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1. Introduction and summary

In this paper, we provide various characterizations of absence of arbitrage
opportunities in a securities market model with bid-ask spreads on the asset
prices. We do this in a simple framework in which the information flow
over time can be described by an event-tree. Aside from this requirement,
however, we do not impose other restrictions. In particular, we allow the bid-
ask spreads to be positive on all assets, and we account for intertemporal
dividends.

Our first characterization is based on a cost minimization argument.
Given any intertemporal cashflow, we say that a dynamic trading strategy
super-replicates it if it generates an intertemporal cashflow at least as large
asm. We consider then the problem of selecting the strategies that super-
replicatem at the minimum initial cost. In our setting, the collection of these
problems for all cashflows is a family of linear programs that we employ
to characterize absence of arbitrage from two perspectives. The first is a
cost perspective: absence of arbitrage is characterized by the facts that (a)
every cashflow is super-replicable at a finite minimum initial cost, (b) the
cost of super-replicating a positive cashflow is positive, and (c) the cost of
super-replicating a portfolio of cashflows is possibly lower than the cost of
super-replicating its components separately. The second perspective is based
on the properties of the cost-minimizing strategies. From this standpoint, in
fact, only the minimum-cost super-replication of the null cashflow needs
to be considered. Specifically, absence of arbitrage with positive bid-ask
spreads is characterized by the fact that minimum-cost super-replication of
m = 0 is achieved by the dynamic trading strategies that generate a null
cashflow at zero cost. Interestingly, our result also shows that the existence
of cost-minimizing super-replicating strategies fer= 0 guarantees that
the same holds true fany cashflow m.

Our second characterization is based on the notiaumadérlying fric-
tionless (UF) state-prices, and is related to the previous one via duality.

In particular, we callUF state-prices the strictly positive vectors whose
inner product with the cashflows generated by dynamically trading the as-
sets with bid-ask spreads is hon-positive. We argue thai Ehetate-prices

are the strictly positive elements of the feasible set of the dual of the cost-
minimization problem, and exploit this fact to show that absence of arbitrage
opportunities is equivalent to the existencelf state-prices. Moreover,

we show that the minimum cost to super-replicate a cashfi@sithe supre-
mum of the values assignedipby theUF state-prices. This allows us to
interpret theUF state-prices as state-prices of securities markets with zero
bid-ask spreads underlying those with positive bid-ask spreads, and to con-
clude that the minimum cost to super-replicatés the supremum of the
arbitrage values of: in such underlying markets.



Arbitrage, linear programming and martingales in securities markets 81

Our last characterization is based on martingale arguments, and is related
to the previous by the fact that it involves transforming lthe state-prices
into state-price deflators. In the case of zero bid-ask spreads, a state-price
deflator is a process that equates the asset prices to the discounted condi-
tional expected values of the cumulative future dividends. For the case with
positive bid-ask spreads, we show that absence of arbitrage is characterized
by the existence of state-price deflators that place the discounted conditional
expected value of the cumulative future dividends of each asset inside the
bid-ask spread. The state-price deflators in this characterization ddé-the
state-prices normalized by the probability. In the zero bid-ask spreads case,
absence of arbitrage is well-known to be equivalent to the existence of state-
price deflators. Therefore, our characterization can be restated by saying
that absence of arbitrage with positive bid-ask spreads is equivalent to the
existence of asset prices that have zero bid-ask spread, lie inside the bid-ask
spreads, and are arbitrage-free.

For a better comparison with the literature, we also consider the special
case in which one asset has zero bid-ask spread, and distributes dividends
strictly positive at the terminal date, and non-negative otherwise. We denote
by V the intertemporal value of buying and holding this asset until the termi-
nal date, reinvesting the dividends. We consider then the set of probabilities
0 equivalent to the original one, and satisfying the following property: the
conditional expected value computed un@®eof the cumulative future divi-
dends denominated in units Bflies inside the bid-ask spread. We show that
the set of such probabilitied is in one-to-one correspondence with the set
of UF state-prices. In this special case, therefore, absence of arbitrage with
positive bid-ask spreads is equivalent to existence of zero bid-ask spread
prices that, once expressed in unitsaflie inside the bid-ask spreads and
are equal to the conditional expected value computed u@def the cu-
mulative future dividends themselves in unitsiof From this standpoint,
the probabilitiesQ are then the equivalent martingale measures for these
zero bid-ask spread prices. In this special case, moreover, the minimum
cost to super-replicate a future payeffcan be expressed as the supremum
over all these equivalent martingale measupesf the expected value @t
denominated in units of .

After the early contributions of Garman and Ohlson (1981), Leland
(1985), and Prisman (1986), the last decade has withessed a mounting inter-
est in the effects of introducing bid-ask spreads in the standard no-arbitrage
model with frictionless markets. Merton (1990) and Boyle and Vorst (1992)
have generalized the valuation-by-replication binomial option pricing model
to the case of bid-ask spreads on the stock. Dermody and Rockafellar (1991),
Bensaid et al. (1992) and Edirisinghe et al. (1993) have remarked that ex-
act replication of the option’s payoff may be unnecessarily costly, since
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there may exist strategies that dominate the payoff at a lower initial cost.
Naik (1995), in an event-tree framework, and Jouini and Kallal (1995), in
an infinite state-space environment, have exploited this observation to pro-
vide martingale-based characterizations of absence of arbitrage in securities
markets with bid-ask spreads (see also Milne and Neave (1997) and Jouini
and Kallal (1999)). However, both Naik (1995) and Jouini and Kallal (1995)
assume that the assets pay no intermediate dividends, and that one asset is
a pure discount bond with zero bid-ask spread. Jouini and Kallal (1995),
moreover, restrict their analysis to self-financing trading. In this paper, we
account for intermediate dividend payment, we do not require one asset to
be a pure discount bond, and we allow for positive bid-ask spreads on all
assets and for non-self-financing trading.

The rest of the paper is structured as follows. In the next section, we set
out the notation and definitions. We supply the characterizations of absence
of arbitrage opportunities based on the existence of minimum-cost, super-
replicating strategies and of underlying frictionless state-prices in Section
3. In Section 4 we discuss the martingale-based characterizations, both for
the general case and for the special case in which one asset has zero bid-ask
spread, and compare our results with Naik (1995) and Jouini and Kallal
(1995). Section 5 concludes.

2. Thesecurities market model with bid-ask spreads. notation and
definitions

We base our securities market model on a finite probability s@acé#, P),
whereQ = {wy, ..., oy, } is afinite set of states; = 2, andP is a strictly
positive probability on 2\ {#}. The set of trading datesTs= {0, 1, ..., T},
and the information flow shared by all investors is described by a filtration
F = {F},c7 of F, with Fy = {#, 2} and F;r = F. In this finite setting,
the information flow can be described equivalently by a faib¢ { P, }, .1
of partitions of2, with Py = {2}, P, finer thanP; for t > ¢, and Pr =
{wi}, ..., {oy }}. Henceforth, we refeP as the event-tree associated with
the filtrationF, to the generic celf/ of the partitionP, as the generic time
node of the event-tree, # = card P;) as the number of timenodes, and
toL =Y ,s as the total number of nodes.

At each timer, markets open for trading id assets, indexed by.
We assume that agents are price-takers, that unlimited short-sales with full
use of proceeds are allowed, and that the assets are perfectly divisible. We
consider however the presence of bid-ask spreads, and formalize this fact

1 There is also a vast literature on the issues related to introducing bid-ask spreads in
continuous-time models of securities markets. We refer to Cvitanic (1999) for a detailed
survey of this literature.



Arbitrage, linear programming and martingales in securities markets 83

J 710
processes. The first componeﬁjf,, represents the ex-dividend ask price of
the j-th asset, i.e., the price that the investors pay to take a long position in
assetj. The second componerﬂf, represents the ex-dividend bid price,
i.e., the price that the investors receive if they sell (possibly short) asset
Finally, d; represents the dividend flow paid by asg€etVe assume that alll
prices and dividends are denominated in units of the samedraira) good.
Without loss of generality, we let (0) = 0 andeA(T) = S]B(T) = Oforall
j. In words, the assets pay no initial dividends, and have zero ex-dividend
ask and bid prices at the terminal date, so #j&t’) is interpreted as a

liquidating dividend. We cal(s*, §%,d) = {(S/, S7, dj)}/.J:1 the price-
dividend system of the securities market with bid-ask spreads.

We model the dynamic trading strategies available to the investors as
couplesd = {64, 0%} of ®’-valued,F-predictable stochastic processes,
whereejA (t + 1) represents the number of units of asgdtought at time
t, and ef(z + 1) the number of units of assegtsold at timetr. A basic
requirement in a securities market with bid-ask spreads is that investors be
prevented from buying the assets at the bid prices, or selling them at the ask
prices. We formalize this requirement by deeming feasible only the dynamic
trading strategies that are certainly non-negative. We denotethg set of
all feasible dynamic trading strategies.

We now define theashflow process x, generated by a feasible dynamic
trading strategy 6. To this end, we observe that the quantity
> 1[04 (v) — 68 (1)] represents the net position held on thassets be-
fore trading at time. We have therefore

by identifying the assets via triplgss#, S8 dj) of F-adapted stochastic

—04(1) - S40) +0%(1) - SB(0) t=0

dt) - 2 [04 () — 08 ()]
—[6*c+D -S4 -0 +D-SEw)] t=1.....T—-1
d(T) - Y1 [0 () — 0F ()] t=T.

X (1) =

(1)

Interpreted—x4(0) = 64(1) - SA(0) — 68(1) - SB(0) represents the initial
cost of6, while x,(T) represents the dividends received at the final lig-
uidation of . At the intermediate dates= 1,...,T — 1, instead, the
cashflowx, () consists of the difference of two components. The first,

t
d(t) - Y [64(x) — 68(1)], represents the dividends obtained on the net
=1

positions held in the/ assets before trading, while the secomtir + 1) -

2 That is,ejA(t +1) andejB (t + 1) are F;-measurable forall = 0, 1, . . ., T —1.
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SA(t) — 68t + 1) - SB(r), represents the cost to update the positions in the
J assets.

We denote byXg the set of all cashflow processes generated by the
feasible dynamic trading strategies via (1). In fags,is a polyhedral convex
cone inkt, whereL denotes the total number of nodes of the eventfree
that, in our finite-dimensional setting, is informationally equivalent to the
filtration IF. To see this, interpret any feasible dynamic trading strafegy
{04, 68} as a column vector imij(“”), with coordinates the realizations
of 6 on theL — sy nodes ofP preceding the; terminal ones. Likewise,
interpret the cashflow process generated by as a column vector if’~,
with coordinates the realizations &f on theL nodes ofP. On comparing
with (1), itis readily seen thaty = M6 for someL x 2J (L — sy) matrix
M, which we refer to as theayoff matrix associated with the price-dividend
system(S*, %, d).2 Therefore, we have

Xo={x =Moo c0=n7"""]

which shows thaK g is indeed the polyhedral convex cone spanned by the
columns of M.

To define the arbitrage opportunities that may arise in our securities
market with bid-ask spreads, we denote-hy € 92/ (L=57) the first row of
the payoff matrixM, that is,

—c=(=51(0),...,—57(0),0,...,0,57(0), ..., 57(0),0,...,0)

and byﬂ the submatrix oj\ formed by the remaining — 1 rows, so that

—C
m-[5]
For a feasible dynamic trading strategjytherefore, its initial cost is given

by —x4(0) = ¢ - 8, while M6 represents its future cashflow, that is, the
cashflow generated from time 1 on.

3 The payoff matrix M is formally defined as follows. Denote lﬂf‘(f,g), SJB(f,é) and
d; (f}) the realizations of$*, S8, d) on theL nodes ofP. For fixeds € {0,..., T — 1},
ke{l, ..., st}y,jeld, ..., J}hletL; = Ztg, sz, and consider the column vectorstf
with components all equal to zero, except for the one with indgx 1 + k), which is set
equal to—SjA(f,f), and those with indice€L. + h), witht =7+ 1,..., T and f§ C f{,
which are set equal td; (f;7). Let this vector be theJ (L;_1 + k — 1) + j)-th column of
M. Moreover, consider the column vectord®f with components all equal to zero, except
for the one with indexL;_1 + k), which is set equal tcsjB(flg), and those with indices
(Lt +h),witht =¢r+1,....T andfhf - f,ﬁ, which are set equal tedj(fh’). Let this
vector be th&J (L — s7) + J(L;—1 + k — 1) + j)-th column of M. All columns of M are
obtained by letting vary in{0, ..., T — 1}, kin{l,...,s;}andjin {1, ..., J}.
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Definition 1. A feasible dynamic trading strategy 6 generates an arbitrage
opportunity at the given price-dividend system (S%, $%, d) if xo = M6 >
0.4 In particular, provided that M@ > 0,  generates an arbitrage oppor-
tunity of:

1. thefirst typeif/\79 > 0;
2. thesecond type if xy(0) = —c -6 > 0.

This definition extends the one standard in frictionless markets (see, for
instance, Ingersoll (1987)) to a securities market with bid-ask spreads. In-
terpreted, an arbitrage opportunity of the first type allows an agent with zero
income to consume a strictly positive amount in some node at some date
t > 0, while maintaining his consumption level non-negative anyway. An
arbitrage opportunity of the second type guarantees instead strictly positive
consumption at 0, and non-negative consumption at all other times.

Absence of both types of arbitrage opportunities, a minimal requirement
for the existence of equilibrium in any securities market populated by non-
satiated agents, is formalized as follows.

Definition 2. The price-dividend system (54, S8, d) is arbitrage-free if
M6 = Ofor all & € © such that M6 > 0. In words, (54, S, d) is
arbitrage-free if it does not admit arbitrage opportunities of the first or
second type.

Itis readily seen thag* > $® is necessary fofS*, S%, d) to be arbitrage-
free> In words, the investors must pay at least as much to buy the assets as
they receive from selling them.

In the characterizations of absence of arbitrage opportunities supplied in
the next sections, we restrict our attention to securities markets that satisfy
the following requirement.

Condition 1 (The internality condition). For the price-dividend system
(8%, S8, d), there exist feasible dynamic trading strategies ¢ such that

ﬂ@ >> 0.

In words, the internality condition requires the existence of dynamic trading
strategies whose cashflows are certainly strictly positive from time 1 on. As
we argue in the next section, this fact implies thay cashflow available
after time 0 can be super-replicated by the cashflow generated by some

40fa,bent, a>bmeansi—b e Rk, a>bmeansi—b e RE\ (B}, a >> bmeans
a—benk, =int(nk).

5f s;‘(fk’) < SJB(fk’) for somej € {1,..., JhLite{o..., T}k ef{l,...,s s¢}, an
arbitrage opportunity follows from contemporaneously buying and shorting asseime
¢ in the nodek, holding this position until".
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trading strategy. We exploit this feature in setting up our linear programming
approach to absence of arbitrage in markets with bid-ask spreads.

We natice that the internality condition is a very mild requirement, sat-
isfied in particular when one of the assets has strictly positive bid price
process, and pays hon-negative intermediate dividends and strictly positive
terminal one$. To the best of our knowledge, an asset that satisfies these
requirements is present in all the characterizations of absence of arbitrage
in markets with bid-ask spreads available in the literature.

Finally, we remark that the existence of second-type arbitrage oppor-
tunities implies the existence of first-type arbitrage opportunities if the in-
ternality condition hold$.Therefore, a price-dividend systefi*, S8, d)
that satisfies the internality condition is arbitrage-free as long as it is free of
first-type arbitrage opportunities.

3. Absence of arbitrage opportunitiesand linear programming

In this section, we use linear programming to characterize the absence of ar-
bitrage opportunities in the securities market with bid-ask spreads described
in Section 2. Given any column vectare %~ ~1, we consider the following
parametric linear programming problem:

min c¢-0

pen’tor)

(Plml)
s.t. /ﬁ@ >m.

To interpret this problem, recall that- 6 is the initial cost of the feasible
dynamic trading strategy, while M@ is the cashflow generated Byfrom
time 1 on. Moreover, observe thatcan be interpreted as a generic cashflow
available from time 1 on. The feasible set of probl&fn:] then collects all
the feasible dynamic trading strategies that super-repligaia the sense
of generating a future cashflow at least as large @bhe solutions t@[m],
therefore, are the feasible dynamic trading strategies that super-replicate
at the minimum initial cost.

ProblemP[m] extends to a general finite-dimensional framework and
to a general class of assets, similar problems analyzed in the literature. In

6 To see this, IeSl.B >> 0,d;(t) > Oforr =1,...,T—1,and4;(T) >> 0, and consider
the dynamic trading strategysuch thav/ (1) = 7,08 (1 +1) = 1foralls = 1,..., T -1,
and all the other components are equal to zero. Using (1) to compute the future cashflow
generated by this strategy one hg$t) = Sl.B O+ (T —t+Dd;(t),t=1,...,T—1,and
xg(T) = d; (T), from which the internality condition follows.

7 To see this, let be such that\io >> 0, andd’ be a second-type arbitrage opportu-
nity. Forx = max(O, —;‘5,((%))), then,8 + A6’ is a first-type arbitrage opportunity since

X9426'(0) = xg/(0) > 0 andM (6 4 16) = M6 >> 0.
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particular, our approach extends both Dermody and Rockafellar (1991),
who consider a hon-stochastic term structure model with bid-ask spreads in
which only buy-and-hold strategies are allowed, and Bensaid et al. (1992)
and Edirisinghe et al. (1993), who analyze binomial models with a bond
and a stock, and in which only the stock has a positive bid-ask spread. Our
approach also extends the model of Naik (1995) in which, although the
information structure is a general event-tree, one asset is a pure discount
bond with zero bid-ask spread, and there are no intermediate divilends.

Below we use first the minimum cost problehim], and then its dual
P’Im], to provide alternative characterizations of absence of arbitrage in
securities markets with bid-ask spreads.

3.1. Absence of arbitrage opportunities and minimum-cost
super-replication

To present our characterization of absence of arbitrage based on the mini-
mum-cost super-replication problef[m], it is convenient to denote its
feasible set by,,, that is,

O =10 e | Mo = m|.

Under the internality condition®,, is non-empty for any choice ofi,°
so that, for any future cashflow, there exists a feasible dynamic trading
strategy that super-replicates it.

Our first result characterizes absence of arbitrage opportunities both in
terms of existence of optimal solutions®m], and in terms of properties
of the value functionat : it~ — R U {—oo} associated t®[m], defined
as

a(m)=inf{c-0 |0 € ©®,}.

In words,z (m) is the minimum cost at which the future cashflamcan be
super-replicated. For future reference, we observetlasub-additive and
strictly positively homogeneous, that is(m + m’) < 7 (m) + = (m’) and

w(im) = Amw(m) foranyr > 0,m, m’ e RE-1.10

8 See Cvitanic (1999) for a survey of the literature on the continuous-time counterpart of
Plm]. "
9 To see this, leb be such thaf\é >> 0, and, given anyn, letx € R4 be such that

A mci)nhxg(fé) > mg)h(m(fé), with m(f}) the realization ofn on f;. Thenif € ©,, since
t>0, >0,

0 (f) = rxg () = lrggém(f;i) >m(fHyVe>0k

10 Indeed©m + O, C O,y forallm, m’ e RE~=1, sothatr (m+m’) < c- (0 +6') <
c-0+c-0' foralld € ®,,,0" € ®,,,whichimpliest(m+m’) < w(m)+7m(m’). Moreover,
w(Am) = A (m) for anyi > 0,m € RE~1 since®,,, = 2.0,,.
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Theorem 1. Thefollowing statements are equivalent for any price-dividend
system (S*, S&, d) that satisfies the internality condition.

1. (S%, S8, d) isarbitrage-free.

2. The value functional 7 isreal-valued, strictly positive, i.e., w(m) > 0
for all m > 0, and satisfies 7 (0) = 0.

3. Problem P[m] admits optimal solutions for all m e %L1, Moreover, if
6* isan optimal solution to P[0] ,then x4+ = 0.

4. ProblemP[0] admits optimal solutions 6*, all of which satisfy xy« = 0.

Proof. 1 — 2. Under the internality condition, to show thats real-valued
we only need to show thatis bounded from below o8, forallm € RL-L
To see this, givem € Rt letd’ € ©_,, that is, M0’ > —m. For any

0 € O,,thenxyio (f) = xo(fi)+xo(f) = Oforallz > 0, k. Therefore,
since by assumption there are no arbitrage opportunities, it must be the case
thatxge(0) = x9(0) + x4/(0) < 0, so thatc - 8 = —x4(0) > x4/(0), which
proves thatr is indeed real-valued. To see thatn) > O forallm > 0O
and thatr (0) = 0, weihow first thatr ;m) > O for anym > 0. Indeed,
givenm > 0, we haveMé > m > 0 for all6 € ®,, and hence, since by
the no-arbitrage assumption(6 > 0 implies M6 = 0, it must be the case
that—c -6 < 0, so thatt(m) = inf{c -0 |0 € ®,,} > 0. We immediately
getmr(0) = 0 on noting that, sincé = 0 € ®g, we haver(0) = inf{c-6

|0 € ®} > 0. To show that isr strictly positive, we observe that the linear
objective functiorc - 0 is bounded from below o®,, if and only if there
exists an optimal solution t&[m]. Thus, form > 0, there exists a strategy
0* such that - 6* = inf{c-6 |0 € ©®,,} = 7 (m) and M6* > m > 0. But
then—z(m) = —c - 0* < 0, i.e.,m(m) > 0, since otherwise\6* > 0, a
contradiction to the no-arbitrage assumption.

2 — 3. That there exists an optimal solutionm] for all m € M is an
immediate consequence of the fact thais real-valued, so that the linear
objective function irP[m] is bounded from below on the polyhedréy),. In
particular, given any optimal solutiof$ to P[0], we have:-0* = 7 (0) = 0
and M6* > 0. Let, thenm = M6* and suppose: > 0. Sinced* € ©,,
andr is strictly positive, we have - 6* > w(m) > 0, a contradiction to
c-60*=0.

3 — 4. Obvious.

4 — 1. Supposethat16 > 0forsome) € ©,i.e.—c-0 > 0andMeé > 0,
so thatd € ®q. Since the optimal value dP[0] is O, it must be the case
thatc - & > 0 holds as well, which implies- 6 = 0 which, in turn, implies
M6 =0, thatis M6 =0. O

Theorem 1 characterizes arbitrage-free securities markets with bid-ask
spreads from two perspectives: the minimum cost of super-replication, and
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the trading strategies that attain it. From the minimum cost perspective, the
equivalence of statements 1 and 2 shows that absence of arbitrage oppor-
tunities is characterized by the possibility sfper-replicating any future
cashflow at a finite minimum initial cost. The minimum cost is strictly pos-

itive for future cashflows that are certainly non-negative, and positive with
strictly positive probability, while it is zero for the null future cashflow. As

a consequence, the sub-additive value functianalin fact sublinear, that

is, for allm e RL~! we haver(Am) = Am(m) for any non-negative .
Therefore, it may be cheaper to super-replicate a portfolio of cashflows than
its components separately, and this is so because some positionsJin the
assets may cancel in super-replicating the portfolio, hence reducing the cost
of dynamically rebalancing these positions. Also, we remark that the equiv-
alence of statements 1 and 2 in our Theorem 1 extends the equivalence of
statements (1) and (3) in Theorem 2 in Naik (1995) to the case in which a
zero-coupon bond is not available, all assets are subject to bid-ask spreads,
and intermediate dividends are accounted for.

From the perspective of the strategies that attain the minimum cost, ab-
sence of arbitrage opportunities is characterized by the fact that exact repli-
cation at zero cost is the optimal way to super-replicate the null future payoff,
as witnessed by the equivalence of statements 1 and 4 in our Theorem 1.
The equivalence of statements 3 and 4, moreover, shows that the optimal-
ity of exact replication at zero cost as the way to super-replicate the null
future payoff guarantees the existence of minimum-cost super-replicating
strategies foany future cashflow.

It is also interesting to compare our result with the case in which the
bid-ask spreads are zero, that§¢, = S2. In this case, the con&g of
cashflows generated by the feasible dynamic trading strategies is in fact a
linear subspace ok’. Therefore, the value functional is actually linear
on the projection o on "X ~1, that is, on the set of future cashflows that
can be exactly replicated. In turn, this implies that the minimum cost way
to generate a future cashflow at least as large as one that can be exactly
replicated is indeed exact replication, or otherwise arbitrage opportunities
would arise!! Inthe cases* > S5, instead, there may very well exist future
cashflows for which strict super-replication is cost-optimal even when exact
replication is available. Formally, this means that, for some future cashflow
m, problemP[m] may admit optimal solutiong* such thatM6* > m
even if M@ = m is feasible. Typically, such situations occur when the
bid-ask spreads are so large as to make a super-replicating strategy, which
usually requires a low volume of transactions, cheaper than the strategies
that imposes a high volume of transactions to exactly replieatée

1 if 54 = sB, givenm e 9L ~1 ando feasible such thab1o = m, the strategy* — ¢
would generate an arbitrage opportunitgifwas a solution t&[m] for which M6* > m.
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Finally, for a better comparison with the literature we provide a charac-
terization of absence of second-type arbitrage opportunities based only on
problemP[m]. In particular, on inspecting the proof of Theorem 1, itis read-
ily seen how the facts that is real-valued, semi-positive (i.er(m) > 0O if
m > 0) andr (0) = 0 are all direct consequences of the absence of second-
type arbitrage opportunities. In turn, the requirement thé real-valued
constitutes, together with the linearity of the objective function and the fact
that the feasible set is a polyhedron, a condition sufficient to guarantee that
P[m] has solutions for any:. Finally, since by Definition 1 any arbitrage
opportunity of the second type is generated by a strateggh that-6 < 0
and M6 > 0, and since the s@ of feasible programs fgP[0] is a cone,
the fact thatP[0] admits solutions is readily seen to imply the absence
of second-type arbitrage opportunities. We summarize these arguments as
follows.

Corollary 1. Thefollowing statementsareequivalent for any price-dividend
system (S*, S8, d) that satisfies the internality condition.

1. (84, %, d) isfree of second-type arbitrage opportunities.

2. Thevalue functional = is real-valued, semi-positive, i.e., 7 (m) > 0 for
all m > 0, and satisfies 7 (0) = 0.

3. The problem P[m] admits optimal solutionsfor anym € M.

4. The problem P[0] admits optimal solutions.

When the securities market is only assumed free of second-type arbitrage
opportunities, therefore, any future cashflow can still be super-replicated
at a finite minimum initial cost. Moreover, the value functiomals still
sublinear, which shows that our Corollary 3 constitutes an extension of
Theorems 3.1 and 4.1 in Dermody and Rockafellar (1991) to the case in
which prices and dividends are stochastic, and dynamic trading is allowed.

3.2. Absence of arbitrage opportunities and underlying frictionless
state-prices

Itis well-known that, inthe casg® = S of zero bid-ask spreads, absence of
arbitrage opportunities is characterized by the existence of state-prices, i.e.,
strictly positive vectors with first coordinate equal to one, arttogonal to

the cashflows generated by the feasible dynamic trading strategies (see, e.g.,
Duffie (1996)). To provide a similar result for the case of positive bid-ask
spreads, we first define a suitably extended notion of state-prices.

12 see the examples in Bensaid et al.(1992), Edirisinghe et al. (1993), and Naik (1995). We
remark, however, that the presence of bid-ask spreads per se does not rule out the optimality
of exact replication (see, on this point, Theorems 3.2 and 3.3 in Bensaid et al. (1992)).
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Definition 3. We define the underlying frictionless state-price vectors (UF
state-prices) for (54, S, d) as those vectors y € 9%, with first coordi-
nate 1 such that ¢ - x < Ofor all x € Xg.

In contrast with the case of zero bid-ask spread, under positive bid-ask
spreads the state-prices are only required to have a non-paositive inner product
with the cashflows generated by the feasible dynamic trading strategies.
Recall now thafX g is the convex cone generated by the columns of the
—C

payoff matrix M, andM = [ fvi

(54, S5, d) takes the following form:

] Hence, the seb of UF state-prices for

W= { (%) c mL‘{/? e R (LM < o}

2)
— { <$) € ‘RL)J et YT M < c}.
Consider then the dud'[m] of problemP[m], that is,
maz< ¢-m
e (P'lm])
st. ¢’ M <ec.

On comparing the representation @fin (2) with the feasible se® =

{¢ € R | 9T M < ¢} of P'[m], itis immediately seen that the existence
of UF state-prices fo(SA, SB, d) is equivalent to the existence of strictly
positive vectors ib. We exploit this fact to characterize absence of arbitrage
opportunities in terms dfJF state-prices fo(SA, S8, d), and to establish
interesting relations betwedJF state-prices and the value functiomabf
problemP[m].

Theorem 2. Under theinternality condition, absence of arbitrage opportu-
nitiesisequivalent to theexistence of UF state-pricevectorsfor (54, S%, d).
Moreover, if (S, S, d) is arbitrage-free, then,

U= {(é) eRt |y e Y om<nm(m) Vm e mH}, (3)

n(m)= sup ¥ -m VmeR1 (4)
LyT)ew

Proof. We assume first tha(tSA, SB, d) is arbitrage-free, and show that
then ® contains a strictly positive vector. To show this, given any 1
andk, consider the (primal) linear programming probl@rﬁlfkr], Wherelfkr
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is a vector whos€L,_; +k)-thentryis1 {,.1 = ) ._,_;s; ands, =

card P;)), while all other entries are zeroes. By statement 2 in Theorem 1,
the valuer (1) of the objective function at any optimal solution is strictly
positive. Therefore, by the duality theorem of linear programming (see, for
instance, Luenberger (1973)) the dual probl®ffl ] admits an optimal
solution, sayp"¥), such thap®© - 1, = (1) > 0. Then, lettingp =

> 279%0, we see thap >> 0 since each of its components is a sum of

non-negative terms with at least one of them different from zero. Moreover,
¢ € ® sinced is manifestly a convex set.

Conversely, to prove that the existenceJéf state-price vectors implies
the absence of arbitrage opportunities, we first argue that, under the inter-
nality condition and the assumption that£ @, the (obviously non-empty
and closed) seb is compact. Under the internality condition, indeed, there
exists a feasible dynamic trading strategguch thatM6 >> 0, so that
0 <o’ (M) <c-6forall ¢ € &, which shows tha® is bounded. From
the continuity of the linear objective functi@gn. m, thereforeP’'[m] has an
optimal solution for anyr. By the duality theorem of linear programming,
the primal problenP[m] then has solutions for amt, so that the value
functionalr is real-valued. Since the objective function of the dual problem
P’[0] is identically zero ond, clearlys (0) = 0. Moreover, the existence
of a strictly positive element ob guarantees that the optimal value of the
objective function of the dual problef’[m] is strictly positive whenever
m > 0, which implies thatr is strictly positive. This shows that statement 2
in Theorem 1 holds and hence proves the equivalence betweéry and
absence of arbitrage opportunities.

Finally, (3) is based on the fact that, for astye W such thaty - m <
7(m)Vm € RE1, we have(@)T M6 < w(M6) < c-6 foranyd, and hence
({/7)T M < c,while(4)~follows upon observing thét, ai/NfTJr(l—oz)qST) €
v forany¢ € @, (1, ¢) € ¥,0 < a < 1, and thatlay + (1 — a)¢) - m
converges t@ - m asa goes to zero. O

Relations (3) and (4) in Theorem 2 allow us to better explain and motivate
the termunderlying frictionless used for the state-prices k. To this end,
observe firstthay = (1, ¥7) € W can be interpreted as a state-price vector
in a securities market with zero bid-ask spreads,fnd: as the arbitrage
value of the future cashflow in that case. To see why, denote 9y f/)

the coordinates af,'® and consider the securities market with zero bid-ask

13 That is,w(f,é) denotes the coordinate ¢f corresponding to the nodg of the event-
treeP.
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spreads in which the ex-dividend prices of thassets are as follows:

s ’—ZT 5 YUD oy, oo -
J(fk)_ I/f(ft)d/(fh), k—l,,S,,l—O,,T—l
‘E:t-i—lfhfcfkf k

()

If in the payoff matrix M we setS’ (f{) = SP(f{) = S;(f}), itis readily
checked thatr become®rthogonal to the columns of\1, hence, to the lin-

ear space generated . This meansthaf is in fact a state-price vector for

the securities market with zero bid-ask spreads in which the realizations of
the ex-dividend price process are governed by (5). Thereform, is the ar-
bitrage value ofz in this market with zero bid-ask spreads. Now interpret the
minimum costr (im) for super-replicating: under positive bid-ask spreads

as the value ofiz, in the sense of the maximum price at which an investor
would be willing to take a long position in an asset with future cashfiow
The results in Theorem 2 can now be interpreted as follows. First, (3) shows
that the elements of are the state-prices that, in a securities market with
zero bid-ask spreads, would assign to the future payoffs an arbitrage value
lying below (hence, underlying) the value assigned to that cashflow in the
case of positive bid-ask spreads. Moreover, (4) shows that the valuarof

der positive bid-ask spreads(m), is the supremum of the arbitrage values
assigned te: in the case of zero bid-ask spreads. These results, furthermore,
show that theJF state-prices defined here constitute the finite-dimensional
counterparts of thenderlying frictionlesslinear pricing rulesintroduced by
Jouini and Kallal (1995, 1999) to characterize absence of multiperiod free
lunches in infinite-dimensional models of securities markets with positive
bid-ask spreads and other frictions.

For a further comparison with the literature, we use the dual problem
P’Im] to provide a characterization of absence of second-type arbitrage
opportunities only. To this end, we definesami-positive UF state-price
vector for (54, S%, d) as any vector it} with first coordinate equal to
1 and with a non-positive inner product with alle Xg. A semi-positive
UF state-price vector, therefore, satisfies the same propertiddastate-
price vector, except that only weak positivity is required. The following
result is then an immediate consequence of the duality theorem of linear
programming, and of the fact that the existence of semi-poditivestate-
prices is manifestly equivalent tb being non-empty.

Corollary 2. Under the internality condition, absence of second-type arbi-
trage opportunities is equivalent to the existence of semi-positive UF state-
price vectorsfor (54, S%,d).

On comparing with Dermody and Rockafellar (1991), it is readily seen
that their model is a special case of ours with no uncertainty, and in which



94 F. Ortu

only buy-and-hold strategies are allowed. Therefore, our notion of semi-
positive UF state-price vector coincides with their notionaifrrent term
structure packet. This is why our Theorem 1 and Corollary 2 constitute
generalizations, to the stochastic case in which dynamic trading is allowed,
of their Theorems 4.5 and 3.2 respectively.

4. Absence of arbitrage opportunities and martingales

We now provide a characterization of the price-dividend sys(e;l*ﬁsSB, d)

that are arbitrage-free based on martingale processes. To better compare our
results with the existing literature, we discuss separately the general case in
which the bid-ask spread is positive for all assets, and the special case in
which one asset has zero bid-ask spread.

4.1. Thegeneral case

To establish our results, given aRyadapted and strictly positive process
we define theéi”’ -valued andf-adapted proces$ as follows:

l T
—FE d
sér) = { &) [,_;f(” 2

0 t=T.

Fl‘} t:O,,T_l

We interpret the componeng () of S%(¢) as ex-dividend prices for the

J assets in a securities market with zero bid-ask spreads, but otherwise
identical to that with positive bid-ask spreaddie denote by(S*, d) the
price-dividend system of this securities market with zero bid-ask spreads,
and observe that the procesds, by construction, atate-price deflator

for (5%, d) (see Duffie (1996)). We recall then that, in the case of zero
bid-ask spreads, the existenceddte-price deflators is a necessary and
sufficient condition for absence of arbitrage opportunities (Duffie (1996),
Theorem 2C). This fact allows us to assert thaf§4) d) is an arbitrage-free
price-dividend system with zero bid-ask spreads, and (b) for any arbitrage-
free price-dividend systerts, d) with zero bid-ask spreads, but otherwise
identical to that with positive bid-ask spreads, there exist&-adapted and
strictly positive process such thatS = S, with S¢ defined as in (6). We
exploit these facts in the following characterizations of absence of arbitrage
opportunities in securities markets with positive bid-ask spreads.

14 Thatis, a securities market with the same probability space, same information structure,
same number of assets, and same dividend process of the securities market with positive
bid-ask spreads.
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Theorem 3. Thefollowing statements are equivalent for any price-dividend
system (S*, S&, d) that satisfies the internality condition.

1. (8%, 58, d) isarbitrage-free.

2. There exists an F-adapted and strictly positive process & such that the
process S¢ defined in (6) satisfies S < §¢ < S4.

3. There exists an arbitrage-free price-dividend system (S, d) with zero bid-
ask spreads such that S8 < § < 4.

Proof. As explained above, the equivalence of statements 2 and 3 follows
directly from Theorem 2C in Duffie (1996). Therefore, we only need to es-
tablish the equivalence of 1 and 2. To this end, suppose firs([SHaSB, d)

is arbitrage-free so that, by Theorem 2 in this paper, it adiiKsstate-
prices. Then, given anyF state-price vector/, let & be theF-adapted
process with the following realizations on the noggof the event-tre@
informationally equivalent to the filtratiofi:

_ v
PR’

In the above expressiot,( /) denotes théL,_1 + k)-th coordinate of the
UF state-price vectoy, that is, the coordinate corresponding to the node
fi of P, and P(f!) denotes the probability of that node. The procéss
defined in this way is strictly positive since thi#- state-prices are strictly
positive by definition, and the probabilify is strictly positive on 2 /{#} by
assumption. We show now that, if this procéds used in (6) to defing®,
thenS® < §¢ < §4. To see this, we exploit the characterization of thelset
of UF state-prices supplied in ( 2), and the construction of the payoff matrix
M described in Section 2, to observe thate 9%, with first coordinate

1 is aUF state-price vector fofS*, S%, d) if and only if it satisfies the
following set of inequalities:

£(fO) Vk, 1. ()

T
VOSPD < Y0 Y w DG D < W FDSHED.
r=t+1 Il (8)

j=1....J, k=1..s, t=0...,T—1

In fact, system (8) is equivalent to

5, o _ [V PUD VU | or  ary o
! (fk>s[P(fk} ,;Ugf’(mf’% d;(f7) < SAD.

j=1...,J, k=1,...,8, t=0,...,T-1
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exploiting (7), we see that this implies that

P(fy) . : A, o
d; SACFD.
G Zfzf P AU = 50

j=1,....J, k=1..,s, t=0,...,T—1

SP(f) <

Observe now that the quantity that lies betwegh(f/) and SA(fk

in the above relation is a realization of the random variable

g(t) Z £(1)d; (1) ‘ F,} Therefore, absence of arbitrage opportunities
t=t+1

implies that the componen$s(¢), j = 1, ..., J, of the process? obtained

by using in (6) the processdefined via (7) satisfy

SP(1) < S5 () < St ©)
j=1...,J, t=0,...,T -1

Relation (9), together with the assumptiﬁﬁ(T) = S/.A(T) = 0 forall j,

and the fact that by constructlcﬂ%(T) 0 for all j, allows us to conclude

that 1—2. To establish the converse implication, givenfaadapted and

strictly positive processsuch thats® defined in (6) satisfie$? < §¢ < 54,

let ¥ be the vector imi’ with the following coordinates:

P(fOE(fO)
£0)

Such ay is clearly strictly positive and with first coordinate equal to 1.
Moreover, by working backwards along the lines used to establisg, it

is readily seen that such/asatisfies (8) and hence i¢lr state-price vector
for (S4, S, d). Therefore(S*, S8, d) admitsUF state-prices so that, by
Theorem 2, it is indeed arbitrage-freen

V(i) = . Yk, 1.

The characterization of arbitrage-free price-dividend systems with bid-ask
spreads supplied in Theorem 3 has the following interesting consequences.
First, our result shows thany arbitrage-free price-dividend system with
bid-ask spreads can be obtained from an arbitrage-free price-dividend sys-
tem(S, d) with zero bid-ask spread by substitutifigvith bid and ask prices

S4, SB that leaveS in the middle. Conversely, whenever the price process

of an arbitrage-free price-dividend systéf) d) with zero bid-ask spreads

is replaced by bid and ask pricég, S that leavesS in the middle, and

the dividends! are left unaltered, the resulting price-dividend system with
bid-ask spreads is arbitrage-free.
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4.2. Aspecial case

For a better comparison with the literature, we now consider the case in
which Condition 1, the internality condition, is replaced with the following
requirement.

Condition 2. One of the assetsin (S#, S%, d), say asset 1, has null bid-ask
spread, strictly positive price process, and pays non-negative inter mediate
dividendsand strictly positiveterminal ones. Formally, S = S# = $; > 0,
di(t) >0fort=1,...,T —1,andd.(T) > 0.

Since Condition 2 implies the internality conditiéfthe following is in fact
a special case of the framework considered so far.

We now denote by = (9%, 6%) the feasible dynamic trading strategy
thatis required to buy one share of asset 1 attime 0, to reinvest the dividends
in asset 1 itself, and to leave the other assets inactive. Forrﬁaﬂl@tisﬁes
01 1) =1, 01 (1) = [S1()] L da(2) Z 01 (7), and all other components
equal to zero. Using (1) to compute the future cashflow generatéd\tw
see thakA(t) =0fort=1,..., T —1,andxz(T) = di(T) Zt 191 ) >
0, thatisg is a self- flnancmg strategy with strictly positive terminal payoff.
We then define thealue process of 6 to be the followingF-adapted process
V:

t+1
Sq(t pA t=0,...,.T-1
e RGP ICHC 10)
xg(T) t=T.
t+1
SinceS; >> 0 and )’ ef(r) > 1forallt =0,...,T — 1, the value

=1
processV is strictly positive. The following result establishes a property
of the value proces¥ that becomes useful in our last characterization of
absence of arbitrage.

Lemma 1. If (S4, S8, d) satisfies Condition 2, then any UF state-price vec-
tor ¢ € U satisfies'®

VOOV = Y wlehVieh, KZ0ooN @

we f{

15 10 see this, simply replac&iB (t) andd; (t) with S1(t) anddy(¢) in the argument in
footnote 6.

16 |n (11), {w} represents the generic terminal node of the eventir@dormationally
equivalent tdF.
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Proof. We first observe that, by backward induction, establishing (11) is
equivalent to showing thaty: € ¥ we have

t —1,....5
VUOVUD = Y YU, S22

1
e

To establish (12), we recall that all € ¥ satisfy (8) in Theorem 3. This,
together with the fact tha#! = S = §; under Condition 2, shows that all
Y € W satisfy

T
= 1 t
VDS = Y D v UDdD, lfzo,’...,’; _1,

=+l frcfl

which is equivalent to (see Girotto and Ortu, 1996)

VOSSO = Y U [T + du(fD].
s (13)

k=1 ...,8, t=0,...,T -1

Recall now tha® = (8*,6?) is the dynamic trading strategy such that
611 = 1,0 (t) = [S1()] tda(t) X' ,6(r), and all other components
are zero. We then multiply both sides of (13)Eﬁcff 01 (t+1, fF),where
62 (t + 1, f7) is the generic realization of the random variabfer + 1),
and exploit the definition o¥ in (10) to obtain

VOVUD = Y. A

1
ek

A1 + ] D] B+ £
fichr
k=1 ...,85, t=0,...,T -1

Observe then that the quantftys (f; ™) + di(f; )] Y sicss OA(t+1, f7)

is a realization of the random varialjl& (r + 1) + d1(¢ + 1)] Z’*l 0 (7).
To establish (12), therefore, one only needs to show that

t+1
[S1¢t + D+t + D] D 0 () =V +1) fort=01,....T -1

=1
To do so, one epr0|ts the facts thats self- flnancmg that isyz(r) = 0
fortr =1,. — 1, thatV(T) = xg(T) = dy(T) Y., 0{(r), and that
S1(T) = 0. Indeed[Sl(T) + di(T)] Zf=1 91 (r) = V(T) is an immediate



Arbitrage, linear programming and martingales in securities markets 99

consequence ¢y, (T) = 0. Forr < T — 1, instead, from the self-financing
condition and the definition of generated cashflow process in (1) we have
0= x5(t) = da(r + 1) Y015 0 () — 0 (t + 2)S1(t + 1), which implies
thatdy(t + 1) Y572 61 (r) = 07 (r + 2)$1(r + 1), so that, again using the

definition of V in (10), we have

t+1
[S1(t + D+ dut + D] Y 8 (7)
=1
t+1 R R
=51 +D Y 00 + 6]t + D81t + 1)
=1
t+2 .
=St +1) Z 67 (1)
=1
=V(i+1)

which shows that (12) holds for all € ¥, and establishes our claimo

Now, given any probability) equivalent toP,!’ we use it together with the
value proces¥ to define theF-adapted andi”-valued process‘¢:") as

follows:
T d(t) B B
SOy = VU)EQLEHW F,} =0 T=1 .
0 t=T.

Once again, we interpret the componesit8 " (r) of 5@")(r) as the ex-
dividend prices for the/ assets in the case of zero bid-ask spreads, and
denote by(S‘@Y), 4) the resulting price-dividend system. In this case, it
is readily seen that the gains process %", d) denominated in units

of V {S(Q*V)(t) o d(t)

v &V
fore, V satisfies the definition afuméraire for the price-dividend system
(S@Y), d) with zero bid-ask spreads, alof equivalent martingale mea-
sure associated with the nenaireV (see Girotto and Ortu (1997, 2000)).
We then denote b@ (V) the set of probabilitie® equivalent taP such that
$@Y) lies inside the bid-ask spread @*, S8, d), that s,

}, is by construction @2-martingale. There-

QWV)y={Qo~P|SsP <5V <54},

and establish our final result.

17 Since by assumptioi? is finite andP is strictly positive on £ /{#}, in this framework
Q is equivalent taP as long as it is itself strictly positive o2 {#}.
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Theorem 4. If (54, %, d) satisfies Condition 2, the following facts hold.

1. The set ¥ of UF state pricesisin one-to-one correspondence with the set
Q(V) via

" V) k=1,....5
VU = yom QU Zo Ty (15)
RZCONAE)
Qo)) = 55 VoeQ. (16)

2. Satements 1 to 3 in Theorem 3 are equival ent to the existence of a proba-
bility O equivalent to P and such that the process $(@-") in (14) satisfies
§8 < 5@V < g4,

3.1f (8%, S8, d) isarbitrage-free, then

. m(t)
[‘”(‘m)’”(’")]—d{V(O)EQ[ZVUHQ Q(V)} a7

Vm e REL

Proof. To establish the first fact, fop € Q(V) observe that the vectar

with coordinates given by (15) is manifestly a strictly positive vectoiin
with first coordinate equal to 1. By the argument in the proof of Theorem 3,
to show that sucly is aUF state-price vector we only need to show that it
satisfies the following set of inequalities:

T
VUDSEUSD = Y0 Y vUNG D < v DS,
f:f+1f,fcf,f
j=1....J, k=1,...,s,, t=0,...,T -1
V(0) . .
To see this, we substltuteTQ(fk’) to ¢ (f{) in the above relation and

rearrange to obtain the foIIowmg equivalent system:

T
O di(fF)
SE(fH < VD ho oSl s < SACFD,
T ¢ ;1;% o vign = (18)

j=1,....J, k=1,...,s, t=0,....,T—1

Observe now that the quantities that lie betwsgnf;) andsS;* (f{) in (18)

T 4.
are the realizations of the random variabl¢)E [ > /(@) F,]. By

t=t+1 Vv (t)
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reference to (14) we see that the vectowith coordinates given by (15)
being aUF state-price vector is equivalent to requiring that

=1...,J
st =50 =sto,

t=0,...,T -1, (19)

which holds true sinc® € Q(V). This shows that (15) defines a mapping
of (V) into ¥, a mapping which is injective since, foragy, 0, € Q(V)

such thatQ1({w}) # Q2({w}) for somew € 2, theny,({w}) # Y2({o})
wheneverj, y, are associated wit@d 1, 0, via (15). To complete the proof,

we need to show that the mapping introduced by (15) is @ntto this end,
given anyyr € W we defineQ via (16). SinceV andyr are strictly positive,
clearly Q({w}) > 0Vw € Q. By (11) in Lemma 1 and the fact that the first

coordinate ofyis1,wehave_, , Q({w}) = V}O) Y ea VHoHV{w}) =
V(O) =V (0) = 1, so thatQ is indeed a strictly positive probability or*{@}.
We show now that) € Q(V), that is, that the proces$'?:") obtained
from Q via (14) satisfiess? < $@V) < §4, To this end, sinc6]B(T) =
SA(T) =0V j by assumption, ans®""’(T) = 0V j by construction, itis
enough to show that the componentss&f-") satisfy (19) or, equivalently,
(18). To see this, we exploit (11) in Lemma 1 to obtain

V(oD V (o) YOV

Q=Y Qoh =) = :
wefk we fk (0) V(O) (20)

k=1, ...,s, t=0,...,T—1

Substituting (20) into (18), we see that belongs toQ(V) as long as/
satisfies

B/ pt t d w(fh A t
SPD VD Y, DD T AU = SPUD.

r=t+lfhfcfk
j=1...,J, k=1,...,s, t=0,...,T—1,

that is, as long as th¢ used to defing in (16) is indeed &JF state-price
vector. The proof is then completed upon observing that, by (20),

V(0)
V()
that is, theUF state-price vector associated withvia (15) is theyr used
to defineQ in (16).

Fact 2 is now an immediate consequence of Fact 1, of the observation
that Condition 2 implies the internality condition, and of Theorem 3. Finally,

Fact 3 is an immediate consequence of Fact 1, of (4) in Theorem 2, and of
the setQ(V) being convex. O

v (f) = o QU0),
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We conclude by observing that, since afye Q(V) is a martingale mea-
sure associated with the nenaireV in a securities market with zero bid-
ask spread and such théf < S < $4, we can interpret the quantity

m(t)
V(O Eg [Z?:l Vo
m in any such market. Therefore, (17) supplies the martingale counterpart of
the characterization of the value functiondln) as the least upper bound of
the arbitrage values assignediton the securities market with zero bid-ask
spreads underlyings*, S%, d) supplied by (4) in Theorem 2.

in (17) as the arbitrage value of the future cashflow

4.3. Comparison with the literature

It is now useful to compare Theorems 3 and 4 with the martingale-based
characterizations of absence of arbitrage opportunities in securities markets
with bid-ask spreads of Naik (1995, Theorem 2), and of Jouini and Kallal
(1995, Theorem 3.2).

Naik, in particular, considers an event-tree securities market model with
bid-ask spreads in which the assets pay no intermediate dividends. One of
the assets, moreover, is a pure-discount bond with zero bid-ask spread, with
timer price denoted by, (7). Naik shows that absence of arbitrage opportu-
nities is equivalent to the existence of a probabitityequivalent toP such
thatSB (1) < So(t)Eo [d(T)|F,] < S4(t) fort < T. Comparing with our
results, we see that our Theorem 4 extends Naik’s Theorem 2 to the case of
intermediate dividends, and of an asset with zero bid-ask spreads required
only to pay non-negative intermediate dividends and strictly positive ter-
minal ones. Our Theorem 3, moreover, also relaxes the requirement of the
existence of an asset with zero bid-ask spreads.

Jouini and Kallal consider instead a model with an infinite-dimensional
state-space although they maintain the no intermediate dividends assump-
tion and they require the pure-discount bond with zero bid-ask spread to
have constant unit price. Also, they restrict dynamic trading to self-financing
strategies. In this framework, Jouini and Kallal first characterize absence of
multiperiod free lunches, the infinite state-space counterpart of absence of
arbitrage opportunities, in terms of existenceuodlerlying frictionless lin-
ear pricing rules (see their Theorem 2.1, Proposition 3.1 and Lemma 1).
In Theorem 3.2, then, they establish the following three results. First, they
show that absence of multiperiod free lunches is equivalent to the existence
of a processS that lies inside the bid-ask spread and is a martingale with
respect to some probabilit® equivalent toP. Second, they establish a
one-to-one correspondence between the set of such probalilines the
set of underlying frictionless linear pricing rules. Third, they characterize
the minimum cost for super-replicating a future payefas the supremum
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over the set of probabilitie® of the expected values of. Since absence

of multiperiod free lunches is equivalent to absence of arbitrage opportu-
nities if the state-space is finite, and & state-prices introduced in this
paper are the finite-dimensional counterparts of Jouini and Kallal's under-
lying frictionless linear pricing rules, our results provide finite-dimensional
extensions of the results of Jouini and Kallal. In particular, our Theorem 3
extends the first result in their Theorem 3.2 to the case in which, although
the number of states is finite, intermediate dividend payments are accounted
for, non-self-financing trading is permitted, and a positive bid-ask spread is
allowed on all assets. Our Theorem 3 extends instead the other two results of
their Theorem 3.2 to the case of intermediate dividend payments, non-self-
financing trading, and an asset with zero bid-ask spreads required only to
pay non-negative intermediate dividends and strictly positive terminal ones.

5. Conclusion

In this paper, we have supplied several characterizations of absence of arbi-
trage opportunities in a securities market model with bid-ask spreads. First,
we have defined the linear programming probl®im:] that computes the
minimum cost to super-replicate a future cashflawln Theorem 1, we

have characterized absence of arbitrage in terms of propertie@of the

value functional ofP[m], and of existence of optimal solutions R[m].

Next, we have defined tHeF state-pricesfor (SA, SB, d) and, in Theorem

2, we have employed the dual #fm] to show that absence of arbitrage

is also equivalent to the existence WF state-prices. We have then sup-
plied a martingale-based characterization of absence of arbitrage. Specif-
ically, we have transformed thdF state-prices into state-price deflators
and, in Theorem 3, we have employed these state-price deflators to show
that(S#, S%, d) is arbitrage-free if and only if there exists a price-dividend
system(S, d) which has zero bid-ask spreads, is itself arbitrage-free, and
satisfiess? < § < §4. Finally, we have considered the special case in which
one of the traded assets has zero bid-ask spread, and distributes a strictly
positive dividend at liquidation and non-negative dividends otherwise. We
have denoted by the value of the self-financing strategy that is required

to buy one share of this asset at the initial date, reinvesting the dividends
received over time. In Theorem 4, we have obtained two further results for
this special case. First, we have established a one-to-one correspondence
between the set afF state-prices and the set of strictly positive probabili-
ties O such that, if all prices and dividends are denominated in units,of

the conditional expected value computed un@esf the cumulative future
dividends lies inside the bid-ask spread. Moreover, we have shown that the
minimum costr (m) for super-replicating a future cashflowis the supre-
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mum over all such probabilitie@ of the expected value @i denominated
in units of V.

To conclude, we observe that our results can be employed to provide
arbitrage-based bounds on the prices of derivative securities in the presence
of bid-ask spreads. Given a derivative security with future cashilofer
instance, it can be shown that the minimum ceét) to super-replicate
n must constitute an upper bound to the derivative’s bid price, if second-
type arbitrage opportunities are to be prevented. Likewise(—n) must
constitute a lower bound to the derivative’s ask price to prevent second-type
arbitrage opportunities. A detailed analysis of this and other related results
is presented in Baccara and Ortu (2001).
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