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Abstract. The mean-variance hedging approach for pricing and hedging
claims in incomplete markets was originally introduced for risky assets.
The aim of this paper is to apply this approach to interest rate models in
the presence of stochastic volatility, seen as a consequence of incomplete
information. We fix a finite number of bonds such that the volatility matrix

is invertible and provide an explicit formula for the density of the variance-
optimal measure which is independent of the chosen times of maturity.
Finally, we compute the mean-variance hedging strategy for a caplet and
compare it with the optimal stategy according to the local risk minimizing
approach.
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1. Introduction

The mean-variance hedging approach for pricing and hedging claims in
incomplete markets was originally introduced for risky assets by several
authors. Schweizer (2001) presents a general overview of the main results
of mean-variance hedging theory and a complete bibliography.

Atypical example of marketincompleteness is given by stochastic volatil-
ity models. For risky assets, the mean-variance hedging criterion has been
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analyzed in models where the volatility follows a diffusion by Laurent and
Pham (1999) and where the volatility jumps by Biagini, Guasoni and Pratelli
(2000).

The aim of this paper is to apply the mean-variance hedging approach to
interestrate models in the presence of stochastic volatility. Several stochastic
volatility models for bonds have been proposed in the literature (Longstaff
and Schwartz (1992), Chiarella and Kwon (2000)). Here a stochastic volatil-
ity model is seen as a model witticompl ete information as in the approach
introduced for risky assets byolfher and Schweizer (1991). In a Heath—
Jarrow—Morton framework, we suppose that the forward rate volatility is
affected by an additional source of randomness and is measurable with re-
spect to a filtration larger than that available to the agent. In this setting the
market is incomplete in spite of the fact that in principle an infinite number
of bonds is available for trade. Since perfect replication is not possible, we
compute the density of the variance-optimal measure in order to find the
mean-variance optimal strategy for a given European option. We remark
that we consider only self-financing portfolios consisting of a finite number
of bonds as in the approach of Musiela and Rutkowski (1997).

2. Themodel

We introduce our basic model here. Our set of states is given by the product
probability spacéQ x E, F¥ ® £, PV ® PE), where(@, 7V, FV, PV)
and (E, &, &, PF) are two complete filtered probability spaces. In par-
ticular, all filtrations are assumed to satisfy the so-catlegual hypoth-
esis’. We assume tha, is a standard:-dimensional Brownian motion
on @ = C([0, T],R), PV is the Wiener measure angd" is the P"-
augmentation of the filtration generated Wy.

The spacé represents an additional source of randomness which affects
the market. In the terminology ofdfiier and Schweizer (1991), the market
is now incomplete as a result isfcompl ete information: if the evolution of
n had been known the market would be complete.

We suppose that there exists @éha square-integrable (eventualy
dimensional) martingald/, endowed with the predictable representation
property, i.e., for every square- integrable marting¥lehere exists a pre-

dictable procesé#l; such thatVv;, = Ny +/ H,dM,.

We analyze the mean-variance hedging criterion in the case of interest
rates models. The assets to be considered on the market are zero coupon
bonds with different maturities. Following the notation 0bHE{{1998), we
denote byp(z, T) the price at time of a bond maturing at tim&, where,
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for every fixedr, the proces® (¢, T') is an optional stochastic process such
thatp(s,t) = 1 forallr.

We assume that there exists a frictionless marketftwonds for every
T > 0 and that, for every fixed, p(z, T) is almost surely differentiable in
the T-variable.

Theforward rate (¢, T) is defined asf(t, T) = — d
theshort rate asr, = f(¢,t) . Themoney market account is given by the
trsds>.
Using to the He%th—Jarrow—Morton approach (see Heath, Jarrow and
Morton (1992) for further details), we describe the forward rate dynamics.

Inthis setting,f (¢, T) is represented by a process on the product probability
spaceQ x E, FV @ £, PV ® PE) such that

df (¢, T,n) =, T,n)dt +o(t, T, n)dW, Q)

dlogp(t, T) an

processB; = exp(

with initial condition £ (0, T, n) = f*(0, T). We make the following as-
sumptions.

() Equation (1) admitsP£-a.e. a unique strong solution with respect to
the filtration7V. For example, it is sufficient that ando are P£-a.e.
bounded.

(i) The information available at time is given by the filtrationF;, =
FYVQE&.

(iif) There exists a predictablR”-valued process,; such that the integral

/hxdWS is well defined and

T
at, T,n)=0@,T, 17)/ o(t,s,mds —o(t,T,nh,(n) HIM)

for everyT > 0. This condition is usually called thaeath—Jarrow—
Morton condition on the drift. In general, it guarantees the existence of

. . t, T
an equivalent martingale measure QST) aslong ag (/ de)

t
is a uniformly integrable martingale. In the complete market case, it is
even sufficient to characterize the unique martingale measure, but in
our setting of incomplete information there exists an infinite number
of them.

By Proposition 15.5 of Bjrk (1998), we obtain the bond price dynamics
dp(t,T)
p,T)

1
=(r@m+35I86T, Mm%+ A, T, n)dt + S, T, n)dW,,
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where

Sit, T, n) = — [ o:(t, 5, )ds,
A, T, ) =— [ a(t,s, n)ds.

Since in principle an infinite number of bonds is available for trade, one
can assume that the market is complete in spite of lack of information. This
is not true since the future evolution gfcannot be predicted, not even
through the observation of the entire term structure. For a rigorous proof of
this fact, see the doctoral dissertation of Biagini (2001).

In this setting, the market would be complete if one had access to the
filtration ]7", = }‘,W ® &, which contains at any time all the information about
the past and future evolution gf In terms of conditions on the volatility
matrix, by Proposition 4.3 by Byk (1997) we see that this fact reduces to

the assumption of the existencemofmaturity timesTy, ... , T,, wheren =
T;
dim W;, such that the matrix of elements;|;; = / o;(t, s)ds has rank
To
equal ton for every:r e [0, To] and for PE-almost every; € E. We assume
this as a standing hypothesis in the sequel. For instance, sufficient conditions
implying the existence of such maturities are given by Proposition 5.5 and

Theorem 5.6 of Bjrk, Kabanov and Runggaldier (1997).

3. Thevariance-optimal measurefor interest rates

In this framework, we study the problem of an agent wishing to hedge
a certain European optioH expiring at timeTy by using a self-financing
portfolio composed of a finite number of bonds of convenient maturities and
possibly of the market accou. In the sequel, for the sake of simplicity

. . doO .
we will write a0 instead ofd—Q| .
dP dP 7o

Definition 3.1. A R"*1-valued predictable process (6, 6), with 6 =
(61,...,6,), is a self-financing strategy if it is integrable with respect

.....

i=0

n t
V, = VO+Z/ ejdp(u, T;). Since, under the numéraire p(z, Tp), thedis-
i=0 70

o V Vi !
counted value of the portfolio is given by L= 0 / 0.dX,,
pt.To) pO,To) Jo
we assume that 6 belongsto ®.
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Since perfect replication is not possible, we look for a solution to the
minimization problem

min E [(H - VTO)Z] )

1
Usually the money market accouBt = exp / r(s,n)ds ) is used as

discounting factor. Now the spot rate is stoch%stic so the choidg ab
numeéraire is unfortunate. In Sekine (1999), the impact of a stochastic interest
rate is analyzed in a Markovian framework for the futures case. If the chosen
discounting factor is a stochastic process, by GaouX, Laurent and Pham
(1998) we see that the minimization problem

min E [(H — Vz,)?]

is equivalent to

min E2 [(i - E)Z}
Br, By, ’

whereE? is the expectation under the equivalent probabifiwith density

dP®  Bf,
dP E[Bf]

In order to avoid the computation of the new bond dynamics urder
we can choose as nurdire the bong (¢, Tp) expiring at the same maturity
time asH. We immediately have

dP®  p(To, To)*
dP  E[p(To, To)?]

or in other wordsP™ = P.

We choose maturity timed; < --- < T, such that the matrix
T . . . - 1, T;
/ o;(t, s)ds is PE-a.e. invertible for every and setX; = p( ’),
p(t’ TO)

To
j=1...,n. Wedefine
®:{96L(X):/0dXeSZ},

whereS? is the space of square-integrable semimartingaled.aXd is the
set of integrable processes with respeckto More precisely, we are not
interested simply in a self-financing portfolio whose final value has minimal
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guadratic distance froif, but we are seeking a solution to the minimization
problem

. 2
min £ [(H — Vo — Gr,(9)) ] : (@)
0e®
t
whereG,(6) = 0,dX;. The space of integralg = G1,(®) represents

0
the self-financing strategies with initial valug = 0. Hence, following
Schweizer (2001), we impose on the underlying financial market the so-
calledno-approximate profit condition

1¢G

which represents a type of no-arbitrage condition. Hgie the closure of
Gin L2

Problem (2) admits a unique solutiaiw, #) for all H € L? under
the hypothesis thati7,(®) is closed (see Gowioux, Laurent and Pham
(1998), and Rheimliider and Schweizer (1997), for the proof). In this case,
is called themean-variance optimal strategy and, theapproximation price;
they can be computed in terms of the so-calladance-optimal measure
(Schweizer (1996), Rheiatider and Schweizer (1997)).

We denote by\4§(T1, R ) ande(Tl, ..., T,)) respectively the set
of sguare-integrable signed martingale measures and the set ofquare in-

. T))

tegrable equivalent martingale measures for X/ = 7 T),j =1...,n.
p(t, To

Definition 3.2. The variance-optimal measure P° is the element of
MA(Ty, ..., T,) of minimal norm, where, for every Q € M(Ty, ..., T,),

52 =[]

If Mf(Tl, ..., T,) is nonempty, therP always exists as it is the min-
imizer of the norm on a convex set, and is actually an equivalent mar-
tingale measure i, has continuous paths (Delbaen and Schachermayer
(1996)). Apparently, Definition 3.2 af° depends on the chosen maturities
1., ..., T,. Theorem 3.3 provides an explicit expression for the density of
the variance-optimal martingale measure and shows that it is actually in-
variant under a change of the set of maturities if the maftfoim,- (t,s)ds is
PE-a.e. invertible for every. Its proof follows from Lemma 7.3 contained
in the Appendix.
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Theorem 3.3. Let H, K be two predictable processes such that the ex-
ponential martingales £ </ (hs(n) + S(s, To, n))d Wy +/ stMS) and
0 0

£ ( / (hy(n) + S(s, To, n) + HY)dWY) are square-integrable. Then
0

dﬁo . .
dP 0 0 To
or, equivalently,

dﬁo € (_ fo ﬁdeS)To

dP g [5 -/ 5stS)TO]
where H, K are solutions of Equation (9) of Lemma 7.3 and 8/ =
T N i HMA;
St > (R + S'(s, To. m)) + HHIAT ;.

P(S» T)

In particular, ifo(¢, T, n,w) = o(t,T,n), by Biagini, Guasoni and
Pratelli (2000) we find that the density #fhas the form

aF exp(— J° I1%ds)
4dP E (A )»deS)TO s [exp<_ fOTO ||AS||2dS)] ’ (4)

wherei, = h,(n) + S(¢, To, n).

4. Examples

Here we provide some examples in which the stochastic volatility is a conse-
guence of incomplete information and show how to construct the additional
probability spaceéE, £, £, P£) and the martingal@/, on E with the rep-
resentation property.

The Heath—Jarrow—Morton condition on the drift allows us to model only
the forward rate volatility (¢, T, n) andh,(n). Without loss of generality,
we assume thdi, (n) is affected by the same behavior@a&, T) and we
model only the volatilityo (¢, T').

Example 4.1. First we consider the case when dith = 1 and
o, T)= UOI{t<n,t§T} + Ull{th,th},

whereoy, 01 € R andp is a totally inaccessible stopping time. Here we
setE = RT and&, = B([0,t]) V (¢, +o0]; a fundamental martingale is
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given byM; = Iy, —a,;, whereq, is the compensator of the procdgs
associated tq.

More genericallyy can be assumed to be a Markov procgss con-
tinuous time with a finite set of statés This example models the situation
in which the volatility has multiple jumps occurring at independent random
times.

Example 4.2. If in Example 4.1 the volatility assumes values after the jump
according to a general probability distribution, then there is no finite set of
martingales with the predictable representation property. Following Jacod
and Shiryaev (1987), we can replalde by the compensated integer-valued
random measurg — v associated ta@;, which has the predictable repre-
sentation property with respect to the smallest filtration under which
optional.

Example 4.3. Lastly n, can be given by a diffusion process

dft,T) =a(t, T, n)dt +o(t, T, n)dW}
dn, = F(t,T,n)dt +G(t, T, n)dW?,

whereW? can be correlated witi’2. This example has been studied in the
case of risky assets by using dynamic programming techniques in Laurent
and Pham (1999). Clearly/, = W2 here.

5. Mean-variance hedging for a call option

As in Biagini and Guasoni (2002), we now assume thét T, w, n) =
o(t, T, n). We remark that in this particular case the variance-optimal den-
sity is given by (4). We now compute the mean-variance optimal strategy
for a call option expiring at tim@gp on aT1-bond ([p < T1) by exploiting
the explicit characterization for the density of the variance-optimal measure
provided by Theorem 3.3. L&Yy < T, < --- < T, be maturities such that

T.

J
the matrix/ o;(t, s)ds is PE-a.e. invertible for every. If there exists at

To

M,j =1...,n,
. _ p,To) ~ _
and the space of integrands; (©) is closed, then the variance-optimal
strategy for the call optio® = (P (To, T1) — K)™ is given by the following

least an equivalent martingale measure Xgr=

Proposition 5.1. If p(Ty, Ty) issquare-integrablewith respect to P, thenthe
components 6/ of the variance-optimal strategy are given in the following
feedback form:
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for j=1

911 — Ezl + :Btl

( (T

KE® — EO[(p(Tp, Ty) — K)T —ftests>;
"t To) & [(p(To, T1) — K)*] ;

forj > 1

i_pifsaPGTD 0 zo eyt _/l )
9! _ﬂt < t p(l,To) Ké[ E [(P(TO, Tl) K) ] 0 ests ,

where &7 = —KE°[14F_], & = E'[Li/F ] with A =

/ ) T i i —
{p(To. Ty) = K} and B/ = —f; Z T?; > (i) + St To. M)A
s Ly i

Proof. We need to compute all terms in the implicit characterization of
the mean-variance optimal strategy given in Theorem 6 of Réwedtdi’ and
Schweizer (1997).
By Schweizer (1996), it follows that = E°[(p(To, T1) — K)*]. By
Theorem 3.3 we obtain
g — _pi = p(t, To)
Zt ' p(t, Tj)

> (ki + St To, M)A

In order to computé/, note that, with respect to the “enlarged” filtration
f, = F, ® &g, which contains all information aboyt H can be perfectly
replicated by the self-financing portfolie® [ H | ;] . If &/ denotes the port-
folio component with respect tp(z, 7;), then by the standard theory of
complete markets we obta? = —K E°[1, | %], & = E*[14]F] and
g/ = 0foreveryj #0, 1. Thené! is given by the predictable projection of
£ with respect tof;, i.e.,£0 = —KE® [14] F,_], &} = E* [14] F,_] and
& = 0 for everyi # 0, 1. For further details, see Biagini (2001).

Furthermore, by applying these results and the change ofraire
technique introduced in Geman, El Karoui and Rochet (1995, te=
E° [(p(To, Tv) — K)*| F,], we obtain

Vio = p(t, TDE [141 Fi] — Kp(t, T)E® [14] Fi -],

whereA = {p(Ty, T1) > K}. O
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We remark that the mean-variance optimal strategy depends on the num-
ber of bonds which is equal t@im W, + 1).

We apply these results in order to price and hedge the c#plet
5(1 — p(To, Th)

_8p(To, Th) _ _ _
using the mean-variance hedging approach. We referdrkBj997) for alll
definitions and properties concerning caplets.

Since the capletis settled in arrears, we consifles ar;-option and we
choosep(t, T1) as discounting factor. The approximation pricébis equal
to E1[H], where the expectation is calculated under the variance-optimal
measure withp (¢, T1) as nungraire. The caplet can be written as

+
— R> in this framework of incomplete information by

H=— N (2 pmm) .
p(To, T1) \ R*
whereR* = 1+ §R. The approximation price is given by
B (H] = R*E? [#(i ~ (T mﬂ NG
p(To, Th) \ R*
Since
dPt _ p(To,T) p(O, To)

dPOlr, — p(To, To) p(O, Th)
we can exploit in (5) the change of nenaire technique obtaining

+
E'[H] = R*E° {(Ri — p(To, Tl)) } .

Note thatH has the same approximation priceRisput optionsk =

1 + . :
<F — p(To, T1)> on p(t, Ty) expiring at timeTy.
Remark 5.2. Since H is actually Fr-measurable, a natural question is
whether the mean-variance optimal strategy up to igier the T;-option
H coincides with f* times) that for thelp-put optionK as in the complete
market case (see &jK (1997)). The answer is negative as expected since
®TO g ®T1-

We fix (n+1) bondsp(t, Ty), p(t, T»), ... , p(t, T,+1) such that the ma-

Tj
trix [B,];; :f o;(t, s)ds is invertible for every P£-almost everywhere
T

t, T; .
%, j =2,...,n+ 1. Note that, in order to compute
P\, 11 . .
the two mean-variance hedging strategies, we need to use the same assets

for both. Consequently, we cannot chogse, Tp) since it is not defined

and puty/ =



Mean-variance hedging for interest rate models with stochastic volatility 11

aftert = Tp. All computations are made with(z, 71) as nuneraire. We set
V, = p(t, Ty)E* [H| F,]. Recall thatV, = R* p(¢, T1) E* [ ]—'t].

By Proposition 5.1, we obtain:
for j > 2, the optimal components féf asT;-option are given by

. . - . t
o)t — 5g<v,_ — Vo — / esldYx),
0

: T
wherepg] = g Tli Z(h’ + S(t, To, n)[B; 1ij;

for j > 2, the optimal components for tiig-option R*K are given by

. . . t
*= (B + y})(V,_ - Vo— / 9&11@),
0

wherey,! is the solution of the equation

dph To, T1)? : :
__ro Ty - :8(/ J/SldWer/ VSZdMs>
dP  E|[p(To, To)?] 0 0 To

since the use gp(¢, T1) as discounting factor for &-option compels us to
work under the probability? 7.

We can easily conclude that the two strategies do not coincide up to time
t = To unlessy! = 0, which is not the case in general.

p(To, T1)

In order to compute an approximation strategy for the caplet, we can
proceed as in the complete market case (seekBj1997)). We find the

. . _ _ 1 +
variance-optimal portfolio for th&-put optionK = <F — p(Ty, Tl))
and invest the final valu®z, in p(z, T1) from timet = Ty to 731. As shown
in Remark 5.2, this strategy is not the optimal one fbr Nevertheless,
this method remains of some interest since the strategy can be computed in

terms of the “natural” assets(z, Tp) and p(¢, T1) and the approximation
price E°[K] for K coincides with the approximation pride! [ H] for H.

6. A comparison with thelocal risk minimizing approach

An alternative approach to pricing and hedging a contingent claim in the
incomplete market case is local risk minimization (for a complete treatment
of the subject, see Schweizer (1999)). The main difference with respect to
mean-variance hedging is that a local risk minimizing strategy perfectly
replicates the value of a given option, but it is not self-financing. More
precisely, suppose we want to hedgé&gaoption H by using a portfolio
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based on a finite number of bongé&, Ty), p(¢, T1), ..., p(t, T,) such that
the matrixszf o;(t, s)ds is PE-a.e. invertible for every. As in the previous
p(, T))

sections, we seth = j =1,...,n. By exploiting the approach

N Pt To)’ _
of Biagini and Pratelli (1999), we have the following

Definition 6.1. An L?-strategyis a triple (8,0°% V) suchthat § € ® =
{9 e L(X): fedX e 82}, 0% isareal predictable process and the value

process/; isa square-integrable stochastic processwhoseleft limit is equal

Vi . .
to — =6, X, + 6 for 0 <t < Tp. The (cumulative) cost processs
p(t, To)
, v, SN
defined by C, = — —2/ 0/dX,,0<t<Tp.
p(t, To) par gl

By Definition 6.1, we get that jumps in the portfolio coincide with the
jumps in the cost process. In a self-financing portfolio, the cost is constant.

Definition 6.2. Let H € L2(Fz,, P) be a contingent claim. An L?-strategy
0,0° V) with Vzy = H P — a.s. iscalled pseudo-locally risk-minimizing
or pseudo-optimafor H if the cost process C; isa P-martingale and is
strongly orthogonal to the martingale part of X.

We remark that the optimal strategy is invariant under a change of
numéraire (for more details, see Biagini and Pratelli (1999)).

By Definition 6.2, it immediately follows that a contingent claith
L?(Fz,, P) admits a pseudo-optimal strategy if and onlgfican be written
as

To
H=Ho+ | &dX,+ Ly, (6)
0

where Hy € L?(Fy,, P), £ € © andL is a square-integrable martingale
strongly P-orthogonal to the martingale part &f. Equation (7) is usually
referred to in the literature as théllmer—Schweizer decomposition of H. It
is connected to a suitably chosen martingale measure, the so-titiedhl
martingale measure.

Definition 6.3. P° ¢ MA(Ty, ..., T,) istheminimal measuréwith respect
to p(t, To) as numéraire) if any locally square-integrable local martingale
which is orthogonal to the martingale part of X under P remains a local
martingale under PP.

By Definition 6.3 it follows immediately that the pseudo-optimal port-
folio V(¢) is a Iocalﬁo—martingale and we obtain

Vi(¢) = p(t, T)E® [H| F] .
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The optimal portfolio is a true martingaleﬁ, = E° ‘%0 F: | is itself
a square-integrable martingale. By exploiting the results of Theorem 3.3,
we find that

dP°

— =£ (foh(hs(n) + S(s, To, n))dWs)

dP To

defines the density of the minimal measure as long as the Doleans Exponen-
tial £ (fy(hs () + S(s, To, n))dW;) is a uniformly integrable martingale.

The pseudo-optimal strategy for a call option in the presence of incom-
plete information has been computed in Biagini and Pratelli (1999) for the
risky assets case. Their results can be easily extended to the interest rate
case. By Theorem 5.1 of Biagini and Pratelli (1999), we see that the pseudo-
optimal portfolio is given by

Vi(¢p) = p(t, T))E° [H| F] = p(t, T)E* [I4| F]—Kp(t, To)) E° [14] F]

and the optimal strategy components 8fe= —KE° [1,| F,_], 6} =
E'[14] F,-] and¢/ = Oforall j = 2, ..., n. Here E* denotes the expec-
tation taken under the minimal measuPé with respect to the nuseraire
p(t, T1). Note that, in the local risk minimization case, the pseudo-optimal
strategy depends only on two assets in spite of the dimension of the driving
Brownian motion. In contrast, the mean-variance optimal strategy is based
on(n + 1) bonds, where = dim W;.

We apply these results in order to compute the local risk minimizing
strategy for a caplet. In the notation of the previous section, the pseudo-

optimal portfolio for the capletl = R ( ! (T, T))+ is given
IOA p A p = (0. T) \R* p(o, 11 g
by V, = p(t, Ty) E* [H| F,] which, fort < T,, coincides with the optimal
1 +
portfolio for the Tp-put optionK = (F — p(To, Tl)) since, by Theo-

rem 3.2 of Biagini and Pratelli (1999),

dP? (0, To)
—=5 = p(To, Tl)p .
dp p(0, T1)
v, ~ . .
Fort > Ty, = E[H|F,] = H sinceH is Fp-measurable.
p(t’ Tl)

In other words, the pseudo-optimal components are constant afer;.
Consequently, in the local risk-minimization case the strategies fdfithe
option H and for theTy-option K coincide up to timely and we can act
exactly as in the complete market case. The key is that in this approach we
perfectly replicate the option value in spite of approximating it as in the
mean-variance hedging criterion.
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7. Appendix

Here we simply sketch how to find an explicit characterization?8fin
order to solve the mean-variance hedging problem in the interest-rate case.
In Biagini (2001), the details of all computations are provided.

In order to obtain an explicit formula for the variance-optimal measure,

, . . %St T)
we first characterize the martingale measure€ )

0 p(t, To)/ tel0, Tyl

T > 0.

Lemma7.1. Let Z, be alocal martingale with Zo = 1. The following con-
ditions are equivalent.

p,T)
Z
(@) 2. To

. t
b))z, =€ (/ (hy + S(s, Ty, n))dWS) 1+ / ked M) for some pre-
0 t 0
dictable processk, such that theintegral fé ksdM; isalocal martingale.

for every

isalocal martingale for every T > 0.

Proof. The pair(W,, M,) has the representation property@ x E, F ®
&, PV ® PE); hence there exist predictable processeandk, such that

t t
Z, = 1+/ Asd W —|-/ kyd M
0 0

~

(see, for example, Biagini, Guasoni and Pratelli (2000)). By applyioig It

formula, we see that the procﬁﬁ% is a local martingale if and only

P 0
if the process.; solves the following equation for eveffy > 0:

T T

2 Y + St T [ ontts.nds < [ outros s =0
; To To
(7)
Since we assume that there exigt ..., 7, such that the matrix

Tj
/ o;(t, s)ds is PE-a.e. invertible for every, it follows immediately that
To

= (hi(n) + Si(t, To, 1))
fori=1,...,n. O

By Equation (7) it follows immediately that the sat®(Ty, ..., T,)

of martingale measures f(ﬁ’—T’) .., n, coincides with the set
0

M?2(T) of martingale measures f&m T > 0.We bring them together
plt, 1o

it in the following
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Proposition 7.2. (i) If Q € M?(Ty, ..., T,), then

d .

To
1 ked M,
i ( +/0 (M)

To

for some predictable process k, such that the above expression issguare-
integrable.
(i) If Q € M3(Ty, ..., T,), then

Q@ _ ¢ ( f (hy(m) + S(s. To, n))dM) £ ( f | kdes>
dpP 0 To 0 To

for some predictable process k, such that k, - AM, > —1 and
8(/ (hs(n) + S(s, To, n))dW5+/ kdex) is a sguare-integrable
0 0

A t
martingale.

We define the two process, andW;* as follows:
t
Wi =W —/ (hs(n) + S(s, To, m))ds,
0

t
Wi =W, — 2/ (hs(n) + S(s, To, n))ds.
0

Lemma 7.3 is quite technical, but together with Proposition 7.2 it gives
us an explicit expression for the density of the variance-optimal measure.
Its proof is formally analogous to that of Lemma 1.15 of Biagini, Guasoni
and Pratelli (2000).

Lemma7.3. Let H, K be two predictable stochastic processes whose sto-
chasticintegrals / t H,dW}and / t K.d M, aredefined. Thefollowing con-
ditionsare equivaloent: °

€ (Jo HdWy),

e (okamy),

T
exp( /0 1Ghs(m) + S, To, n>>||2ds) —c

& </(hs(n) + S(s, To, n))dWs + / stMs) =
0 0

T

=cé& (/(hv(n) + S(sv To, )7) + HY)dWY> ’ (9)
0

T

where ¢ isthe same constant in both equations.
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We obtain the proof of Theorem 3.3 as follows. Equation (9) com-
pletely characterizes the variance-optimal mea#tfrsince, by Schweizer
(1996), itis the unique martingale measure which can be written in the form

; t,T; . : .
& (— / ﬁdX), whereX; = % By using the equivalence stated in
p(t, 1o
Lemma 7.3 we solve Equation (8) instead: since a solutibnk) always

exists because of the representation propertyiof M;) on (2 x E, F ®
&, PV ® PE), we obtain Equation (3) for the density of the variance-optimal
measure.
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