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Abstract
Let S be a metric space, g : S → R a Borel function, and (μn : n ≥ 0) a
sequence of tight probability measures on B(S). If μn = μ0 on σ(g), there are
S-valued random variables Xn , all defined on the same probability space, such that
Xn ∼ μn and g(Xn) = g(X0) for all n ≥ 0. Moreover, Xn

a.s.−→ X0 if and only if

Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) for each f ∈ Cb(S). This result, proved in Pratelli and
Rigo (J Theoret Probab 36:372-389, 2023) , is the starting point of this paper. Three
types of contributions are provided. First, σ(g) is replaced by an arbitrary sub-σ -field
G ⊂ B(S). Second, the result is applied to some specific frameworks, including equiv-
alence couplings, total variation distances, and the decomposition of cadlag processes
with finhite activity. Third, following Hansen et al. (Tempered Bayesian analysis,
Unpublished manuscript, 2024), the result is extended to models and kernels. This
extension has a fairly natural interpretation in terms of decision theory, mass trans-
portation and statistics.
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1 Introduction

Let S be a metric space and (μn : n ≥ 0) a sequence of probability measures on B(S).
(Throughout, for any topological space T , we let B(T ) denote the Borel σ -field on
T ). We say that (Xn : n ≥ 0) is a coupling of (μn) if

• The Xn are S-valued random variables, all defined on the same probability space,
such that Xn ∼ μn for each n ≥ 0.

The Skorohod representation theorem (SRT) states that, if μn → μ0 weakly and μ0

has a separable support, there is a coupling (Xn) of (μn) such that Xn
a.s.−→ X0. This

version of SRT is due toWichura (Wichura 1970) who reworked the previous versions
by Skorohod (Skorohod 1956) andDudley (Dudley 1968).We refer to [Dudley (1999),
p. 130] and [van der Vaart and Wellner (1996), p. 77] for historical notes, and to Berti
et al. (2013) for the case where μ0 does not have a separable support. Some other
related references are (Berti et al. 2007, 2011, 2015; Blackwell and Dubins 1983;
Chau and Rasonyi 2017; Cortissoz 2007; Dumav and Stinchombe 2016; Fernique
1988; Hernandez-Ceron 2010; Jakubowski 1998; Sethuraman 2002).
We aim at getting some new results in the spirit of SRT. Our starting point is the
following version of SRT, recently proved in Pratelli and Rigo (2023).

Theorem 1 Let T be a separable metric space, g : S → T a Borel function, and

σ(g) = {
g−1(B) : B ∈ B(T )

}
.

Suppose

μn is tight and μn = μ0 on σ(g) for every n ≥ 0.

Then, on some probability space (�,A,P), there is a coupling (Xn) of (μn) such
that

g(Xn) = g(X0) for all n ≥ 0. (1)

In addition to (1), one also obtains Xn
P−a.s.−→ X0 if and only if

Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) for each bounded continuous f : S → R.

Here and in the sequel, for any probability ν on B(S), the notation Eν( f | g) stands
for the conditional expectation of f given σ(g) in the probability space (S,B(S), ν).
Note that, when g is constant, σ(g) reduces to the trivial σ -field and Eν( f | g) =
Eν( f ) = ∫

f dν. Hence, if g is constant and the μn are tight, Theorem 1 reduces to
SRT.
This paper provides some extensions of Theorem 1 and investigates some of its con-
sequences. Our results are of three types.
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(i) In Theorem 3, σ(g) is replaced by an arbitrary sub-σ -field G ⊂ B(S). In this
case, the coupling (Xn) of (μn) only satisfies

P(Xn ∈ A, X0 /∈ A) = 0 for all A ∈ G and n ≥ 0.

However, in the special case G = σ(g) with g as in Theorem 1, the above
condition is equivalent to g(Xn) = g(X0) a.s. Hence, Theorem3 actually extends
Theorem 1.

(ii) In Examples 3 and 4, Theorem1 is applied to some specific frameworks. Example
3 deals with a sequence (Un : n ≥ 0) of cadlag processes with finite activity. Let
U∗
n be the continuous part of Un . It is shown that, if U∗

n ∼ U∗
0 for all n, the Un

admit a common decomposition. Precisely,

Un ∼ I + Jn for all n ≥ 0,

where the processes I and Jn are defined on the same probability space, I has
continuous paths and Jn is a pure jump process. Example 4 is concerned with
optimal transport. It is shown that Theorem 1 implies (and slightly improves) a
recent duality result on equivalence couplings and total variation distances; see
(Jaffe 2023).

(iii) In Sect. 4, we dealwithmodels and kernels. Let (�,H) and (X , E) bemeasurable
spaces. A model is a collection P = {Pθ : θ ∈ �}, indexed by �, of probability
measures Pθ on E . A kernel is a model which satisfies a certain measurability
condition. Those non-atomic kernels such that

Pθ

(
h−1{θ}

)
= 1, θ ∈ �,

for some measurable function h : X → �, have been recently characterized.
Such a characterization, obtained in Hansen et al. (2024), is reported in Theorem
4. Our contribution consists in two versions of Theorem 4. One extends Theorem
4 from kernels to models, while the other is in the spirit of Theorem 1. Unlike
Theorem 4, both versions admit a straightforward proof.
Obviously, models and kernels are fundamental in probability theory (just think
of conditional distributions and Markov processes). But models and kernels play
a role in many other frameworks. For instance, in decision theory, a model P
can be regarded as the collection of probability distributions of a state-contingent
payoff conditional on a parameter θ . Or else, in statistical inference, P may be
viewed as the class of possible probability distributions on the data. Accordingly,
Theorem 4 and its two versions can be attached some interpretation. In Sect. 4,
this interpretation is discussed and various examples are given.

2 Preliminaries

Webriefly recall somewell known definitions and results. To this end, we let (X , E, μ)

denote any probability space.
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The measurable space (X , E) is said to be a standard Borel space if X is a Borel
subset of a Polish space and E = B(X ). Similarly, (X , E) is a Radon space if X is
a metric space, E = B(X ), and each probability measure on E is tight. A standard
Borel space is a Radon space but not conversely. For instance, if X is a universally
measurable, non-Borel subset of a Polish space, then (X ,B(X )) is not a standard
Borel space but every probability measure on B(X ) is tight.

A μ-atom is a set A ∈ E such that μ(A) > 0 and μ(· | A) is 0-1 valued. We say
that (X , E, μ) is a non-atomic probability space, or that μ is non-atomic, if μ has no
atoms. If X is a separable metric space and E = B(X ), then μ is non-atomic if and
only if μ{x} = 0 for all x ∈ X .

Let F ⊂ E be a sub-σ -field. A regular conditional distribution for μ given F is a
collection γ = {γ (x) : x ∈ X } such that:

− γ (x) is a probability measure on E for each x ∈ X ;
− γ (·)(A) is a version of Eμ(1A | F) for each A ∈ E .
If (X , E) is a Radon space, a regular conditional distribution for μ given F exists

and is μ-a.s. unique.
Finally, to prove forthcoming Theorem 3, we report the following version of SRT;

see (Blackwell and Dubins 1983) and [Hernandez-Ceron (2010), p. 52–54] for a
detailed proof.

Theorem 2 (Blackwell and Dubins) Let m be the Lebesgue measure on B((0, 1)) and
� the collection of probability measures on B(S). If S is Polish, there is a Borel map
	 : (0, 1) × � → S such that

• m
{
β ∈ (0, 1) : 	(β, λ) ∈ B

} = λ(B) for all λ ∈ � and B ∈ B(S);
• m

{
β ∈ (0, 1) : 	(β, λn) → 	(β, λ0)

} = 1 if λn ∈ � and λn → λ0 weakly.

It is easily seen that Theorem 2 is still true if S is a Borel subset of a Polish space
(but not necessarily a Polish space).

3 Theorem 1 and its consequences

This section includes three applications ofTheorem1, outlined in the formof examples,
as well as an extension of Theorem 1. We begin with the latter.

Any σ -field G over S can be written as G = σ(g) for a suitable function g on S.
More precisely, the following result is available.

Lemma 1 For each σ -field G over S, there are a measurable space (T , C) and a
function g : S → T such that

G = {
g−1(C) : C ∈ C} = σ(g).

Proof For each x ∈ S, let H(x) be the G-atom including the point x , that is

H(x) = {
y ∈ S : 1B(y) = 1B(x) for each B ∈ G};
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see e.g. (Berti and Rigo 2007) and (Blackwell and Dubins 1975). Define

T = {
H(x) : x ∈ S

}
.

Then, T is a partition of S and every element of G is a union of elements of T . For
any C ⊂ T , define C∗ = {

x ∈ S : H(x) ∈ C
}
. Then, it suffices to let

C = {
C ⊂ T : C∗ ∈ G}

and g(x) = H(x) for every x ∈ S.

�	
Based on Lemma 1, it is tempting to extend Theorem 1 to an arbitrary sub-σ -field

G ⊂ B(S). This is impossible, however, if Theorem 1 is stated as above.

Example 1 Suppose μn{x} = μ0{x} = 0 for all x ∈ S and take G to be the collection
of countable and co-countable subsets of S. In this case, μn = μ0 on G. However,
since G includes the singletons, any function g such that G = σ(g) is injective, so that
g(Xn) = g(X0) amounts to Xn = X0. Hence, (μn) admits a coupling (Xn) satisfying
condition (1) if and only if μn = μ0 on all of B(S).

The next result is motivated by the previous comments. In the sequel, for any
topological space T , we denote by Cb(T ) the collection of real bounded continuous
functions on T .

Theorem 3 Fix a sub-σ -field G ⊂ B(S) and suppose

μn is tight and μn = μ0 on G for every n ≥ 0.

Then, on some probability space (�,A,P), there is a coupling (Xn) of (μn) such
that

P(Xn ∈ A, X0 /∈ A) = 0 for all A ∈ G and n ≥ 0. (2)

In addition to (2), one also obtains Xn
P−a.s.−→ X0 if and only if

Eμn ( f | G)
μ0−a.s.−→ Eμ0( f | G) for each f ∈ Cb(S). (3)

Proof We just give a sketch of the proof, for it is quite similar to that of Theorem 1.
Since all the μn are tight, S can be assumed to be a Borel subset of a Polish space.

Hence, Theorem 2 applies. Moreover, for each n ≥ 0, we can fix a regular conditional
distribution for μn given G, say γn = {γn(x) : x ∈ S}; see Sect. 2.

Let m be the Lebesgue measure on B((0, 1)) and 	 : (0, 1) × � → S the Borel
map involved in Theorem 2. Define

� = (0, 1) × (0, 1), A = B
(
(0, 1) × (0, 1)

)
, P = m × m.
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For each n ≥ 0 and (α, β) ∈ (0, 1) × (0, 1), define also

φ(α) = 	(α,μ0) and Xn(α, β) = 	
(
β, γn[φ(α)]

)
.

The Xn are S-valued random variables on (�,A,P). Arguing as in the proof of
Theorem 1, it can be shown that (Xn) is a coupling of (μn) and condition (3) is

equivalent to Xn
P−a.s.−→ X0. Finally, we prove (2). Fix A ∈ G and note that

m
{
β : Xn(α, β) ∈ A, X0(α, β) /∈ A

}

≤ min
{
m

{
β : Xn(α, β) ∈ A

}
, m

{
β : X0(α, β) /∈ A

}}

= min
{
γn[φ(α)](A), γ0[φ(α)](Ac)

}
for all α ∈ (0, 1).

Since A ∈ G, then γn(x)(A) = 1A(x) for μn-almost all x ∈ S. Since μn = μ0 on G,
it follows that

μ0
{
x ∈ S : γn(x)(A) = 1A(x)

} = 1.

Therefore, since m ◦ φ−1 = μ0, one obtains

P(Xn ∈ A, X0 /∈ A) =
∫ 1

0
m

{
β : Xn(α, β) ∈ A, X0(α, β) /∈ A

}
dα

≤
∫ 1

0
min

{
γn[φ(α)](A), γ0[φ(α)](Ac)

}
dα

=
∫

min
{
γn(x)(A), γ0(x)(A

c)
}

μ0(dx)

=
∫

min
{
1A(x), 1Ac (x)

}
μ0(dx) = 0.

�	
Theorem 3 extends Theorem 1 to an arbitrary sub-σ -field G ⊂ B(S). In fact, if g

is as in Theorem 1, then g(Xn) = g(X0) a.s. if and only if P(Xn ∈ A, X0 /∈ A) = 0
for all A ∈ σ(g).

One more remark on Theorem 3 is in order. If X and Y are S-valued random
variables on (�,A,P) such that

P(X ∈ A, Y /∈ A) = 0 for all A ∈ G, (4)

then

P(X ∈ A) = P(X ∈ A, Y ∈ A) = P(Y ∈ A) for all A ∈ G.
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Therefore, for any tight probability measures μ and ν on B(S), Theorem 3 yields

μ = ν on G ⇔ Condition (4) holds for some X and Y

such that X ∼ μ and Y ∼ ν.

We now turn to some applications of Theorem 1. We begin with an example which
is not new but may be useful to make clear the scope of Theorem 1.

Example 2 (Corollary 2 of Pratelli and Rigo (2023)) For each n ≥ 0, letUn and Vn be
random variables on a probability space (�n,An,Pn). Suppose Un is S1-valued and
Vn is S2-valued, where S1 and S2 are metric spaces and S1 is separable. Suppose also
thatUn ∼ U0 and (Un, Vn) has a tight probability distribution. Under these conditions,
Theorem 1 applies to S = S1 × S2 and g(x, y) = x . It follows that, on a probability
space (�,A,P), there are random variables U and V ∗

n such that (U , V ∗
n ) ∼ (Un, Vn)

for all n ≥ 0. Moreover, V ∗
n

a.s.−→ V ∗
0 if and only if Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) for

each f ∈ Cb(S2), where μn denotes the probability distribution of (Un, Vn).

In a nutshell, Example 2 may be summarized as follows. If Un ∼ U0 for all n,
the random variables (Un, Vn) can be replaced by (U , V ∗

n ). In addition to satisfying
(U , V ∗

n ) ∼ (Un, Vn), the new random variables (U , V ∗
n ) are all defined on the same

probability space and they all have the same first coordinate (that is,U ). Using (U , V ∗
n )

instead of (Un, Vn) may be useful in various settings, such as mass transportation and
stochastic control.

The next example deals with a sequence U0,U1, . . . of cadlag processes indexed
by [0,∞). Using Theorem 1 we prove that, if the continuous part of Un is distributed
as that of U0 for every n, then U0,U1, . . . can be coupled so as to have exactly the
same continuous part.

Example 3 (Decomposition of cadlag processes with finite activity) Let D be the set
of real cadlag functions on [0,∞), equipped with the Skorohod topology. Define

S = {
x ∈ D :

∑

0<s≤t

|�x(s)| < ∞ for each t > 0
}

and

g(x)(t) = x(t) −
∑

0<s≤t

�x(s) for each x ∈ S and t ≥ 0,

where�x(s) = x(s)−x(s−) is the jump of x at the point s. In financial econometrics,
a cadlag function is said to have finite activity if it has only finitely many jumps on any
bounded interval. Hence, in particular, S includes all elements of D with finite activity.
In turn, the function g associates every x ∈ S with its continuous part g(x). It can be
shown that g : S → C is a Borel map, whereC denotes the set of continuous functions
on [0,∞) (we omit the calculations). Moreover, since D is Polish and S ∈ B(D), each
probability measure on B(S) is tight.

For each n ≥ 0, let Un be a process with paths in S. Suppose g(Un) ∼ g(U0) for
each n ≥ 0, namely, the continuous parts of the Un are identically distributed. Then,
there are processes I and Jn such that:
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• I and the Jn are all defined on the same probability space;
• I + Jn ∼ Un for all n ≥ 0;
• I has continuous paths while Jn is a pure jump process.

The existence of I and Jn follows from Theorem 1. It suffices to take μn as the
probability distribution of Un and to let

I = g(X0) and Jn = Xn − g(Xn) = Xn − g(X0).

Note also that I + Jn
a.s.−→ I + J0 (in the Skorohod topology) if and only if

Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) for each f ∈ Cb(S).

Our next example deals with a notion of duality recently introduced by Jaffe (2023).
In addition to be theoretically intriguing, this notion is potentially useful in various
frameworks, including mathematical finance, decision theory, mass transportation and
probability theory.

Example 4 (Equivalence couplings and total variation) To keep the notation easier, in
this example, we write B instead of B(S). Let E ⊂ S× S be a measurable equivalence
relation. This means that E ∈ B ⊗ B and the relation on S defined as

x ∼ y ⇔ (x, y) ∈ E

is reflexive, symmetric and transitive. Say that E is strongly dualizable if there is a
sub-σ -field C ⊂ B such that

min
P∈�(μ,ν)

(1 − P(E)) = sup
A∈C

|μ(A) − ν(A)| (5)

for all probabilitymeasuresμ and ν onB. Here,�(μ, ν) is the collection of probability
measures on B ⊗ B with marginals μ and ν, and the notation “min" asserts that the
infimum is actually achieved.

Various conditions for E to be strongly dualizable are in Jaffe (2023); see also
(Pratelli and Rigo 2024). One of such conditions is the following. Define the sub-σ -
field

U = {
A ∈ B : 1A(x) = 1A(y) for all (x, y) ∈ E

}
.

Then, E is strongly dualizable provided E ∈ U ⊗U and (S,B) is a standard Borel
space; see [Jaffe (2023), Theo. 3.13] and [Pratelli and Rigo (2024), Cor. 6]. This result
is a consequence of Theorem 1, however, as we now prove. Moreover, the assumption
that (S,B) is standard Borel can be weakened.

Suppose E ∈ U ⊗ U and (S,B) is a Radon space. Since E ∈ U ⊗ U ,

E ∈ σ
(
A1 × B1, A2 × B2, . . .

)
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for some An, Bn ∈ U , n ≥ 1. Define G = σ(A1, B1, A2, B2, . . .). Since G is a
countably generated sub-σ -field of B, there is a Borel function g : S → R such that
G = σ(g). Moreover, since E ∈ G ⊗ G, one obtains

{
(x, y) : g(x) = g(y)

} ⊂ E .

Next, fix two probability measures μ and ν on B such that μ = ν on U . Since
G ⊂ U and (S,B) is a Radon space, μ and ν are tight and μ = ν on G. Because of
Theorem 1, applied with μ0 = μ and μn = ν for n > 0, there are S-valued random
variables X0 and X1 such that X0 ∼ μ, X1 ∼ ν and g(X0) = g(X1). Denoting by P
the probabilty distribution of (X0, X1), it follows that

P ∈ �(μ, ν) and P(E) ≥ P
{
(x, y) : g(x) = g(y)

} = 1.

Therefore, letting C = U , equation (5) holds provided μ = ν on U . This concludes
the proof. In fact, if C = U , equation (5) holds for all μ and ν if and only if it holds
for those μ and ν such that μ = ν on U ; see e.g. [Jaffe (2023),Prop. 3.9].

4 Kernels versus models

Let (�,H) and (X , E) be measurable spaces. To avoid trivialities, we assume

card (X ) > 1.

A model is a collection

P = {Pθ : θ ∈ �}

where each Pθ is a probability measure on E . A model P is non-atomic if Pθ is a
non-atomic probability measure on E for each θ ∈ �. Moreover, P is measurable
if the real valued map θ �→ Pθ (A) is H-measurable for fixed A ∈ E . A measurable
model is usually called a kernel.

One more definition is needed. Suppose H includes the singletons. Then, a model
P is said to be orthogonal if there is a measurable function h : X → � such that

Pθ

(
h−1{θ}

)
= 1 for all θ ∈ �.

Here, measurability of h is meant as h−1(H) ⊂ E . Orthogonal kernels are investi-
gated in Mauldin et al. (1983) and (Weis 1984). They are involved in many contexts,
including ergodic decompositions, Gibbs states, disintegrations and extremal models;
see e.g. (Berti and Rigo 2007; Blackwell andDubins 1975; Dynkin 1978; Farrell 1962;
Fölmer 1975; Lauritzen 1974; Maitra 1977). The next example, even if obvious, is
useful to frame orthogonal kernels.
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Example 5 (An orthogonal kernel) For any real random variables U and V , there is
an orthogonal version of the conditional distribution of (U , V ) given U . Take in fact
(�,H) = (R,B(R)), (X , E) = (R2,B(R2)) and define the function h(u, v) = u
for all (u, v) ∈ R

2. Also, denote by π the marginal distribution of U . Any kernel
P = {Pθ : θ ∈ �} satisfying the equation

Prob
(
U ∈ A, V ∈ B

) =
∫

A
Pθ (R × B) π(dθ), for all A, B ∈ B(R),

is a version of the conditional distribution of (U , V ) given U . If P is one such
version, it is well known that

Pθ

(
h−1{θ}

)
= Pθ

({θ} × R
) = 1 for π -almost all θ ∈ R;

see e.g. (Berti and Rigo 2007) and (Blackwell and Dubins 1975). Hence, up to
modifying P on a π -null set, one obtains a kernel Q = {Qθ : θ ∈ �} such that

π
{
θ : Qθ �= Pθ

} = 0 and Qθ

(
h−1{θ}

)
= 1 for all θ ∈ R.

Such a Q is an orthogonal version of the conditional distribution of (U , V ) given
U .

In this section, we focus on the following result from (Hansen et al. 2024).

Theorem 4 (Hansen,Maccheroni,Marinacci, Sargent) Let (�,H) and (X , E) be stan-
dard Borel spaces and P a kernel. Then, P is non-atomic and orthogonal if and only
if, for any other kernelQ = {Qθ : θ ∈ �}, there is a measurable function f : X → X
such that

Qθ = Pθ ◦ f −1 for each θ ∈ �.

In Theorem 4, measurability of f is meant as f −1(E) ⊂ E and Pθ ◦ f −1 denotes
the probability on E defined as Pθ ◦ f −1(A) = Pθ

(
f −1(A)

)
for all A ∈ E .

Essentially, Theorem 4 states that a kernel P is non-atomic and orthogonal if and
only if any other kernelQ is a push forward of P , in the sense that Qθ = Pθ ◦ f −1 for
all θ and a suitable function f . This characterizationmay be useful in every framework
where kernels play a role, and the list of such frameworks is very long. In probability
theory, for instance, kernels are obviously a basic ingredient: just think of conditional
distributions or Markov processes. In Bayesian statistical inference, a kernel P may
be viewed as the collection of the distributions on the data conditional on a parameter.
In decision theory, P can be regarded as the collection of the distributions of a state-
contingent payoff conditional on a parameter; see e.g. (Hansen et al. 2024). In weak
optimal transport, each Pθ provides information about how the mass taken at θ is
distributed over X ; see e.g. (Chone and Kramarz 2021; Chone et al. 2023; Galichon
et al. 2014) and references therein. In each of these frameworks, thus, Theorem 4 has
some motivation.
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The previous remarks are still valid if kernels are replaced by models. In fact, there
are several problems where measurability of a kernel is superfluous. We support this
claim by three examples.

Example 6 (Classical statistical inference) According to the classical approach to
statistics, the two basic ingredients of an inferential problem are a measurable space
(X , E) and a model P = {Pθ : θ ∈ �}. The set X is regarded as the sample space
and Pθ is the probability distribution of the data when the value of the parameter is θ .
Importantly, the parameter is viewed as an unknown but fixed constant, and there is
no reason to integrate over it. Hence, the σ field H is superfluous and measurability
of P is not required. In the language of this paper, P is a model but not a kernel.

Example 7 (Disintegrations) For any model P , let σ(P) denote the σ -field over �

generated by the maps θ �→ Pθ (A) for all A ∈ E . One of the main reasons for
requiring measurability of a kernel is the need of defining a probability on E as

μπ(A) =
∫

Pθ (A) π(dθ), A ∈ E, (6)

where π is a given probability on H. Such μπ cannot be defined if P is a model
but not a kernel. In Bayesian inference, for instance, P is asked to be a kernel and
π is the prior distribution. This procedure assumes that the σ -field H is fixed before
than P . However, these two steps could be reverted. Precisely, one first selects a
model P and then takesH = σ(P). This actually happens as regards non-measurable
disintegrations. To illustrate, suppose we are given a probability P on E and a partition
{Aθ : θ ∈ �} with Aθ ∈ E for all θ . A (non-measurable) disintegration for P is a pair
(P, π) where P is a model, πa probability on σ(P), and

• Pθ (Aθ ) = 1 for all θ ∈ �;
• P(A) = ∫

Pθ (A) π(dθ) for all A ∈ E .
A disintegration is said to be measurable if � is equipped with a σ -field H and

P is a kernel. Obviously, the conditions for having a non-measurable disintegration
are much more general than those for a measurable disintegation; see e.g. (Berti et al.
2020) and references therein.

Example 8 (Orthogonality preserving models)As noted in Example 7, if P is a kernel
and π a probability on H, one can define a probability μπ on E via equation (6). A
kernel P is orthogonality preserving if μπ1 and μπ2 are singular whenever π1 and π2
are singular probabilities onH. It is straightforward to prove that an orthogonal kernel
is orthogonality preserving; see (Mauldin et al. 1983). This implication is still valid if
kernels are replaced by models. Indeed, in Proposition 7, we will show that a weakly
orthogonal model (as defined below) is orthogonality preserving in a suitable sense.

We now extend Theorem 4 from kernels tomodels. Unlike Theorem 4, the extended
version admits a straightforward proof. Moreover, the notion of orthogonality can be
weakened.
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For any model P , define the σ -field

EP =
⋂

θ∈�

E Pθ

where E Pθ is the completion of E with respect to Pθ . Given a function f : X → X , we
say that f ismeasurable if f −1(E) ⊂ E and that f is P-measurable if f −1(E) ⊂ EP .
Note that f isP-measurable if and only if it is measurable with respect to Pθ for every
θ ∈ �. We also say that P is weakly orthogonal if there is a partition {Aθ : θ ∈ �}
of X such that

Aθ ∈ EP and Pθ (Aθ ) = 1 for each θ ∈ �. (7)

Here, with a slight abuse of notation, the only extension of Pθ to EP is still denoted
by Pθ . In this notation, the following result is available.

Theorem 5 Suppose card (�) ≤ card (X ) and (X , E) is a Radon space. Then, amodel
P is non-atomic and weakly orthogonal if and only if, for any other modelQ, there is
a P-measurable function f : X → X such that

Qθ = Pθ ◦ f −1 for each θ ∈ �. (8)

Proof If E does not support non-atomic probability measures, non-atomic models do
not exist and condition (8) certainly fails for some choice of Q. Hence, E can be
assumed to support a non-atomic probability measure.

Suppose P is non-atomic and weakly orthogonal. Fix a model Q and a partition
{Aθ : θ ∈ �} of X satisfying condition (7). Given θ ∈ �, since Qθ is tight and Pθ is
a non-atomic probability measure, there is a measurable function fθ : X → X such
that Qθ = Pθ ◦ f −1

θ ; see [Berti et al. (2007), Theo. 3.1]. For each x ∈ X , denote by
θx the unique θ ∈ � such that x ∈ Aθ . Define a function f : X → X as

f (x) = fθx (x) for every x ∈ X .

Fix θ ∈ � and A ∈ E . Then,
{
f ∈ A

} = {
fθ ∈ A, f = fθ

} ∪ {
f ∈ A, f �= fθ

}
.

Since { f �= fθ } ⊂ Ac
θ and Pθ (Ac

θ ) = 0, both the sets
{
f = fθ

}
and

{
f ∈ A, f �=

fθ
}
belong to E Pθ . Since fθ is measurable,

{
fθ ∈ A

} ∈ E . It follows that
{
f ∈ A

} ∈ E Pθ
.

Therefore, f is P-measurable. Furthermore,

Qθ = Pθ ◦ f −1
θ = Pθ ◦ f −1 for each θ ∈ �.
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Conversely, suppose that, for any model Q, there is a P-measurable function
f : X → X satisfying condition (8). Fix θ ∈ � and a non-atomic probability
measure ν on E . TakingQ such that Qθ = ν, condition (8) implies Pθ ◦ f −1 = ν for
some f . Hence, Pθ is non-atomic since ν is non-atomic and Pθ ◦ f −1 = ν. We next
prove that P is weakly orthogonal. Since card (�) ≤ card (X ), there is an injective
function φ : � → X . Letting Qθ = δφ(θ) for each θ ∈ �, condition (8) yields

Pθ

(
f −1{φ(θ)}) = δφ(θ){φ(θ)} = 1

for some P-measurable function f : X → X . Define Bθ = f −1{φ(θ)} and

D =
(⋃

θ∈�

Bθ

)c
.

The sets Bθ belong to EP and are pairwise disjoint since φ is injective. Moreover,
D ∈ EP since D ⊂ Bc

θ and Pθ (Bc
θ ) = 0 for all θ ∈ �. Hence, fixed any point θ0 ∈ �,

condition (7) holds with Aθ = Bθ for θ �= θ0 and Aθ0 = Bθ0 ∪ D. �	
Wedo not knowwhether the assumption card (�) ≤ card (X ) can be dropped. Such

an assumption, instead, is superfluous in Theorem 4. In fact, Theorem 4 is trivially
true if X is countable. Otherwise, if X is uncountable, card (�) ≤ card (X ) follows
from (�,H) and (X , E) are standard Borel spaces.

As noted above, the heuristic interpretation of kernels can be attached to models as
well. Thus, Theorem 5 has essentially the same motivations as Theorem 4.

Our next result is actually a mixture of Theorems 1, 4 and 5. Let P, Q0, Q1, . . .

be models with P non-atomic and weakly orthogonal. By Theorem 5, for each n ≥ 0,
there is a P-measurable function fn : X → X such that Pθ ◦ f −1

n = Qn,θ for all θ .
We now prove that, if Qn,θ = Q0,θ on σ(g) for all θ and a suitable function g, then fn

can be taken such that g( fn) = g( f0). Moreover, we give conditions for fn
Pθ−a.s.−→ f0,

as n → ∞, for fixed θ ∈ �.

Theorem 6 Let (X , E) be a Radon space,Y a separable metric space, and g : X → Y
a Borel function. Let P and Qn be models, where n ≥ 0. Suppose P is non-atomic
and weakly orthogonal and

Qn,θ = Q0,θ on σ(g) for all n ≥ 0 and θ ∈ �.

Then, there are P-measurable functions fn : X → X such that

Pθ ◦ f −1
n = Qn,θ and g( fn) = g( f0) for all n ≥ 0 and θ ∈ �. (9)

In addition to (9), for fixed θ ∈ �, one obtains

fn
Pθ−a.s.−→ f0
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whenever

EQn,θ (ϕ | g) Q0,θ−a.s.−→ EQ0,θ (ϕ | g) for each ϕ ∈ Cb(X ). (10)

Proof Fix θ ∈ �. By Corollary 4 of Pratelli and Rigo (2023), since (X , E) is Radon
and (X , E, Pθ ) is a non-atomic probability space, there are measurable functions
fn,θ : X → X such that

Qn,θ = Pθ ◦ f −1
n,θ and g( fn,θ ) = g( f0,θ ) for all n ≥ 0.

Moreover, under condition (10), one also obtains fn,θ
Pθ−a.s.−→ f0,θ .

Next, sinceP isweakly orthogonal, there is a partition {Aθ : θ ∈ �} ofX satisfying
condition (7). For all n ≥ 0 and x ∈ X , define

fn(x) = fn,θx (x)

where θx denotes the unique θ ∈ � such that x ∈ Aθ . Then, it is obvious that
g( fn) = g( f0) for all n. Moreover, arguing as in the proof of Theorem 5, the fn are
P-measurable and Qn,θ = Pθ ◦ f −1

n for all n and θ . Finally, since Pθ

(
fn = fn,θ

) = 1,

condition (10) implies fn
Pθ−a.s.−→ f0.

Incidentally, we note that card (�) ≤ card (X ) under the assumptions of Theorem
6. In fact, card (�) ≤ card (X ) follows from P being weakly orthogonal.

We close the paper by proving a claim made in Example 8.

Proposition 7 Let P be a model and σ(P) the σ -field defined in Example 7. If P is
weakly orthogonal and π1 and π2 are singular probabilities on σ(P), then

μπ1(A) = μπ2(A
c) = 1 for some A ∈ EP .

Proof Let {Aθ : θ ∈ �} be a partition of X satisfying condition (7). Since π1 and π2
are singular, there is B ∈ σ(P) such that π1(B) = π2(Bc) = 1. Define

A =
⋃

θ∈B
Aθ .

Then, A ⊃ Aθ for θ ∈ B and A ⊂ Ac
θ for θ ∈ Bc. Since Pθ (Aθ ) = 1 for all θ ∈ �,

it follows that A ∈ EP . Moreover,

μπ1(A) =
∫

Pθ (A) π1(dθ) =
∫

B
Pθ (A) π1(dθ) =

∫

B
1 dπ1 = π1(B) = 1,

and similarly μπ2(A
c) = 1. �	
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