
ity models. For risky assets, the mean-variance hedging criterion has been
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analyzed in models where the volatility follows a diffusion by Laurent and
Pham (1999) and where the volatility jumps by Biagini, Guasoni and Pratelli
(2000).

The aim of this paper is to apply the mean-variance hedging approach to
interest rate models in the presence of stochastic volatility. Several stochastic
volatility models for bonds have been proposed in the literature (Longstaff
and Schwartz (1992), Chiarella and Kwon (2000)). Here a stochastic volatil-
ity model is seen as a model withincomplete information as in the approach
introduced for risky assets by F¨ollmer and Schweizer (1991). In a Heath–
Jarrow–Morton framework, we suppose that the forward rate volatility is
affected by an additional source of randomness and is measurable with re-
spect to a filtration larger than that available to the agent. In this setting the
market is incomplete in spite of the fact that in principle an infinite number
of bonds is available for trade. Since perfect replication is not possible, we
compute the density of the variance-optimal measure in order to find the
mean-variance optimal strategy for a given European option. We remark
that we consider only self-financing portfolios consisting of a finite number
of bonds as in the approach of Musiela and Rutkowski (1997).

2. The model

We introduce our basic model here. Our set of states is given by the product
probability space(�×E,FW ⊗ E, PW ⊗ PE), where(�,FW,FWt , PW)
and (E, E, Et , P E) are two complete filtered probability spaces. In par-
ticular, all filtrations are assumed to satisfy the so-called“usual hypoth-
esis”. We assume thatWt is a standardn-dimensional Brownian motion
on � = C([0, T ],R), PW is the Wiener measure andFWt is the PW -
augmentation of the filtration generated byWt .

The spaceE represents an additional source of randomness which affects
the market. In the terminology of F¨ollmer and Schweizer (1991), the market
is now incomplete as a result ofincomplete information: if the evolution of
η had been known the market would be complete.

We suppose that there exists onE a square-integrable (eventuallyd-
dimensional) martingaleMt endowed with the predictable representation
property, i.e., for every square-integrable martingaleNt there exists a pre-

dictable processHt such thatNt = N0 +
∫ t

0
HsdMs .

We analyze the mean-variance hedging criterion in the case of interest
rates models. The assets to be considered on the market are zero coupon
bonds with different maturities. Following the notation of Bj¨ork (1998), we
denote byp(t, T ) the price at timet of a bond maturing at timeT , where,
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for every fixedT , the processp(t, T ) is an optional stochastic process such
thatp(t, t) = 1 for all t .

We assume that there exists a frictionless market forT -bonds for every
T > 0 and that, for every fixedt , p(t, T ) is almost surely differentiable in
theT -variable.

The forward rate f (t, T ) is defined asf (t, T ) = −∂ logp(t, T )

∂T
and

the short rate asrt = f (t, t) . Themoney market account is given by the

processBt = exp
( ∫ t

0
rsds

)
.

Using to the Heath–Jarrow–Morton approach (see Heath, Jarrow and
Morton (1992) for further details), we describe the forward rate dynamics.
In this setting,f (t, T ) is represented by a process on the product probability
space(�× E,FW ⊗ E, PW ⊗ PE) such that

df (t, T , η) = α(t, T , η)dt + σ(t, T , η)dWt (1)

with initial condition f (0, T , η) = f ∗(0, T ). We make the following as-
sumptions.

(i) Equation (1) admitsPE-a.e. a unique strong solution with respect to
the filtrationFWt . For example, it is sufficient thatµ andσ arePE-a.e.
bounded.

(ii) The information available at timet is given by the filtrationFt =
FWt ⊗ Et .

(iii) There exists a predictableRn-valued processht such that the integral∫
hsdWs is well defined and

α(t, T , η) = σ(t, T , η)
∫ T

t

σ (t, s, η)ds − σ(t, T , η)ht (η) (HJM)

for everyT ≥ 0. This condition is usually called theHeath–Jarrow–
Morton condition on the drift. In general, it guarantees the existence of

an equivalent martingale measure for
p(t, T )

Bt
as long asE

(∫
hdW

)
is a uniformly integrable martingale. In the complete market case, it is
even sufficient to characterize the unique martingale measure, but in
our setting of incomplete information there exists an infinite number
of them.

By Proposition 15.5 of Bj¨ork (1998), we obtain the bond price dynamics

dp(t, T )

p(t, T )
= (r(t, η)+ 1

2
‖S(t, T , η)‖2 + A(t, T , η))dt + S(t, T , η)dWt,
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where

Si(t, T , η) = − ∫ T
t
σi(t, s, η)ds,

A(t, T , η) = − ∫ T
t
α(t, s, η)ds.

Since in principle an infinite number of bonds is available for trade, one
can assume that the market is complete in spite of lack of information. This
is not true since the future evolution ofη cannot be predicted, not even
through the observation of the entire term structure. For a rigorous proof of
this fact, see the doctoral dissertation of Biagini (2001).

In this setting, the market would be complete if one had access to the
filtration F̃t = FWt ⊗E , which contains at any time all the information about
the past and future evolution ofη. In terms of conditions on the volatility
matrix, by Proposition 4.3 by Bj¨ork (1997) we see that this fact reduces to
the assumption of the existence ofnmaturity timesT1, . . . , Tn, wheren =
dimWt , such that the matrix of elements[At ]ji =

∫ Tj

T0

σi(t, s)ds has rank

equal ton for everyt ∈ [0, T0] and forPE-almost everyη ∈ E. We assume
this as a standing hypothesis in the sequel. For instance, sufficient conditions
implying the existence of such maturities are given by Proposition 5.5 and
Theorem 5.6 of Bj¨ork, Kabanov and Runggaldier (1997).

3. The variance-optimal measure for interest rates

In this framework, we study the problem of an agent wishing to hedge
a certain European optionH expiring at timeT0 by using a self-financing
portfolio composed of a finite number of bonds of convenient maturities and
possibly of the market accountBt . In the sequel, for the sake of simplicity

we will write
dQ

dP
instead of

dQ

dP

∣∣
FT0

.

Definition 3.1. A R
n+1-valued predictable process (θ0, θ), with θ =

(θ1, . . . , θn), is a self-financing strategy if it is integrable with respect

to (p(t, Tj ))j=0,...,n and the wealth process Vt =
n∑
i=0

θ
j
t p(t, Tj ) satisfies

Vt = V0+
n∑
i=0

∫ t

0
θju dp(u, Tj ). Since, under the numéraire p(t, T0), the dis-

counted value of the portfolio is given by
Vt

p(t, T0)
= V0

p(0, T0)
+

∫ t

0
θudXu,

we assume that θ belongs to %.
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Since perfect replication is not possible, we look for a solution to the
minimization problem

minE
[(
H − VT0

)2
]
.

Usually the money market accountBt = exp

(∫ t

0
r(s, η)ds

)
is used as

discounting factor. Now the spot rate is stochastic so the choice ofBt as
numéraire is unfortunate. In Sekine (1999), the impact of a stochastic interest
rate is analyzed in a Markovian framework for the futures case. If the chosen
discounting factor is a stochastic process, by Gouri´eroux, Laurent and Pham
(1998) we see that the minimization problem

minE
[
(H − VT0)

2
]

is equivalent to

minEB
[( H
BT0

− VT0

BT0

)2
]
,

whereEB is the expectation under the equivalent probabilityPB with density

dPB

dP
= B2

T0

E
[
B2
T0

] .
In order to avoid the computation of the new bond dynamics underPB ,

we can choose as num´eraire the bondp(t, T0) expiring at the same maturity
time asH . We immediately have

dP T0

dP
= p(T0, T0)

2

E
[
p(T0, T0)2

] = 1

or in other wordsPT0 ≡ P .
We choose maturity timesT1 < · · · < Tn such that the matrix∫ Tj

T0

σi(t, s)ds is PE-a.e. invertible for everyt and setXjt = p(t, Tj )

p(t, T0)
,

j = 1, . . . , n. We define

% =
{
θ ∈ L(X) :

∫
θdX ∈ S2

}
,

whereS2 is the space of square-integrable semimartingales andL(X) is the
set of integrable processes with respect toXt . More precisely, we are not
interested simply in a self-financing portfolio whose final value has minimal
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quadratic distance fromH , but we are seeking a solution to the minimization
problem

min
V0∈R

θ∈%
E

[(
H − V0 −GT0(θ)

)2
]
, (2)

whereGt(θ) =
∫ t

0
θsdXs . The space of integralsG = GT0(%) represents

the self-financing strategies with initial valueV0 = 0. Hence, following
Schweizer (2001), we impose on the underlying financial market the so-
calledno-approximate profit condition

1 /∈ Ḡ

which represents a type of no-arbitrage condition. HereḠ is the closure of
G in L2.

Problem (2) admits a unique solution(V0, θ) for all H ∈ L2 under
the hypothesis thatGT0(%) is closed (see Gouri´eroux, Laurent and Pham
(1998), and Rheinl¨ander and Schweizer (1997), for the proof). In this case,θ

is called themean-variance optimal strategy andV0 theapproximation price;
they can be computed in terms of the so-calledvariance-optimal measure
(Schweizer (1996), Rheinl¨ander and Schweizer (1997)).

We denote byM2
s (T1, . . . , Tn) andM2

e(T1, . . . , Tn) respectively the set
of square-integrable signed martingale measures and the set ofsquare in-

tegrable equivalent martingale measures forXjt = p(t, Tj )

p(t, T0)
, j = 1, . . . , n.

Definition 3.2. The variance-optimal measure P̃ 0 is the element of
M2

s (T1, . . . , Tn) of minimal norm, where, for everyQ ∈ M2
s (T1, . . . , Tn),∥∥∥∥dQdP

∥∥∥∥2

= E
[(dQ
dP

)2
]
.

If M2
s (T1, . . . , Tn) is nonempty, thenP̃ always exists as it is the min-

imizer of the norm on a convex set, and is actually an equivalent mar-
tingale measure ifXt has continuous paths (Delbaen and Schachermayer
(1996)). Apparently, Definition 3.2 of̃P 0 depends on the chosen maturities
T1, . . . , Tn. Theorem 3.3 provides an explicit expression for the density of
the variance-optimal martingale measure and shows that it is actually in-
variant under a change of the set of maturities if the matrix

∫ Tj
T0
σi(t, s)ds is

PE-a.e. invertible for everyt . Its proof follows from Lemma 7.3 contained
in the Appendix.
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Theorem 3.3. Let H,K be two predictable processes such that the ex-

ponential martingales E
(∫ ·

0
(hs(η)+ S(s, T0, η))dWs +

∫ ·

0
KsdMs

)
and

E
(∫ ·

0
(hs(η)+ S(s, T0, η)+Hs)dŴs

)
are square-integrable. Then

dP̃ 0

dP
= E

(∫ ·

0
(hs(η)+ S(s, T0, η))dWs +

∫ ·

0
KsdMs

)
T0

(3)

or, equivalently,

dP̃ 0

dP
= E (− ∫ ·

0 βsdXs
)
T0

E
[
E (− ∫ ·

0 βsdXs
)
T0

] ,
where H,K are solutions of Equation (9) of Lemma 7.3 and βjs =
−p(s, T0)

p(s, Tj )

∑
i

(his(η)+ Si(s, T0, η))+His )[A−1
s ]ij .

In particular, if σ(t, T , η, ω) = σ(t, T , η), by Biagini, Guasoni and
Pratelli (2000) we find that the density of̃P has the form

dP̃

dP
= E

(∫ ·

0
λsdWs

)
T0

exp
(
− ∫ T0

0 ‖λs‖2ds
)

E
[
exp

(
− ∫ T0

0 ‖λs‖2ds
)] , (4)

whereλt = ht(η)+ S(t, T0, η).

4. Examples

Here we provide some examples in which the stochastic volatility is a conse-
quence of incomplete information and show how to construct the additional
probability space(E, E, E, P E) and the martingaleMt onE with the rep-
resentation property.

The Heath–Jarrow–Morton condition on the drift allows us to model only
the forward rate volatilityσ(t, T , η) andht(η). Without loss of generality,
we assume thatht(η) is affected by the same behavior asσ(t, T ) and we
model only the volatilityσ(t, T ).

Example 4.1. First we consider the case when dimWt = 1 and

σ(t, T ) = σ0I{t<η,t≤T } + σ1I{t≥η,t≤T },

whereσ0, σ1 ∈ R
+ andη is a totally inaccessible stopping time. Here we

setE = R
+ andEt = B([0, t]) ∨ (t,+∞]; a fundamental martingale is
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given byMt = I{t≥η} − at , whereat is the compensator of the processI{t≥η}
associated toη.

More genericallyη can be assumed to be a Markov processηt in con-
tinuous time with a finite set of statesI . This example models the situation
in which the volatility has multiple jumps occurring at independent random
times.

Example 4.2. If in Example 4.1 the volatility assumes values after the jump
according to a general probability distribution, then there is no finite set of
martingales with the predictable representation property. Following Jacod
and Shiryaev (1987), we can replaceMt by the compensated integer-valued
random measureµ − ν associated toηt , which has the predictable repre-
sentation property with respect to the smallest filtration under whichµ is
optional.

Example 4.3. Lastlyηt can be given by a diffusion process

df (t, T ) = α(t, T , ηt )dt + σ(t, T , ηt )dW 1
t

dηt = F(t, T , ηt )dt +G(t, T , ηt )dW 2
t ,

whereW 1
t can be correlated withW 2

t . This example has been studied in the
case of risky assets by using dynamic programming techniques in Laurent
and Pham (1999). Clearly,Mt = W 2

t here.

5. Mean-variance hedging for a call option

As in Biagini and Guasoni (2002), we now assume thatσ(t, T , ω, η) =
σ(t, T , η). We remark that in this particular case the variance-optimal den-
sity is given by (4). We now compute the mean-variance optimal strategy
for a call option expiring at timeT0 on aT1-bond (T0 < T1) by exploiting
the explicit characterization for the density of the variance-optimal measure
provided by Theorem 3.3. LetT1 < T2 < · · · < Tn be maturities such that

the matrix
∫ Tj

T0

σi(t, s)ds is PE-a.e. invertible for everyt . If there exists at

least an equivalent martingale measure forX
j
t = p(t, Tj )

p(t, T0)
, j = 1, . . . , n,

and the space of integrandsGT0(%) is closed, then the variance-optimal
strategy for the call optionH = (P (T0, T1)−K)+ is given by the following

Proposition 5.1. Ifp(T0, T1) is square-integrable with respect to P̃ , then the
components θj of the variance-optimal strategy are given in the following
feedback form:
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for j = 1

θ1
t = ξ1

t + β1
t(

ξ1
t

p(t, T1)

p(t, T0)
−Kξ0

t − Ẽ0
[
(p(T0, T1)−K)+

] −
∫ t

0
θsdXs

)
;

for j > 1

θ
j
t = βjt

(
ξ1
t

p(t, T1)

p(t, T0)
−Kξ0

t − Ẽ0
[
(p(T0, T1)−K)+

] −
∫ t

0
θsdXs

)
,

where ξ0
t = −KẼ0 [1A| Ft−

]
, ξ̃1

t = Ẽ1 [1A| Ft−
]

with A =
{p(T0, T1) ≥ K} and βjt = −p(t, T0)

p(t, Tj )

∑
i

(hit (η)+ Si(t, T0, η))[A−1
t ]ij .

Proof. We need to compute all terms in the implicit characterization of
the mean-variance optimal strategy given in Theorem 6 of Rheinl¨ander and
Schweizer (1997).

By Schweizer (1996), it follows thatc = Ẽ0
[
(p(T0, T1)−K)+

]
. By

Theorem 3.3 we obtain

ζ̃
j
t

Z̃t
= −βjt = p(t, T0)

p(t, Tj )

∑
i

(hit + Si(t, T0, η))[A−1
t ]ij .

In order to computeξ jt , note that, with respect to the “enlarged” filtration
F̃t = Ft ⊗ ET0 which contains all information aboutη, H can be perfectly
replicated by the self-financing portfoliõE0

[
H

∣∣F̃t] . If ξ̃ jt denotes the port-
folio component with respect top(t, Tj ), then by the standard theory of
complete markets we obtaiñξ0

t = −KẼ0
[
1A

∣∣F̃t] , ξ̃1
t = Ẽ1

[
1A

∣∣F̃t] and

ξ̃
j
t = 0 for everyj �= 0,1. Thenξ it is given by the predictable projection of
ξ̃ it with respect toFt , i.e.,ξ0

t = −KẼ0 [1A| Ft−
]
, ξ1
t = Ẽ1 [1A| Ft−

]
and

ξ it = 0 for everyi �= 0,1. For further details, see Biagini (2001).
Furthermore, by applying these results and the change of num´eraire

technique introduced in Geman, El Karoui and Rochet (1995) toṼt =
Ẽ0

[
(p(T0, T1)−K)+

∣∣Ft], we obtain

Ṽt− = p(t, T1)Ẽ
1 [1A| Ft−

] −Kp(t, T0)Ẽ
0 [1A| Ft−

]
,

whereA = {p(T0, T1) ≥ K}. ��
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We remark that the mean-variance optimal strategy depends on the num-
ber of bonds which is equal to(dimWt + 1).

We apply these results in order to price and hedge the capletH =
δ
(1 − p(T0, T1)

δp(T0, T1)
− R

)+
in this framework of incomplete information by

using the mean-variance hedging approach. We refer to Bj¨ork (1997) for all
definitions and properties concerning caplets.

Since the caplet is settled in arrears, we considerH as aT1-option and we
choosep(t, T1) as discounting factor. The approximation price ofH is equal
to Ẽ1 [H ], where the expectation is calculated under the variance-optimal
measure withp(t, T1) as numéraire. The caplet can be written as

H = R∗

p(T0, T1)

( 1

R∗ − p(T0, T1)
)+
,

whereR∗ = 1 + δR. The approximation price is given by

Ẽ1 [H ] = R∗Ẽ1

[
1

p(T0, T1)

(
1

R∗ − p(T0, T1)

)+]
. (5)

Since

dP̃ 1

dP̃ 0

∣∣∣
FT0

= p(T0, T1)

p(T0, T0)
· p(0, T0)

p(0, T1)

we can exploit in (5) the change of num´eraire technique obtaining

Ẽ1 [H ] = R∗Ẽ0

[(
1

R∗ − p(T0, T1)

)+]
.

Note thatH has the same approximation price asR∗ put optionsK =( 1

R∗ − p(T0, T1)
)+

onp(t, T1) expiring at timeT0.

Remark 5.2. SinceH is actually FT0-measurable, a natural question is
whether the mean-variance optimal strategy up to timeT0 for theT1-option
H coincides with (R∗ times) that for theT0-put optionK as in the complete
market case (see Bj¨ork (1997)). The answer is negative as expected since
%T0 ⊆ %T1.

We fix (n+1) bondsp(t, T1), p(t, T2), . . . , p(t, Tn+1) such that the ma-

trix [Bt ]ji =
∫ Tj

T1

σi(t, s)ds is invertible for everyt P E-almost everywhere

and putY jt = p(t, Tj )

p(t, T1)
, j = 2, . . . , n + 1. Note that, in order to compute

the two mean-variance hedging strategies, we need to use the same assets
for both. Consequently, we cannot choosep(t, T0) since it is not defined
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aftert = T0. All computations are made withp(t, T1) as numéraire. We set

Ṽt = p(t, T1)Ẽ
1 [H | Ft ]. Recall thatṼt = R∗p(t, T1)Ẽ

1

[
K

p(T0, T1)

∣∣∣∣ Ft].

By Proposition 5.1, we obtain:
for j > 2, the optimal components forH asT1-option are given by

θ
j,1
t = βjt

(
Ṽt− − Ṽ0 −

∫ t

0
θ1
s dYs

)
,

whereβjt = −p(t, T1)

p(t, Tj )

∑
i

(hit + S(t, T0, η))[B−1
t ]ij ;

for j > 2, the optimal components for theT0-optionR∗K are given by

θ
j,0
t = (βjt + γ 1

t )

(
Ṽt− − Ṽ0 −

∫ t

0
θ0
s dYs

)
,

whereγ 1
t is the solution of the equation

dP T1

dP
= p(T0, T1)

2

E
[
p(T0, T1)2

] = E
(∫ ·

0
γ 1
s dWs +

∫ ·

0
γ 2
s dMs

)
T0

since the use ofp(t, T1) as discounting factor for aT0-option compels us to
work under the probabilityPT1.

We can easily conclude that the two strategies do not coincide up to time
t = T0 unlessγ 1

t = 0, which is not the case in general.

In order to compute an approximation strategy for the caplet, we can
proceed as in the complete market case (see Bj¨ork (1997)). We find the

variance-optimal portfolio for theT0-put optionK =
( 1

R∗ − p(T0, T1)
)+

and invest the final valueVT0 in p(t, T1) from time t = T0 to T1. As shown
in Remark 5.2, this strategy is not the optimal one forH . Nevertheless,
this method remains of some interest since the strategy can be computed in
terms of the “natural” assetsp(t, T0) andp(t, T1) and the approximation
priceẼ0 [K] for K coincides with the approximation pricẽE1 [H ] for H .

6. A comparison with the local risk minimizing approach

An alternative approach to pricing and hedging a contingent claim in the
incomplete market case is local risk minimization (for a complete treatment
of the subject, see Schweizer (1999)). The main difference with respect to
mean-variance hedging is that a local risk minimizing strategy perfectly
replicates the value of a given option, but it is not self-financing. More
precisely, suppose we want to hedge aT0-optionH by using a portfolio
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based on a finite number of bondsp(t, T0), p(t, T1), . . . , p(t, Tn) such that
the matrix

∫ Tj
T0
σi(t, s)ds isPE-a.e. invertible for everyt . As in the previous

sections, we setXjt = p(t, Tj )

p(t, T0)
, j = 1, . . . , n. By exploiting the approach

of Biagini and Pratelli (1999), we have the following

Definition 6.1. An L2-strategyis a triple (θ, θ0, V ) such that θ ∈ % ={
θ ∈ L(X) :

∫
θdX ∈ S2

}
, θ0 is a real predictable process and the value

processVt is a square-integrable stochastic process whose left limit is equal

to
Vt−

p(t, T0)
= θt ·Xt + θ0

t for 0 ≤ t ≤ T0. The (cumulative) cost processis

defined by Ct = Vt

p(t, T0)
−

n∑
j=0

∫ t

0
θjs dXs , 0 ≤ t ≤ T0 .

By Definition 6.1, we get that jumps in the portfolio coincide with the
jumps in the cost process. In a self-financing portfolio, the cost is constant.

Definition 6.2. Let H ∈ L2(FT0, P ) be a contingent claim. An L2-strategy
(θ, θ0, V ) with VT0 = H P − a.s. is called pseudo-locally risk-minimizing
or pseudo-optimalfor H if the cost process Ct is a P -martingale and is
strongly orthogonal to the martingale part of X.

We remark that the optimal strategy is invariant under a change of
numéraire (for more details, see Biagini and Pratelli (1999)).

By Definition 6.2, it immediately follows that a contingent claimH ∈
L2(FT0, P ) admits a pseudo-optimal strategy if and only ifH can be written
as

H = H0 +
∫ T0

0
ξudXu + LT0, (6)

whereH0 ∈ L2(FT0, P ), ξ ∈ % andL is a square-integrable martingale
stronglyP -orthogonal to the martingale part ofX. Equation (7) is usually
referred to in the literature as theFöllmer–Schweizer decomposition ofH . It
is connected to a suitably chosen martingale measure, the so-calledminimal
martingale measure.

Definition 6.3. P̂ 0 ∈ M2
e(T1, . . . , Tn) is the minimal measure(with respect

to p(t, T0) as numéraire) if any locally square-integrable local martingale
which is orthogonal to the martingale part of X under P remains a local
martingale under P̂ 0.

By Definition 6.3 it follows immediately that the pseudo-optimal port-
folio V̂ (φ) is a localP̂ 0-martingale and we obtain

V̂t (φ) = p(t, T0)Ê
0 [H | Ft ] .
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The optimal portfolio is a true martingale if̂Zt = Ê0
[
dP̂ 0

dP

∣∣∣ Ft] is itself

a square-integrable martingale. By exploiting the results of Theorem 3.3,
we find that

dP̂ 0

dP
= E

(∫ ·

0
(hs(η)+ S(s, T0, η))dWs

)
T0

defines the density of the minimal measure as long as the Doleans Exponen-
tial E (∫ ·

0(hs(η)+ S(s, T0, η))dWs
)

is a uniformly integrable martingale.
The pseudo-optimal strategy for a call option in the presence of incom-

plete information has been computed in Biagini and Pratelli (1999) for the
risky assets case. Their results can be easily extended to the interest rate
case. By Theorem 5.1 of Biagini and Pratelli (1999), we see that the pseudo-
optimal portfolio is given by

V̂t (φ) = p(t, T0)Ê
0 [H | Ft ] = p(t, T1)Ê

1 [IA| Ft ]−Kp(t, T0)Ê
0 [IA| Ft ]

and the optimal strategy components areθ0
t = −KÊ0 [1A| Ft−

]
, θ1
t =

Ê1 [1A| Ft−
]

andθjt = 0 for all j = 2, . . . , n. HereÊ1 denotes the expec-
tation taken under the minimal measurêP 1 with respect to the num´eraire
p(t, T1). Note that, in the local risk minimization case, the pseudo-optimal
strategy depends only on two assets in spite of the dimension of the driving
Brownian motion. In contrast, the mean-variance optimal strategy is based
on (n+ 1) bonds, wheren = dimWt .

We apply these results in order to compute the local risk minimizing
strategy for a caplet. In the notation of the previous section, the pseudo-

optimal portfolio for the capletH = R∗

p(T0, T1)

( 1

R∗ −p(T0, T1)
)+

is given

by V̂t = p(t, T1)Ê
1 [H | Ft ] which, for t ≤ T0, coincides with the optimal

portfolio for theT0-put optionK =
( 1

R∗ − p(T0, T1)
)+

since, by Theo-

rem 3.2 of Biagini and Pratelli (1999),

dP̂ 1

dP̂ 0
= p(T0, T1)

p(0, T0)

p(0, T1)
.

For t > T0,
V̂t

p(t, T1)
= Ê [H | Ft ] = H sinceH is FT0-measurable.

In other words, the pseudo-optimal components are constant aftert = T0.
Consequently, in the local risk-minimization case the strategies for theT1-
optionH and for theT0-optionK coincide up to timeT0 and we can act
exactly as in the complete market case. The key is that in this approach we
perfectly replicate the option value in spite of approximating it as in the
mean-variance hedging criterion.
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7. Appendix

Here we simply sketch how to find an explicit characterization ofP̃ 0 in
order to solve the mean-variance hedging problem in the interest-rate case.
In Biagini (2001), the details of all computations are provided.

In order to obtain an explicit formula for the variance-optimal measure,

we first characterize the martingale measures for
( p(t, T )
p(t, T0)

)
t∈[0,T0]

for every

T > 0.

Lemma 7.1. Let Zt be a local martingale with Z0 = 1. The following con-
ditions are equivalent.

(a)Zt
p(t, T )

p(t, T0)
is a local martingale for every T > 0.

(b) Zt = E
(∫ ·

0
(hs + S(s, T0, η))dWs

)
t

(1 +
∫ t

0
ksdMs) for some pre-

dictable process ks such that the integral
∫ t

0 ksdMs is a local martingale.

Proof. The pair(Wt,Mt) has the representation property on(�× E,F ⊗
E, PW ⊗ PE); hence there exist predictable processesλt andkt such that

Zt = 1 +
∫ t

0
λsdWs +

∫ t

0
ksdMs

(see, for example, Biagini, Guasoni and Pratelli (2000)). By applying Itˆo’s

formula, we see that the processZt
p(t, T )

p(t, T0)
is a local martingale if and only

if the processλt solves the following equation for everyT > 0:

Zt−
∑
i

(hit (η)+ Si(t, T0, η))

∫ T

T0

σi(t, s, η)ds − λt
∫ T

T0

σi(t, s, η)ds = 0.

(7)

Since we assume that there existT1, . . . , Tn such that the matrix∫ Tj

T0

σi(t, s)ds is PE-a.e. invertible for everyt , it follows immediately that

λit = (hit (η)+ Si(t, T0, η))

for i = 1, . . . , n. ��
By Equation (7) it follows immediately that the setM2

s (T1, . . . , Tn)

of martingale measures for
p(t, Tj )

p(t, T0)
, j = 1, . . . , n, coincides with the set

M2
s (T ) of martingale measures for

p(t, T )

p(t, T0)
,T ≥ 0.We bring them together

it in the following
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Proposition 7.2. (i) IfQ ∈ M2
s (T1, . . . , Tn), then

dQ

dP
= E

(∫ ·

0
(hs(η)+ S(s, T0, η))dWs

)
T0

(1 +
∫ T0

0
ksdMs)

for some predictable process kt such that the above expression is square-
integrable.

(ii) IfQ ∈ M2
e(T1, . . . , Tn), then

dQ

dP
= E

(∫ ·

0
(hs(η)+ S(s, T0, η))dWs

)
T0

E
(∫ ·

0
ksdMs

)
T0

for some predictable process kt such that kt · >Mt > −1 and

E
(∫ ·

0
(hs(η)+ S(s, T0, η))dWs +

∫ ·

0
ksdMs

)
t

is a square-integrable

martingale.

We define the two procesŝWt andW ∗
t as follows:

Ŵt = Wt −
∫ t

0
(hs(η)+ S(s, T0, η))ds,

W ∗
t = Wt − 2

∫ t

0
(hs(η)+ S(s, T0, η))ds.

Lemma 7.3 is quite technical, but together with Proposition 7.2 it gives
us an explicit expression for the density of the variance-optimal measure.
Its proof is formally analogous to that of Lemma 1.15 of Biagini, Guasoni
and Pratelli (2000).

Lemma 7.3. Let H,K be two predictable stochastic processes whose sto-

chastic integrals
∫ t

0
HsdW

∗
s and

∫ t

0
KsdMs are defined. The following con-

ditions are equivalent:

exp

(∫ T

0
‖(hs(η)+ S(s, T0, η))‖2ds

)
= c E (∫ ·

0HsdW
∗
s

)
T

E (∫ ·
0KsdMs

)
T

(8)

E
(∫ ·

0
(hs(η)+ S(s, T0, η))dWs +

∫ ·

0
KsdMs

)
T

=

= c E
(∫ ·

0
(hs(η)+ S(s, T0, η)+Hs)dŴs

)
T

, (9)

where c is the same constant in both equations.
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We obtain the proof of Theorem 3.3 as follows. Equation (9) com-
pletely characterizes the variance-optimal measureP̃ 0 since, by Schweizer
(1996), it is the unique martingale measure which can be written in the form

E
(

−
∫
βdX

)
, whereXjt = p(t, Tj )

p(t, T0)
. By using the equivalence stated in

Lemma 7.3 we solve Equation (8) instead: since a solution(H,K) always
exists because of the representation property of(Wt,Mt) on (�× E,F ⊗
E, PW⊗PE), we obtain Equation (3) for the density of the variance-optimal
measure.
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